forked from OSchip/llvm-project
aa2ddfc73d
them in a special text section. For sampleFDO, because the optimized build uses profile generated from previous release, previously we couldn't tell a function without profile was truely cold or just newly created so we had to treat them conservatively and put them in .text section instead of .text.unlikely. The result was when we persuing the best performance by locking .text.hot and .text in memory, we wasted a lot of memory to keep cold functions inside. In https://reviews.llvm.org/D66374, we introduced profile symbol list to discriminate functions being cold versus functions being newly added. This mechanism works quite well for regular use cases in AutoFDO. However, in some case, we can only have a partial profile when optimizing a target. The partial profile may be an aggregated profile collected from many targets. The profile symbol list method used for regular sampleFDO profile is not applicable to partial profile use case because it may be too large and introduce many false positives. To solve the problem for partial profile use case, we provide an option called --profile-unknown-in-special-section. For functions without profile, we will still treat them conservatively in compiler optimizations -- for example, treat them as warm instead of cold in inliner. When we use profile info to add section prefix for functions, we will discriminate functions known to be not cold versus functions without profile (being unknown), and we will put functions being unknown in a special text section called .text.unknown. Runtime system will have the flexibility to decide where to put the special section in order to achieve a balance between performance and memory saving. Differential Revision: https://reviews.llvm.org/D62540 |
||
---|---|---|
.. | ||
AliasAnalysis.cpp | ||
AliasAnalysisEvaluator.cpp | ||
AliasAnalysisSummary.cpp | ||
AliasAnalysisSummary.h | ||
AliasSetTracker.cpp | ||
Analysis.cpp | ||
AssumeBundleQueries.cpp | ||
AssumptionCache.cpp | ||
BasicAliasAnalysis.cpp | ||
BlockFrequencyInfo.cpp | ||
BlockFrequencyInfoImpl.cpp | ||
BranchProbabilityInfo.cpp | ||
CFG.cpp | ||
CFGPrinter.cpp | ||
CFLAndersAliasAnalysis.cpp | ||
CFLGraph.h | ||
CFLSteensAliasAnalysis.cpp | ||
CGSCCPassManager.cpp | ||
CMakeLists.txt | ||
CallGraph.cpp | ||
CallGraphSCCPass.cpp | ||
CallPrinter.cpp | ||
CaptureTracking.cpp | ||
CmpInstAnalysis.cpp | ||
CodeMetrics.cpp | ||
ConstantFolding.cpp | ||
CostModel.cpp | ||
DDG.cpp | ||
Delinearization.cpp | ||
DemandedBits.cpp | ||
DependenceAnalysis.cpp | ||
DependenceGraphBuilder.cpp | ||
DivergenceAnalysis.cpp | ||
DomPrinter.cpp | ||
DomTreeUpdater.cpp | ||
DominanceFrontier.cpp | ||
EHPersonalities.cpp | ||
GlobalsModRef.cpp | ||
GuardUtils.cpp | ||
HeatUtils.cpp | ||
IVDescriptors.cpp | ||
IVUsers.cpp | ||
IndirectCallPromotionAnalysis.cpp | ||
InlineCost.cpp | ||
InstCount.cpp | ||
InstructionPrecedenceTracking.cpp | ||
InstructionSimplify.cpp | ||
Interval.cpp | ||
IntervalPartition.cpp | ||
LLVMBuild.txt | ||
LazyBlockFrequencyInfo.cpp | ||
LazyBranchProbabilityInfo.cpp | ||
LazyCallGraph.cpp | ||
LazyValueInfo.cpp | ||
LegacyDivergenceAnalysis.cpp | ||
Lint.cpp | ||
Loads.cpp | ||
LoopAccessAnalysis.cpp | ||
LoopAnalysisManager.cpp | ||
LoopCacheAnalysis.cpp | ||
LoopInfo.cpp | ||
LoopNestAnalysis.cpp | ||
LoopPass.cpp | ||
LoopUnrollAnalyzer.cpp | ||
MemDepPrinter.cpp | ||
MemDerefPrinter.cpp | ||
MemoryBuiltins.cpp | ||
MemoryDependenceAnalysis.cpp | ||
MemoryLocation.cpp | ||
MemorySSA.cpp | ||
MemorySSAUpdater.cpp | ||
ModuleDebugInfoPrinter.cpp | ||
ModuleSummaryAnalysis.cpp | ||
MustExecute.cpp | ||
ObjCARCAliasAnalysis.cpp | ||
ObjCARCAnalysisUtils.cpp | ||
ObjCARCInstKind.cpp | ||
OptimizationRemarkEmitter.cpp | ||
OrderedInstructions.cpp | ||
PHITransAddr.cpp | ||
PhiValues.cpp | ||
PostDominators.cpp | ||
ProfileSummaryInfo.cpp | ||
PtrUseVisitor.cpp | ||
README.txt | ||
RegionInfo.cpp | ||
RegionPass.cpp | ||
RegionPrinter.cpp | ||
ScalarEvolution.cpp | ||
ScalarEvolutionAliasAnalysis.cpp | ||
ScalarEvolutionExpander.cpp | ||
ScalarEvolutionNormalization.cpp | ||
ScopedNoAliasAA.cpp | ||
StackSafetyAnalysis.cpp | ||
StratifiedSets.h | ||
SyncDependenceAnalysis.cpp | ||
SyntheticCountsUtils.cpp | ||
TargetLibraryInfo.cpp | ||
TargetTransformInfo.cpp | ||
Trace.cpp | ||
TypeBasedAliasAnalysis.cpp | ||
TypeMetadataUtils.cpp | ||
VFABIDemangling.cpp | ||
ValueLattice.cpp | ||
ValueLatticeUtils.cpp | ||
ValueTracking.cpp | ||
VectorUtils.cpp |
README.txt
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//