forked from OSchip/llvm-project
980 lines
36 KiB
C++
980 lines
36 KiB
C++
//=== ScalarEvolutionExpanderTest.cpp - ScalarEvolutionExpander unit tests ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace llvm {
|
|
|
|
using namespace PatternMatch;
|
|
|
|
// We use this fixture to ensure that we clean up ScalarEvolution before
|
|
// deleting the PassManager.
|
|
class ScalarEvolutionExpanderTest : public testing::Test {
|
|
protected:
|
|
LLVMContext Context;
|
|
Module M;
|
|
TargetLibraryInfoImpl TLII;
|
|
TargetLibraryInfo TLI;
|
|
|
|
std::unique_ptr<AssumptionCache> AC;
|
|
std::unique_ptr<DominatorTree> DT;
|
|
std::unique_ptr<LoopInfo> LI;
|
|
|
|
ScalarEvolutionExpanderTest() : M("", Context), TLII(), TLI(TLII) {}
|
|
|
|
ScalarEvolution buildSE(Function &F) {
|
|
AC.reset(new AssumptionCache(F));
|
|
DT.reset(new DominatorTree(F));
|
|
LI.reset(new LoopInfo(*DT));
|
|
return ScalarEvolution(F, TLI, *AC, *DT, *LI);
|
|
}
|
|
|
|
void runWithSE(
|
|
Module &M, StringRef FuncName,
|
|
function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) {
|
|
auto *F = M.getFunction(FuncName);
|
|
ASSERT_NE(F, nullptr) << "Could not find " << FuncName;
|
|
ScalarEvolution SE = buildSE(*F);
|
|
Test(*F, *LI, SE);
|
|
}
|
|
};
|
|
|
|
static Instruction &GetInstByName(Function &F, StringRef Name) {
|
|
for (auto &I : instructions(F))
|
|
if (I.getName() == Name)
|
|
return I;
|
|
llvm_unreachable("Could not find instructions!");
|
|
}
|
|
|
|
TEST_F(ScalarEvolutionExpanderTest, ExpandPtrTypeSCEV) {
|
|
// It is to test the fix for PR30213. It exercises the branch in scev
|
|
// expansion when the value in ValueOffsetPair is a ptr and the offset
|
|
// is not divisible by the elem type size of value.
|
|
auto *I8Ty = Type::getInt8Ty(Context);
|
|
auto *I8PtrTy = Type::getInt8PtrTy(Context);
|
|
auto *I32Ty = Type::getInt32Ty(Context);
|
|
auto *I32PtrTy = Type::getInt32PtrTy(Context);
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false);
|
|
Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
|
|
BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F);
|
|
BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F);
|
|
BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F);
|
|
BranchInst::Create(LoopBB, EntryBB);
|
|
ReturnInst::Create(Context, nullptr, ExitBB);
|
|
|
|
// loop: ; preds = %loop, %entry
|
|
// %alloca = alloca i32
|
|
// %gep0 = getelementptr i32, i32* %alloca, i32 1
|
|
// %bitcast1 = bitcast i32* %gep0 to i8*
|
|
// %gep1 = getelementptr i8, i8* %bitcast1, i32 1
|
|
// %gep2 = getelementptr i8, i8* undef, i32 1
|
|
// %cmp = icmp ult i8* undef, %bitcast1
|
|
// %select = select i1 %cmp, i8* %gep1, i8* %gep2
|
|
// %bitcast2 = bitcast i8* %select to i32*
|
|
// br i1 undef, label %loop, label %exit
|
|
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
BranchInst *Br = BranchInst::Create(
|
|
LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB);
|
|
AllocaInst *Alloca =
|
|
new AllocaInst(I32Ty, DL.getAllocaAddrSpace(), "alloca", Br);
|
|
ConstantInt *Ci32 = ConstantInt::get(Context, APInt(32, 1));
|
|
GetElementPtrInst *Gep0 =
|
|
GetElementPtrInst::Create(I32Ty, Alloca, Ci32, "gep0", Br);
|
|
CastInst *CastA =
|
|
CastInst::CreateBitOrPointerCast(Gep0, I8PtrTy, "bitcast1", Br);
|
|
GetElementPtrInst *Gep1 =
|
|
GetElementPtrInst::Create(I8Ty, CastA, Ci32, "gep1", Br);
|
|
GetElementPtrInst *Gep2 = GetElementPtrInst::Create(
|
|
I8Ty, UndefValue::get(I8PtrTy), Ci32, "gep2", Br);
|
|
CmpInst *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULT,
|
|
UndefValue::get(I8PtrTy), CastA, "cmp", Br);
|
|
SelectInst *Sel = SelectInst::Create(Cmp, Gep1, Gep2, "select", Br);
|
|
CastInst *CastB =
|
|
CastInst::CreateBitOrPointerCast(Sel, I32PtrTy, "bitcast2", Br);
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
auto *S = SE.getSCEV(CastB);
|
|
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
|
|
Value *V =
|
|
Exp.expandCodeFor(cast<SCEVAddExpr>(S)->getOperand(1), nullptr, Br);
|
|
|
|
// Expect the expansion code contains:
|
|
// %0 = bitcast i32* %bitcast2 to i8*
|
|
// %uglygep = getelementptr i8, i8* %0, i64 -1
|
|
// %1 = bitcast i8* %uglygep to i32*
|
|
EXPECT_TRUE(isa<BitCastInst>(V));
|
|
Instruction *Gep = cast<Instruction>(V)->getPrevNode();
|
|
EXPECT_TRUE(isa<GetElementPtrInst>(Gep));
|
|
EXPECT_TRUE(isa<ConstantInt>(Gep->getOperand(1)));
|
|
EXPECT_EQ(cast<ConstantInt>(Gep->getOperand(1))->getSExtValue(), -1);
|
|
EXPECT_TRUE(isa<BitCastInst>(Gep->getPrevNode()));
|
|
}
|
|
|
|
// Make sure that SCEV doesn't introduce illegal ptrtoint/inttoptr instructions
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVZeroExtendExprNonIntegral) {
|
|
/*
|
|
* Create the following code:
|
|
* func(i64 addrspace(10)* %arg)
|
|
* top:
|
|
* br label %L.ph
|
|
* L.ph:
|
|
* br label %L
|
|
* L:
|
|
* %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
|
|
* %add = add i64 %phi2, 1
|
|
* br i1 undef, label %post, label %L2
|
|
* post:
|
|
* %gepbase = getelementptr i64 addrspace(10)* %arg, i64 1
|
|
* #= %gep = getelementptr i64 addrspace(10)* %gepbase, i64 %add =#
|
|
* ret void
|
|
*
|
|
* We will create the appropriate SCEV expression for %gep and expand it,
|
|
* then check that no inttoptr/ptrtoint instructions got inserted.
|
|
*/
|
|
|
|
// Create a module with non-integral pointers in it's datalayout
|
|
Module NIM("nonintegral", Context);
|
|
std::string DataLayout = M.getDataLayoutStr();
|
|
if (!DataLayout.empty())
|
|
DataLayout += "-";
|
|
DataLayout += "ni:10";
|
|
NIM.setDataLayout(DataLayout);
|
|
|
|
Type *T_int1 = Type::getInt1Ty(Context);
|
|
Type *T_int64 = Type::getInt64Ty(Context);
|
|
Type *T_pint64 = T_int64->getPointerTo(10);
|
|
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
|
|
Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
|
|
|
|
Argument *Arg = &*F->arg_begin();
|
|
|
|
BasicBlock *Top = BasicBlock::Create(Context, "top", F);
|
|
BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
|
|
BasicBlock *L = BasicBlock::Create(Context, "L", F);
|
|
BasicBlock *Post = BasicBlock::Create(Context, "post", F);
|
|
|
|
IRBuilder<> Builder(Top);
|
|
Builder.CreateBr(LPh);
|
|
|
|
Builder.SetInsertPoint(LPh);
|
|
Builder.CreateBr(L);
|
|
|
|
Builder.SetInsertPoint(L);
|
|
PHINode *Phi = Builder.CreatePHI(T_int64, 2);
|
|
Value *Add = Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add");
|
|
Builder.CreateCondBr(UndefValue::get(T_int1), L, Post);
|
|
Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
|
|
Phi->addIncoming(Add, L);
|
|
|
|
Builder.SetInsertPoint(Post);
|
|
Value *GepBase =
|
|
Builder.CreateGEP(T_int64, Arg, ConstantInt::get(T_int64, 1));
|
|
Instruction *Ret = Builder.CreateRetVoid();
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
auto *AddRec =
|
|
SE.getAddRecExpr(SE.getUnknown(GepBase), SE.getConstant(T_int64, 1),
|
|
LI->getLoopFor(L), SCEV::FlagNUW);
|
|
|
|
SCEVExpander Exp(SE, NIM.getDataLayout(), "expander");
|
|
Exp.disableCanonicalMode();
|
|
Exp.expandCodeFor(AddRec, T_pint64, Ret);
|
|
|
|
// Make sure none of the instructions inserted were inttoptr/ptrtoint.
|
|
// The verifier will check this.
|
|
EXPECT_FALSE(verifyFunction(*F, &errs()));
|
|
}
|
|
|
|
// Check that we can correctly identify the points at which the SCEV of the
|
|
// AddRec can be expanded.
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderIsSafeToExpandAt) {
|
|
/*
|
|
* Create the following code:
|
|
* func(i64 addrspace(10)* %arg)
|
|
* top:
|
|
* br label %L.ph
|
|
* L.ph:
|
|
* br label %L
|
|
* L:
|
|
* %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ]
|
|
* %add = add i64 %phi2, 1
|
|
* %cond = icmp slt i64 %add, 1000; then becomes 2000.
|
|
* br i1 %cond, label %post, label %L2
|
|
* post:
|
|
* ret void
|
|
*
|
|
*/
|
|
|
|
// Create a module with non-integral pointers in it's datalayout
|
|
Module NIM("nonintegral", Context);
|
|
std::string DataLayout = M.getDataLayoutStr();
|
|
if (!DataLayout.empty())
|
|
DataLayout += "-";
|
|
DataLayout += "ni:10";
|
|
NIM.setDataLayout(DataLayout);
|
|
|
|
Type *T_int64 = Type::getInt64Ty(Context);
|
|
Type *T_pint64 = T_int64->getPointerTo(10);
|
|
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false);
|
|
Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM);
|
|
|
|
BasicBlock *Top = BasicBlock::Create(Context, "top", F);
|
|
BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F);
|
|
BasicBlock *L = BasicBlock::Create(Context, "L", F);
|
|
BasicBlock *Post = BasicBlock::Create(Context, "post", F);
|
|
|
|
IRBuilder<> Builder(Top);
|
|
Builder.CreateBr(LPh);
|
|
|
|
Builder.SetInsertPoint(LPh);
|
|
Builder.CreateBr(L);
|
|
|
|
Builder.SetInsertPoint(L);
|
|
PHINode *Phi = Builder.CreatePHI(T_int64, 2);
|
|
auto *Add = cast<Instruction>(
|
|
Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add"));
|
|
auto *Limit = ConstantInt::get(T_int64, 1000);
|
|
auto *Cond = cast<Instruction>(
|
|
Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond"));
|
|
Builder.CreateCondBr(Cond, L, Post);
|
|
Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh);
|
|
Phi->addIncoming(Add, L);
|
|
|
|
Builder.SetInsertPoint(Post);
|
|
Instruction *Ret = Builder.CreateRetVoid();
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
const SCEV *S = SE.getSCEV(Phi);
|
|
EXPECT_TRUE(isa<SCEVAddRecExpr>(S));
|
|
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
|
|
EXPECT_TRUE(AR->isAffine());
|
|
EXPECT_FALSE(isSafeToExpandAt(AR, Top->getTerminator(), SE));
|
|
EXPECT_FALSE(isSafeToExpandAt(AR, LPh->getTerminator(), SE));
|
|
EXPECT_TRUE(isSafeToExpandAt(AR, L->getTerminator(), SE));
|
|
EXPECT_TRUE(isSafeToExpandAt(AR, Post->getTerminator(), SE));
|
|
|
|
EXPECT_TRUE(LI->getLoopFor(L)->isLCSSAForm(*DT));
|
|
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
|
|
Exp.expandCodeFor(SE.getSCEV(Add), nullptr, Ret);
|
|
EXPECT_TRUE(LI->getLoopFor(L)->isLCSSAForm(*DT));
|
|
}
|
|
|
|
// Check that SCEV expander does not use the nuw instruction
|
|
// for expansion.
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderNUW) {
|
|
/*
|
|
* Create the following code:
|
|
* func(i64 %a)
|
|
* entry:
|
|
* br false, label %exit, label %body
|
|
* body:
|
|
* %s1 = add i64 %a, -1
|
|
* br label %exit
|
|
* exit:
|
|
* %s = add nuw i64 %a, -1
|
|
* ret %s
|
|
*/
|
|
|
|
// Create a module.
|
|
Module M("SCEVExpanderNUW", Context);
|
|
|
|
Type *T_int64 = Type::getInt64Ty(Context);
|
|
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
|
|
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
|
|
Argument *Arg = &*F->arg_begin();
|
|
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
|
|
|
|
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
|
|
BasicBlock *Body = BasicBlock::Create(Context, "body", F);
|
|
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
|
|
|
|
IRBuilder<> Builder(Entry);
|
|
ConstantInt *Cond = ConstantInt::get(Context, APInt(1, 0));
|
|
Builder.CreateCondBr(Cond, Exit, Body);
|
|
|
|
Builder.SetInsertPoint(Body);
|
|
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
Builder.CreateBr(Exit);
|
|
|
|
Builder.SetInsertPoint(Exit);
|
|
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
S2->setHasNoUnsignedWrap(true);
|
|
auto *R = cast<Instruction>(Builder.CreateRetVoid());
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
const SCEV *S = SE.getSCEV(S1);
|
|
EXPECT_TRUE(isa<SCEVAddExpr>(S));
|
|
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
|
|
auto *I = cast<Instruction>(Exp.expandCodeFor(S, nullptr, R));
|
|
EXPECT_FALSE(I->hasNoUnsignedWrap());
|
|
}
|
|
|
|
// Check that SCEV expander does not use the nsw instruction
|
|
// for expansion.
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderNSW) {
|
|
/*
|
|
* Create the following code:
|
|
* func(i64 %a)
|
|
* entry:
|
|
* br false, label %exit, label %body
|
|
* body:
|
|
* %s1 = add i64 %a, -1
|
|
* br label %exit
|
|
* exit:
|
|
* %s = add nsw i64 %a, -1
|
|
* ret %s
|
|
*/
|
|
|
|
// Create a module.
|
|
Module M("SCEVExpanderNSW", Context);
|
|
|
|
Type *T_int64 = Type::getInt64Ty(Context);
|
|
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
|
|
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
|
|
Argument *Arg = &*F->arg_begin();
|
|
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
|
|
|
|
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
|
|
BasicBlock *Body = BasicBlock::Create(Context, "body", F);
|
|
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
|
|
|
|
IRBuilder<> Builder(Entry);
|
|
ConstantInt *Cond = ConstantInt::get(Context, APInt(1, 0));
|
|
Builder.CreateCondBr(Cond, Exit, Body);
|
|
|
|
Builder.SetInsertPoint(Body);
|
|
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
Builder.CreateBr(Exit);
|
|
|
|
Builder.SetInsertPoint(Exit);
|
|
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
S2->setHasNoSignedWrap(true);
|
|
auto *R = cast<Instruction>(Builder.CreateRetVoid());
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
const SCEV *S = SE.getSCEV(S1);
|
|
EXPECT_TRUE(isa<SCEVAddExpr>(S));
|
|
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
|
|
auto *I = cast<Instruction>(Exp.expandCodeFor(S, nullptr, R));
|
|
EXPECT_FALSE(I->hasNoSignedWrap());
|
|
}
|
|
|
|
// Check that SCEV does not save the SCEV -> V
|
|
// mapping of SCEV differ from V in NUW flag.
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVCacheNUW) {
|
|
/*
|
|
* Create the following code:
|
|
* func(i64 %a)
|
|
* entry:
|
|
* %s1 = add i64 %a, -1
|
|
* %s2 = add nuw i64 %a, -1
|
|
* br label %exit
|
|
* exit:
|
|
* ret %s
|
|
*/
|
|
|
|
// Create a module.
|
|
Module M("SCEVCacheNUW", Context);
|
|
|
|
Type *T_int64 = Type::getInt64Ty(Context);
|
|
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
|
|
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
|
|
Argument *Arg = &*F->arg_begin();
|
|
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
|
|
|
|
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
|
|
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
|
|
|
|
IRBuilder<> Builder(Entry);
|
|
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
S2->setHasNoUnsignedWrap(true);
|
|
Builder.CreateBr(Exit);
|
|
|
|
Builder.SetInsertPoint(Exit);
|
|
auto *R = cast<Instruction>(Builder.CreateRetVoid());
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
// Get S2 first to move it to cache.
|
|
const SCEV *SC2 = SE.getSCEV(S2);
|
|
EXPECT_TRUE(isa<SCEVAddExpr>(SC2));
|
|
// Now get S1.
|
|
const SCEV *SC1 = SE.getSCEV(S1);
|
|
EXPECT_TRUE(isa<SCEVAddExpr>(SC1));
|
|
// Expand for S1, it should use S1 not S2 in spite S2
|
|
// first in the cache.
|
|
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
|
|
auto *I = cast<Instruction>(Exp.expandCodeFor(SC1, nullptr, R));
|
|
EXPECT_FALSE(I->hasNoUnsignedWrap());
|
|
}
|
|
|
|
// Check that SCEV does not save the SCEV -> V
|
|
// mapping of SCEV differ from V in NSW flag.
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVCacheNSW) {
|
|
/*
|
|
* Create the following code:
|
|
* func(i64 %a)
|
|
* entry:
|
|
* %s1 = add i64 %a, -1
|
|
* %s2 = add nsw i64 %a, -1
|
|
* br label %exit
|
|
* exit:
|
|
* ret %s
|
|
*/
|
|
|
|
// Create a module.
|
|
Module M("SCEVCacheNUW", Context);
|
|
|
|
Type *T_int64 = Type::getInt64Ty(Context);
|
|
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getVoidTy(Context), {T_int64}, false);
|
|
Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M);
|
|
Argument *Arg = &*F->arg_begin();
|
|
ConstantInt *C = ConstantInt::get(Context, APInt(64, -1));
|
|
|
|
BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
|
|
BasicBlock *Exit = BasicBlock::Create(Context, "exit", F);
|
|
|
|
IRBuilder<> Builder(Entry);
|
|
auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add"));
|
|
S2->setHasNoSignedWrap(true);
|
|
Builder.CreateBr(Exit);
|
|
|
|
Builder.SetInsertPoint(Exit);
|
|
auto *R = cast<Instruction>(Builder.CreateRetVoid());
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
// Get S2 first to move it to cache.
|
|
const SCEV *SC2 = SE.getSCEV(S2);
|
|
EXPECT_TRUE(isa<SCEVAddExpr>(SC2));
|
|
// Now get S1.
|
|
const SCEV *SC1 = SE.getSCEV(S1);
|
|
EXPECT_TRUE(isa<SCEVAddExpr>(SC1));
|
|
// Expand for S1, it should use S1 not S2 in spite S2
|
|
// first in the cache.
|
|
SCEVExpander Exp(SE, M.getDataLayout(), "expander");
|
|
auto *I = cast<Instruction>(Exp.expandCodeFor(SC1, nullptr, R));
|
|
EXPECT_FALSE(I->hasNoSignedWrap());
|
|
}
|
|
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVExpandInsertCanonicalIV) {
|
|
LLVMContext C;
|
|
SMDiagnostic Err;
|
|
|
|
// Expand the addrec produced by GetAddRec into a loop without a canonical IV.
|
|
// SCEVExpander will insert one.
|
|
auto TestNoCanonicalIV =
|
|
[&](std::function<const SCEV *(ScalarEvolution & SE, Loop * L)>
|
|
GetAddRec) {
|
|
std::unique_ptr<Module> M = parseAssemblyString(
|
|
"define i32 @test(i32 %limit) { "
|
|
"entry: "
|
|
" br label %loop "
|
|
"loop: "
|
|
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
|
|
" %i.inc = add nsw i32 %i, 1 "
|
|
" %cont = icmp slt i32 %i.inc, %limit "
|
|
" br i1 %cont, label %loop, label %exit "
|
|
"exit: "
|
|
" ret i32 %i.inc "
|
|
"}",
|
|
Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
runWithSE(
|
|
*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
auto &I = GetInstByName(F, "i");
|
|
auto *Loop = LI.getLoopFor(I.getParent());
|
|
EXPECT_FALSE(Loop->getCanonicalInductionVariable());
|
|
|
|
auto *AR = GetAddRec(SE, Loop);
|
|
unsigned ExpectedCanonicalIVWidth =
|
|
SE.getTypeSizeInBits(AR->getType());
|
|
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
auto *InsertAt = I.getNextNode();
|
|
Exp.expandCodeFor(AR, nullptr, InsertAt);
|
|
PHINode *CanonicalIV = Loop->getCanonicalInductionVariable();
|
|
unsigned CanonicalIVBitWidth =
|
|
cast<IntegerType>(CanonicalIV->getType())->getBitWidth();
|
|
EXPECT_EQ(CanonicalIVBitWidth, ExpectedCanonicalIVWidth);
|
|
});
|
|
};
|
|
|
|
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
|
|
// which is narrower than addrec type.
|
|
// SCEVExpander will insert a canonical IV of a wider type to expand the
|
|
// addrec.
|
|
auto TestNarrowCanonicalIV = [&](std::function<const SCEV *(
|
|
ScalarEvolution & SE, Loop * L)>
|
|
GetAddRec) {
|
|
std::unique_ptr<Module> M = parseAssemblyString(
|
|
"define i32 @test(i32 %limit) { "
|
|
"entry: "
|
|
" br label %loop "
|
|
"loop: "
|
|
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
|
|
" %canonical.iv = phi i8 [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
|
|
" %i.inc = add nsw i32 %i, 1 "
|
|
" %canonical.iv.inc = add i8 %canonical.iv, 1 "
|
|
" %cont = icmp slt i32 %i.inc, %limit "
|
|
" br i1 %cont, label %loop, label %exit "
|
|
"exit: "
|
|
" ret i32 %i.inc "
|
|
"}",
|
|
Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
auto &I = GetInstByName(F, "i");
|
|
|
|
auto *LoopHeaderBB = I.getParent();
|
|
auto *Loop = LI.getLoopFor(LoopHeaderBB);
|
|
PHINode *CanonicalIV = Loop->getCanonicalInductionVariable();
|
|
EXPECT_EQ(CanonicalIV, &GetInstByName(F, "canonical.iv"));
|
|
|
|
auto *AR = GetAddRec(SE, Loop);
|
|
|
|
unsigned ExpectedCanonicalIVWidth = SE.getTypeSizeInBits(AR->getType());
|
|
unsigned CanonicalIVBitWidth =
|
|
cast<IntegerType>(CanonicalIV->getType())->getBitWidth();
|
|
EXPECT_LT(CanonicalIVBitWidth, ExpectedCanonicalIVWidth);
|
|
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
auto *InsertAt = I.getNextNode();
|
|
Exp.expandCodeFor(AR, nullptr, InsertAt);
|
|
|
|
// Loop over all of the PHI nodes, looking for the new canonical indvar.
|
|
PHINode *NewCanonicalIV = nullptr;
|
|
for (BasicBlock::iterator i = LoopHeaderBB->begin(); isa<PHINode>(i);
|
|
++i) {
|
|
PHINode *PN = cast<PHINode>(i);
|
|
if (PN == &I || PN == CanonicalIV)
|
|
continue;
|
|
// We expect that the only PHI added is the new canonical IV
|
|
EXPECT_FALSE(NewCanonicalIV);
|
|
NewCanonicalIV = PN;
|
|
}
|
|
|
|
// Check that NewCanonicalIV is a canonical IV, i.e {0,+,1}
|
|
BasicBlock *Incoming = nullptr, *Backedge = nullptr;
|
|
EXPECT_TRUE(Loop->getIncomingAndBackEdge(Incoming, Backedge));
|
|
auto *Start = NewCanonicalIV->getIncomingValueForBlock(Incoming);
|
|
EXPECT_TRUE(isa<ConstantInt>(Start));
|
|
EXPECT_TRUE(dyn_cast<ConstantInt>(Start)->isZero());
|
|
auto *Next = NewCanonicalIV->getIncomingValueForBlock(Backedge);
|
|
EXPECT_TRUE(isa<BinaryOperator>(Next));
|
|
auto *NextBinOp = dyn_cast<BinaryOperator>(Next);
|
|
EXPECT_EQ(NextBinOp->getOpcode(), Instruction::Add);
|
|
EXPECT_EQ(NextBinOp->getOperand(0), NewCanonicalIV);
|
|
auto *Step = NextBinOp->getOperand(1);
|
|
EXPECT_TRUE(isa<ConstantInt>(Step));
|
|
EXPECT_TRUE(dyn_cast<ConstantInt>(Step)->isOne());
|
|
|
|
unsigned NewCanonicalIVBitWidth =
|
|
cast<IntegerType>(NewCanonicalIV->getType())->getBitWidth();
|
|
EXPECT_EQ(NewCanonicalIVBitWidth, ExpectedCanonicalIVWidth);
|
|
});
|
|
};
|
|
|
|
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
|
|
// of addrec width.
|
|
// To expand the addrec SCEVExpander should use the existing canonical IV.
|
|
auto TestMatchingCanonicalIV =
|
|
[&](std::function<const SCEV *(ScalarEvolution & SE, Loop * L)> GetAddRec,
|
|
unsigned ARBitWidth) {
|
|
auto ARBitWidthTypeStr = "i" + std::to_string(ARBitWidth);
|
|
std::unique_ptr<Module> M = parseAssemblyString(
|
|
"define i32 @test(i32 %limit) { "
|
|
"entry: "
|
|
" br label %loop "
|
|
"loop: "
|
|
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
|
|
" %canonical.iv = phi " +
|
|
ARBitWidthTypeStr +
|
|
" [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
|
|
" %i.inc = add nsw i32 %i, 1 "
|
|
" %canonical.iv.inc = add " +
|
|
ARBitWidthTypeStr +
|
|
" %canonical.iv, 1 "
|
|
" %cont = icmp slt i32 %i.inc, %limit "
|
|
" br i1 %cont, label %loop, label %exit "
|
|
"exit: "
|
|
" ret i32 %i.inc "
|
|
"}",
|
|
Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
runWithSE(
|
|
*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
auto &I = GetInstByName(F, "i");
|
|
auto &CanonicalIV = GetInstByName(F, "canonical.iv");
|
|
|
|
auto *LoopHeaderBB = I.getParent();
|
|
auto *Loop = LI.getLoopFor(LoopHeaderBB);
|
|
EXPECT_EQ(&CanonicalIV, Loop->getCanonicalInductionVariable());
|
|
unsigned CanonicalIVBitWidth =
|
|
cast<IntegerType>(CanonicalIV.getType())->getBitWidth();
|
|
|
|
auto *AR = GetAddRec(SE, Loop);
|
|
EXPECT_EQ(ARBitWidth, SE.getTypeSizeInBits(AR->getType()));
|
|
EXPECT_EQ(CanonicalIVBitWidth, ARBitWidth);
|
|
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
auto *InsertAt = I.getNextNode();
|
|
Exp.expandCodeFor(AR, nullptr, InsertAt);
|
|
|
|
// Loop over all of the PHI nodes, looking if a new canonical
|
|
// indvar was introduced.
|
|
PHINode *NewCanonicalIV = nullptr;
|
|
for (BasicBlock::iterator i = LoopHeaderBB->begin();
|
|
isa<PHINode>(i); ++i) {
|
|
PHINode *PN = cast<PHINode>(i);
|
|
if (PN == &I || PN == &CanonicalIV)
|
|
continue;
|
|
NewCanonicalIV = PN;
|
|
}
|
|
EXPECT_FALSE(NewCanonicalIV);
|
|
});
|
|
};
|
|
|
|
unsigned ARBitWidth = 16;
|
|
Type *ARType = IntegerType::get(C, ARBitWidth);
|
|
|
|
// Expand {5,+,1}
|
|
auto GetAR2 = [&](ScalarEvolution &SE, Loop *L) -> const SCEV * {
|
|
return SE.getAddRecExpr(SE.getConstant(APInt(ARBitWidth, 5)),
|
|
SE.getOne(ARType), L, SCEV::FlagAnyWrap);
|
|
};
|
|
TestNoCanonicalIV(GetAR2);
|
|
TestNarrowCanonicalIV(GetAR2);
|
|
TestMatchingCanonicalIV(GetAR2, ARBitWidth);
|
|
}
|
|
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVExpanderShlNSW) {
|
|
|
|
auto checkOneCase = [this](std::string &&str) {
|
|
LLVMContext C;
|
|
SMDiagnostic Err;
|
|
std::unique_ptr<Module> M = parseAssemblyString(str, Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
Function *F = M->getFunction("f");
|
|
ASSERT_NE(F, nullptr) << "Could not find function 'f'";
|
|
|
|
BasicBlock &Entry = F->getEntryBlock();
|
|
LoadInst *Load = cast<LoadInst>(&Entry.front());
|
|
BinaryOperator *And = cast<BinaryOperator>(*Load->user_begin());
|
|
|
|
ScalarEvolution SE = buildSE(*F);
|
|
const SCEV *AndSCEV = SE.getSCEV(And);
|
|
EXPECT_TRUE(isa<SCEVMulExpr>(AndSCEV));
|
|
EXPECT_TRUE(cast<SCEVMulExpr>(AndSCEV)->hasNoSignedWrap());
|
|
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
auto *I = cast<Instruction>(Exp.expandCodeFor(AndSCEV, nullptr, And));
|
|
EXPECT_EQ(I->getOpcode(), Instruction::Shl);
|
|
EXPECT_FALSE(I->hasNoSignedWrap());
|
|
};
|
|
|
|
checkOneCase("define void @f(i16* %arrayidx) { "
|
|
" %1 = load i16, i16* %arrayidx "
|
|
" %2 = and i16 %1, -32768 "
|
|
" ret void "
|
|
"} ");
|
|
|
|
checkOneCase("define void @f(i8* %arrayidx) { "
|
|
" %1 = load i8, i8* %arrayidx "
|
|
" %2 = and i8 %1, -128 "
|
|
" ret void "
|
|
"} ");
|
|
}
|
|
|
|
// Test expansion of nested addrecs in CanonicalMode.
|
|
// Expanding nested addrecs in canonical mode requiers a canonical IV of a
|
|
// type wider than the type of the addrec itself. Currently, SCEVExpander
|
|
// just falls back to literal mode for nested addrecs.
|
|
TEST_F(ScalarEvolutionExpanderTest, SCEVExpandNonAffineAddRec) {
|
|
LLVMContext C;
|
|
SMDiagnostic Err;
|
|
|
|
// Expand the addrec produced by GetAddRec into a loop without a canonical IV.
|
|
auto TestNoCanonicalIV =
|
|
[&](std::function<const SCEVAddRecExpr *(ScalarEvolution & SE, Loop * L)>
|
|
GetAddRec) {
|
|
std::unique_ptr<Module> M = parseAssemblyString(
|
|
"define i32 @test(i32 %limit) { "
|
|
"entry: "
|
|
" br label %loop "
|
|
"loop: "
|
|
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
|
|
" %i.inc = add nsw i32 %i, 1 "
|
|
" %cont = icmp slt i32 %i.inc, %limit "
|
|
" br i1 %cont, label %loop, label %exit "
|
|
"exit: "
|
|
" ret i32 %i.inc "
|
|
"}",
|
|
Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
runWithSE(*M, "test",
|
|
[&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
auto &I = GetInstByName(F, "i");
|
|
auto *Loop = LI.getLoopFor(I.getParent());
|
|
EXPECT_FALSE(Loop->getCanonicalInductionVariable());
|
|
|
|
auto *AR = GetAddRec(SE, Loop);
|
|
EXPECT_FALSE(AR->isAffine());
|
|
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
auto *InsertAt = I.getNextNode();
|
|
Value *V = Exp.expandCodeFor(AR, nullptr, InsertAt);
|
|
auto *ExpandedAR = SE.getSCEV(V);
|
|
// Check that the expansion happened literally.
|
|
EXPECT_EQ(AR, ExpandedAR);
|
|
});
|
|
};
|
|
|
|
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
|
|
// which is narrower than addrec type.
|
|
auto TestNarrowCanonicalIV = [&](std::function<const SCEVAddRecExpr *(
|
|
ScalarEvolution & SE, Loop * L)>
|
|
GetAddRec) {
|
|
std::unique_ptr<Module> M = parseAssemblyString(
|
|
"define i32 @test(i32 %limit) { "
|
|
"entry: "
|
|
" br label %loop "
|
|
"loop: "
|
|
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
|
|
" %canonical.iv = phi i8 [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
|
|
" %i.inc = add nsw i32 %i, 1 "
|
|
" %canonical.iv.inc = add i8 %canonical.iv, 1 "
|
|
" %cont = icmp slt i32 %i.inc, %limit "
|
|
" br i1 %cont, label %loop, label %exit "
|
|
"exit: "
|
|
" ret i32 %i.inc "
|
|
"}",
|
|
Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
auto &I = GetInstByName(F, "i");
|
|
|
|
auto *LoopHeaderBB = I.getParent();
|
|
auto *Loop = LI.getLoopFor(LoopHeaderBB);
|
|
PHINode *CanonicalIV = Loop->getCanonicalInductionVariable();
|
|
EXPECT_EQ(CanonicalIV, &GetInstByName(F, "canonical.iv"));
|
|
|
|
auto *AR = GetAddRec(SE, Loop);
|
|
EXPECT_FALSE(AR->isAffine());
|
|
|
|
unsigned ExpectedCanonicalIVWidth = SE.getTypeSizeInBits(AR->getType());
|
|
unsigned CanonicalIVBitWidth =
|
|
cast<IntegerType>(CanonicalIV->getType())->getBitWidth();
|
|
EXPECT_LT(CanonicalIVBitWidth, ExpectedCanonicalIVWidth);
|
|
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
auto *InsertAt = I.getNextNode();
|
|
Value *V = Exp.expandCodeFor(AR, nullptr, InsertAt);
|
|
auto *ExpandedAR = SE.getSCEV(V);
|
|
// Check that the expansion happened literally.
|
|
EXPECT_EQ(AR, ExpandedAR);
|
|
});
|
|
};
|
|
|
|
// Expand the addrec produced by GetAddRec into a loop with a canonical IV
|
|
// of addrec width.
|
|
auto TestMatchingCanonicalIV =
|
|
[&](std::function<const SCEVAddRecExpr *(ScalarEvolution & SE, Loop * L)>
|
|
GetAddRec,
|
|
unsigned ARBitWidth) {
|
|
auto ARBitWidthTypeStr = "i" + std::to_string(ARBitWidth);
|
|
std::unique_ptr<Module> M = parseAssemblyString(
|
|
"define i32 @test(i32 %limit) { "
|
|
"entry: "
|
|
" br label %loop "
|
|
"loop: "
|
|
" %i = phi i32 [ 1, %entry ], [ %i.inc, %loop ] "
|
|
" %canonical.iv = phi " +
|
|
ARBitWidthTypeStr +
|
|
" [ 0, %entry ], [ %canonical.iv.inc, %loop ] "
|
|
" %i.inc = add nsw i32 %i, 1 "
|
|
" %canonical.iv.inc = add " +
|
|
ARBitWidthTypeStr +
|
|
" %canonical.iv, 1 "
|
|
" %cont = icmp slt i32 %i.inc, %limit "
|
|
" br i1 %cont, label %loop, label %exit "
|
|
"exit: "
|
|
" ret i32 %i.inc "
|
|
"}",
|
|
Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
runWithSE(
|
|
*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
auto &I = GetInstByName(F, "i");
|
|
auto &CanonicalIV = GetInstByName(F, "canonical.iv");
|
|
|
|
auto *LoopHeaderBB = I.getParent();
|
|
auto *Loop = LI.getLoopFor(LoopHeaderBB);
|
|
EXPECT_EQ(&CanonicalIV, Loop->getCanonicalInductionVariable());
|
|
unsigned CanonicalIVBitWidth =
|
|
cast<IntegerType>(CanonicalIV.getType())->getBitWidth();
|
|
|
|
auto *AR = GetAddRec(SE, Loop);
|
|
EXPECT_FALSE(AR->isAffine());
|
|
EXPECT_EQ(ARBitWidth, SE.getTypeSizeInBits(AR->getType()));
|
|
EXPECT_EQ(CanonicalIVBitWidth, ARBitWidth);
|
|
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
auto *InsertAt = I.getNextNode();
|
|
Value *V = Exp.expandCodeFor(AR, nullptr, InsertAt);
|
|
auto *ExpandedAR = SE.getSCEV(V);
|
|
// Check that the expansion happened literally.
|
|
EXPECT_EQ(AR, ExpandedAR);
|
|
});
|
|
};
|
|
|
|
unsigned ARBitWidth = 16;
|
|
Type *ARType = IntegerType::get(C, ARBitWidth);
|
|
|
|
// Expand {5,+,1,+,1}
|
|
auto GetAR3 = [&](ScalarEvolution &SE, Loop *L) -> const SCEVAddRecExpr * {
|
|
SmallVector<const SCEV *, 3> Ops = {SE.getConstant(APInt(ARBitWidth, 5)),
|
|
SE.getOne(ARType), SE.getOne(ARType)};
|
|
return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, L, SCEV::FlagAnyWrap));
|
|
};
|
|
TestNoCanonicalIV(GetAR3);
|
|
TestNarrowCanonicalIV(GetAR3);
|
|
TestMatchingCanonicalIV(GetAR3, ARBitWidth);
|
|
|
|
// Expand {5,+,1,+,1,+,1}
|
|
auto GetAR4 = [&](ScalarEvolution &SE, Loop *L) -> const SCEVAddRecExpr * {
|
|
SmallVector<const SCEV *, 4> Ops = {SE.getConstant(APInt(ARBitWidth, 5)),
|
|
SE.getOne(ARType), SE.getOne(ARType),
|
|
SE.getOne(ARType)};
|
|
return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, L, SCEV::FlagAnyWrap));
|
|
};
|
|
TestNoCanonicalIV(GetAR4);
|
|
TestNarrowCanonicalIV(GetAR4);
|
|
TestMatchingCanonicalIV(GetAR4, ARBitWidth);
|
|
|
|
// Expand {5,+,1,+,1,+,1,+,1}
|
|
auto GetAR5 = [&](ScalarEvolution &SE, Loop *L) -> const SCEVAddRecExpr * {
|
|
SmallVector<const SCEV *, 5> Ops = {SE.getConstant(APInt(ARBitWidth, 5)),
|
|
SE.getOne(ARType), SE.getOne(ARType),
|
|
SE.getOne(ARType), SE.getOne(ARType)};
|
|
return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, L, SCEV::FlagAnyWrap));
|
|
};
|
|
TestNoCanonicalIV(GetAR5);
|
|
TestNarrowCanonicalIV(GetAR5);
|
|
TestMatchingCanonicalIV(GetAR5, ARBitWidth);
|
|
}
|
|
|
|
TEST_F(ScalarEvolutionExpanderTest, ExpandNonIntegralPtrWithNullBase) {
|
|
LLVMContext C;
|
|
SMDiagnostic Err;
|
|
|
|
std::unique_ptr<Module> M =
|
|
parseAssemblyString("target datalayout = "
|
|
"\"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:"
|
|
"128-n8:16:32:64-S128-ni:1-p2:32:8:8:32-ni:2\""
|
|
"define float addrspace(1)* @test(i64 %offset) { "
|
|
" %ptr = getelementptr inbounds float, float "
|
|
"addrspace(1)* null, i64 %offset"
|
|
" ret float addrspace(1)* %ptr"
|
|
"}",
|
|
Err, C);
|
|
|
|
assert(M && "Could not parse module?");
|
|
assert(!verifyModule(*M) && "Must have been well formed!");
|
|
|
|
runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
|
|
auto &I = GetInstByName(F, "ptr");
|
|
auto PtrPlus1 =
|
|
SE.getAddExpr(SE.getSCEV(&I), SE.getConstant(I.getType(), 1));
|
|
SCEVExpander Exp(SE, M->getDataLayout(), "expander");
|
|
|
|
Value *V = Exp.expandCodeFor(PtrPlus1, I.getType(), &I);
|
|
I.replaceAllUsesWith(V);
|
|
|
|
// Check that the expander created:
|
|
// define float addrspace(1)* @test(i64 %off) {
|
|
// %scevgep = getelementptr float, float addrspace(1)* null, i64 %off
|
|
// %scevgep1 = bitcast float addrspace(1)* %scevgep to i8 addrspace(1)*
|
|
// %uglygep = getelementptr i8, i8 addrspace(1)* %scevgep1, i64 1
|
|
// %uglygep2 = bitcast i8 addrspace(1)* %uglygep to float addrspace(1)*
|
|
// %ptr = getelementptr inbounds float, float addrspace(1)* null, i64 %off
|
|
// ret float addrspace(1)* %uglygep2
|
|
// }
|
|
|
|
auto *Cast = dyn_cast<BitCastInst>(V);
|
|
EXPECT_TRUE(Cast);
|
|
EXPECT_EQ(Cast->getType(), I.getType());
|
|
auto *GEP = dyn_cast<GetElementPtrInst>(Cast->getOperand(0));
|
|
EXPECT_TRUE(GEP);
|
|
EXPECT_TRUE(match(GEP->getOperand(1), m_SpecificInt(1)));
|
|
auto *Cast1 = dyn_cast<BitCastInst>(GEP->getPointerOperand());
|
|
EXPECT_TRUE(Cast1);
|
|
auto *GEP1 = dyn_cast<GetElementPtrInst>(Cast1->getOperand(0));
|
|
EXPECT_TRUE(GEP1);
|
|
EXPECT_TRUE(cast<Constant>(GEP1->getPointerOperand())->isNullValue());
|
|
EXPECT_EQ(GEP1->getOperand(1), &*F.arg_begin());
|
|
EXPECT_EQ(cast<PointerType>(GEP1->getPointerOperand()->getType())
|
|
->getAddressSpace(),
|
|
cast<PointerType>(I.getType())->getAddressSpace());
|
|
EXPECT_FALSE(verifyFunction(F, &errs()));
|
|
});
|
|
}
|
|
|
|
} // end namespace llvm
|