forked from OSchip/llvm-project
256 lines
9.8 KiB
Python
Executable File
256 lines
9.8 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
"""A shuffle vector fuzz tester.
|
|
|
|
This is a python program to fuzz test the LLVM shufflevector instruction. It
|
|
generates a function with a random sequnece of shufflevectors, maintaining the
|
|
element mapping accumulated across the function. It then generates a main
|
|
function which calls it with a different value in each element and checks that
|
|
the result matches the expected mapping.
|
|
|
|
Take the output IR printed to stdout, compile it to an executable using whatever
|
|
set of transforms you want to test, and run the program. If it crashes, it found
|
|
a bug.
|
|
"""
|
|
|
|
import argparse
|
|
import itertools
|
|
import random
|
|
import sys
|
|
import uuid
|
|
|
|
def main():
|
|
element_types=['i8', 'i16', 'i32', 'i64', 'f32', 'f64']
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
parser.add_argument('-v', '--verbose', action='store_true',
|
|
help='Show verbose output')
|
|
parser.add_argument('--seed', default=str(uuid.uuid4()),
|
|
help='A string used to seed the RNG')
|
|
parser.add_argument('--max-shuffle-height', type=int, default=16,
|
|
help='Specify a fixed height of shuffle tree to test')
|
|
parser.add_argument('--no-blends', dest='blends', action='store_false',
|
|
help='Include blends of two input vectors')
|
|
parser.add_argument('--fixed-bit-width', type=int, choices=[128, 256],
|
|
help='Specify a fixed bit width of vector to test')
|
|
parser.add_argument('--fixed-element-type', choices=element_types,
|
|
help='Specify a fixed element type to test')
|
|
parser.add_argument('--triple',
|
|
help='Specify a triple string to include in the IR')
|
|
args = parser.parse_args()
|
|
|
|
random.seed(args.seed)
|
|
|
|
if args.fixed_element_type is not None:
|
|
element_types=[args.fixed_element_type]
|
|
|
|
if args.fixed_bit_width is not None:
|
|
if args.fixed_bit_width == 128:
|
|
width_map={'i64': 2, 'i32': 4, 'i16': 8, 'i8': 16, 'f64': 2, 'f32': 4}
|
|
(width, element_type) = random.choice(
|
|
[(width_map[t], t) for t in element_types])
|
|
elif args.fixed_bit_width == 256:
|
|
width_map={'i64': 4, 'i32': 8, 'i16': 16, 'i8': 32, 'f64': 4, 'f32': 8}
|
|
(width, element_type) = random.choice(
|
|
[(width_map[t], t) for t in element_types])
|
|
else:
|
|
sys.exit(1) # Checked above by argument parsing.
|
|
else:
|
|
width = random.choice([2, 4, 8, 16, 32, 64])
|
|
element_type = random.choice(element_types)
|
|
|
|
element_modulus = {
|
|
'i8': 1 << 8, 'i16': 1 << 16, 'i32': 1 << 32, 'i64': 1 << 64,
|
|
'f32': 1 << 32, 'f64': 1 << 64}[element_type]
|
|
|
|
shuffle_range = (2 * width) if args.blends else width
|
|
|
|
# Because undef (-1) saturates and is indistinguishable when testing the
|
|
# correctness of a shuffle, we want to bias our fuzz toward having a decent
|
|
# mixture of non-undef lanes in the end. With a deep shuffle tree, the
|
|
# probabilies aren't good so we need to bias things. The math here is that if
|
|
# we uniformly select between -1 and the other inputs, each element of the
|
|
# result will have the following probability of being undef:
|
|
#
|
|
# 1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
|
|
#
|
|
# More generally, for any probability P of selecting a defined element in
|
|
# a single shuffle, the end result is:
|
|
#
|
|
# 1 - P^max_shuffle_height
|
|
#
|
|
# The power of the shuffle height is the real problem, as we want:
|
|
#
|
|
# 1 - shuffle_range/(shuffle_range+1)
|
|
#
|
|
# So we bias the selection of undef at any given node based on the tree
|
|
# height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
|
|
# and 'B' be the bias we use to compensate for
|
|
# C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
|
|
#
|
|
# 1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
|
|
#
|
|
# So at each node we use:
|
|
#
|
|
# 1 - (B * A)/(A + 1)
|
|
# = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
|
|
# = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
|
|
#
|
|
# This is the formula we use to select undef lanes in the shuffle.
|
|
A = float(shuffle_range)
|
|
C = float(args.max_shuffle_height)
|
|
undef_prob = 1.0 - (((A + 1.0) * pow(A, (C + 1.0)/C)) /
|
|
(A * pow(A + 1.0, (C + 1.0)/C)))
|
|
|
|
shuffle_tree = [[[-1 if random.random() <= undef_prob
|
|
else random.choice(range(shuffle_range))
|
|
for _ in itertools.repeat(None, width)]
|
|
for _ in itertools.repeat(None, args.max_shuffle_height - i)]
|
|
for i in xrange(args.max_shuffle_height)]
|
|
|
|
if args.verbose:
|
|
# Print out the shuffle sequence in a compact form.
|
|
print >>sys.stderr, ('Testing shuffle sequence "%s" (v%d%s):' %
|
|
(args.seed, width, element_type))
|
|
for i, shuffles in enumerate(shuffle_tree):
|
|
print >>sys.stderr, ' tree level %d:' % (i,)
|
|
for j, s in enumerate(shuffles):
|
|
print >>sys.stderr, ' shuffle %d: %s' % (j, s)
|
|
print >>sys.stderr, ''
|
|
|
|
# Symbolically evaluate the shuffle tree.
|
|
inputs = [[int(j % element_modulus)
|
|
for j in xrange(i * width + 1, (i + 1) * width + 1)]
|
|
for i in xrange(args.max_shuffle_height + 1)]
|
|
results = inputs
|
|
for shuffles in shuffle_tree:
|
|
results = [[((results[i] if j < width else results[i + 1])[j % width]
|
|
if j != -1 else -1)
|
|
for j in s]
|
|
for i, s in enumerate(shuffles)]
|
|
if len(results) != 1:
|
|
print >>sys.stderr, 'ERROR: Bad results: %s' % (results,)
|
|
sys.exit(1)
|
|
result = results[0]
|
|
|
|
if args.verbose:
|
|
print >>sys.stderr, 'Which transforms:'
|
|
print >>sys.stderr, ' from: %s' % (inputs,)
|
|
print >>sys.stderr, ' into: %s' % (result,)
|
|
print >>sys.stderr, ''
|
|
|
|
# The IR uses silly names for floating point types. We also need a same-size
|
|
# integer type.
|
|
integral_element_type = element_type
|
|
if element_type == 'f32':
|
|
integral_element_type = 'i32'
|
|
element_type = 'float'
|
|
elif element_type == 'f64':
|
|
integral_element_type = 'i64'
|
|
element_type = 'double'
|
|
|
|
# Now we need to generate IR for the shuffle function.
|
|
subst = {'N': width, 'T': element_type, 'IT': integral_element_type}
|
|
print """
|
|
define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
|
|
entry:""" % dict(subst,
|
|
arguments=', '.join(
|
|
['<%(N)d x %(T)s> %%s.0.%(i)d' % dict(subst, i=i)
|
|
for i in xrange(args.max_shuffle_height + 1)]))
|
|
|
|
for i, shuffles in enumerate(shuffle_tree):
|
|
for j, s in enumerate(shuffles):
|
|
print """
|
|
%%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
|
|
""".strip('\n') % dict(subst, i=i, next_i=i + 1, j=j, next_j=j + 1,
|
|
S=', '.join(['i32 ' + (str(si) if si != -1 else 'undef')
|
|
for si in s]))
|
|
|
|
print """
|
|
ret <%(N)d x %(T)s> %%s.%(i)d.0
|
|
}
|
|
""" % dict(subst, i=len(shuffle_tree))
|
|
|
|
# Generate some string constants that we can use to report errors.
|
|
for i, r in enumerate(result):
|
|
if r != -1:
|
|
s = ('FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\n\\0A' %
|
|
{'seed': args.seed, 'lane': i, 'result': r})
|
|
s += ''.join(['\\00' for _ in itertools.repeat(None, 128 - len(s) + 2)])
|
|
print """
|
|
@error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
|
|
""".strip() % {'i': i, 's': s}
|
|
|
|
# Define a wrapper function which is marked 'optnone' to prevent
|
|
# interprocedural optimizations from deleting the test.
|
|
print """
|
|
define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
|
|
%%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
|
|
ret <%(N)d x %(T)s> %%result
|
|
}
|
|
""" % dict(subst,
|
|
arguments=', '.join(['<%(N)d x %(T)s> %%s.%(i)d' % dict(subst, i=i)
|
|
for i in xrange(args.max_shuffle_height + 1)]))
|
|
|
|
# Finally, generate a main function which will trap if any lanes are mapped
|
|
# incorrectly (in an observable way).
|
|
print """
|
|
define i32 @main() {
|
|
entry:
|
|
; Create a scratch space to print error messages.
|
|
%%str = alloca [128 x i8]
|
|
%%str.ptr = getelementptr inbounds [128 x i8]* %%str, i32 0, i32 0
|
|
|
|
; Build the input vector and call the test function.
|
|
%%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
|
|
; We need to cast this back to an integer type vector to easily check the
|
|
; result.
|
|
%%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
|
|
br label %%test.0
|
|
""" % dict(subst,
|
|
inputs=', '.join(
|
|
[('<%(N)d x %(T)s> bitcast '
|
|
'(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)' %
|
|
dict(subst, input=', '.join(['%(IT)s %(i)d' % dict(subst, i=i)
|
|
for i in input])))
|
|
for input in inputs]))
|
|
|
|
# Test that each non-undef result lane contains the expected value.
|
|
for i, r in enumerate(result):
|
|
if r == -1:
|
|
print """
|
|
test.%(i)d:
|
|
; Skip this lane, its value is undef.
|
|
br label %%test.%(next_i)d
|
|
""" % dict(subst, i=i, next_i=i + 1)
|
|
else:
|
|
print """
|
|
test.%(i)d:
|
|
%%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
|
|
%%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
|
|
br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d
|
|
|
|
die.%(i)d:
|
|
; Capture the actual value and print an error message.
|
|
%%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
|
|
%%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
|
|
call i32 (i8*, i8*, ...)* @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
|
|
%%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
|
|
call i32 @write(i32 2, i8* %%str.ptr, i32 %%length.%(i)d)
|
|
call void @llvm.trap()
|
|
unreachable
|
|
""" % dict(subst, i=i, next_i=i + 1, r=r)
|
|
|
|
print """
|
|
test.%d:
|
|
ret i32 0
|
|
}
|
|
|
|
declare i32 @strlen(i8*)
|
|
declare i32 @write(i32, i8*, i32)
|
|
declare i32 @sprintf(i8*, i8*, ...)
|
|
declare void @llvm.trap() noreturn nounwind
|
|
""" % (len(result),)
|
|
|
|
if __name__ == '__main__':
|
|
main()
|