forked from OSchip/llvm-project
2431 lines
91 KiB
C++
2431 lines
91 KiB
C++
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "CGCall.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Miscellaneous Helper Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
|
|
unsigned addressSpace =
|
|
cast<llvm::PointerType>(value->getType())->getAddressSpace();
|
|
|
|
llvm::PointerType *destType = Int8PtrTy;
|
|
if (addressSpace)
|
|
destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
|
|
|
|
if (value->getType() == destType) return value;
|
|
return Builder.CreateBitCast(value, destType);
|
|
}
|
|
|
|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
|
|
/// block.
|
|
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
|
|
const llvm::Twine &Name) {
|
|
if (!Builder.isNamePreserving())
|
|
return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
|
|
return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
|
|
}
|
|
|
|
void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
|
|
llvm::Value *Init) {
|
|
llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
|
|
llvm::BasicBlock *Block = AllocaInsertPt->getParent();
|
|
Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
|
|
}
|
|
|
|
llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
|
|
const llvm::Twine &Name) {
|
|
llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
|
|
// FIXME: Should we prefer the preferred type alignment here?
|
|
CharUnits Align = getContext().getTypeAlignInChars(Ty);
|
|
Alloc->setAlignment(Align.getQuantity());
|
|
return Alloc;
|
|
}
|
|
|
|
llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
|
|
const llvm::Twine &Name) {
|
|
llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
|
|
// FIXME: Should we prefer the preferred type alignment here?
|
|
CharUnits Align = getContext().getTypeAlignInChars(Ty);
|
|
Alloc->setAlignment(Align.getQuantity());
|
|
return Alloc;
|
|
}
|
|
|
|
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
|
|
/// expression and compare the result against zero, returning an Int1Ty value.
|
|
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
|
|
if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
|
|
llvm::Value *MemPtr = EmitScalarExpr(E);
|
|
return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
|
|
}
|
|
|
|
QualType BoolTy = getContext().BoolTy;
|
|
if (!E->getType()->isAnyComplexType())
|
|
return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
|
|
|
|
return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
|
|
}
|
|
|
|
/// EmitIgnoredExpr - Emit code to compute the specified expression,
|
|
/// ignoring the result.
|
|
void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
|
|
if (E->isRValue())
|
|
return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
|
|
|
|
// Just emit it as an l-value and drop the result.
|
|
EmitLValue(E);
|
|
}
|
|
|
|
/// EmitAnyExpr - Emit code to compute the specified expression which
|
|
/// can have any type. The result is returned as an RValue struct.
|
|
/// If this is an aggregate expression, AggSlot indicates where the
|
|
/// result should be returned.
|
|
RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
|
|
bool IgnoreResult) {
|
|
if (!hasAggregateLLVMType(E->getType()))
|
|
return RValue::get(EmitScalarExpr(E, IgnoreResult));
|
|
else if (E->getType()->isAnyComplexType())
|
|
return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
|
|
|
|
EmitAggExpr(E, AggSlot, IgnoreResult);
|
|
return AggSlot.asRValue();
|
|
}
|
|
|
|
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
|
|
/// always be accessible even if no aggregate location is provided.
|
|
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
|
|
AggValueSlot AggSlot = AggValueSlot::ignored();
|
|
|
|
if (hasAggregateLLVMType(E->getType()) &&
|
|
!E->getType()->isAnyComplexType())
|
|
AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
|
|
return EmitAnyExpr(E, AggSlot);
|
|
}
|
|
|
|
/// EmitAnyExprToMem - Evaluate an expression into a given memory
|
|
/// location.
|
|
void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
|
|
llvm::Value *Location,
|
|
Qualifiers Quals,
|
|
bool IsInit) {
|
|
if (E->getType()->isAnyComplexType())
|
|
EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
|
|
else if (hasAggregateLLVMType(E->getType()))
|
|
EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, IsInit));
|
|
else {
|
|
RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
|
|
LValue LV = MakeAddrLValue(Location, E->getType());
|
|
EmitStoreThroughLValue(RV, LV);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// \brief An adjustment to be made to the temporary created when emitting a
|
|
/// reference binding, which accesses a particular subobject of that temporary.
|
|
struct SubobjectAdjustment {
|
|
enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
|
|
|
|
union {
|
|
struct {
|
|
const CastExpr *BasePath;
|
|
const CXXRecordDecl *DerivedClass;
|
|
} DerivedToBase;
|
|
|
|
FieldDecl *Field;
|
|
};
|
|
|
|
SubobjectAdjustment(const CastExpr *BasePath,
|
|
const CXXRecordDecl *DerivedClass)
|
|
: Kind(DerivedToBaseAdjustment) {
|
|
DerivedToBase.BasePath = BasePath;
|
|
DerivedToBase.DerivedClass = DerivedClass;
|
|
}
|
|
|
|
SubobjectAdjustment(FieldDecl *Field)
|
|
: Kind(FieldAdjustment) {
|
|
this->Field = Field;
|
|
}
|
|
};
|
|
}
|
|
|
|
static llvm::Value *
|
|
CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type,
|
|
const NamedDecl *InitializedDecl) {
|
|
if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
|
|
if (VD->hasGlobalStorage()) {
|
|
llvm::SmallString<256> Name;
|
|
llvm::raw_svector_ostream Out(Name);
|
|
CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
|
|
Out.flush();
|
|
|
|
llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
|
|
|
|
// Create the reference temporary.
|
|
llvm::GlobalValue *RefTemp =
|
|
new llvm::GlobalVariable(CGF.CGM.getModule(),
|
|
RefTempTy, /*isConstant=*/false,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
llvm::Constant::getNullValue(RefTempTy),
|
|
Name.str());
|
|
return RefTemp;
|
|
}
|
|
}
|
|
|
|
return CGF.CreateMemTemp(Type, "ref.tmp");
|
|
}
|
|
|
|
static llvm::Value *
|
|
EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
|
|
llvm::Value *&ReferenceTemporary,
|
|
const CXXDestructorDecl *&ReferenceTemporaryDtor,
|
|
QualType &ObjCARCReferenceLifetimeType,
|
|
const NamedDecl *InitializedDecl) {
|
|
// Look through expressions for materialized temporaries (for now).
|
|
if (const MaterializeTemporaryExpr *M
|
|
= dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
// Objective-C++ ARC:
|
|
// If we are binding a reference to a temporary that has ownership, we
|
|
// need to perform retain/release operations on the temporary.
|
|
if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
|
|
E->getType()->isObjCLifetimeType() &&
|
|
(E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
|
|
E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
|
|
E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
|
|
ObjCARCReferenceLifetimeType = E->getType();
|
|
|
|
E = M->GetTemporaryExpr();
|
|
}
|
|
|
|
if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
|
|
E = DAE->getExpr();
|
|
|
|
if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) {
|
|
CodeGenFunction::RunCleanupsScope Scope(CGF);
|
|
|
|
return EmitExprForReferenceBinding(CGF, TE->getSubExpr(),
|
|
ReferenceTemporary,
|
|
ReferenceTemporaryDtor,
|
|
ObjCARCReferenceLifetimeType,
|
|
InitializedDecl);
|
|
}
|
|
|
|
if (const ObjCPropertyRefExpr *PRE =
|
|
dyn_cast<ObjCPropertyRefExpr>(E->IgnoreParenImpCasts()))
|
|
if (PRE->getGetterResultType()->isReferenceType())
|
|
E = PRE;
|
|
|
|
RValue RV;
|
|
if (E->isGLValue()) {
|
|
// Emit the expression as an lvalue.
|
|
LValue LV = CGF.EmitLValue(E);
|
|
if (LV.isPropertyRef()) {
|
|
RV = CGF.EmitLoadOfPropertyRefLValue(LV);
|
|
return RV.getScalarVal();
|
|
}
|
|
|
|
if (LV.isSimple())
|
|
return LV.getAddress();
|
|
|
|
// We have to load the lvalue.
|
|
RV = CGF.EmitLoadOfLValue(LV);
|
|
} else {
|
|
if (!ObjCARCReferenceLifetimeType.isNull()) {
|
|
ReferenceTemporary = CreateReferenceTemporary(CGF,
|
|
ObjCARCReferenceLifetimeType,
|
|
InitializedDecl);
|
|
|
|
|
|
LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
|
|
ObjCARCReferenceLifetimeType);
|
|
|
|
CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
|
|
RefTempDst, false);
|
|
|
|
bool ExtendsLifeOfTemporary = false;
|
|
if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
|
|
if (Var->extendsLifetimeOfTemporary())
|
|
ExtendsLifeOfTemporary = true;
|
|
} else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
|
|
ExtendsLifeOfTemporary = true;
|
|
}
|
|
|
|
if (!ExtendsLifeOfTemporary) {
|
|
// Since the lifetime of this temporary isn't going to be extended,
|
|
// we need to clean it up ourselves at the end of the full expression.
|
|
switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong: {
|
|
assert(!ObjCARCReferenceLifetimeType->isArrayType());
|
|
CleanupKind cleanupKind = CGF.getARCCleanupKind();
|
|
CGF.pushDestroy(cleanupKind,
|
|
ReferenceTemporary,
|
|
ObjCARCReferenceLifetimeType,
|
|
CodeGenFunction::destroyARCStrongImprecise,
|
|
cleanupKind & EHCleanup);
|
|
break;
|
|
}
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
assert(!ObjCARCReferenceLifetimeType->isArrayType());
|
|
CGF.pushDestroy(NormalAndEHCleanup,
|
|
ReferenceTemporary,
|
|
ObjCARCReferenceLifetimeType,
|
|
CodeGenFunction::destroyARCWeak,
|
|
/*useEHCleanupForArray*/ true);
|
|
break;
|
|
}
|
|
|
|
ObjCARCReferenceLifetimeType = QualType();
|
|
}
|
|
|
|
return ReferenceTemporary;
|
|
}
|
|
|
|
llvm::SmallVector<SubobjectAdjustment, 2> Adjustments;
|
|
while (true) {
|
|
E = E->IgnoreParens();
|
|
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if ((CE->getCastKind() == CK_DerivedToBase ||
|
|
CE->getCastKind() == CK_UncheckedDerivedToBase) &&
|
|
E->getType()->isRecordType()) {
|
|
E = CE->getSubExpr();
|
|
CXXRecordDecl *Derived
|
|
= cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
|
|
Adjustments.push_back(SubobjectAdjustment(CE, Derived));
|
|
continue;
|
|
}
|
|
|
|
if (CE->getCastKind() == CK_NoOp) {
|
|
E = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
if (!ME->isArrow() && ME->getBase()->isRValue()) {
|
|
assert(ME->getBase()->getType()->isRecordType());
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
|
|
E = ME->getBase();
|
|
Adjustments.push_back(SubobjectAdjustment(Field));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
|
|
if (opaque->getType()->isRecordType())
|
|
return CGF.EmitOpaqueValueLValue(opaque).getAddress();
|
|
|
|
// Nothing changed.
|
|
break;
|
|
}
|
|
|
|
// Create a reference temporary if necessary.
|
|
AggValueSlot AggSlot = AggValueSlot::ignored();
|
|
if (CGF.hasAggregateLLVMType(E->getType()) &&
|
|
!E->getType()->isAnyComplexType()) {
|
|
ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
|
|
InitializedDecl);
|
|
AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(),
|
|
InitializedDecl != 0);
|
|
}
|
|
|
|
if (InitializedDecl) {
|
|
// Get the destructor for the reference temporary.
|
|
if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!ClassDecl->hasTrivialDestructor())
|
|
ReferenceTemporaryDtor = ClassDecl->getDestructor();
|
|
}
|
|
}
|
|
|
|
RV = CGF.EmitAnyExpr(E, AggSlot);
|
|
|
|
// Check if need to perform derived-to-base casts and/or field accesses, to
|
|
// get from the temporary object we created (and, potentially, for which we
|
|
// extended the lifetime) to the subobject we're binding the reference to.
|
|
if (!Adjustments.empty()) {
|
|
llvm::Value *Object = RV.getAggregateAddr();
|
|
for (unsigned I = Adjustments.size(); I != 0; --I) {
|
|
SubobjectAdjustment &Adjustment = Adjustments[I-1];
|
|
switch (Adjustment.Kind) {
|
|
case SubobjectAdjustment::DerivedToBaseAdjustment:
|
|
Object =
|
|
CGF.GetAddressOfBaseClass(Object,
|
|
Adjustment.DerivedToBase.DerivedClass,
|
|
Adjustment.DerivedToBase.BasePath->path_begin(),
|
|
Adjustment.DerivedToBase.BasePath->path_end(),
|
|
/*NullCheckValue=*/false);
|
|
break;
|
|
|
|
case SubobjectAdjustment::FieldAdjustment: {
|
|
LValue LV =
|
|
CGF.EmitLValueForField(Object, Adjustment.Field, 0);
|
|
if (LV.isSimple()) {
|
|
Object = LV.getAddress();
|
|
break;
|
|
}
|
|
|
|
// For non-simple lvalues, we actually have to create a copy of
|
|
// the object we're binding to.
|
|
QualType T = Adjustment.Field->getType().getNonReferenceType()
|
|
.getUnqualifiedType();
|
|
Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
|
|
LValue TempLV = CGF.MakeAddrLValue(Object,
|
|
Adjustment.Field->getType());
|
|
CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return Object;
|
|
}
|
|
}
|
|
|
|
if (RV.isAggregate())
|
|
return RV.getAggregateAddr();
|
|
|
|
// Create a temporary variable that we can bind the reference to.
|
|
ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
|
|
InitializedDecl);
|
|
|
|
|
|
unsigned Alignment =
|
|
CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
|
|
if (RV.isScalar())
|
|
CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
|
|
/*Volatile=*/false, Alignment, E->getType());
|
|
else
|
|
CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
|
|
/*Volatile=*/false);
|
|
return ReferenceTemporary;
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
|
|
const NamedDecl *InitializedDecl) {
|
|
llvm::Value *ReferenceTemporary = 0;
|
|
const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
|
|
QualType ObjCARCReferenceLifetimeType;
|
|
llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
|
|
ReferenceTemporaryDtor,
|
|
ObjCARCReferenceLifetimeType,
|
|
InitializedDecl);
|
|
if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
|
|
return RValue::get(Value);
|
|
|
|
// Make sure to call the destructor for the reference temporary.
|
|
const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
|
|
if (VD && VD->hasGlobalStorage()) {
|
|
if (ReferenceTemporaryDtor) {
|
|
llvm::Constant *DtorFn =
|
|
CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
|
|
EmitCXXGlobalDtorRegistration(DtorFn,
|
|
cast<llvm::Constant>(ReferenceTemporary));
|
|
} else {
|
|
assert(!ObjCARCReferenceLifetimeType.isNull());
|
|
// Note: We intentionally do not register a global "destructor" to
|
|
// release the object.
|
|
}
|
|
|
|
return RValue::get(Value);
|
|
}
|
|
|
|
if (ReferenceTemporaryDtor)
|
|
PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
|
|
else {
|
|
switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
assert(0 && "Not a reference temporary that needs to be deallocated");
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong: {
|
|
bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
|
|
CleanupKind cleanupKind = getARCCleanupKind();
|
|
// This local is a GCC and MSVC compiler workaround.
|
|
Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
|
|
&destroyARCStrongImprecise;
|
|
pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
|
|
*destroyer, cleanupKind & EHCleanup);
|
|
break;
|
|
}
|
|
|
|
case Qualifiers::OCL_Weak: {
|
|
// This local is a GCC and MSVC compiler workaround.
|
|
Destroyer *destroyer = &destroyARCWeak;
|
|
// __weak objects always get EH cleanups; otherwise, exceptions
|
|
// could cause really nasty crashes instead of mere leaks.
|
|
pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
|
|
ObjCARCReferenceLifetimeType, *destroyer, true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return RValue::get(Value);
|
|
}
|
|
|
|
|
|
/// getAccessedFieldNo - Given an encoded value and a result number, return the
|
|
/// input field number being accessed.
|
|
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
|
|
const llvm::Constant *Elts) {
|
|
if (isa<llvm::ConstantAggregateZero>(Elts))
|
|
return 0;
|
|
|
|
return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
|
|
}
|
|
|
|
void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
|
|
if (!CatchUndefined)
|
|
return;
|
|
|
|
// This needs to be to the standard address space.
|
|
Address = Builder.CreateBitCast(Address, Int8PtrTy);
|
|
|
|
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
|
|
|
|
// In time, people may want to control this and use a 1 here.
|
|
llvm::Value *Arg = Builder.getFalse();
|
|
llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
|
|
llvm::BasicBlock *Cont = createBasicBlock();
|
|
llvm::BasicBlock *Check = createBasicBlock();
|
|
llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
|
|
Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
|
|
|
|
EmitBlock(Check);
|
|
Builder.CreateCondBr(Builder.CreateICmpUGE(C,
|
|
llvm::ConstantInt::get(IntPtrTy, Size)),
|
|
Cont, getTrapBB());
|
|
EmitBlock(Cont);
|
|
}
|
|
|
|
|
|
CodeGenFunction::ComplexPairTy CodeGenFunction::
|
|
EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre) {
|
|
ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
|
|
LV.isVolatileQualified());
|
|
|
|
llvm::Value *NextVal;
|
|
if (isa<llvm::IntegerType>(InVal.first->getType())) {
|
|
uint64_t AmountVal = isInc ? 1 : -1;
|
|
NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
|
|
|
|
// Add the inc/dec to the real part.
|
|
NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
|
|
} else {
|
|
QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
|
|
llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
|
|
if (!isInc)
|
|
FVal.changeSign();
|
|
NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
|
|
|
|
// Add the inc/dec to the real part.
|
|
NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
|
|
}
|
|
|
|
ComplexPairTy IncVal(NextVal, InVal.second);
|
|
|
|
// Store the updated result through the lvalue.
|
|
StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
|
|
|
|
// If this is a postinc, return the value read from memory, otherwise use the
|
|
// updated value.
|
|
return isPre ? IncVal : InVal;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LValue Expression Emission
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
|
|
if (Ty->isVoidType())
|
|
return RValue::get(0);
|
|
|
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
|
|
llvm::Type *EltTy = ConvertType(CTy->getElementType());
|
|
llvm::Value *U = llvm::UndefValue::get(EltTy);
|
|
return RValue::getComplex(std::make_pair(U, U));
|
|
}
|
|
|
|
// If this is a use of an undefined aggregate type, the aggregate must have an
|
|
// identifiable address. Just because the contents of the value are undefined
|
|
// doesn't mean that the address can't be taken and compared.
|
|
if (hasAggregateLLVMType(Ty)) {
|
|
llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
|
|
return RValue::getAggregate(DestPtr);
|
|
}
|
|
|
|
return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
|
|
const char *Name) {
|
|
ErrorUnsupported(E, Name);
|
|
return GetUndefRValue(E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
|
|
const char *Name) {
|
|
ErrorUnsupported(E, Name);
|
|
llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
|
|
return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
|
|
LValue LV = EmitLValue(E);
|
|
if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
|
|
EmitCheck(LV.getAddress(),
|
|
getContext().getTypeSizeInChars(E->getType()).getQuantity());
|
|
return LV;
|
|
}
|
|
|
|
/// EmitLValue - Emit code to compute a designator that specifies the location
|
|
/// of the expression.
|
|
///
|
|
/// This can return one of two things: a simple address or a bitfield reference.
|
|
/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
|
|
/// an LLVM pointer type.
|
|
///
|
|
/// If this returns a bitfield reference, nothing about the pointee type of the
|
|
/// LLVM value is known: For example, it may not be a pointer to an integer.
|
|
///
|
|
/// If this returns a normal address, and if the lvalue's C type is fixed size,
|
|
/// this method guarantees that the returned pointer type will point to an LLVM
|
|
/// type of the same size of the lvalue's type. If the lvalue has a variable
|
|
/// length type, this is not possible.
|
|
///
|
|
LValue CodeGenFunction::EmitLValue(const Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
default: return EmitUnsupportedLValue(E, "l-value expression");
|
|
|
|
case Expr::ObjCSelectorExprClass:
|
|
return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
|
|
case Expr::ObjCIsaExprClass:
|
|
return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
|
|
case Expr::BinaryOperatorClass:
|
|
return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
|
|
case Expr::CompoundAssignOperatorClass:
|
|
if (!E->getType()->isAnyComplexType())
|
|
return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
|
|
return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
|
|
case Expr::CallExprClass:
|
|
case Expr::CXXMemberCallExprClass:
|
|
case Expr::CXXOperatorCallExprClass:
|
|
return EmitCallExprLValue(cast<CallExpr>(E));
|
|
case Expr::VAArgExprClass:
|
|
return EmitVAArgExprLValue(cast<VAArgExpr>(E));
|
|
case Expr::DeclRefExprClass:
|
|
return EmitDeclRefLValue(cast<DeclRefExpr>(E));
|
|
case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
|
|
case Expr::GenericSelectionExprClass:
|
|
return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
|
|
case Expr::PredefinedExprClass:
|
|
return EmitPredefinedLValue(cast<PredefinedExpr>(E));
|
|
case Expr::StringLiteralClass:
|
|
return EmitStringLiteralLValue(cast<StringLiteral>(E));
|
|
case Expr::ObjCEncodeExprClass:
|
|
return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
|
|
|
|
case Expr::BlockDeclRefExprClass:
|
|
return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
|
|
|
|
case Expr::CXXTemporaryObjectExprClass:
|
|
case Expr::CXXConstructExprClass:
|
|
return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
|
|
case Expr::CXXBindTemporaryExprClass:
|
|
return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
|
|
case Expr::ExprWithCleanupsClass:
|
|
return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E));
|
|
case Expr::CXXScalarValueInitExprClass:
|
|
return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
|
|
case Expr::CXXDefaultArgExprClass:
|
|
return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
|
|
case Expr::CXXTypeidExprClass:
|
|
return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
|
|
|
|
case Expr::ObjCMessageExprClass:
|
|
return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
|
|
case Expr::ObjCIvarRefExprClass:
|
|
return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
|
|
case Expr::ObjCPropertyRefExprClass:
|
|
return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
|
|
case Expr::StmtExprClass:
|
|
return EmitStmtExprLValue(cast<StmtExpr>(E));
|
|
case Expr::UnaryOperatorClass:
|
|
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
|
|
case Expr::ArraySubscriptExprClass:
|
|
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
|
|
case Expr::ExtVectorElementExprClass:
|
|
return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
|
|
case Expr::MemberExprClass:
|
|
return EmitMemberExpr(cast<MemberExpr>(E));
|
|
case Expr::CompoundLiteralExprClass:
|
|
return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
|
|
case Expr::ConditionalOperatorClass:
|
|
return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
|
|
case Expr::BinaryConditionalOperatorClass:
|
|
return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
|
|
case Expr::ChooseExprClass:
|
|
return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
|
|
case Expr::OpaqueValueExprClass:
|
|
return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
|
|
case Expr::SubstNonTypeTemplateParmExprClass:
|
|
return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
|
|
case Expr::ImplicitCastExprClass:
|
|
case Expr::CStyleCastExprClass:
|
|
case Expr::CXXFunctionalCastExprClass:
|
|
case Expr::CXXStaticCastExprClass:
|
|
case Expr::CXXDynamicCastExprClass:
|
|
case Expr::CXXReinterpretCastExprClass:
|
|
case Expr::CXXConstCastExprClass:
|
|
case Expr::ObjCBridgedCastExprClass:
|
|
return EmitCastLValue(cast<CastExpr>(E));
|
|
|
|
case Expr::MaterializeTemporaryExprClass:
|
|
return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
|
|
}
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
|
|
return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
|
|
lvalue.getAlignment(), lvalue.getType(),
|
|
lvalue.getTBAAInfo());
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
|
|
unsigned Alignment, QualType Ty,
|
|
llvm::MDNode *TBAAInfo) {
|
|
llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
|
|
if (Volatile)
|
|
Load->setVolatile(true);
|
|
if (Alignment)
|
|
Load->setAlignment(Alignment);
|
|
if (TBAAInfo)
|
|
CGM.DecorateInstruction(Load, TBAAInfo);
|
|
|
|
return EmitFromMemory(Load, Ty);
|
|
}
|
|
|
|
static bool isBooleanUnderlyingType(QualType Ty) {
|
|
if (const EnumType *ET = dyn_cast<EnumType>(Ty))
|
|
return ET->getDecl()->getIntegerType()->isBooleanType();
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
|
|
// Bool has a different representation in memory than in registers.
|
|
if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
|
|
// This should really always be an i1, but sometimes it's already
|
|
// an i8, and it's awkward to track those cases down.
|
|
if (Value->getType()->isIntegerTy(1))
|
|
return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
|
|
assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
|
|
// Bool has a different representation in memory than in registers.
|
|
if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
|
|
assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
|
|
return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
|
|
bool Volatile, unsigned Alignment,
|
|
QualType Ty,
|
|
llvm::MDNode *TBAAInfo) {
|
|
Value = EmitToMemory(Value, Ty);
|
|
|
|
llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
|
|
if (Alignment)
|
|
Store->setAlignment(Alignment);
|
|
if (TBAAInfo)
|
|
CGM.DecorateInstruction(Store, TBAAInfo);
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) {
|
|
EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
|
|
lvalue.getAlignment(), lvalue.getType(),
|
|
lvalue.getTBAAInfo());
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
|
|
/// method emits the address of the lvalue, then loads the result as an rvalue,
|
|
/// returning the rvalue.
|
|
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
|
|
if (LV.isObjCWeak()) {
|
|
// load of a __weak object.
|
|
llvm::Value *AddrWeakObj = LV.getAddress();
|
|
return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
|
|
AddrWeakObj));
|
|
}
|
|
if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
|
|
return RValue::get(EmitARCLoadWeak(LV.getAddress()));
|
|
|
|
if (LV.isSimple()) {
|
|
assert(!LV.getType()->isFunctionType());
|
|
|
|
// Everything needs a load.
|
|
return RValue::get(EmitLoadOfScalar(LV));
|
|
}
|
|
|
|
if (LV.isVectorElt()) {
|
|
llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
|
|
LV.isVolatileQualified(), "tmp");
|
|
return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
|
|
"vecext"));
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, either
|
|
// shuffle the input or extract/insert them as appropriate.
|
|
if (LV.isExtVectorElt())
|
|
return EmitLoadOfExtVectorElementLValue(LV);
|
|
|
|
if (LV.isBitField())
|
|
return EmitLoadOfBitfieldLValue(LV);
|
|
|
|
assert(LV.isPropertyRef() && "Unknown LValue type!");
|
|
return EmitLoadOfPropertyRefLValue(LV);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
|
|
const CGBitFieldInfo &Info = LV.getBitFieldInfo();
|
|
|
|
// Get the output type.
|
|
llvm::Type *ResLTy = ConvertType(LV.getType());
|
|
unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
|
|
|
|
// Compute the result as an OR of all of the individual component accesses.
|
|
llvm::Value *Res = 0;
|
|
for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
|
|
const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
|
|
|
|
// Get the field pointer.
|
|
llvm::Value *Ptr = LV.getBitFieldBaseAddr();
|
|
|
|
// Only offset by the field index if used, so that incoming values are not
|
|
// required to be structures.
|
|
if (AI.FieldIndex)
|
|
Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
|
|
|
|
// Offset by the byte offset, if used.
|
|
if (!AI.FieldByteOffset.isZero()) {
|
|
Ptr = EmitCastToVoidPtr(Ptr);
|
|
Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
|
|
"bf.field.offs");
|
|
}
|
|
|
|
// Cast to the access type.
|
|
llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
|
|
AI.AccessWidth,
|
|
CGM.getContext().getTargetAddressSpace(LV.getType()));
|
|
Ptr = Builder.CreateBitCast(Ptr, PTy);
|
|
|
|
// Perform the load.
|
|
llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
|
|
if (!AI.AccessAlignment.isZero())
|
|
Load->setAlignment(AI.AccessAlignment.getQuantity());
|
|
|
|
// Shift out unused low bits and mask out unused high bits.
|
|
llvm::Value *Val = Load;
|
|
if (AI.FieldBitStart)
|
|
Val = Builder.CreateLShr(Load, AI.FieldBitStart);
|
|
Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
|
|
AI.TargetBitWidth),
|
|
"bf.clear");
|
|
|
|
// Extend or truncate to the target size.
|
|
if (AI.AccessWidth < ResSizeInBits)
|
|
Val = Builder.CreateZExt(Val, ResLTy);
|
|
else if (AI.AccessWidth > ResSizeInBits)
|
|
Val = Builder.CreateTrunc(Val, ResLTy);
|
|
|
|
// Shift into place, and OR into the result.
|
|
if (AI.TargetBitOffset)
|
|
Val = Builder.CreateShl(Val, AI.TargetBitOffset);
|
|
Res = Res ? Builder.CreateOr(Res, Val) : Val;
|
|
}
|
|
|
|
// If the bit-field is signed, perform the sign-extension.
|
|
//
|
|
// FIXME: This can easily be folded into the load of the high bits, which
|
|
// could also eliminate the mask of high bits in some situations.
|
|
if (Info.isSigned()) {
|
|
unsigned ExtraBits = ResSizeInBits - Info.getSize();
|
|
if (ExtraBits)
|
|
Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
|
|
ExtraBits, "bf.val.sext");
|
|
}
|
|
|
|
return RValue::get(Res);
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, create an
|
|
// appropriate shufflevector.
|
|
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
|
|
llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
|
|
LV.isVolatileQualified(), "tmp");
|
|
|
|
const llvm::Constant *Elts = LV.getExtVectorElts();
|
|
|
|
// If the result of the expression is a non-vector type, we must be extracting
|
|
// a single element. Just codegen as an extractelement.
|
|
const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
|
|
if (!ExprVT) {
|
|
unsigned InIdx = getAccessedFieldNo(0, Elts);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
|
|
return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
|
|
}
|
|
|
|
// Always use shuffle vector to try to retain the original program structure
|
|
unsigned NumResultElts = ExprVT->getNumElements();
|
|
|
|
llvm::SmallVector<llvm::Constant*, 4> Mask;
|
|
for (unsigned i = 0; i != NumResultElts; ++i) {
|
|
unsigned InIdx = getAccessedFieldNo(i, Elts);
|
|
Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
|
|
}
|
|
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
|
|
MaskV, "tmp");
|
|
return RValue::get(Vec);
|
|
}
|
|
|
|
|
|
|
|
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
|
|
/// lvalue, where both are guaranteed to the have the same type, and that type
|
|
/// is 'Ty'.
|
|
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) {
|
|
if (!Dst.isSimple()) {
|
|
if (Dst.isVectorElt()) {
|
|
// Read/modify/write the vector, inserting the new element.
|
|
llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
|
|
Dst.isVolatileQualified(), "tmp");
|
|
Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
|
|
Dst.getVectorIdx(), "vecins");
|
|
Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
|
|
return;
|
|
}
|
|
|
|
// If this is an update of extended vector elements, insert them as
|
|
// appropriate.
|
|
if (Dst.isExtVectorElt())
|
|
return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
|
|
|
|
if (Dst.isBitField())
|
|
return EmitStoreThroughBitfieldLValue(Src, Dst);
|
|
|
|
assert(Dst.isPropertyRef() && "Unknown LValue type");
|
|
return EmitStoreThroughPropertyRefLValue(Src, Dst);
|
|
}
|
|
|
|
// There's special magic for assigning into an ARC-qualified l-value.
|
|
if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
|
|
switch (Lifetime) {
|
|
case Qualifiers::OCL_None:
|
|
llvm_unreachable("present but none");
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// nothing special
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
|
|
return;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
|
|
return;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
|
|
Src.getScalarVal()));
|
|
// fall into the normal path
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Dst.isObjCWeak() && !Dst.isNonGC()) {
|
|
// load of a __weak object.
|
|
llvm::Value *LvalueDst = Dst.getAddress();
|
|
llvm::Value *src = Src.getScalarVal();
|
|
CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
|
|
return;
|
|
}
|
|
|
|
if (Dst.isObjCStrong() && !Dst.isNonGC()) {
|
|
// load of a __strong object.
|
|
llvm::Value *LvalueDst = Dst.getAddress();
|
|
llvm::Value *src = Src.getScalarVal();
|
|
if (Dst.isObjCIvar()) {
|
|
assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
|
|
llvm::Type *ResultType = ConvertType(getContext().LongTy);
|
|
llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
|
|
llvm::Value *dst = RHS;
|
|
RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
|
|
llvm::Value *LHS =
|
|
Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
|
|
llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
|
|
CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
|
|
BytesBetween);
|
|
} else if (Dst.isGlobalObjCRef()) {
|
|
CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
|
|
Dst.isThreadLocalRef());
|
|
}
|
|
else
|
|
CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
|
|
return;
|
|
}
|
|
|
|
assert(Src.isScalar() && "Can't emit an agg store with this method");
|
|
EmitStoreOfScalar(Src.getScalarVal(), Dst);
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
|
|
llvm::Value **Result) {
|
|
const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
|
|
|
|
// Get the output type.
|
|
llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
|
|
unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
|
|
|
|
// Get the source value, truncated to the width of the bit-field.
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
|
|
if (Dst.getType()->isBooleanType())
|
|
SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
|
|
|
|
SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
|
|
Info.getSize()),
|
|
"bf.value");
|
|
|
|
// Return the new value of the bit-field, if requested.
|
|
if (Result) {
|
|
// Cast back to the proper type for result.
|
|
llvm::Type *SrcTy = Src.getScalarVal()->getType();
|
|
llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
|
|
"bf.reload.val");
|
|
|
|
// Sign extend if necessary.
|
|
if (Info.isSigned()) {
|
|
unsigned ExtraBits = ResSizeInBits - Info.getSize();
|
|
if (ExtraBits)
|
|
ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
|
|
ExtraBits, "bf.reload.sext");
|
|
}
|
|
|
|
*Result = ReloadVal;
|
|
}
|
|
|
|
// Iterate over the components, writing each piece to memory.
|
|
for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
|
|
const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
|
|
|
|
// Get the field pointer.
|
|
llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
|
|
unsigned addressSpace =
|
|
cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
|
|
|
|
// Only offset by the field index if used, so that incoming values are not
|
|
// required to be structures.
|
|
if (AI.FieldIndex)
|
|
Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
|
|
|
|
// Offset by the byte offset, if used.
|
|
if (!AI.FieldByteOffset.isZero()) {
|
|
Ptr = EmitCastToVoidPtr(Ptr);
|
|
Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
|
|
"bf.field.offs");
|
|
}
|
|
|
|
// Cast to the access type.
|
|
llvm::Type *AccessLTy =
|
|
llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
|
|
|
|
llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
|
|
Ptr = Builder.CreateBitCast(Ptr, PTy);
|
|
|
|
// Extract the piece of the bit-field value to write in this access, limited
|
|
// to the values that are part of this access.
|
|
llvm::Value *Val = SrcVal;
|
|
if (AI.TargetBitOffset)
|
|
Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
|
|
Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
|
|
AI.TargetBitWidth));
|
|
|
|
// Extend or truncate to the access size.
|
|
if (ResSizeInBits < AI.AccessWidth)
|
|
Val = Builder.CreateZExt(Val, AccessLTy);
|
|
else if (ResSizeInBits > AI.AccessWidth)
|
|
Val = Builder.CreateTrunc(Val, AccessLTy);
|
|
|
|
// Shift into the position in memory.
|
|
if (AI.FieldBitStart)
|
|
Val = Builder.CreateShl(Val, AI.FieldBitStart);
|
|
|
|
// If necessary, load and OR in bits that are outside of the bit-field.
|
|
if (AI.TargetBitWidth != AI.AccessWidth) {
|
|
llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
|
|
if (!AI.AccessAlignment.isZero())
|
|
Load->setAlignment(AI.AccessAlignment.getQuantity());
|
|
|
|
// Compute the mask for zeroing the bits that are part of the bit-field.
|
|
llvm::APInt InvMask =
|
|
~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
|
|
AI.FieldBitStart + AI.TargetBitWidth);
|
|
|
|
// Apply the mask and OR in to the value to write.
|
|
Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
|
|
}
|
|
|
|
// Write the value.
|
|
llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
|
|
Dst.isVolatileQualified());
|
|
if (!AI.AccessAlignment.isZero())
|
|
Store->setAlignment(AI.AccessAlignment.getQuantity());
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
|
|
LValue Dst) {
|
|
// This access turns into a read/modify/write of the vector. Load the input
|
|
// value now.
|
|
llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
|
|
Dst.isVolatileQualified(), "tmp");
|
|
const llvm::Constant *Elts = Dst.getExtVectorElts();
|
|
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
|
|
if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
|
|
unsigned NumSrcElts = VTy->getNumElements();
|
|
unsigned NumDstElts =
|
|
cast<llvm::VectorType>(Vec->getType())->getNumElements();
|
|
if (NumDstElts == NumSrcElts) {
|
|
// Use shuffle vector is the src and destination are the same number of
|
|
// elements and restore the vector mask since it is on the side it will be
|
|
// stored.
|
|
llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
|
|
for (unsigned i = 0; i != NumSrcElts; ++i) {
|
|
unsigned InIdx = getAccessedFieldNo(i, Elts);
|
|
Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
|
|
}
|
|
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
Vec = Builder.CreateShuffleVector(SrcVal,
|
|
llvm::UndefValue::get(Vec->getType()),
|
|
MaskV, "tmp");
|
|
} else if (NumDstElts > NumSrcElts) {
|
|
// Extended the source vector to the same length and then shuffle it
|
|
// into the destination.
|
|
// FIXME: since we're shuffling with undef, can we just use the indices
|
|
// into that? This could be simpler.
|
|
llvm::SmallVector<llvm::Constant*, 4> ExtMask;
|
|
unsigned i;
|
|
for (i = 0; i != NumSrcElts; ++i)
|
|
ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
|
|
for (; i != NumDstElts; ++i)
|
|
ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
|
|
llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
|
|
llvm::Value *ExtSrcVal =
|
|
Builder.CreateShuffleVector(SrcVal,
|
|
llvm::UndefValue::get(SrcVal->getType()),
|
|
ExtMaskV, "tmp");
|
|
// build identity
|
|
llvm::SmallVector<llvm::Constant*, 4> Mask;
|
|
for (unsigned i = 0; i != NumDstElts; ++i)
|
|
Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
|
|
|
|
// modify when what gets shuffled in
|
|
for (unsigned i = 0; i != NumSrcElts; ++i) {
|
|
unsigned Idx = getAccessedFieldNo(i, Elts);
|
|
Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
|
|
}
|
|
llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
|
|
Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
|
|
} else {
|
|
// We should never shorten the vector
|
|
assert(0 && "unexpected shorten vector length");
|
|
}
|
|
} else {
|
|
// If the Src is a scalar (not a vector) it must be updating one element.
|
|
unsigned InIdx = getAccessedFieldNo(0, Elts);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
|
|
Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
|
|
}
|
|
|
|
Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
|
|
}
|
|
|
|
// setObjCGCLValueClass - sets class of he lvalue for the purpose of
|
|
// generating write-barries API. It is currently a global, ivar,
|
|
// or neither.
|
|
static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
|
|
LValue &LV) {
|
|
if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
|
|
return;
|
|
|
|
if (isa<ObjCIvarRefExpr>(E)) {
|
|
LV.setObjCIvar(true);
|
|
ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
|
|
LV.setBaseIvarExp(Exp->getBase());
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
|
|
if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
|
|
if (VD->hasGlobalStorage()) {
|
|
LV.setGlobalObjCRef(true);
|
|
LV.setThreadLocalRef(VD->isThreadSpecified());
|
|
}
|
|
}
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
|
|
if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
|
|
return;
|
|
}
|
|
|
|
if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
|
|
if (LV.isObjCIvar()) {
|
|
// If cast is to a structure pointer, follow gcc's behavior and make it
|
|
// a non-ivar write-barrier.
|
|
QualType ExpTy = E->getType();
|
|
if (ExpTy->isPointerType())
|
|
ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
|
|
if (ExpTy->isRecordType())
|
|
LV.setObjCIvar(false);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
|
|
return;
|
|
}
|
|
|
|
if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
|
|
return;
|
|
}
|
|
|
|
if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
|
|
return;
|
|
}
|
|
|
|
if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
|
|
return;
|
|
}
|
|
|
|
if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
|
|
if (LV.isObjCIvar() && !LV.isObjCArray())
|
|
// Using array syntax to assigning to what an ivar points to is not
|
|
// same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
|
|
LV.setObjCIvar(false);
|
|
else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
|
|
// Using array syntax to assigning to what global points to is not
|
|
// same as assigning to the global itself. {id *G;} G[i] = 0;
|
|
LV.setGlobalObjCRef(false);
|
|
return;
|
|
}
|
|
|
|
if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
|
|
// We don't know if member is an 'ivar', but this flag is looked at
|
|
// only in the context of LV.isObjCIvar().
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
}
|
|
|
|
static llvm::Value *
|
|
EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
|
|
llvm::Value *V, llvm::Type *IRType,
|
|
llvm::StringRef Name = llvm::StringRef()) {
|
|
unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
|
|
return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
|
|
}
|
|
|
|
static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
|
|
const Expr *E, const VarDecl *VD) {
|
|
assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
|
|
"Var decl must have external storage or be a file var decl!");
|
|
|
|
llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
|
|
if (VD->getType()->isReferenceType())
|
|
V = CGF.Builder.CreateLoad(V, "tmp");
|
|
|
|
V = EmitBitCastOfLValueToProperType(CGF, V,
|
|
CGF.getTypes().ConvertTypeForMem(E->getType()));
|
|
|
|
unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
|
|
LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
|
|
setObjCGCLValueClass(CGF.getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
|
|
const Expr *E, const FunctionDecl *FD) {
|
|
llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
|
|
if (!FD->hasPrototype()) {
|
|
if (const FunctionProtoType *Proto =
|
|
FD->getType()->getAs<FunctionProtoType>()) {
|
|
// Ugly case: for a K&R-style definition, the type of the definition
|
|
// isn't the same as the type of a use. Correct for this with a
|
|
// bitcast.
|
|
QualType NoProtoType =
|
|
CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
|
|
NoProtoType = CGF.getContext().getPointerType(NoProtoType);
|
|
V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
|
|
}
|
|
}
|
|
unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
|
|
return CGF.MakeAddrLValue(V, E->getType(), Alignment);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
|
|
const NamedDecl *ND = E->getDecl();
|
|
unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
|
|
|
|
if (ND->hasAttr<WeakRefAttr>()) {
|
|
const ValueDecl *VD = cast<ValueDecl>(ND);
|
|
llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
|
|
return MakeAddrLValue(Aliasee, E->getType(), Alignment);
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
|
|
|
|
// Check if this is a global variable.
|
|
if (VD->hasExternalStorage() || VD->isFileVarDecl())
|
|
return EmitGlobalVarDeclLValue(*this, E, VD);
|
|
|
|
bool NonGCable = VD->hasLocalStorage() &&
|
|
!VD->getType()->isReferenceType() &&
|
|
!VD->hasAttr<BlocksAttr>();
|
|
|
|
llvm::Value *V = LocalDeclMap[VD];
|
|
if (!V && VD->isStaticLocal())
|
|
V = CGM.getStaticLocalDeclAddress(VD);
|
|
assert(V && "DeclRefExpr not entered in LocalDeclMap?");
|
|
|
|
if (VD->hasAttr<BlocksAttr>())
|
|
V = BuildBlockByrefAddress(V, VD);
|
|
|
|
if (VD->getType()->isReferenceType())
|
|
V = Builder.CreateLoad(V, "tmp");
|
|
|
|
V = EmitBitCastOfLValueToProperType(*this, V,
|
|
getTypes().ConvertTypeForMem(E->getType()));
|
|
|
|
LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
|
|
if (NonGCable) {
|
|
LV.getQuals().removeObjCGCAttr();
|
|
LV.setNonGC(true);
|
|
}
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
|
|
return EmitFunctionDeclLValue(*this, E, fn);
|
|
|
|
assert(false && "Unhandled DeclRefExpr");
|
|
|
|
// an invalid LValue, but the assert will
|
|
// ensure that this point is never reached.
|
|
return LValue();
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
|
|
unsigned Alignment =
|
|
getContext().getDeclAlign(E->getDecl()).getQuantity();
|
|
return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
|
|
// __extension__ doesn't affect lvalue-ness.
|
|
if (E->getOpcode() == UO_Extension)
|
|
return EmitLValue(E->getSubExpr());
|
|
|
|
QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
|
|
switch (E->getOpcode()) {
|
|
default: assert(0 && "Unknown unary operator lvalue!");
|
|
case UO_Deref: {
|
|
QualType T = E->getSubExpr()->getType()->getPointeeType();
|
|
assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
|
|
|
|
LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
|
|
LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
|
|
|
|
// We should not generate __weak write barrier on indirect reference
|
|
// of a pointer to object; as in void foo (__weak id *param); *param = 0;
|
|
// But, we continue to generate __strong write barrier on indirect write
|
|
// into a pointer to object.
|
|
if (getContext().getLangOptions().ObjC1 &&
|
|
getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
|
|
LV.isObjCWeak())
|
|
LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
|
|
return LV;
|
|
}
|
|
case UO_Real:
|
|
case UO_Imag: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
assert(LV.isSimple() && "real/imag on non-ordinary l-value");
|
|
llvm::Value *Addr = LV.getAddress();
|
|
|
|
// real and imag are valid on scalars. This is a faster way of
|
|
// testing that.
|
|
if (!cast<llvm::PointerType>(Addr->getType())
|
|
->getElementType()->isStructTy()) {
|
|
assert(E->getSubExpr()->getType()->isArithmeticType());
|
|
return LV;
|
|
}
|
|
|
|
assert(E->getSubExpr()->getType()->isAnyComplexType());
|
|
|
|
unsigned Idx = E->getOpcode() == UO_Imag;
|
|
return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
|
|
Idx, "idx"),
|
|
ExprTy);
|
|
}
|
|
case UO_PreInc:
|
|
case UO_PreDec: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
bool isInc = E->getOpcode() == UO_PreInc;
|
|
|
|
if (E->getType()->isAnyComplexType())
|
|
EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
|
|
else
|
|
EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
|
|
return LV;
|
|
}
|
|
}
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
|
|
return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
|
|
E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
|
|
return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
|
|
E->getType());
|
|
}
|
|
|
|
|
|
LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
|
|
switch (E->getIdentType()) {
|
|
default:
|
|
return EmitUnsupportedLValue(E, "predefined expression");
|
|
|
|
case PredefinedExpr::Func:
|
|
case PredefinedExpr::Function:
|
|
case PredefinedExpr::PrettyFunction: {
|
|
unsigned Type = E->getIdentType();
|
|
std::string GlobalVarName;
|
|
|
|
switch (Type) {
|
|
default: assert(0 && "Invalid type");
|
|
case PredefinedExpr::Func:
|
|
GlobalVarName = "__func__.";
|
|
break;
|
|
case PredefinedExpr::Function:
|
|
GlobalVarName = "__FUNCTION__.";
|
|
break;
|
|
case PredefinedExpr::PrettyFunction:
|
|
GlobalVarName = "__PRETTY_FUNCTION__.";
|
|
break;
|
|
}
|
|
|
|
llvm::StringRef FnName = CurFn->getName();
|
|
if (FnName.startswith("\01"))
|
|
FnName = FnName.substr(1);
|
|
GlobalVarName += FnName;
|
|
|
|
const Decl *CurDecl = CurCodeDecl;
|
|
if (CurDecl == 0)
|
|
CurDecl = getContext().getTranslationUnitDecl();
|
|
|
|
std::string FunctionName =
|
|
(isa<BlockDecl>(CurDecl)
|
|
? FnName.str()
|
|
: PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
|
|
|
|
llvm::Constant *C =
|
|
CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
|
|
return MakeAddrLValue(C, E->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::BasicBlock *CodeGenFunction::getTrapBB() {
|
|
const CodeGenOptions &GCO = CGM.getCodeGenOpts();
|
|
|
|
// If we are not optimzing, don't collapse all calls to trap in the function
|
|
// to the same call, that way, in the debugger they can see which operation
|
|
// did in fact fail. If we are optimizing, we collapse all calls to trap down
|
|
// to just one per function to save on codesize.
|
|
if (GCO.OptimizationLevel && TrapBB)
|
|
return TrapBB;
|
|
|
|
llvm::BasicBlock *Cont = 0;
|
|
if (HaveInsertPoint()) {
|
|
Cont = createBasicBlock("cont");
|
|
EmitBranch(Cont);
|
|
}
|
|
TrapBB = createBasicBlock("trap");
|
|
EmitBlock(TrapBB);
|
|
|
|
llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
|
|
llvm::CallInst *TrapCall = Builder.CreateCall(F);
|
|
TrapCall->setDoesNotReturn();
|
|
TrapCall->setDoesNotThrow();
|
|
Builder.CreateUnreachable();
|
|
|
|
if (Cont)
|
|
EmitBlock(Cont);
|
|
return TrapBB;
|
|
}
|
|
|
|
/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
|
|
/// array to pointer, return the array subexpression.
|
|
static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
|
|
// If this isn't just an array->pointer decay, bail out.
|
|
const CastExpr *CE = dyn_cast<CastExpr>(E);
|
|
if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
|
|
return 0;
|
|
|
|
// If this is a decay from variable width array, bail out.
|
|
const Expr *SubExpr = CE->getSubExpr();
|
|
if (SubExpr->getType()->isVariableArrayType())
|
|
return 0;
|
|
|
|
return SubExpr;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
|
|
// The index must always be an integer, which is not an aggregate. Emit it.
|
|
llvm::Value *Idx = EmitScalarExpr(E->getIdx());
|
|
QualType IdxTy = E->getIdx()->getType();
|
|
bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
|
|
|
|
// If the base is a vector type, then we are forming a vector element lvalue
|
|
// with this subscript.
|
|
if (E->getBase()->getType()->isVectorType()) {
|
|
// Emit the vector as an lvalue to get its address.
|
|
LValue LHS = EmitLValue(E->getBase());
|
|
assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
|
|
Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
|
|
return LValue::MakeVectorElt(LHS.getAddress(), Idx,
|
|
E->getBase()->getType());
|
|
}
|
|
|
|
// Extend or truncate the index type to 32 or 64-bits.
|
|
if (Idx->getType() != IntPtrTy)
|
|
Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
|
|
|
|
// FIXME: As llvm implements the object size checking, this can come out.
|
|
if (CatchUndefined) {
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
|
|
if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
|
|
if (const ConstantArrayType *CAT
|
|
= getContext().getAsConstantArrayType(DRE->getType())) {
|
|
llvm::APInt Size = CAT->getSize();
|
|
llvm::BasicBlock *Cont = createBasicBlock("cont");
|
|
Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
|
|
llvm::ConstantInt::get(Idx->getType(), Size)),
|
|
Cont, getTrapBB());
|
|
EmitBlock(Cont);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We know that the pointer points to a type of the correct size, unless the
|
|
// size is a VLA or Objective-C interface.
|
|
llvm::Value *Address = 0;
|
|
unsigned ArrayAlignment = 0;
|
|
if (const VariableArrayType *vla =
|
|
getContext().getAsVariableArrayType(E->getType())) {
|
|
// The base must be a pointer, which is not an aggregate. Emit
|
|
// it. It needs to be emitted first in case it's what captures
|
|
// the VLA bounds.
|
|
Address = EmitScalarExpr(E->getBase());
|
|
|
|
// The element count here is the total number of non-VLA elements.
|
|
llvm::Value *numElements = getVLASize(vla).first;
|
|
|
|
// Effectively, the multiply by the VLA size is part of the GEP.
|
|
// GEP indexes are signed, and scaling an index isn't permitted to
|
|
// signed-overflow, so we use the same semantics for our explicit
|
|
// multiply. We suppress this if overflow is not undefined behavior.
|
|
if (getLangOptions().isSignedOverflowDefined()) {
|
|
Idx = Builder.CreateMul(Idx, numElements);
|
|
Address = Builder.CreateGEP(Address, Idx, "arrayidx");
|
|
} else {
|
|
Idx = Builder.CreateNSWMul(Idx, numElements);
|
|
Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
|
|
}
|
|
} else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
|
|
// Indexing over an interface, as in "NSString *P; P[4];"
|
|
llvm::Value *InterfaceSize =
|
|
llvm::ConstantInt::get(Idx->getType(),
|
|
getContext().getTypeSizeInChars(OIT).getQuantity());
|
|
|
|
Idx = Builder.CreateMul(Idx, InterfaceSize);
|
|
|
|
// The base must be a pointer, which is not an aggregate. Emit it.
|
|
llvm::Value *Base = EmitScalarExpr(E->getBase());
|
|
Address = EmitCastToVoidPtr(Base);
|
|
Address = Builder.CreateGEP(Address, Idx, "arrayidx");
|
|
Address = Builder.CreateBitCast(Address, Base->getType());
|
|
} else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
|
|
// If this is A[i] where A is an array, the frontend will have decayed the
|
|
// base to be a ArrayToPointerDecay implicit cast. While correct, it is
|
|
// inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
|
|
// "gep x, i" here. Emit one "gep A, 0, i".
|
|
assert(Array->getType()->isArrayType() &&
|
|
"Array to pointer decay must have array source type!");
|
|
LValue ArrayLV = EmitLValue(Array);
|
|
llvm::Value *ArrayPtr = ArrayLV.getAddress();
|
|
llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
|
|
llvm::Value *Args[] = { Zero, Idx };
|
|
|
|
// Propagate the alignment from the array itself to the result.
|
|
ArrayAlignment = ArrayLV.getAlignment();
|
|
|
|
if (getContext().getLangOptions().isSignedOverflowDefined())
|
|
Address = Builder.CreateGEP(ArrayPtr, Args, Args+2, "arrayidx");
|
|
else
|
|
Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx");
|
|
} else {
|
|
// The base must be a pointer, which is not an aggregate. Emit it.
|
|
llvm::Value *Base = EmitScalarExpr(E->getBase());
|
|
if (getContext().getLangOptions().isSignedOverflowDefined())
|
|
Address = Builder.CreateGEP(Base, Idx, "arrayidx");
|
|
else
|
|
Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
|
|
}
|
|
|
|
QualType T = E->getBase()->getType()->getPointeeType();
|
|
assert(!T.isNull() &&
|
|
"CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
|
|
|
|
// Limit the alignment to that of the result type.
|
|
if (ArrayAlignment) {
|
|
unsigned Align = getContext().getTypeAlignInChars(T).getQuantity();
|
|
ArrayAlignment = std::min(Align, ArrayAlignment);
|
|
}
|
|
|
|
LValue LV = MakeAddrLValue(Address, T, ArrayAlignment);
|
|
LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
|
|
|
|
if (getContext().getLangOptions().ObjC1 &&
|
|
getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
|
|
LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
}
|
|
return LV;
|
|
}
|
|
|
|
static
|
|
llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
|
|
llvm::SmallVector<unsigned, 4> &Elts) {
|
|
llvm::SmallVector<llvm::Constant*, 4> CElts;
|
|
|
|
llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
|
|
for (unsigned i = 0, e = Elts.size(); i != e; ++i)
|
|
CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
|
|
|
|
return llvm::ConstantVector::get(CElts);
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
|
|
// Emit the base vector as an l-value.
|
|
LValue Base;
|
|
|
|
// ExtVectorElementExpr's base can either be a vector or pointer to vector.
|
|
if (E->isArrow()) {
|
|
// If it is a pointer to a vector, emit the address and form an lvalue with
|
|
// it.
|
|
llvm::Value *Ptr = EmitScalarExpr(E->getBase());
|
|
const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
|
|
Base = MakeAddrLValue(Ptr, PT->getPointeeType());
|
|
Base.getQuals().removeObjCGCAttr();
|
|
} else if (E->getBase()->isGLValue()) {
|
|
// Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
|
|
// emit the base as an lvalue.
|
|
assert(E->getBase()->getType()->isVectorType());
|
|
Base = EmitLValue(E->getBase());
|
|
} else {
|
|
// Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
|
|
assert(E->getBase()->getType()->isVectorType() &&
|
|
"Result must be a vector");
|
|
llvm::Value *Vec = EmitScalarExpr(E->getBase());
|
|
|
|
// Store the vector to memory (because LValue wants an address).
|
|
llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
|
|
Builder.CreateStore(Vec, VecMem);
|
|
Base = MakeAddrLValue(VecMem, E->getBase()->getType());
|
|
}
|
|
|
|
QualType type =
|
|
E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
|
|
|
|
// Encode the element access list into a vector of unsigned indices.
|
|
llvm::SmallVector<unsigned, 4> Indices;
|
|
E->getEncodedElementAccess(Indices);
|
|
|
|
if (Base.isSimple()) {
|
|
llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
|
|
return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
|
|
}
|
|
assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
|
|
|
|
llvm::Constant *BaseElts = Base.getExtVectorElts();
|
|
llvm::SmallVector<llvm::Constant *, 4> CElts;
|
|
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
|
|
if (isa<llvm::ConstantAggregateZero>(BaseElts))
|
|
CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
|
|
else
|
|
CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
|
|
}
|
|
llvm::Constant *CV = llvm::ConstantVector::get(CElts);
|
|
return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
|
|
bool isNonGC = false;
|
|
Expr *BaseExpr = E->getBase();
|
|
llvm::Value *BaseValue = NULL;
|
|
Qualifiers BaseQuals;
|
|
|
|
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
|
|
if (E->isArrow()) {
|
|
BaseValue = EmitScalarExpr(BaseExpr);
|
|
const PointerType *PTy =
|
|
BaseExpr->getType()->getAs<PointerType>();
|
|
BaseQuals = PTy->getPointeeType().getQualifiers();
|
|
} else {
|
|
LValue BaseLV = EmitLValue(BaseExpr);
|
|
if (BaseLV.isNonGC())
|
|
isNonGC = true;
|
|
// FIXME: this isn't right for bitfields.
|
|
BaseValue = BaseLV.getAddress();
|
|
QualType BaseTy = BaseExpr->getType();
|
|
BaseQuals = BaseTy.getQualifiers();
|
|
}
|
|
|
|
NamedDecl *ND = E->getMemberDecl();
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
|
|
LValue LV = EmitLValueForField(BaseValue, Field,
|
|
BaseQuals.getCVRQualifiers());
|
|
LV.setNonGC(isNonGC);
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
if (VarDecl *VD = dyn_cast<VarDecl>(ND))
|
|
return EmitGlobalVarDeclLValue(*this, E, VD);
|
|
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
|
|
return EmitFunctionDeclLValue(*this, E, FD);
|
|
|
|
assert(false && "Unhandled member declaration!");
|
|
return LValue();
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
|
|
const FieldDecl *Field,
|
|
unsigned CVRQualifiers) {
|
|
const CGRecordLayout &RL =
|
|
CGM.getTypes().getCGRecordLayout(Field->getParent());
|
|
const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
|
|
return LValue::MakeBitfield(BaseValue, Info,
|
|
Field->getType().withCVRQualifiers(CVRQualifiers));
|
|
}
|
|
|
|
/// EmitLValueForAnonRecordField - Given that the field is a member of
|
|
/// an anonymous struct or union buried inside a record, and given
|
|
/// that the base value is a pointer to the enclosing record, derive
|
|
/// an lvalue for the ultimate field.
|
|
LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
|
|
const IndirectFieldDecl *Field,
|
|
unsigned CVRQualifiers) {
|
|
IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
|
|
IEnd = Field->chain_end();
|
|
while (true) {
|
|
LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
|
|
CVRQualifiers);
|
|
if (++I == IEnd) return LV;
|
|
|
|
assert(LV.isSimple());
|
|
BaseValue = LV.getAddress();
|
|
CVRQualifiers |= LV.getVRQualifiers();
|
|
}
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
|
|
const FieldDecl *field,
|
|
unsigned cvr) {
|
|
if (field->isBitField())
|
|
return EmitLValueForBitfield(baseAddr, field, cvr);
|
|
|
|
const RecordDecl *rec = field->getParent();
|
|
QualType type = field->getType();
|
|
|
|
bool mayAlias = rec->hasAttr<MayAliasAttr>();
|
|
|
|
llvm::Value *addr = baseAddr;
|
|
if (rec->isUnion()) {
|
|
// For unions, there is no pointer adjustment.
|
|
assert(!type->isReferenceType() && "union has reference member");
|
|
} else {
|
|
// For structs, we GEP to the field that the record layout suggests.
|
|
unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
|
|
addr = Builder.CreateStructGEP(addr, idx, field->getName());
|
|
|
|
// If this is a reference field, load the reference right now.
|
|
if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
|
|
llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
|
|
if (cvr & Qualifiers::Volatile) load->setVolatile(true);
|
|
|
|
if (CGM.shouldUseTBAA()) {
|
|
llvm::MDNode *tbaa;
|
|
if (mayAlias)
|
|
tbaa = CGM.getTBAAInfo(getContext().CharTy);
|
|
else
|
|
tbaa = CGM.getTBAAInfo(type);
|
|
CGM.DecorateInstruction(load, tbaa);
|
|
}
|
|
|
|
addr = load;
|
|
mayAlias = false;
|
|
type = refType->getPointeeType();
|
|
cvr = 0; // qualifiers don't recursively apply to referencee
|
|
}
|
|
}
|
|
|
|
// Make sure that the address is pointing to the right type. This is critical
|
|
// for both unions and structs. A union needs a bitcast, a struct element
|
|
// will need a bitcast if the LLVM type laid out doesn't match the desired
|
|
// type.
|
|
addr = EmitBitCastOfLValueToProperType(*this, addr,
|
|
CGM.getTypes().ConvertTypeForMem(type),
|
|
field->getName());
|
|
|
|
unsigned alignment = getContext().getDeclAlign(field).getQuantity();
|
|
LValue LV = MakeAddrLValue(addr, type, alignment);
|
|
LV.getQuals().addCVRQualifiers(cvr);
|
|
|
|
// __weak attribute on a field is ignored.
|
|
if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
|
|
LV.getQuals().removeObjCGCAttr();
|
|
|
|
// Fields of may_alias structs act like 'char' for TBAA purposes.
|
|
// FIXME: this should get propagated down through anonymous structs
|
|
// and unions.
|
|
if (mayAlias && LV.getTBAAInfo())
|
|
LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
|
|
|
|
return LV;
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
|
|
const FieldDecl *Field,
|
|
unsigned CVRQualifiers) {
|
|
QualType FieldType = Field->getType();
|
|
|
|
if (!FieldType->isReferenceType())
|
|
return EmitLValueForField(BaseValue, Field, CVRQualifiers);
|
|
|
|
const CGRecordLayout &RL =
|
|
CGM.getTypes().getCGRecordLayout(Field->getParent());
|
|
unsigned idx = RL.getLLVMFieldNo(Field);
|
|
llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
|
|
assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
|
|
|
|
|
|
// Make sure that the address is pointing to the right type. This is critical
|
|
// for both unions and structs. A union needs a bitcast, a struct element
|
|
// will need a bitcast if the LLVM type laid out doesn't match the desired
|
|
// type.
|
|
llvm::Type *llvmType = ConvertTypeForMem(FieldType);
|
|
unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
|
|
V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
|
|
|
|
unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
|
|
return MakeAddrLValue(V, FieldType, Alignment);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
|
|
llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
|
|
const Expr *InitExpr = E->getInitializer();
|
|
LValue Result = MakeAddrLValue(DeclPtr, E->getType());
|
|
|
|
EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
|
|
/*Init*/ true);
|
|
|
|
return Result;
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
|
|
if (!expr->isGLValue()) {
|
|
// ?: here should be an aggregate.
|
|
assert((hasAggregateLLVMType(expr->getType()) &&
|
|
!expr->getType()->isAnyComplexType()) &&
|
|
"Unexpected conditional operator!");
|
|
return EmitAggExprToLValue(expr);
|
|
}
|
|
|
|
const Expr *condExpr = expr->getCond();
|
|
bool CondExprBool;
|
|
if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
|
|
const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
|
|
if (!CondExprBool) std::swap(live, dead);
|
|
|
|
if (!ContainsLabel(dead))
|
|
return EmitLValue(live);
|
|
}
|
|
|
|
OpaqueValueMapping binding(*this, expr);
|
|
|
|
llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
|
|
llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
|
|
llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
|
|
|
|
ConditionalEvaluation eval(*this);
|
|
EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
|
|
|
|
// Any temporaries created here are conditional.
|
|
EmitBlock(lhsBlock);
|
|
eval.begin(*this);
|
|
LValue lhs = EmitLValue(expr->getTrueExpr());
|
|
eval.end(*this);
|
|
|
|
if (!lhs.isSimple())
|
|
return EmitUnsupportedLValue(expr, "conditional operator");
|
|
|
|
lhsBlock = Builder.GetInsertBlock();
|
|
Builder.CreateBr(contBlock);
|
|
|
|
// Any temporaries created here are conditional.
|
|
EmitBlock(rhsBlock);
|
|
eval.begin(*this);
|
|
LValue rhs = EmitLValue(expr->getFalseExpr());
|
|
eval.end(*this);
|
|
if (!rhs.isSimple())
|
|
return EmitUnsupportedLValue(expr, "conditional operator");
|
|
rhsBlock = Builder.GetInsertBlock();
|
|
|
|
EmitBlock(contBlock);
|
|
|
|
llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
|
|
"cond-lvalue");
|
|
phi->addIncoming(lhs.getAddress(), lhsBlock);
|
|
phi->addIncoming(rhs.getAddress(), rhsBlock);
|
|
return MakeAddrLValue(phi, expr->getType());
|
|
}
|
|
|
|
/// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
|
|
/// If the cast is a dynamic_cast, we can have the usual lvalue result,
|
|
/// otherwise if a cast is needed by the code generator in an lvalue context,
|
|
/// then it must mean that we need the address of an aggregate in order to
|
|
/// access one of its fields. This can happen for all the reasons that casts
|
|
/// are permitted with aggregate result, including noop aggregate casts, and
|
|
/// cast from scalar to union.
|
|
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
case CK_ToVoid:
|
|
return EmitUnsupportedLValue(E, "unexpected cast lvalue");
|
|
|
|
case CK_Dependent:
|
|
llvm_unreachable("dependent cast kind in IR gen!");
|
|
|
|
case CK_GetObjCProperty: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
assert(LV.isPropertyRef());
|
|
RValue RV = EmitLoadOfPropertyRefLValue(LV);
|
|
|
|
// Property is an aggregate r-value.
|
|
if (RV.isAggregate()) {
|
|
return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
|
|
}
|
|
|
|
// Implicit property returns an l-value.
|
|
assert(RV.isScalar());
|
|
return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType());
|
|
}
|
|
|
|
case CK_NoOp:
|
|
case CK_LValueToRValue:
|
|
if (!E->getSubExpr()->Classify(getContext()).isPRValue()
|
|
|| E->getType()->isRecordType())
|
|
return EmitLValue(E->getSubExpr());
|
|
// Fall through to synthesize a temporary.
|
|
|
|
case CK_BitCast:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_NullToMemberPointer:
|
|
case CK_NullToPointer:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_PointerToBoolean:
|
|
case CK_VectorSplat:
|
|
case CK_IntegralCast:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ObjCProduceObject:
|
|
case CK_ObjCConsumeObject:
|
|
case CK_ObjCReclaimReturnedObject: {
|
|
// These casts only produce lvalues when we're binding a reference to a
|
|
// temporary realized from a (converted) pure rvalue. Emit the expression
|
|
// as a value, copy it into a temporary, and return an lvalue referring to
|
|
// that temporary.
|
|
llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
|
|
EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
|
|
case CK_Dynamic: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
llvm::Value *V = LV.getAddress();
|
|
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
|
|
return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
|
|
}
|
|
|
|
case CK_ConstructorConversion:
|
|
case CK_UserDefinedConversion:
|
|
case CK_AnyPointerToObjCPointerCast:
|
|
return EmitLValue(E->getSubExpr());
|
|
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
const RecordType *DerivedClassTy =
|
|
E->getSubExpr()->getType()->getAs<RecordType>();
|
|
CXXRecordDecl *DerivedClassDecl =
|
|
cast<CXXRecordDecl>(DerivedClassTy->getDecl());
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
llvm::Value *This = LV.getAddress();
|
|
|
|
// Perform the derived-to-base conversion
|
|
llvm::Value *Base =
|
|
GetAddressOfBaseClass(This, DerivedClassDecl,
|
|
E->path_begin(), E->path_end(),
|
|
/*NullCheckValue=*/false);
|
|
|
|
return MakeAddrLValue(Base, E->getType());
|
|
}
|
|
case CK_ToUnion:
|
|
return EmitAggExprToLValue(E);
|
|
case CK_BaseToDerived: {
|
|
const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
|
|
CXXRecordDecl *DerivedClassDecl =
|
|
cast<CXXRecordDecl>(DerivedClassTy->getDecl());
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
|
|
// Perform the base-to-derived conversion
|
|
llvm::Value *Derived =
|
|
GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
|
|
E->path_begin(), E->path_end(),
|
|
/*NullCheckValue=*/false);
|
|
|
|
return MakeAddrLValue(Derived, E->getType());
|
|
}
|
|
case CK_LValueBitCast: {
|
|
// This must be a reinterpret_cast (or c-style equivalent).
|
|
const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
|
|
ConvertType(CE->getTypeAsWritten()));
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
case CK_ObjCObjectLValueCast: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
QualType ToType = getContext().getLValueReferenceType(E->getType());
|
|
llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
|
|
ConvertType(ToType));
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unhandled lvalue cast kind?");
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitNullInitializationLValue(
|
|
const CXXScalarValueInitExpr *E) {
|
|
QualType Ty = E->getType();
|
|
LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
|
|
EmitNullInitialization(LV.getAddress(), Ty);
|
|
return LV;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
|
|
assert(e->isGLValue() || e->getType()->isRecordType());
|
|
return getOpaqueLValueMapping(e);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
|
|
const MaterializeTemporaryExpr *E) {
|
|
RValue RV = EmitReferenceBindingToExpr(E->GetTemporaryExpr(),
|
|
/*InitializedDecl=*/0);
|
|
return MakeAddrLValue(RV.getScalarVal(), E->getType());
|
|
}
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
|
|
ReturnValueSlot ReturnValue) {
|
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
|
DI->setLocation(E->getLocStart());
|
|
DI->UpdateLineDirectiveRegion(Builder);
|
|
DI->EmitStopPoint(Builder);
|
|
}
|
|
|
|
// Builtins never have block type.
|
|
if (E->getCallee()->getType()->isBlockPointerType())
|
|
return EmitBlockCallExpr(E, ReturnValue);
|
|
|
|
if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
|
|
return EmitCXXMemberCallExpr(CE, ReturnValue);
|
|
|
|
const Decl *TargetDecl = 0;
|
|
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
|
|
TargetDecl = DRE->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
|
|
if (unsigned builtinID = FD->getBuiltinID())
|
|
return EmitBuiltinExpr(FD, builtinID, E);
|
|
}
|
|
}
|
|
|
|
if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
|
|
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
|
|
return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
|
|
|
|
if (const CXXPseudoDestructorExpr *PseudoDtor
|
|
= dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
|
|
QualType DestroyedType = PseudoDtor->getDestroyedType();
|
|
if (getContext().getLangOptions().ObjCAutoRefCount &&
|
|
DestroyedType->isObjCLifetimeType() &&
|
|
(DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
|
|
DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
|
|
// Automatic Reference Counting:
|
|
// If the pseudo-expression names a retainable object with weak or
|
|
// strong lifetime, the object shall be released.
|
|
Expr *BaseExpr = PseudoDtor->getBase();
|
|
llvm::Value *BaseValue = NULL;
|
|
Qualifiers BaseQuals;
|
|
|
|
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
|
|
if (PseudoDtor->isArrow()) {
|
|
BaseValue = EmitScalarExpr(BaseExpr);
|
|
const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
|
|
BaseQuals = PTy->getPointeeType().getQualifiers();
|
|
} else {
|
|
LValue BaseLV = EmitLValue(BaseExpr);
|
|
BaseValue = BaseLV.getAddress();
|
|
QualType BaseTy = BaseExpr->getType();
|
|
BaseQuals = BaseTy.getQualifiers();
|
|
}
|
|
|
|
switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
EmitARCRelease(Builder.CreateLoad(BaseValue,
|
|
PseudoDtor->getDestroyedType().isVolatileQualified()),
|
|
/*precise*/ true);
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
EmitARCDestroyWeak(BaseValue);
|
|
break;
|
|
}
|
|
} else {
|
|
// C++ [expr.pseudo]p1:
|
|
// The result shall only be used as the operand for the function call
|
|
// operator (), and the result of such a call has type void. The only
|
|
// effect is the evaluation of the postfix-expression before the dot or
|
|
// arrow.
|
|
EmitScalarExpr(E->getCallee());
|
|
}
|
|
|
|
return RValue::get(0);
|
|
}
|
|
|
|
llvm::Value *Callee = EmitScalarExpr(E->getCallee());
|
|
return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
|
|
E->arg_begin(), E->arg_end(), TargetDecl);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
|
|
// Comma expressions just emit their LHS then their RHS as an l-value.
|
|
if (E->getOpcode() == BO_Comma) {
|
|
EmitIgnoredExpr(E->getLHS());
|
|
EnsureInsertPoint();
|
|
return EmitLValue(E->getRHS());
|
|
}
|
|
|
|
if (E->getOpcode() == BO_PtrMemD ||
|
|
E->getOpcode() == BO_PtrMemI)
|
|
return EmitPointerToDataMemberBinaryExpr(E);
|
|
|
|
assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
|
|
|
|
// Note that in all of these cases, __block variables need the RHS
|
|
// evaluated first just in case the variable gets moved by the RHS.
|
|
|
|
if (!hasAggregateLLVMType(E->getType())) {
|
|
switch (E->getLHS()->getType().getObjCLifetime()) {
|
|
case Qualifiers::OCL_Strong:
|
|
return EmitARCStoreStrong(E, /*ignored*/ false).first;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return EmitARCStoreAutoreleasing(E).first;
|
|
|
|
// No reason to do any of these differently.
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Weak:
|
|
break;
|
|
}
|
|
|
|
RValue RV = EmitAnyExpr(E->getRHS());
|
|
LValue LV = EmitLValue(E->getLHS());
|
|
EmitStoreThroughLValue(RV, LV);
|
|
return LV;
|
|
}
|
|
|
|
if (E->getType()->isAnyComplexType())
|
|
return EmitComplexAssignmentLValue(E);
|
|
|
|
return EmitAggExprToLValue(E);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
|
|
RValue RV = EmitCallExpr(E);
|
|
|
|
if (!RV.isScalar())
|
|
return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
|
|
|
|
assert(E->getCallReturnType()->isReferenceType() &&
|
|
"Can't have a scalar return unless the return type is a "
|
|
"reference type!");
|
|
|
|
return MakeAddrLValue(RV.getScalarVal(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
|
|
// FIXME: This shouldn't require another copy.
|
|
return EmitAggExprToLValue(E);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
|
|
assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
|
|
&& "binding l-value to type which needs a temporary");
|
|
AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp");
|
|
EmitCXXConstructExpr(E, Slot);
|
|
return MakeAddrLValue(Slot.getAddr(), E->getType());
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
|
|
return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
|
|
AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
|
|
Slot.setLifetimeExternallyManaged();
|
|
EmitAggExpr(E->getSubExpr(), Slot);
|
|
EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
|
|
return MakeAddrLValue(Slot.getAddr(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
|
|
RValue RV = EmitObjCMessageExpr(E);
|
|
|
|
if (!RV.isScalar())
|
|
return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
|
|
|
|
assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
|
|
"Can't have a scalar return unless the return type is a "
|
|
"reference type!");
|
|
|
|
return MakeAddrLValue(RV.getScalarVal(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
|
|
llvm::Value *V =
|
|
CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
|
|
return MakeAddrLValue(V, E->getType());
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
|
|
const ObjCIvarDecl *Ivar) {
|
|
return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
|
|
llvm::Value *BaseValue,
|
|
const ObjCIvarDecl *Ivar,
|
|
unsigned CVRQualifiers) {
|
|
return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
|
|
Ivar, CVRQualifiers);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
|
|
// FIXME: A lot of the code below could be shared with EmitMemberExpr.
|
|
llvm::Value *BaseValue = 0;
|
|
const Expr *BaseExpr = E->getBase();
|
|
Qualifiers BaseQuals;
|
|
QualType ObjectTy;
|
|
if (E->isArrow()) {
|
|
BaseValue = EmitScalarExpr(BaseExpr);
|
|
ObjectTy = BaseExpr->getType()->getPointeeType();
|
|
BaseQuals = ObjectTy.getQualifiers();
|
|
} else {
|
|
LValue BaseLV = EmitLValue(BaseExpr);
|
|
// FIXME: this isn't right for bitfields.
|
|
BaseValue = BaseLV.getAddress();
|
|
ObjectTy = BaseExpr->getType();
|
|
BaseQuals = ObjectTy.getQualifiers();
|
|
}
|
|
|
|
LValue LV =
|
|
EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
|
|
BaseQuals.getCVRQualifiers());
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
|
|
// Can only get l-value for message expression returning aggregate type
|
|
RValue RV = EmitAnyExprToTemp(E);
|
|
return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
const Decl *TargetDecl) {
|
|
// Get the actual function type. The callee type will always be a pointer to
|
|
// function type or a block pointer type.
|
|
assert(CalleeType->isFunctionPointerType() &&
|
|
"Call must have function pointer type!");
|
|
|
|
CalleeType = getContext().getCanonicalType(CalleeType);
|
|
|
|
const FunctionType *FnType
|
|
= cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
|
|
|
|
CallArgList Args;
|
|
EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
|
|
|
|
return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
|
|
Callee, ReturnValue, Args, TargetDecl);
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
|
|
llvm::Value *BaseV;
|
|
if (E->getOpcode() == BO_PtrMemI)
|
|
BaseV = EmitScalarExpr(E->getLHS());
|
|
else
|
|
BaseV = EmitLValue(E->getLHS()).getAddress();
|
|
|
|
llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
|
|
|
|
const MemberPointerType *MPT
|
|
= E->getRHS()->getType()->getAs<MemberPointerType>();
|
|
|
|
llvm::Value *AddV =
|
|
CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
|
|
|
|
return MakeAddrLValue(AddV, MPT->getPointeeType());
|
|
}
|