llvm-project/clang/lib/AST/DeclBase.cpp

2008 lines
62 KiB
C++

//===- DeclBase.cpp - Declaration AST Node Implementation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl and DeclContext classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclBase.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DependentDiagnostic.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <string>
#include <tuple>
#include <utility>
using namespace clang;
//===----------------------------------------------------------------------===//
// Statistics
//===----------------------------------------------------------------------===//
#define DECL(DERIVED, BASE) static int n##DERIVED##s = 0;
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
void Decl::updateOutOfDate(IdentifierInfo &II) const {
getASTContext().getExternalSource()->updateOutOfDateIdentifier(II);
}
#define DECL(DERIVED, BASE) \
static_assert(alignof(Decl) >= alignof(DERIVED##Decl), \
"Alignment sufficient after objects prepended to " #DERIVED);
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
void *Decl::operator new(std::size_t Size, const ASTContext &Context,
unsigned ID, std::size_t Extra) {
// Allocate an extra 8 bytes worth of storage, which ensures that the
// resulting pointer will still be 8-byte aligned.
static_assert(sizeof(unsigned) * 2 >= alignof(Decl),
"Decl won't be misaligned");
void *Start = Context.Allocate(Size + Extra + 8);
void *Result = (char*)Start + 8;
unsigned *PrefixPtr = (unsigned *)Result - 2;
// Zero out the first 4 bytes; this is used to store the owning module ID.
PrefixPtr[0] = 0;
// Store the global declaration ID in the second 4 bytes.
PrefixPtr[1] = ID;
return Result;
}
void *Decl::operator new(std::size_t Size, const ASTContext &Ctx,
DeclContext *Parent, std::size_t Extra) {
assert(!Parent || &Parent->getParentASTContext() == &Ctx);
// With local visibility enabled, we track the owning module even for local
// declarations. We create the TU decl early and may not yet know what the
// LangOpts are, so conservatively allocate the storage.
if (Ctx.getLangOpts().trackLocalOwningModule() || !Parent) {
// Ensure required alignment of the resulting object by adding extra
// padding at the start if required.
size_t ExtraAlign =
llvm::offsetToAlignment(sizeof(Module *), llvm::Align(alignof(Decl)));
auto *Buffer = reinterpret_cast<char *>(
::operator new(ExtraAlign + sizeof(Module *) + Size + Extra, Ctx));
Buffer += ExtraAlign;
auto *ParentModule =
Parent ? cast<Decl>(Parent)->getOwningModule() : nullptr;
return new (Buffer) Module*(ParentModule) + 1;
}
return ::operator new(Size + Extra, Ctx);
}
Module *Decl::getOwningModuleSlow() const {
assert(isFromASTFile() && "Not from AST file?");
return getASTContext().getExternalSource()->getModule(getOwningModuleID());
}
bool Decl::hasLocalOwningModuleStorage() const {
return getASTContext().getLangOpts().trackLocalOwningModule();
}
const char *Decl::getDeclKindName() const {
switch (DeclKind) {
default: llvm_unreachable("Declaration not in DeclNodes.inc!");
#define DECL(DERIVED, BASE) case DERIVED: return #DERIVED;
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
}
}
void Decl::setInvalidDecl(bool Invalid) {
InvalidDecl = Invalid;
assert(!isa<TagDecl>(this) || !cast<TagDecl>(this)->isCompleteDefinition());
if (!Invalid) {
return;
}
if (!isa<ParmVarDecl>(this)) {
// Defensive maneuver for ill-formed code: we're likely not to make it to
// a point where we set the access specifier, so default it to "public"
// to avoid triggering asserts elsewhere in the front end.
setAccess(AS_public);
}
// Marking a DecompositionDecl as invalid implies all the child BindingDecl's
// are invalid too.
if (auto *DD = dyn_cast<DecompositionDecl>(this)) {
for (auto *Binding : DD->bindings()) {
Binding->setInvalidDecl();
}
}
}
const char *DeclContext::getDeclKindName() const {
switch (getDeclKind()) {
#define DECL(DERIVED, BASE) case Decl::DERIVED: return #DERIVED;
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
}
llvm_unreachable("Declaration context not in DeclNodes.inc!");
}
bool Decl::StatisticsEnabled = false;
void Decl::EnableStatistics() {
StatisticsEnabled = true;
}
void Decl::PrintStats() {
llvm::errs() << "\n*** Decl Stats:\n";
int totalDecls = 0;
#define DECL(DERIVED, BASE) totalDecls += n##DERIVED##s;
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
llvm::errs() << " " << totalDecls << " decls total.\n";
int totalBytes = 0;
#define DECL(DERIVED, BASE) \
if (n##DERIVED##s > 0) { \
totalBytes += (int)(n##DERIVED##s * sizeof(DERIVED##Decl)); \
llvm::errs() << " " << n##DERIVED##s << " " #DERIVED " decls, " \
<< sizeof(DERIVED##Decl) << " each (" \
<< n##DERIVED##s * sizeof(DERIVED##Decl) \
<< " bytes)\n"; \
}
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
llvm::errs() << "Total bytes = " << totalBytes << "\n";
}
void Decl::add(Kind k) {
switch (k) {
#define DECL(DERIVED, BASE) case DERIVED: ++n##DERIVED##s; break;
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
}
}
bool Decl::isTemplateParameterPack() const {
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(this))
return TTP->isParameterPack();
if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(this))
return NTTP->isParameterPack();
if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(this))
return TTP->isParameterPack();
return false;
}
bool Decl::isParameterPack() const {
if (const auto *Var = dyn_cast<VarDecl>(this))
return Var->isParameterPack();
return isTemplateParameterPack();
}
FunctionDecl *Decl::getAsFunction() {
if (auto *FD = dyn_cast<FunctionDecl>(this))
return FD;
if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(this))
return FTD->getTemplatedDecl();
return nullptr;
}
bool Decl::isTemplateDecl() const {
return isa<TemplateDecl>(this);
}
TemplateDecl *Decl::getDescribedTemplate() const {
if (auto *FD = dyn_cast<FunctionDecl>(this))
return FD->getDescribedFunctionTemplate();
if (auto *RD = dyn_cast<CXXRecordDecl>(this))
return RD->getDescribedClassTemplate();
if (auto *VD = dyn_cast<VarDecl>(this))
return VD->getDescribedVarTemplate();
if (auto *AD = dyn_cast<TypeAliasDecl>(this))
return AD->getDescribedAliasTemplate();
return nullptr;
}
const TemplateParameterList *Decl::getDescribedTemplateParams() const {
if (auto *TD = getDescribedTemplate())
return TD->getTemplateParameters();
if (auto *CTPSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(this))
return CTPSD->getTemplateParameters();
if (auto *VTPSD = dyn_cast<VarTemplatePartialSpecializationDecl>(this))
return VTPSD->getTemplateParameters();
return nullptr;
}
bool Decl::isTemplated() const {
// A declaration is templated if it is a template or a template pattern, or
// is within (lexcially for a friend, semantically otherwise) a dependent
// context.
// FIXME: Should local extern declarations be treated like friends?
if (auto *AsDC = dyn_cast<DeclContext>(this))
return AsDC->isDependentContext();
auto *DC = getFriendObjectKind() ? getLexicalDeclContext() : getDeclContext();
return DC->isDependentContext() || isTemplateDecl() ||
getDescribedTemplateParams();
}
unsigned Decl::getTemplateDepth() const {
if (auto *DC = dyn_cast<DeclContext>(this))
if (DC->isFileContext())
return 0;
if (auto *TPL = getDescribedTemplateParams())
return TPL->getDepth() + 1;
// If this is a dependent lambda, there might be an enclosing variable
// template. In this case, the next step is not the parent DeclContext (or
// even a DeclContext at all).
auto *RD = dyn_cast<CXXRecordDecl>(this);
if (RD && RD->isDependentLambda())
if (Decl *Context = RD->getLambdaContextDecl())
return Context->getTemplateDepth();
const DeclContext *DC =
getFriendObjectKind() ? getLexicalDeclContext() : getDeclContext();
return cast<Decl>(DC)->getTemplateDepth();
}
const DeclContext *Decl::getParentFunctionOrMethod() const {
for (const DeclContext *DC = getDeclContext();
DC && !DC->isTranslationUnit() && !DC->isNamespace();
DC = DC->getParent())
if (DC->isFunctionOrMethod())
return DC;
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrettyStackTraceDecl Implementation
//===----------------------------------------------------------------------===//
void PrettyStackTraceDecl::print(raw_ostream &OS) const {
SourceLocation TheLoc = Loc;
if (TheLoc.isInvalid() && TheDecl)
TheLoc = TheDecl->getLocation();
if (TheLoc.isValid()) {
TheLoc.print(OS, SM);
OS << ": ";
}
OS << Message;
if (const auto *DN = dyn_cast_or_null<NamedDecl>(TheDecl)) {
OS << " '";
DN->printQualifiedName(OS);
OS << '\'';
}
OS << '\n';
}
//===----------------------------------------------------------------------===//
// Decl Implementation
//===----------------------------------------------------------------------===//
// Out-of-line virtual method providing a home for Decl.
Decl::~Decl() = default;
void Decl::setDeclContext(DeclContext *DC) {
DeclCtx = DC;
}
void Decl::setLexicalDeclContext(DeclContext *DC) {
if (DC == getLexicalDeclContext())
return;
if (isInSemaDC()) {
setDeclContextsImpl(getDeclContext(), DC, getASTContext());
} else {
getMultipleDC()->LexicalDC = DC;
}
// FIXME: We shouldn't be changing the lexical context of declarations
// imported from AST files.
if (!isFromASTFile()) {
setModuleOwnershipKind(getModuleOwnershipKindForChildOf(DC));
if (hasOwningModule())
setLocalOwningModule(cast<Decl>(DC)->getOwningModule());
}
assert(
(getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported ||
getOwningModule()) &&
"hidden declaration has no owning module");
}
void Decl::setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
ASTContext &Ctx) {
if (SemaDC == LexicalDC) {
DeclCtx = SemaDC;
} else {
auto *MDC = new (Ctx) Decl::MultipleDC();
MDC->SemanticDC = SemaDC;
MDC->LexicalDC = LexicalDC;
DeclCtx = MDC;
}
}
bool Decl::isInLocalScopeForInstantiation() const {
const DeclContext *LDC = getLexicalDeclContext();
if (!LDC->isDependentContext())
return false;
while (true) {
if (LDC->isFunctionOrMethod())
return true;
if (!isa<TagDecl>(LDC))
return false;
if (const auto *CRD = dyn_cast<CXXRecordDecl>(LDC))
if (CRD->isLambda())
return true;
LDC = LDC->getLexicalParent();
}
return false;
}
bool Decl::isInAnonymousNamespace() const {
for (const DeclContext *DC = getDeclContext(); DC; DC = DC->getParent()) {
if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
if (ND->isAnonymousNamespace())
return true;
}
return false;
}
bool Decl::isInStdNamespace() const {
const DeclContext *DC = getDeclContext();
return DC && DC->isStdNamespace();
}
TranslationUnitDecl *Decl::getTranslationUnitDecl() {
if (auto *TUD = dyn_cast<TranslationUnitDecl>(this))
return TUD;
DeclContext *DC = getDeclContext();
assert(DC && "This decl is not contained in a translation unit!");
while (!DC->isTranslationUnit()) {
DC = DC->getParent();
assert(DC && "This decl is not contained in a translation unit!");
}
return cast<TranslationUnitDecl>(DC);
}
ASTContext &Decl::getASTContext() const {
return getTranslationUnitDecl()->getASTContext();
}
/// Helper to get the language options from the ASTContext.
/// Defined out of line to avoid depending on ASTContext.h.
const LangOptions &Decl::getLangOpts() const {
return getASTContext().getLangOpts();
}
ASTMutationListener *Decl::getASTMutationListener() const {
return getASTContext().getASTMutationListener();
}
unsigned Decl::getMaxAlignment() const {
if (!hasAttrs())
return 0;
unsigned Align = 0;
const AttrVec &V = getAttrs();
ASTContext &Ctx = getASTContext();
specific_attr_iterator<AlignedAttr> I(V.begin()), E(V.end());
for (; I != E; ++I) {
if (!I->isAlignmentErrorDependent())
Align = std::max(Align, I->getAlignment(Ctx));
}
return Align;
}
bool Decl::isUsed(bool CheckUsedAttr) const {
const Decl *CanonD = getCanonicalDecl();
if (CanonD->Used)
return true;
// Check for used attribute.
// Ask the most recent decl, since attributes accumulate in the redecl chain.
if (CheckUsedAttr && getMostRecentDecl()->hasAttr<UsedAttr>())
return true;
// The information may have not been deserialized yet. Force deserialization
// to complete the needed information.
return getMostRecentDecl()->getCanonicalDecl()->Used;
}
void Decl::markUsed(ASTContext &C) {
if (isUsed(false))
return;
if (C.getASTMutationListener())
C.getASTMutationListener()->DeclarationMarkedUsed(this);
setIsUsed();
}
bool Decl::isReferenced() const {
if (Referenced)
return true;
// Check redeclarations.
for (const auto *I : redecls())
if (I->Referenced)
return true;
return false;
}
ExternalSourceSymbolAttr *Decl::getExternalSourceSymbolAttr() const {
const Decl *Definition = nullptr;
if (auto *ID = dyn_cast<ObjCInterfaceDecl>(this)) {
Definition = ID->getDefinition();
} else if (auto *PD = dyn_cast<ObjCProtocolDecl>(this)) {
Definition = PD->getDefinition();
} else if (auto *TD = dyn_cast<TagDecl>(this)) {
Definition = TD->getDefinition();
}
if (!Definition)
Definition = this;
if (auto *attr = Definition->getAttr<ExternalSourceSymbolAttr>())
return attr;
if (auto *dcd = dyn_cast<Decl>(getDeclContext())) {
return dcd->getAttr<ExternalSourceSymbolAttr>();
}
return nullptr;
}
bool Decl::hasDefiningAttr() const {
return hasAttr<AliasAttr>() || hasAttr<IFuncAttr>() ||
hasAttr<LoaderUninitializedAttr>();
}
const Attr *Decl::getDefiningAttr() const {
if (auto *AA = getAttr<AliasAttr>())
return AA;
if (auto *IFA = getAttr<IFuncAttr>())
return IFA;
if (auto *NZA = getAttr<LoaderUninitializedAttr>())
return NZA;
return nullptr;
}
static StringRef getRealizedPlatform(const AvailabilityAttr *A,
const ASTContext &Context) {
// Check if this is an App Extension "platform", and if so chop off
// the suffix for matching with the actual platform.
StringRef RealizedPlatform = A->getPlatform()->getName();
if (!Context.getLangOpts().AppExt)
return RealizedPlatform;
size_t suffix = RealizedPlatform.rfind("_app_extension");
if (suffix != StringRef::npos)
return RealizedPlatform.slice(0, suffix);
return RealizedPlatform;
}
/// Determine the availability of the given declaration based on
/// the target platform.
///
/// When it returns an availability result other than \c AR_Available,
/// if the \p Message parameter is non-NULL, it will be set to a
/// string describing why the entity is unavailable.
///
/// FIXME: Make these strings localizable, since they end up in
/// diagnostics.
static AvailabilityResult CheckAvailability(ASTContext &Context,
const AvailabilityAttr *A,
std::string *Message,
VersionTuple EnclosingVersion) {
if (EnclosingVersion.empty())
EnclosingVersion = Context.getTargetInfo().getPlatformMinVersion();
if (EnclosingVersion.empty())
return AR_Available;
StringRef ActualPlatform = A->getPlatform()->getName();
StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
// Match the platform name.
if (getRealizedPlatform(A, Context) != TargetPlatform)
return AR_Available;
StringRef PrettyPlatformName
= AvailabilityAttr::getPrettyPlatformName(ActualPlatform);
if (PrettyPlatformName.empty())
PrettyPlatformName = ActualPlatform;
std::string HintMessage;
if (!A->getMessage().empty()) {
HintMessage = " - ";
HintMessage += A->getMessage();
}
// Make sure that this declaration has not been marked 'unavailable'.
if (A->getUnavailable()) {
if (Message) {
Message->clear();
llvm::raw_string_ostream Out(*Message);
Out << "not available on " << PrettyPlatformName
<< HintMessage;
}
return AR_Unavailable;
}
// Make sure that this declaration has already been introduced.
if (!A->getIntroduced().empty() &&
EnclosingVersion < A->getIntroduced()) {
if (Message) {
Message->clear();
llvm::raw_string_ostream Out(*Message);
VersionTuple VTI(A->getIntroduced());
Out << "introduced in " << PrettyPlatformName << ' '
<< VTI << HintMessage;
}
return A->getStrict() ? AR_Unavailable : AR_NotYetIntroduced;
}
// Make sure that this declaration hasn't been obsoleted.
if (!A->getObsoleted().empty() && EnclosingVersion >= A->getObsoleted()) {
if (Message) {
Message->clear();
llvm::raw_string_ostream Out(*Message);
VersionTuple VTO(A->getObsoleted());
Out << "obsoleted in " << PrettyPlatformName << ' '
<< VTO << HintMessage;
}
return AR_Unavailable;
}
// Make sure that this declaration hasn't been deprecated.
if (!A->getDeprecated().empty() && EnclosingVersion >= A->getDeprecated()) {
if (Message) {
Message->clear();
llvm::raw_string_ostream Out(*Message);
VersionTuple VTD(A->getDeprecated());
Out << "first deprecated in " << PrettyPlatformName << ' '
<< VTD << HintMessage;
}
return AR_Deprecated;
}
return AR_Available;
}
AvailabilityResult Decl::getAvailability(std::string *Message,
VersionTuple EnclosingVersion,
StringRef *RealizedPlatform) const {
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(this))
return FTD->getTemplatedDecl()->getAvailability(Message, EnclosingVersion,
RealizedPlatform);
AvailabilityResult Result = AR_Available;
std::string ResultMessage;
for (const auto *A : attrs()) {
if (const auto *Deprecated = dyn_cast<DeprecatedAttr>(A)) {
if (Result >= AR_Deprecated)
continue;
if (Message)
ResultMessage = std::string(Deprecated->getMessage());
Result = AR_Deprecated;
continue;
}
if (const auto *Unavailable = dyn_cast<UnavailableAttr>(A)) {
if (Message)
*Message = std::string(Unavailable->getMessage());
return AR_Unavailable;
}
if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
AvailabilityResult AR = CheckAvailability(getASTContext(), Availability,
Message, EnclosingVersion);
if (AR == AR_Unavailable) {
if (RealizedPlatform)
*RealizedPlatform = Availability->getPlatform()->getName();
return AR_Unavailable;
}
if (AR > Result) {
Result = AR;
if (Message)
ResultMessage.swap(*Message);
}
continue;
}
}
if (Message)
Message->swap(ResultMessage);
return Result;
}
VersionTuple Decl::getVersionIntroduced() const {
const ASTContext &Context = getASTContext();
StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
for (const auto *A : attrs()) {
if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
if (getRealizedPlatform(Availability, Context) != TargetPlatform)
continue;
if (!Availability->getIntroduced().empty())
return Availability->getIntroduced();
}
}
return {};
}
bool Decl::canBeWeakImported(bool &IsDefinition) const {
IsDefinition = false;
// Variables, if they aren't definitions.
if (const auto *Var = dyn_cast<VarDecl>(this)) {
if (Var->isThisDeclarationADefinition()) {
IsDefinition = true;
return false;
}
return true;
}
// Functions, if they aren't definitions.
if (const auto *FD = dyn_cast<FunctionDecl>(this)) {
if (FD->hasBody()) {
IsDefinition = true;
return false;
}
return true;
}
// Objective-C classes, if this is the non-fragile runtime.
if (isa<ObjCInterfaceDecl>(this) &&
getASTContext().getLangOpts().ObjCRuntime.hasWeakClassImport()) {
return true;
}
// Nothing else.
return false;
}
bool Decl::isWeakImported() const {
bool IsDefinition;
if (!canBeWeakImported(IsDefinition))
return false;
for (const auto *A : getMostRecentDecl()->attrs()) {
if (isa<WeakImportAttr>(A))
return true;
if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
if (CheckAvailability(getASTContext(), Availability, nullptr,
VersionTuple()) == AR_NotYetIntroduced)
return true;
}
}
return false;
}
unsigned Decl::getIdentifierNamespaceForKind(Kind DeclKind) {
switch (DeclKind) {
case Function:
case CXXDeductionGuide:
case CXXMethod:
case CXXConstructor:
case ConstructorUsingShadow:
case CXXDestructor:
case CXXConversion:
case EnumConstant:
case Var:
case ImplicitParam:
case ParmVar:
case ObjCMethod:
case ObjCProperty:
case MSProperty:
return IDNS_Ordinary;
case Label:
return IDNS_Label;
case IndirectField:
return IDNS_Ordinary | IDNS_Member;
case Binding:
case NonTypeTemplateParm:
case VarTemplate:
case Concept:
// These (C++-only) declarations are found by redeclaration lookup for
// tag types, so we include them in the tag namespace.
return IDNS_Ordinary | IDNS_Tag;
case ObjCCompatibleAlias:
case ObjCInterface:
return IDNS_Ordinary | IDNS_Type;
case Typedef:
case TypeAlias:
case TemplateTypeParm:
case ObjCTypeParam:
return IDNS_Ordinary | IDNS_Type;
case UnresolvedUsingTypename:
return IDNS_Ordinary | IDNS_Type | IDNS_Using;
case UsingShadow:
return 0; // we'll actually overwrite this later
case UnresolvedUsingValue:
return IDNS_Ordinary | IDNS_Using;
case Using:
case UsingPack:
case UsingEnum:
return IDNS_Using;
case ObjCProtocol:
return IDNS_ObjCProtocol;
case Field:
case ObjCAtDefsField:
case ObjCIvar:
return IDNS_Member;
case Record:
case CXXRecord:
case Enum:
return IDNS_Tag | IDNS_Type;
case Namespace:
case NamespaceAlias:
return IDNS_Namespace;
case FunctionTemplate:
return IDNS_Ordinary;
case ClassTemplate:
case TemplateTemplateParm:
case TypeAliasTemplate:
return IDNS_Ordinary | IDNS_Tag | IDNS_Type;
case UnresolvedUsingIfExists:
return IDNS_Type | IDNS_Ordinary;
case OMPDeclareReduction:
return IDNS_OMPReduction;
case OMPDeclareMapper:
return IDNS_OMPMapper;
// Never have names.
case Friend:
case FriendTemplate:
case AccessSpec:
case LinkageSpec:
case Export:
case FileScopeAsm:
case StaticAssert:
case ObjCPropertyImpl:
case PragmaComment:
case PragmaDetectMismatch:
case Block:
case Captured:
case TranslationUnit:
case ExternCContext:
case Decomposition:
case MSGuid:
case TemplateParamObject:
case UsingDirective:
case BuiltinTemplate:
case ClassTemplateSpecialization:
case ClassTemplatePartialSpecialization:
case ClassScopeFunctionSpecialization:
case VarTemplateSpecialization:
case VarTemplatePartialSpecialization:
case ObjCImplementation:
case ObjCCategory:
case ObjCCategoryImpl:
case Import:
case OMPThreadPrivate:
case OMPAllocate:
case OMPRequires:
case OMPCapturedExpr:
case Empty:
case LifetimeExtendedTemporary:
case RequiresExprBody:
// Never looked up by name.
return 0;
}
llvm_unreachable("Invalid DeclKind!");
}
void Decl::setAttrsImpl(const AttrVec &attrs, ASTContext &Ctx) {
assert(!HasAttrs && "Decl already contains attrs.");
AttrVec &AttrBlank = Ctx.getDeclAttrs(this);
assert(AttrBlank.empty() && "HasAttrs was wrong?");
AttrBlank = attrs;
HasAttrs = true;
}
void Decl::dropAttrs() {
if (!HasAttrs) return;
HasAttrs = false;
getASTContext().eraseDeclAttrs(this);
}
void Decl::addAttr(Attr *A) {
if (!hasAttrs()) {
setAttrs(AttrVec(1, A));
return;
}
AttrVec &Attrs = getAttrs();
if (!A->isInherited()) {
Attrs.push_back(A);
return;
}
// Attribute inheritance is processed after attribute parsing. To keep the
// order as in the source code, add inherited attributes before non-inherited
// ones.
auto I = Attrs.begin(), E = Attrs.end();
for (; I != E; ++I) {
if (!(*I)->isInherited())
break;
}
Attrs.insert(I, A);
}
const AttrVec &Decl::getAttrs() const {
assert(HasAttrs && "No attrs to get!");
return getASTContext().getDeclAttrs(this);
}
Decl *Decl::castFromDeclContext (const DeclContext *D) {
Decl::Kind DK = D->getDeclKind();
switch(DK) {
#define DECL(NAME, BASE)
#define DECL_CONTEXT(NAME) \
case Decl::NAME: \
return static_cast<NAME##Decl *>(const_cast<DeclContext *>(D));
#define DECL_CONTEXT_BASE(NAME)
#include "clang/AST/DeclNodes.inc"
default:
#define DECL(NAME, BASE)
#define DECL_CONTEXT_BASE(NAME) \
if (DK >= first##NAME && DK <= last##NAME) \
return static_cast<NAME##Decl *>(const_cast<DeclContext *>(D));
#include "clang/AST/DeclNodes.inc"
llvm_unreachable("a decl that inherits DeclContext isn't handled");
}
}
DeclContext *Decl::castToDeclContext(const Decl *D) {
Decl::Kind DK = D->getKind();
switch(DK) {
#define DECL(NAME, BASE)
#define DECL_CONTEXT(NAME) \
case Decl::NAME: \
return static_cast<NAME##Decl *>(const_cast<Decl *>(D));
#define DECL_CONTEXT_BASE(NAME)
#include "clang/AST/DeclNodes.inc"
default:
#define DECL(NAME, BASE)
#define DECL_CONTEXT_BASE(NAME) \
if (DK >= first##NAME && DK <= last##NAME) \
return static_cast<NAME##Decl *>(const_cast<Decl *>(D));
#include "clang/AST/DeclNodes.inc"
llvm_unreachable("a decl that inherits DeclContext isn't handled");
}
}
SourceLocation Decl::getBodyRBrace() const {
// Special handling of FunctionDecl to avoid de-serializing the body from PCH.
// FunctionDecl stores EndRangeLoc for this purpose.
if (const auto *FD = dyn_cast<FunctionDecl>(this)) {
const FunctionDecl *Definition;
if (FD->hasBody(Definition))
return Definition->getSourceRange().getEnd();
return {};
}
if (Stmt *Body = getBody())
return Body->getSourceRange().getEnd();
return {};
}
bool Decl::AccessDeclContextSanity() const {
#ifndef NDEBUG
// Suppress this check if any of the following hold:
// 1. this is the translation unit (and thus has no parent)
// 2. this is a template parameter (and thus doesn't belong to its context)
// 3. this is a non-type template parameter
// 4. the context is not a record
// 5. it's invalid
// 6. it's a C++0x static_assert.
// 7. it's a block literal declaration
// 8. it's a temporary with lifetime extended due to being default value.
if (isa<TranslationUnitDecl>(this) || isa<TemplateTypeParmDecl>(this) ||
isa<NonTypeTemplateParmDecl>(this) || !getDeclContext() ||
!isa<CXXRecordDecl>(getDeclContext()) || isInvalidDecl() ||
isa<StaticAssertDecl>(this) || isa<BlockDecl>(this) ||
// FIXME: a ParmVarDecl can have ClassTemplateSpecialization
// as DeclContext (?).
isa<ParmVarDecl>(this) ||
// FIXME: a ClassTemplateSpecialization or CXXRecordDecl can have
// AS_none as access specifier.
isa<CXXRecordDecl>(this) ||
isa<ClassScopeFunctionSpecializationDecl>(this) ||
isa<LifetimeExtendedTemporaryDecl>(this))
return true;
assert(Access != AS_none &&
"Access specifier is AS_none inside a record decl");
#endif
return true;
}
static Decl::Kind getKind(const Decl *D) { return D->getKind(); }
static Decl::Kind getKind(const DeclContext *DC) { return DC->getDeclKind(); }
int64_t Decl::getID() const {
return getASTContext().getAllocator().identifyKnownAlignedObject<Decl>(this);
}
const FunctionType *Decl::getFunctionType(bool BlocksToo) const {
QualType Ty;
if (const auto *D = dyn_cast<ValueDecl>(this))
Ty = D->getType();
else if (const auto *D = dyn_cast<TypedefNameDecl>(this))
Ty = D->getUnderlyingType();
else
return nullptr;
if (Ty->isFunctionPointerType())
Ty = Ty->castAs<PointerType>()->getPointeeType();
else if (Ty->isFunctionReferenceType())
Ty = Ty->castAs<ReferenceType>()->getPointeeType();
else if (BlocksToo && Ty->isBlockPointerType())
Ty = Ty->castAs<BlockPointerType>()->getPointeeType();
return Ty->getAs<FunctionType>();
}
/// Starting at a given context (a Decl or DeclContext), look for a
/// code context that is not a closure (a lambda, block, etc.).
template <class T> static Decl *getNonClosureContext(T *D) {
if (getKind(D) == Decl::CXXMethod) {
auto *MD = cast<CXXMethodDecl>(D);
if (MD->getOverloadedOperator() == OO_Call &&
MD->getParent()->isLambda())
return getNonClosureContext(MD->getParent()->getParent());
return MD;
}
if (auto *FD = dyn_cast<FunctionDecl>(D))
return FD;
if (auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD;
if (auto *BD = dyn_cast<BlockDecl>(D))
return getNonClosureContext(BD->getParent());
if (auto *CD = dyn_cast<CapturedDecl>(D))
return getNonClosureContext(CD->getParent());
return nullptr;
}
Decl *Decl::getNonClosureContext() {
return ::getNonClosureContext(this);
}
Decl *DeclContext::getNonClosureAncestor() {
return ::getNonClosureContext(this);
}
//===----------------------------------------------------------------------===//
// DeclContext Implementation
//===----------------------------------------------------------------------===//
DeclContext::DeclContext(Decl::Kind K) {
DeclContextBits.DeclKind = K;
setHasExternalLexicalStorage(false);
setHasExternalVisibleStorage(false);
setNeedToReconcileExternalVisibleStorage(false);
setHasLazyLocalLexicalLookups(false);
setHasLazyExternalLexicalLookups(false);
setUseQualifiedLookup(false);
}
bool DeclContext::classof(const Decl *D) {
switch (D->getKind()) {
#define DECL(NAME, BASE)
#define DECL_CONTEXT(NAME) case Decl::NAME:
#define DECL_CONTEXT_BASE(NAME)
#include "clang/AST/DeclNodes.inc"
return true;
default:
#define DECL(NAME, BASE)
#define DECL_CONTEXT_BASE(NAME) \
if (D->getKind() >= Decl::first##NAME && \
D->getKind() <= Decl::last##NAME) \
return true;
#include "clang/AST/DeclNodes.inc"
return false;
}
}
DeclContext::~DeclContext() = default;
/// Find the parent context of this context that will be
/// used for unqualified name lookup.
///
/// Generally, the parent lookup context is the semantic context. However, for
/// a friend function the parent lookup context is the lexical context, which
/// is the class in which the friend is declared.
DeclContext *DeclContext::getLookupParent() {
// FIXME: Find a better way to identify friends.
if (isa<FunctionDecl>(this))
if (getParent()->getRedeclContext()->isFileContext() &&
getLexicalParent()->getRedeclContext()->isRecord())
return getLexicalParent();
// A lookup within the call operator of a lambda never looks in the lambda
// class; instead, skip to the context in which that closure type is
// declared.
if (isLambdaCallOperator(this))
return getParent()->getParent();
return getParent();
}
const BlockDecl *DeclContext::getInnermostBlockDecl() const {
const DeclContext *Ctx = this;
do {
if (Ctx->isClosure())
return cast<BlockDecl>(Ctx);
Ctx = Ctx->getParent();
} while (Ctx);
return nullptr;
}
bool DeclContext::isInlineNamespace() const {
return isNamespace() &&
cast<NamespaceDecl>(this)->isInline();
}
bool DeclContext::isStdNamespace() const {
if (!isNamespace())
return false;
const auto *ND = cast<NamespaceDecl>(this);
if (ND->isInline()) {
return ND->getParent()->isStdNamespace();
}
if (!getParent()->getRedeclContext()->isTranslationUnit())
return false;
const IdentifierInfo *II = ND->getIdentifier();
return II && II->isStr("std");
}
bool DeclContext::isDependentContext() const {
if (isFileContext())
return false;
if (isa<ClassTemplatePartialSpecializationDecl>(this))
return true;
if (const auto *Record = dyn_cast<CXXRecordDecl>(this)) {
if (Record->getDescribedClassTemplate())
return true;
if (Record->isDependentLambda())
return true;
}
if (const auto *Function = dyn_cast<FunctionDecl>(this)) {
if (Function->getDescribedFunctionTemplate())
return true;
// Friend function declarations are dependent if their *lexical*
// context is dependent.
if (cast<Decl>(this)->getFriendObjectKind())
return getLexicalParent()->isDependentContext();
}
// FIXME: A variable template is a dependent context, but is not a
// DeclContext. A context within it (such as a lambda-expression)
// should be considered dependent.
return getParent() && getParent()->isDependentContext();
}
bool DeclContext::isTransparentContext() const {
if (getDeclKind() == Decl::Enum)
return !cast<EnumDecl>(this)->isScoped();
return getDeclKind() == Decl::LinkageSpec || getDeclKind() == Decl::Export;
}
static bool isLinkageSpecContext(const DeclContext *DC,
LinkageSpecDecl::LanguageIDs ID) {
while (DC->getDeclKind() != Decl::TranslationUnit) {
if (DC->getDeclKind() == Decl::LinkageSpec)
return cast<LinkageSpecDecl>(DC)->getLanguage() == ID;
DC = DC->getLexicalParent();
}
return false;
}
bool DeclContext::isExternCContext() const {
return isLinkageSpecContext(this, LinkageSpecDecl::lang_c);
}
const LinkageSpecDecl *DeclContext::getExternCContext() const {
const DeclContext *DC = this;
while (DC->getDeclKind() != Decl::TranslationUnit) {
if (DC->getDeclKind() == Decl::LinkageSpec &&
cast<LinkageSpecDecl>(DC)->getLanguage() == LinkageSpecDecl::lang_c)
return cast<LinkageSpecDecl>(DC);
DC = DC->getLexicalParent();
}
return nullptr;
}
bool DeclContext::isExternCXXContext() const {
return isLinkageSpecContext(this, LinkageSpecDecl::lang_cxx);
}
bool DeclContext::Encloses(const DeclContext *DC) const {
if (getPrimaryContext() != this)
return getPrimaryContext()->Encloses(DC);
for (; DC; DC = DC->getParent())
if (DC->getPrimaryContext() == this)
return true;
return false;
}
DeclContext *DeclContext::getNonTransparentContext() {
DeclContext *DC = this;
while (DC->isTransparentContext()) {
DC = DC->getParent();
assert(DC && "All transparent contexts should have a parent!");
}
return DC;
}
DeclContext *DeclContext::getPrimaryContext() {
switch (getDeclKind()) {
case Decl::ExternCContext:
case Decl::LinkageSpec:
case Decl::Export:
case Decl::Block:
case Decl::Captured:
case Decl::OMPDeclareReduction:
case Decl::OMPDeclareMapper:
case Decl::RequiresExprBody:
// There is only one DeclContext for these entities.
return this;
case Decl::TranslationUnit:
return static_cast<TranslationUnitDecl *>(this)->getFirstDecl();
case Decl::Namespace:
// The original namespace is our primary context.
return static_cast<NamespaceDecl *>(this)->getOriginalNamespace();
case Decl::ObjCMethod:
return this;
case Decl::ObjCInterface:
if (auto *OID = dyn_cast<ObjCInterfaceDecl>(this))
if (auto *Def = OID->getDefinition())
return Def;
return this;
case Decl::ObjCProtocol:
if (auto *OPD = dyn_cast<ObjCProtocolDecl>(this))
if (auto *Def = OPD->getDefinition())
return Def;
return this;
case Decl::ObjCCategory:
return this;
case Decl::ObjCImplementation:
case Decl::ObjCCategoryImpl:
return this;
default:
if (getDeclKind() >= Decl::firstTag && getDeclKind() <= Decl::lastTag) {
// If this is a tag type that has a definition or is currently
// being defined, that definition is our primary context.
auto *Tag = cast<TagDecl>(this);
if (TagDecl *Def = Tag->getDefinition())
return Def;
if (const auto *TagTy = dyn_cast<TagType>(Tag->getTypeForDecl())) {
// Note, TagType::getDecl returns the (partial) definition one exists.
TagDecl *PossiblePartialDef = TagTy->getDecl();
if (PossiblePartialDef->isBeingDefined())
return PossiblePartialDef;
} else {
assert(isa<InjectedClassNameType>(Tag->getTypeForDecl()));
}
return Tag;
}
assert(getDeclKind() >= Decl::firstFunction &&
getDeclKind() <= Decl::lastFunction &&
"Unknown DeclContext kind");
return this;
}
}
template <typename T>
void collectAllContextsImpl(T *Self, SmallVectorImpl<DeclContext *> &Contexts) {
for (T *D = Self->getMostRecentDecl(); D; D = D->getPreviousDecl())
Contexts.push_back(D);
std::reverse(Contexts.begin(), Contexts.end());
}
void DeclContext::collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts) {
Contexts.clear();
Decl::Kind Kind = getDeclKind();
if (Kind == Decl::TranslationUnit)
collectAllContextsImpl(static_cast<TranslationUnitDecl *>(this), Contexts);
else if (Kind == Decl::Namespace)
collectAllContextsImpl(static_cast<NamespaceDecl *>(this), Contexts);
else
Contexts.push_back(this);
}
std::pair<Decl *, Decl *>
DeclContext::BuildDeclChain(ArrayRef<Decl *> Decls,
bool FieldsAlreadyLoaded) {
// Build up a chain of declarations via the Decl::NextInContextAndBits field.
Decl *FirstNewDecl = nullptr;
Decl *PrevDecl = nullptr;
for (auto *D : Decls) {
if (FieldsAlreadyLoaded && isa<FieldDecl>(D))
continue;
if (PrevDecl)
PrevDecl->NextInContextAndBits.setPointer(D);
else
FirstNewDecl = D;
PrevDecl = D;
}
return std::make_pair(FirstNewDecl, PrevDecl);
}
/// We have just acquired external visible storage, and we already have
/// built a lookup map. For every name in the map, pull in the new names from
/// the external storage.
void DeclContext::reconcileExternalVisibleStorage() const {
assert(hasNeedToReconcileExternalVisibleStorage() && LookupPtr);
setNeedToReconcileExternalVisibleStorage(false);
for (auto &Lookup : *LookupPtr)
Lookup.second.setHasExternalDecls();
}
/// Load the declarations within this lexical storage from an
/// external source.
/// \return \c true if any declarations were added.
bool
DeclContext::LoadLexicalDeclsFromExternalStorage() const {
ExternalASTSource *Source = getParentASTContext().getExternalSource();
assert(hasExternalLexicalStorage() && Source && "No external storage?");
// Notify that we have a DeclContext that is initializing.
ExternalASTSource::Deserializing ADeclContext(Source);
// Load the external declarations, if any.
SmallVector<Decl*, 64> Decls;
setHasExternalLexicalStorage(false);
Source->FindExternalLexicalDecls(this, Decls);
if (Decls.empty())
return false;
// We may have already loaded just the fields of this record, in which case
// we need to ignore them.
bool FieldsAlreadyLoaded = false;
if (const auto *RD = dyn_cast<RecordDecl>(this))
FieldsAlreadyLoaded = RD->hasLoadedFieldsFromExternalStorage();
// Splice the newly-read declarations into the beginning of the list
// of declarations.
Decl *ExternalFirst, *ExternalLast;
std::tie(ExternalFirst, ExternalLast) =
BuildDeclChain(Decls, FieldsAlreadyLoaded);
ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
FirstDecl = ExternalFirst;
if (!LastDecl)
LastDecl = ExternalLast;
return true;
}
DeclContext::lookup_result
ExternalASTSource::SetNoExternalVisibleDeclsForName(const DeclContext *DC,
DeclarationName Name) {
ASTContext &Context = DC->getParentASTContext();
StoredDeclsMap *Map;
if (!(Map = DC->LookupPtr))
Map = DC->CreateStoredDeclsMap(Context);
if (DC->hasNeedToReconcileExternalVisibleStorage())
DC->reconcileExternalVisibleStorage();
(*Map)[Name].removeExternalDecls();
return DeclContext::lookup_result();
}
DeclContext::lookup_result
ExternalASTSource::SetExternalVisibleDeclsForName(const DeclContext *DC,
DeclarationName Name,
ArrayRef<NamedDecl*> Decls) {
ASTContext &Context = DC->getParentASTContext();
StoredDeclsMap *Map;
if (!(Map = DC->LookupPtr))
Map = DC->CreateStoredDeclsMap(Context);
if (DC->hasNeedToReconcileExternalVisibleStorage())
DC->reconcileExternalVisibleStorage();
StoredDeclsList &List = (*Map)[Name];
List.replaceExternalDecls(Decls);
return List.getLookupResult();
}
DeclContext::decl_iterator DeclContext::decls_begin() const {
if (hasExternalLexicalStorage())
LoadLexicalDeclsFromExternalStorage();
return decl_iterator(FirstDecl);
}
bool DeclContext::decls_empty() const {
if (hasExternalLexicalStorage())
LoadLexicalDeclsFromExternalStorage();
return !FirstDecl;
}
bool DeclContext::containsDecl(Decl *D) const {
return (D->getLexicalDeclContext() == this &&
(D->NextInContextAndBits.getPointer() || D == LastDecl));
}
bool DeclContext::containsDeclAndLoad(Decl *D) const {
if (hasExternalLexicalStorage())
LoadLexicalDeclsFromExternalStorage();
return containsDecl(D);
}
/// shouldBeHidden - Determine whether a declaration which was declared
/// within its semantic context should be invisible to qualified name lookup.
static bool shouldBeHidden(NamedDecl *D) {
// Skip unnamed declarations.
if (!D->getDeclName())
return true;
// Skip entities that can't be found by name lookup into a particular
// context.
if ((D->getIdentifierNamespace() == 0 && !isa<UsingDirectiveDecl>(D)) ||
D->isTemplateParameter())
return true;
// Skip friends and local extern declarations unless they're the first
// declaration of the entity.
if ((D->isLocalExternDecl() || D->getFriendObjectKind()) &&
D != D->getCanonicalDecl())
return true;
// Skip template specializations.
// FIXME: This feels like a hack. Should DeclarationName support
// template-ids, or is there a better way to keep specializations
// from being visible?
if (isa<ClassTemplateSpecializationDecl>(D))
return true;
if (auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isFunctionTemplateSpecialization())
return true;
// Hide destructors that are invalid. There should always be one destructor,
// but if it is an invalid decl, another one is created. We need to hide the
// invalid one from places that expect exactly one destructor, like the
// serialization code.
if (isa<CXXDestructorDecl>(D) && D->isInvalidDecl())
return true;
return false;
}
void DeclContext::removeDecl(Decl *D) {
assert(D->getLexicalDeclContext() == this &&
"decl being removed from non-lexical context");
assert((D->NextInContextAndBits.getPointer() || D == LastDecl) &&
"decl is not in decls list");
// Remove D from the decl chain. This is O(n) but hopefully rare.
if (D == FirstDecl) {
if (D == LastDecl)
FirstDecl = LastDecl = nullptr;
else
FirstDecl = D->NextInContextAndBits.getPointer();
} else {
for (Decl *I = FirstDecl; true; I = I->NextInContextAndBits.getPointer()) {
assert(I && "decl not found in linked list");
if (I->NextInContextAndBits.getPointer() == D) {
I->NextInContextAndBits.setPointer(D->NextInContextAndBits.getPointer());
if (D == LastDecl) LastDecl = I;
break;
}
}
}
// Mark that D is no longer in the decl chain.
D->NextInContextAndBits.setPointer(nullptr);
// Remove D from the lookup table if necessary.
if (isa<NamedDecl>(D)) {
auto *ND = cast<NamedDecl>(D);
// Do not try to remove the declaration if that is invisible to qualified
// lookup. E.g. template specializations are skipped.
if (shouldBeHidden(ND))
return;
// Remove only decls that have a name
if (!ND->getDeclName())
return;
auto *DC = D->getDeclContext();
do {
StoredDeclsMap *Map = DC->getPrimaryContext()->LookupPtr;
if (Map) {
StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName());
assert(Pos != Map->end() && "no lookup entry for decl");
Pos->second.remove(ND);
}
} while (DC->isTransparentContext() && (DC = DC->getParent()));
}
}
void DeclContext::addHiddenDecl(Decl *D) {
assert(D->getLexicalDeclContext() == this &&
"Decl inserted into wrong lexical context");
assert(!D->getNextDeclInContext() && D != LastDecl &&
"Decl already inserted into a DeclContext");
if (FirstDecl) {
LastDecl->NextInContextAndBits.setPointer(D);
LastDecl = D;
} else {
FirstDecl = LastDecl = D;
}
// Notify a C++ record declaration that we've added a member, so it can
// update its class-specific state.
if (auto *Record = dyn_cast<CXXRecordDecl>(this))
Record->addedMember(D);
// If this is a newly-created (not de-serialized) import declaration, wire
// it in to the list of local import declarations.
if (!D->isFromASTFile()) {
if (auto *Import = dyn_cast<ImportDecl>(D))
D->getASTContext().addedLocalImportDecl(Import);
}
}
void DeclContext::addDecl(Decl *D) {
addHiddenDecl(D);
if (auto *ND = dyn_cast<NamedDecl>(D))
ND->getDeclContext()->getPrimaryContext()->
makeDeclVisibleInContextWithFlags(ND, false, true);
}
void DeclContext::addDeclInternal(Decl *D) {
addHiddenDecl(D);
if (auto *ND = dyn_cast<NamedDecl>(D))
ND->getDeclContext()->getPrimaryContext()->
makeDeclVisibleInContextWithFlags(ND, true, true);
}
/// buildLookup - Build the lookup data structure with all of the
/// declarations in this DeclContext (and any other contexts linked
/// to it or transparent contexts nested within it) and return it.
///
/// Note that the produced map may miss out declarations from an
/// external source. If it does, those entries will be marked with
/// the 'hasExternalDecls' flag.
StoredDeclsMap *DeclContext::buildLookup() {
assert(this == getPrimaryContext() && "buildLookup called on non-primary DC");
if (!hasLazyLocalLexicalLookups() &&
!hasLazyExternalLexicalLookups())
return LookupPtr;
SmallVector<DeclContext *, 2> Contexts;
collectAllContexts(Contexts);
if (hasLazyExternalLexicalLookups()) {
setHasLazyExternalLexicalLookups(false);
for (auto *DC : Contexts) {
if (DC->hasExternalLexicalStorage()) {
bool LoadedDecls = DC->LoadLexicalDeclsFromExternalStorage();
setHasLazyLocalLexicalLookups(
hasLazyLocalLexicalLookups() | LoadedDecls );
}
}
if (!hasLazyLocalLexicalLookups())
return LookupPtr;
}
for (auto *DC : Contexts)
buildLookupImpl(DC, hasExternalVisibleStorage());
// We no longer have any lazy decls.
setHasLazyLocalLexicalLookups(false);
return LookupPtr;
}
/// buildLookupImpl - Build part of the lookup data structure for the
/// declarations contained within DCtx, which will either be this
/// DeclContext, a DeclContext linked to it, or a transparent context
/// nested within it.
void DeclContext::buildLookupImpl(DeclContext *DCtx, bool Internal) {
for (auto *D : DCtx->noload_decls()) {
// Insert this declaration into the lookup structure, but only if
// it's semantically within its decl context. Any other decls which
// should be found in this context are added eagerly.
//
// If it's from an AST file, don't add it now. It'll get handled by
// FindExternalVisibleDeclsByName if needed. Exception: if we're not
// in C++, we do not track external visible decls for the TU, so in
// that case we need to collect them all here.
if (auto *ND = dyn_cast<NamedDecl>(D))
if (ND->getDeclContext() == DCtx && !shouldBeHidden(ND) &&
(!ND->isFromASTFile() ||
(isTranslationUnit() &&
!getParentASTContext().getLangOpts().CPlusPlus)))
makeDeclVisibleInContextImpl(ND, Internal);
// If this declaration is itself a transparent declaration context
// or inline namespace, add the members of this declaration of that
// context (recursively).
if (auto *InnerCtx = dyn_cast<DeclContext>(D))
if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
buildLookupImpl(InnerCtx, Internal);
}
}
DeclContext::lookup_result
DeclContext::lookup(DeclarationName Name) const {
assert(getDeclKind() != Decl::LinkageSpec &&
getDeclKind() != Decl::Export &&
"should not perform lookups into transparent contexts");
const DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this)
return PrimaryContext->lookup(Name);
// If we have an external source, ensure that any later redeclarations of this
// context have been loaded, since they may add names to the result of this
// lookup (or add external visible storage).
ExternalASTSource *Source = getParentASTContext().getExternalSource();
if (Source)
(void)cast<Decl>(this)->getMostRecentDecl();
if (hasExternalVisibleStorage()) {
assert(Source && "external visible storage but no external source?");
if (hasNeedToReconcileExternalVisibleStorage())
reconcileExternalVisibleStorage();
StoredDeclsMap *Map = LookupPtr;
if (hasLazyLocalLexicalLookups() ||
hasLazyExternalLexicalLookups())
// FIXME: Make buildLookup const?
Map = const_cast<DeclContext*>(this)->buildLookup();
if (!Map)
Map = CreateStoredDeclsMap(getParentASTContext());
// If we have a lookup result with no external decls, we are done.
std::pair<StoredDeclsMap::iterator, bool> R =
Map->insert(std::make_pair(Name, StoredDeclsList()));
if (!R.second && !R.first->second.hasExternalDecls())
return R.first->second.getLookupResult();
if (Source->FindExternalVisibleDeclsByName(this, Name) || !R.second) {
if (StoredDeclsMap *Map = LookupPtr) {
StoredDeclsMap::iterator I = Map->find(Name);
if (I != Map->end())
return I->second.getLookupResult();
}
}
return {};
}
StoredDeclsMap *Map = LookupPtr;
if (hasLazyLocalLexicalLookups() ||
hasLazyExternalLexicalLookups())
Map = const_cast<DeclContext*>(this)->buildLookup();
if (!Map)
return {};
StoredDeclsMap::iterator I = Map->find(Name);
if (I == Map->end())
return {};
return I->second.getLookupResult();
}
DeclContext::lookup_result
DeclContext::noload_lookup(DeclarationName Name) {
assert(getDeclKind() != Decl::LinkageSpec &&
getDeclKind() != Decl::Export &&
"should not perform lookups into transparent contexts");
DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this)
return PrimaryContext->noload_lookup(Name);
loadLazyLocalLexicalLookups();
StoredDeclsMap *Map = LookupPtr;
if (!Map)
return {};
StoredDeclsMap::iterator I = Map->find(Name);
return I != Map->end() ? I->second.getLookupResult()
: lookup_result();
}
// If we have any lazy lexical declarations not in our lookup map, add them
// now. Don't import any external declarations, not even if we know we have
// some missing from the external visible lookups.
void DeclContext::loadLazyLocalLexicalLookups() {
if (hasLazyLocalLexicalLookups()) {
SmallVector<DeclContext *, 2> Contexts;
collectAllContexts(Contexts);
for (auto *Context : Contexts)
buildLookupImpl(Context, hasExternalVisibleStorage());
setHasLazyLocalLexicalLookups(false);
}
}
void DeclContext::localUncachedLookup(DeclarationName Name,
SmallVectorImpl<NamedDecl *> &Results) {
Results.clear();
// If there's no external storage, just perform a normal lookup and copy
// the results.
if (!hasExternalVisibleStorage() && !hasExternalLexicalStorage() && Name) {
lookup_result LookupResults = lookup(Name);
Results.insert(Results.end(), LookupResults.begin(), LookupResults.end());
return;
}
// If we have a lookup table, check there first. Maybe we'll get lucky.
// FIXME: Should we be checking these flags on the primary context?
if (Name && !hasLazyLocalLexicalLookups() &&
!hasLazyExternalLexicalLookups()) {
if (StoredDeclsMap *Map = LookupPtr) {
StoredDeclsMap::iterator Pos = Map->find(Name);
if (Pos != Map->end()) {
Results.insert(Results.end(),
Pos->second.getLookupResult().begin(),
Pos->second.getLookupResult().end());
return;
}
}
}
// Slow case: grovel through the declarations in our chain looking for
// matches.
// FIXME: If we have lazy external declarations, this will not find them!
// FIXME: Should we CollectAllContexts and walk them all here?
for (Decl *D = FirstDecl; D; D = D->getNextDeclInContext()) {
if (auto *ND = dyn_cast<NamedDecl>(D))
if (ND->getDeclName() == Name)
Results.push_back(ND);
}
}
DeclContext *DeclContext::getRedeclContext() {
DeclContext *Ctx = this;
// In C, a record type is the redeclaration context for its fields only. If
// we arrive at a record context after skipping anything else, we should skip
// the record as well. Currently, this means skipping enumerations because
// they're the only transparent context that can exist within a struct or
// union.
bool SkipRecords = getDeclKind() == Decl::Kind::Enum &&
!getParentASTContext().getLangOpts().CPlusPlus;
// Skip through contexts to get to the redeclaration context. Transparent
// contexts are always skipped.
while ((SkipRecords && Ctx->isRecord()) || Ctx->isTransparentContext())
Ctx = Ctx->getParent();
return Ctx;
}
DeclContext *DeclContext::getEnclosingNamespaceContext() {
DeclContext *Ctx = this;
// Skip through non-namespace, non-translation-unit contexts.
while (!Ctx->isFileContext())
Ctx = Ctx->getParent();
return Ctx->getPrimaryContext();
}
RecordDecl *DeclContext::getOuterLexicalRecordContext() {
// Loop until we find a non-record context.
RecordDecl *OutermostRD = nullptr;
DeclContext *DC = this;
while (DC->isRecord()) {
OutermostRD = cast<RecordDecl>(DC);
DC = DC->getLexicalParent();
}
return OutermostRD;
}
bool DeclContext::InEnclosingNamespaceSetOf(const DeclContext *O) const {
// For non-file contexts, this is equivalent to Equals.
if (!isFileContext())
return O->Equals(this);
do {
if (O->Equals(this))
return true;
const auto *NS = dyn_cast<NamespaceDecl>(O);
if (!NS || !NS->isInline())
break;
O = NS->getParent();
} while (O);
return false;
}
void DeclContext::makeDeclVisibleInContext(NamedDecl *D) {
DeclContext *PrimaryDC = this->getPrimaryContext();
DeclContext *DeclDC = D->getDeclContext()->getPrimaryContext();
// If the decl is being added outside of its semantic decl context, we
// need to ensure that we eagerly build the lookup information for it.
PrimaryDC->makeDeclVisibleInContextWithFlags(D, false, PrimaryDC == DeclDC);
}
void DeclContext::makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
bool Recoverable) {
assert(this == getPrimaryContext() && "expected a primary DC");
if (!isLookupContext()) {
if (isTransparentContext())
getParent()->getPrimaryContext()
->makeDeclVisibleInContextWithFlags(D, Internal, Recoverable);
return;
}
// Skip declarations which should be invisible to name lookup.
if (shouldBeHidden(D))
return;
// If we already have a lookup data structure, perform the insertion into
// it. If we might have externally-stored decls with this name, look them
// up and perform the insertion. If this decl was declared outside its
// semantic context, buildLookup won't add it, so add it now.
//
// FIXME: As a performance hack, don't add such decls into the translation
// unit unless we're in C++, since qualified lookup into the TU is never
// performed.
if (LookupPtr || hasExternalVisibleStorage() ||
((!Recoverable || D->getDeclContext() != D->getLexicalDeclContext()) &&
(getParentASTContext().getLangOpts().CPlusPlus ||
!isTranslationUnit()))) {
// If we have lazily omitted any decls, they might have the same name as
// the decl which we are adding, so build a full lookup table before adding
// this decl.
buildLookup();
makeDeclVisibleInContextImpl(D, Internal);
} else {
setHasLazyLocalLexicalLookups(true);
}
// If we are a transparent context or inline namespace, insert into our
// parent context, too. This operation is recursive.
if (isTransparentContext() || isInlineNamespace())
getParent()->getPrimaryContext()->
makeDeclVisibleInContextWithFlags(D, Internal, Recoverable);
auto *DCAsDecl = cast<Decl>(this);
// Notify that a decl was made visible unless we are a Tag being defined.
if (!(isa<TagDecl>(DCAsDecl) && cast<TagDecl>(DCAsDecl)->isBeingDefined()))
if (ASTMutationListener *L = DCAsDecl->getASTMutationListener())
L->AddedVisibleDecl(this, D);
}
void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal) {
// Find or create the stored declaration map.
StoredDeclsMap *Map = LookupPtr;
if (!Map) {
ASTContext *C = &getParentASTContext();
Map = CreateStoredDeclsMap(*C);
}
// If there is an external AST source, load any declarations it knows about
// with this declaration's name.
// If the lookup table contains an entry about this name it means that we
// have already checked the external source.
if (!Internal)
if (ExternalASTSource *Source = getParentASTContext().getExternalSource())
if (hasExternalVisibleStorage() &&
Map->find(D->getDeclName()) == Map->end())
Source->FindExternalVisibleDeclsByName(this, D->getDeclName());
// Insert this declaration into the map.
StoredDeclsList &DeclNameEntries = (*Map)[D->getDeclName()];
if (Internal) {
// If this is being added as part of loading an external declaration,
// this may not be the only external declaration with this name.
// In this case, we never try to replace an existing declaration; we'll
// handle that when we finalize the list of declarations for this name.
DeclNameEntries.setHasExternalDecls();
DeclNameEntries.prependDeclNoReplace(D);
return;
}
DeclNameEntries.addOrReplaceDecl(D);
}
UsingDirectiveDecl *DeclContext::udir_iterator::operator*() const {
return cast<UsingDirectiveDecl>(*I);
}
/// Returns iterator range [First, Last) of UsingDirectiveDecls stored within
/// this context.
DeclContext::udir_range DeclContext::using_directives() const {
// FIXME: Use something more efficient than normal lookup for using
// directives. In C++, using directives are looked up more than anything else.
lookup_result Result = lookup(UsingDirectiveDecl::getName());
return udir_range(Result.begin(), Result.end());
}
//===----------------------------------------------------------------------===//
// Creation and Destruction of StoredDeclsMaps. //
//===----------------------------------------------------------------------===//
StoredDeclsMap *DeclContext::CreateStoredDeclsMap(ASTContext &C) const {
assert(!LookupPtr && "context already has a decls map");
assert(getPrimaryContext() == this &&
"creating decls map on non-primary context");
StoredDeclsMap *M;
bool Dependent = isDependentContext();
if (Dependent)
M = new DependentStoredDeclsMap();
else
M = new StoredDeclsMap();
M->Previous = C.LastSDM;
C.LastSDM = llvm::PointerIntPair<StoredDeclsMap*,1>(M, Dependent);
LookupPtr = M;
return M;
}
void ASTContext::ReleaseDeclContextMaps() {
// It's okay to delete DependentStoredDeclsMaps via a StoredDeclsMap
// pointer because the subclass doesn't add anything that needs to
// be deleted.
StoredDeclsMap::DestroyAll(LastSDM.getPointer(), LastSDM.getInt());
LastSDM.setPointer(nullptr);
}
void StoredDeclsMap::DestroyAll(StoredDeclsMap *Map, bool Dependent) {
while (Map) {
// Advance the iteration before we invalidate memory.
llvm::PointerIntPair<StoredDeclsMap*,1> Next = Map->Previous;
if (Dependent)
delete static_cast<DependentStoredDeclsMap*>(Map);
else
delete Map;
Map = Next.getPointer();
Dependent = Next.getInt();
}
}
DependentDiagnostic *DependentDiagnostic::Create(ASTContext &C,
DeclContext *Parent,
const PartialDiagnostic &PDiag) {
assert(Parent->isDependentContext()
&& "cannot iterate dependent diagnostics of non-dependent context");
Parent = Parent->getPrimaryContext();
if (!Parent->LookupPtr)
Parent->CreateStoredDeclsMap(C);
auto *Map = static_cast<DependentStoredDeclsMap *>(Parent->LookupPtr);
// Allocate the copy of the PartialDiagnostic via the ASTContext's
// BumpPtrAllocator, rather than the ASTContext itself.
DiagnosticStorage *DiagStorage = nullptr;
if (PDiag.hasStorage())
DiagStorage = new (C) DiagnosticStorage;
auto *DD = new (C) DependentDiagnostic(PDiag, DiagStorage);
// TODO: Maybe we shouldn't reverse the order during insertion.
DD->NextDiagnostic = Map->FirstDiagnostic;
Map->FirstDiagnostic = DD;
return DD;
}