llvm-project/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp

1654 lines
63 KiB
C++

//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
// the output mechanism used by `llc'.
//
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
//
//===----------------------------------------------------------------------===//
#include "InstPrinter/PPCInstPrinter.h"
#include "MCTargetDesc/PPCMCExpr.h"
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "PPCTargetStreamer.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <new>
using namespace llvm;
#define DEBUG_TYPE "asmprinter"
namespace {
class PPCAsmPrinter : public AsmPrinter {
protected:
MapVector<MCSymbol *, MCSymbol *> TOC;
const PPCSubtarget *Subtarget;
StackMaps SM;
public:
explicit PPCAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)), SM(*this) {}
StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
MCSymbol *lookUpOrCreateTOCEntry(MCSymbol *Sym);
bool doInitialization(Module &M) override {
if (!TOC.empty())
TOC.clear();
return AsmPrinter::doInitialization(M);
}
void EmitInstruction(const MachineInstr *MI) override;
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) override;
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode,
raw_ostream &O) override;
void EmitEndOfAsmFile(Module &M) override;
void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
bool runOnMachineFunction(MachineFunction &MF) override {
Subtarget = &MF.getSubtarget<PPCSubtarget>();
bool Changed = AsmPrinter::runOnMachineFunction(MF);
emitXRayTable();
return Changed;
}
};
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
class PPCLinuxAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCLinuxAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {}
StringRef getPassName() const override {
return "Linux PPC Assembly Printer";
}
bool doFinalization(Module &M) override;
void EmitStartOfAsmFile(Module &M) override;
void EmitFunctionEntryLabel() override;
void EmitFunctionBodyStart() override;
void EmitFunctionBodyEnd() override;
void EmitInstruction(const MachineInstr *MI) override;
};
/// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac
/// OS X
class PPCDarwinAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCDarwinAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {}
StringRef getPassName() const override {
return "Darwin PPC Assembly Printer";
}
bool doFinalization(Module &M) override;
void EmitStartOfAsmFile(Module &M) override;
};
} // end anonymous namespace
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
unsigned Reg = PPCInstrInfo::getRegNumForOperand(MI->getDesc(),
MO.getReg(), OpNo);
const char *RegName = PPCInstPrinter::getRegisterName(Reg);
// Linux assembler (Others?) does not take register mnemonics.
// FIXME - What about special registers used in mfspr/mtspr?
if (!Subtarget->isDarwin())
RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
O << RegName;
return;
}
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
return;
case MachineOperand::MO_ConstantPoolIndex:
O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< MO.getIndex();
return;
case MachineOperand::MO_BlockAddress:
GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress: {
// Computing the address of a global symbol, not calling it.
const GlobalValue *GV = MO.getGlobal();
MCSymbol *SymToPrint;
// External or weakly linked global variables need non-lazily-resolved stubs
if (Subtarget->hasLazyResolverStub(GV)) {
SymToPrint = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(
SymToPrint);
if (!StubSym.getPointer())
StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
!GV->hasInternalLinkage());
} else {
SymToPrint = getSymbol(GV);
}
SymToPrint->print(O, MAI);
printOffset(MO.getOffset(), O);
return;
}
default:
O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
return;
}
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'c': // Don't print "$" before a global var name or constant.
break; // PPC never has a prefix.
case 'L': // Write second word of DImode reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNo).isReg() ||
OpNo+1 == MI->getNumOperands() ||
!MI->getOperand(OpNo+1).isReg())
return true;
++OpNo; // Return the high-part.
break;
case 'I':
// Write 'i' if an integer constant, otherwise nothing. Used to print
// addi vs add, etc.
if (MI->getOperand(OpNo).isImm())
O << "i";
return false;
case 'x':
if(!MI->getOperand(OpNo).isReg())
return true;
// This operand uses VSX numbering.
// If the operand is a VMX register, convert it to a VSX register.
unsigned Reg = MI->getOperand(OpNo).getReg();
if (PPCInstrInfo::isVRRegister(Reg))
Reg = PPC::VSX32 + (Reg - PPC::V0);
else if (PPCInstrInfo::isVFRegister(Reg))
Reg = PPC::VSX32 + (Reg - PPC::VF0);
const char *RegName;
RegName = PPCInstPrinter::getRegisterName(Reg);
RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
O << RegName;
return false;
}
}
printOperand(MI, OpNo, O);
return false;
}
// At the moment, all inline asm memory operands are a single register.
// In any case, the output of this routine should always be just one
// assembler operand.
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'y': // A memory reference for an X-form instruction
{
const char *RegName = "r0";
if (!Subtarget->isDarwin())
RegName = PPCRegisterInfo::stripRegisterPrefix(RegName);
O << RegName << ", ";
printOperand(MI, OpNo, O);
return false;
}
case 'U': // Print 'u' for update form.
case 'X': // Print 'x' for indexed form.
{
// FIXME: Currently for PowerPC memory operands are always loaded
// into a register, so we never get an update or indexed form.
// This is bad even for offset forms, since even if we know we
// have a value in -16(r1), we will generate a load into r<n>
// and then load from 0(r<n>). Until that issue is fixed,
// tolerate 'U' and 'X' but don't output anything.
assert(MI->getOperand(OpNo).isReg());
return false;
}
}
}
assert(MI->getOperand(OpNo).isReg());
O << "0(";
printOperand(MI, OpNo, O);
O << ")";
return false;
}
/// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
/// exists for it. If not, create one. Then return a symbol that references
/// the TOC entry.
MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(MCSymbol *Sym) {
MCSymbol *&TOCEntry = TOC[Sym];
if (!TOCEntry)
TOCEntry = createTempSymbol("C");
return TOCEntry;
}
void PPCAsmPrinter::EmitEndOfAsmFile(Module &M) {
emitStackMaps(SM);
}
void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
unsigned NumNOPBytes = MI.getOperand(1).getImm();
SM.recordStackMap(MI);
assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
// Scan ahead to trim the shadow.
const MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::const_iterator MII(MI);
++MII;
while (NumNOPBytes > 0) {
if (MII == MBB.end() || MII->isCall() ||
MII->getOpcode() == PPC::DBG_VALUE ||
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
MII->getOpcode() == TargetOpcode::STACKMAP)
break;
++MII;
NumNOPBytes -= 4;
}
// Emit nops.
for (unsigned i = 0; i < NumNOPBytes; i += 4)
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>
void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
SM.recordPatchPoint(MI);
PatchPointOpers Opers(&MI);
unsigned EncodedBytes = 0;
const MachineOperand &CalleeMO = Opers.getCallTarget();
if (CalleeMO.isImm()) {
int64_t CallTarget = CalleeMO.getImm();
if (CallTarget) {
assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
"High 16 bits of call target should be zero.");
unsigned ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
EncodedBytes = 0;
// Materialize the jump address:
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
.addReg(ScratchReg)
.addImm((CallTarget >> 32) & 0xFFFF));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(32).addImm(16));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm((CallTarget >> 16) & 0xFFFF));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(CallTarget & 0xFFFF));
// Save the current TOC pointer before the remote call.
int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
.addReg(PPC::X2)
.addImm(TOCSaveOffset)
.addReg(PPC::X1));
++EncodedBytes;
// If we're on ELFv1, then we need to load the actual function pointer
// from the function descriptor.
if (!Subtarget->isELFv2ABI()) {
// Load the new TOC pointer and the function address, but not r11
// (needing this is rare, and loading it here would prevent passing it
// via a 'nest' parameter.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addImm(8)
.addReg(ScratchReg));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(ScratchReg)
.addImm(0)
.addReg(ScratchReg));
++EncodedBytes;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
.addReg(ScratchReg));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
++EncodedBytes;
// Restore the TOC pointer after the call.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addImm(TOCSaveOffset)
.addReg(PPC::X1));
++EncodedBytes;
}
} else if (CalleeMO.isGlobal()) {
const GlobalValue *GValue = CalleeMO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
.addExpr(SymVar));
EncodedBytes += 2;
}
// Each instruction is 4 bytes.
EncodedBytes *= 4;
// Emit padding.
unsigned NumBytes = Opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
assert((NumBytes - EncodedBytes) % 4 == 0 &&
"Invalid number of NOP bytes requested!");
for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
}
/// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
/// call to __tls_get_addr to the current output stream.
void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
MCSymbolRefExpr::VariantKind VK) {
StringRef Name = "__tls_get_addr";
MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol(Name);
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
assert(MI->getOperand(0).isReg() &&
((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
(!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
"GETtls[ld]ADDR[32] must define GPR3");
assert(MI->getOperand(1).isReg() &&
((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
(!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
"GETtls[ld]ADDR[32] must read GPR3");
if (!Subtarget->isPPC64() && !Subtarget->isDarwin() &&
isPositionIndependent())
Kind = MCSymbolRefExpr::VK_PLT;
const MCSymbolRefExpr *TlsRef =
MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ?
PPC::BL8_NOP_TLS : PPC::BL_TLS)
.addExpr(TlsRef)
.addExpr(SymVar));
}
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::EmitInstruction(const MachineInstr *MI) {
MCInst TmpInst;
bool isPPC64 = Subtarget->isPPC64();
bool isDarwin = TM.getTargetTriple().isOSDarwin();
const Module *M = MF->getFunction().getParent();
PICLevel::Level PL = M->getPICLevel();
#ifndef NDEBUG
// Validate that SPE and FPU are mutually exclusive in codegen
if (!MI->isInlineAsm()) {
for (const MachineOperand &MO: MI->operands()) {
if (MO.isReg()) {
unsigned Reg = MO.getReg();
if (Subtarget->hasSPE()) {
if (PPC::F4RCRegClass.contains(Reg) ||
PPC::F8RCRegClass.contains(Reg) ||
PPC::QBRCRegClass.contains(Reg) ||
PPC::QFRCRegClass.contains(Reg) ||
PPC::QSRCRegClass.contains(Reg) ||
PPC::VFRCRegClass.contains(Reg) ||
PPC::VRRCRegClass.contains(Reg) ||
PPC::VSFRCRegClass.contains(Reg) ||
PPC::VSSRCRegClass.contains(Reg)
)
llvm_unreachable("SPE targets cannot have FPRegs!");
} else {
if (PPC::SPERCRegClass.contains(Reg))
llvm_unreachable("SPE register found in FPU-targeted code!");
}
}
}
}
#endif
// Lower multi-instruction pseudo operations.
switch (MI->getOpcode()) {
default: break;
case TargetOpcode::DBG_VALUE:
llvm_unreachable("Should be handled target independently");
case TargetOpcode::STACKMAP:
return LowerSTACKMAP(SM, *MI);
case TargetOpcode::PATCHPOINT:
return LowerPATCHPOINT(SM, *MI);
case PPC::MoveGOTtoLR: {
// Transform %lr = MoveGOTtoLR
// Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
// _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
// _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
// blrl
// This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
MCSymbol *GOTSymbol =
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
MCSymbolRefExpr::VK_PPC_LOCAL,
OutContext),
MCConstantExpr::create(4, OutContext),
OutContext);
// Emit the 'bl'.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
return;
}
case PPC::MovePCtoLR:
case PPC::MovePCtoLR8: {
// Transform %lr = MovePCtoLR
// Into this, where the label is the PIC base:
// bl L1$pb
// L1$pb:
MCSymbol *PICBase = MF->getPICBaseSymbol();
// Emit the 'bl'.
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::BL)
// FIXME: We would like an efficient form for this, so we
// don't have to do a lot of extra uniquing.
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
// Emit the label.
OutStreamer->EmitLabel(PICBase);
return;
}
case PPC::UpdateGBR: {
// Transform %rd = UpdateGBR(%rt, %ri)
// Into: lwz %rt, .L0$poff - .L0$pb(%ri)
// add %rd, %rt, %ri
// or into (if secure plt mode is on):
// addis r30, r30, .LTOC - .L0$pb@ha
// addi r30, r30, .LTOC - .L0$pb@l
// Get the offset from the GOT Base Register to the GOT
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
unsigned PICR = TmpInst.getOperand(0).getReg();
MCSymbol *LTOCSymbol = OutContext.getOrCreateSymbol(StringRef(".LTOC"));
const MCExpr *PB =
MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
OutContext);
const MCExpr *LTOCDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(LTOCSymbol, OutContext),
PB, OutContext);
const MCExpr *LTOCDeltaHi =
PPCMCExpr::createHa(LTOCDeltaExpr, false, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
.addReg(PICR)
.addReg(PICR)
.addExpr(LTOCDeltaHi));
const MCExpr *LTOCDeltaLo =
PPCMCExpr::createLo(LTOCDeltaExpr, false, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
.addReg(PICR)
.addReg(PICR)
.addExpr(LTOCDeltaLo));
return;
} else {
MCSymbol *PICOffset =
MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol();
TmpInst.setOpcode(PPC::LWZ);
const MCExpr *Exp =
MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
const MCExpr *PB =
MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
MCSymbolRefExpr::VK_None,
OutContext);
const MCOperand TR = TmpInst.getOperand(1);
const MCOperand PICR = TmpInst.getOperand(0);
// Step 1: lwz %rt, .L$poff - .L$pb(%ri)
TmpInst.getOperand(1) =
MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
TmpInst.getOperand(0) = TR;
TmpInst.getOperand(2) = PICR;
EmitToStreamer(*OutStreamer, TmpInst);
TmpInst.setOpcode(PPC::ADD4);
TmpInst.getOperand(0) = PICR;
TmpInst.getOperand(1) = TR;
TmpInst.getOperand(2) = PICR;
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
}
case PPC::LWZtoc: {
// Transform %r3 = LWZtoc @min1, %r2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LWZ, and the global address operand to be a
// reference to the GOT entry we will synthesize later.
TmpInst.setOpcode(PPC::LWZ);
const MachineOperand &MO = MI->getOperand(1);
// Map symbol -> label of TOC entry
assert(MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress());
MCSymbol *MOSymbol = nullptr;
if (MO.isGlobal())
MOSymbol = getSymbol(MO.getGlobal());
else if (MO.isCPI())
MOSymbol = GetCPISymbol(MO.getIndex());
else if (MO.isJTI())
MOSymbol = GetJTISymbol(MO.getIndex());
else if (MO.isBlockAddress())
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
if (PL == PICLevel::SmallPIC) {
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
} else {
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None,
OutContext);
const MCExpr *PB =
MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
OutContext);
Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
}
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LDtocJTI:
case PPC::LDtocCPT:
case PPC::LDtocBA:
case PPC::LDtoc: {
// Transform %x3 = LDtoc @min1, %x2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD, and the global address operand to be a
// reference to the TOC entry we will synthesize later.
TmpInst.setOpcode(PPC::LD);
const MachineOperand &MO = MI->getOperand(1);
// Map symbol -> label of TOC entry
assert(MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress());
MCSymbol *MOSymbol = nullptr;
if (MO.isGlobal())
MOSymbol = getSymbol(MO.getGlobal());
else if (MO.isCPI())
MOSymbol = GetCPISymbol(MO.getIndex());
else if (MO.isJTI())
MOSymbol = GetJTISymbol(MO.getIndex());
else if (MO.isBlockAddress())
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_PPC_TOC,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDIStocHA: {
// Transform %xd = ADDIStocHA %x2, @sym
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to ADDIS8. If the global address is external, has
// common linkage, is a non-local function address, or is a jump table
// address, then generate a TOC entry and reference that. Otherwise
// reference the symbol directly.
TmpInst.setOpcode(PPC::ADDIS8);
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
MO.isBlockAddress()) &&
"Invalid operand for ADDIStocHA!");
MCSymbol *MOSymbol = nullptr;
bool GlobalToc = false;
if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
MOSymbol = getSymbol(GV);
unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
GlobalToc = (GVFlags & PPCII::MO_NLP_FLAG);
} else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
} else if (MO.isJTI()) {
MOSymbol = GetJTISymbol(MO.getIndex());
} else if (MO.isBlockAddress()) {
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
}
if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
TM.getCodeModel() == CodeModel::Large)
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_HA,
OutContext);
if (!MO.isJTI() && MO.getOffset())
Exp = MCBinaryExpr::createAdd(Exp,
MCConstantExpr::create(MO.getOffset(),
OutContext),
OutContext);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LDtocL: {
// Transform %xd = LDtocL @sym, %xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD. If the global address is external, has
// common linkage, or is a jump table address, then reference the
// associated TOC entry. Otherwise reference the symbol directly.
TmpInst.setOpcode(PPC::LD);
const MachineOperand &MO = MI->getOperand(1);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
MO.isBlockAddress()) &&
"Invalid operand for LDtocL!");
MCSymbol *MOSymbol = nullptr;
if (MO.isJTI())
MOSymbol = lookUpOrCreateTOCEntry(GetJTISymbol(MO.getIndex()));
else if (MO.isBlockAddress()) {
MOSymbol = GetBlockAddressSymbol(MO.getBlockAddress());
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
if (TM.getCodeModel() == CodeModel::Large)
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
else if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
MOSymbol = getSymbol(GV);
LLVM_DEBUG(
unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
assert((GVFlags & PPCII::MO_NLP_FLAG) &&
"LDtocL used on symbol that could be accessed directly is "
"invalid. Must match ADDIStocHA."));
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol);
}
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDItocL: {
// Transform %xd = ADDItocL %xs, @sym
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to ADDI8. If the global address is external, then
// generate a TOC entry and reference that. Otherwise reference the
// symbol directly.
TmpInst.setOpcode(PPC::ADDI8);
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI()) && "Invalid operand for ADDItocL");
MCSymbol *MOSymbol = nullptr;
if (MO.isGlobal()) {
const GlobalValue *GV = MO.getGlobal();
LLVM_DEBUG(unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
assert(!(GVFlags & PPCII::MO_NLP_FLAG) &&
"Interposable definitions must use indirect access."));
MOSymbol = getSymbol(GV);
} else if (MO.isCPI()) {
MOSymbol = GetCPISymbol(MO.getIndex());
}
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_TOC_LO,
OutContext);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDISgotTprelHA: {
// Transform: %xd = ADDISgotTprelHA %x2, @sym
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTprel =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTprel));
return;
}
case PPC::LDgotTprelL:
case PPC::LDgotTprelL32: {
// Transform %xd = LDgotTprelL @sym, %xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
// Change the opcode to LD.
TmpInst.setOpcode(isPPC64 ? PPC::LD : PPC::LWZ);
const MachineOperand &MO = MI->getOperand(1);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *Exp =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO,
OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::PPC32PICGOT: {
MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
MCSymbol *GOTRef = OutContext.createTempSymbol();
MCSymbol *NextInstr = OutContext.createTempSymbol();
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
// FIXME: We would like an efficient form for this, so we don't have to do
// a lot of extra uniquing.
.addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
MCSymbolRefExpr::create(GOTRef, OutContext),
OutContext);
OutStreamer->EmitLabel(GOTRef);
OutStreamer->EmitValue(OffsExpr, 4);
OutStreamer->EmitLabel(NextInstr);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
.addReg(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
.addReg(MI->getOperand(1).getReg())
.addImm(0)
.addReg(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(MI->getOperand(0).getReg()));
return;
}
case PPC::PPC32GOT: {
MCSymbol *GOTSymbol =
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsL));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsHA));
return;
}
case PPC::ADDIStlsgdHA: {
// Transform: %xd = ADDIStlsgdHA %x2, @sym
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsGD =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsGD));
return;
}
case PPC::ADDItlsgdL:
// Transform: %xd = ADDItlsgdL %xs, @sym
// Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
case PPC::ADDItlsgdL32: {
// Transform: %rd = ADDItlsgdL32 %rs, @sym
// Into: %rd = ADDI %rs, sym@got@tlsgd
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
MOSymbol, Subtarget->isPPC64() ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
: MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsGD));
return;
}
case PPC::GETtlsADDR:
// Transform: %x3 = GETtlsADDR %x3, @sym
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
case PPC::GETtlsADDR32: {
// Transform: %r3 = GETtlsADDR32 %r3, @sym
// Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
return;
}
case PPC::ADDIStlsldHA: {
// Transform: %xd = ADDIStlsldHA %x2, @sym
// Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
assert(Subtarget->isPPC64() && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsLD));
return;
}
case PPC::ADDItlsldL:
// Transform: %xd = ADDItlsldL %xs, @sym
// Into: %xd = ADDI8 %xs, sym@got@tlsld@l
case PPC::ADDItlsldL32: {
// Transform: %rd = ADDItlsldL32 %rs, @sym
// Into: %rd = ADDI %rs, sym@got@tlsld
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
MOSymbol, Subtarget->isPPC64() ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
: MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsLD));
return;
}
case PPC::GETtlsldADDR:
// Transform: %x3 = GETtlsldADDR %x3, @sym
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
case PPC::GETtlsldADDR32: {
// Transform: %r3 = GETtlsldADDR32 %r3, @sym
// Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
return;
}
case PPC::ADDISdtprelHA:
// Transform: %xd = ADDISdtprelHA %xs, @sym
// Into: %xd = ADDIS8 %xs, sym@dtprel@ha
case PPC::ADDISdtprelHA32: {
// Transform: %rd = ADDISdtprelHA32 %rs, @sym
// Into: %rd = ADDIS %rs, sym@dtprel@ha
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
OutContext);
EmitToStreamer(
*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDIS8 : PPC::ADDIS)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::ADDIdtprelL:
// Transform: %xd = ADDIdtprelL %xs, @sym
// Into: %xd = ADDI8 %xs, sym@dtprel@l
case PPC::ADDIdtprelL32: {
// Transform: %rd = ADDIdtprelL32 %rs, @sym
// Into: %rd = ADDI %rs, sym@dtprel@l
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::MFOCRF:
case PPC::MFOCRF8:
if (!Subtarget->hasMFOCRF()) {
// Transform: %r3 = MFOCRF %cr7
// Into: %r3 = MFCR ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
OutStreamer->AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(1).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
.addReg(MI->getOperand(0).getReg()));
return;
}
break;
case PPC::MTOCRF:
case PPC::MTOCRF8:
if (!Subtarget->hasMFOCRF()) {
// Transform: %cr7 = MTOCRF %r3
// Into: MTCRF mask, %r3 ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
->getEncodingValue(MI->getOperand(0).getReg());
OutStreamer->AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
.addImm(Mask)
.addReg(MI->getOperand(1).getReg()));
return;
}
break;
case PPC::LD:
case PPC::STD:
case PPC::LWA_32:
case PPC::LWA: {
// Verify alignment is legal, so we don't create relocations
// that can't be supported.
// FIXME: This test is currently disabled for Darwin. The test
// suite shows a handful of test cases that fail this check for
// Darwin. Those need to be investigated before this sanity test
// can be enabled for those subtargets.
if (!Subtarget->isDarwin()) {
unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
const MachineOperand &MO = MI->getOperand(OpNum);
if (MO.isGlobal() && MO.getGlobal()->getAlignment() < 4)
llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
}
// Now process the instruction normally.
break;
}
}
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this, isDarwin);
EmitToStreamer(*OutStreamer, TmpInst);
}
void PPCLinuxAsmPrinter::EmitInstruction(const MachineInstr *MI) {
if (!Subtarget->isPPC64())
return PPCAsmPrinter::EmitInstruction(MI);
switch (MI->getOpcode()) {
default:
return PPCAsmPrinter::EmitInstruction(MI);
case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
// .begin:
// b .end # lis 0, FuncId[16..32]
// nop # li 0, FuncId[0..15]
// std 0, -8(1)
// mflr 0
// bl __xray_FunctionEntry
// mtlr 0
// .end:
//
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
// of instructions change.
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
MCSymbol *EndOfSled = OutContext.createTempSymbol();
OutStreamer->EmitLabel(BeginOfSled);
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::B).addExpr(
MCSymbolRefExpr::create(EndOfSled, OutContext)));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::BL8_NOP)
.addExpr(MCSymbolRefExpr::create(
OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
OutContext)));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
OutStreamer->EmitLabel(EndOfSled);
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER);
break;
}
case TargetOpcode::PATCHABLE_RET: {
unsigned RetOpcode = MI->getOperand(0).getImm();
MCInst RetInst;
RetInst.setOpcode(RetOpcode);
for (const auto &MO :
make_range(std::next(MI->operands_begin()), MI->operands_end())) {
MCOperand MCOp;
if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this, false))
RetInst.addOperand(MCOp);
}
bool IsConditional;
if (RetOpcode == PPC::BCCLR) {
IsConditional = true;
} else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
RetOpcode == PPC::TCRETURNai8) {
break;
} else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
IsConditional = false;
} else {
EmitToStreamer(*OutStreamer, RetInst);
break;
}
MCSymbol *FallthroughLabel;
if (IsConditional) {
// Before:
// bgtlr cr0
//
// After:
// ble cr0, .end
// .p2align 3
// .begin:
// blr # lis 0, FuncId[16..32]
// nop # li 0, FuncId[0..15]
// std 0, -8(1)
// mflr 0
// bl __xray_FunctionExit
// mtlr 0
// blr
// .end:
//
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
// of instructions change.
FallthroughLabel = OutContext.createTempSymbol();
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::BCC)
.addImm(PPC::InvertPredicate(
static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
.addReg(MI->getOperand(2).getReg())
.addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
RetInst = MCInst();
RetInst.setOpcode(PPC::BLR8);
}
// .p2align 3
// .begin:
// b(lr)? # lis 0, FuncId[16..32]
// nop # li 0, FuncId[0..15]
// std 0, -8(1)
// mflr 0
// bl __xray_FunctionExit
// mtlr 0
// b(lr)?
//
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
// of instructions change.
OutStreamer->EmitCodeAlignment(8);
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
OutStreamer->EmitLabel(BeginOfSled);
EmitToStreamer(*OutStreamer, RetInst);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::BL8_NOP)
.addExpr(MCSymbolRefExpr::create(
OutContext.getOrCreateSymbol("__xray_FunctionExit"),
OutContext)));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
EmitToStreamer(*OutStreamer, RetInst);
if (IsConditional)
OutStreamer->EmitLabel(FallthroughLabel);
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT);
break;
}
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
case TargetOpcode::PATCHABLE_TAIL_CALL:
// TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
// normal function exit from a tail exit.
llvm_unreachable("Tail call is handled in the normal case. See comments "
"around this assert.");
}
}
void PPCLinuxAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
if (TS)
TS->emitAbiVersion(2);
}
if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
!isPositionIndependent())
return AsmPrinter::EmitStartOfAsmFile(M);
if (M.getPICLevel() == PICLevel::SmallPIC)
return AsmPrinter::EmitStartOfAsmFile(M);
OutStreamer->SwitchSection(OutContext.getELFSection(
".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
MCSymbol *CurrentPos = OutContext.createTempSymbol();
OutStreamer->EmitLabel(CurrentPos);
// The GOT pointer points to the middle of the GOT, in order to reference the
// entire 64kB range. 0x8000 is the midpoint.
const MCExpr *tocExpr =
MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
MCConstantExpr::create(0x8000, OutContext),
OutContext);
OutStreamer->EmitAssignment(TOCSym, tocExpr);
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
}
void PPCLinuxAsmPrinter::EmitFunctionEntryLabel() {
// linux/ppc32 - Normal entry label.
if (!Subtarget->isPPC64() &&
(!isPositionIndependent() ||
MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
return AsmPrinter::EmitFunctionEntryLabel();
if (!Subtarget->isPPC64()) {
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol();
MCSymbol *PICBase = MF->getPICBaseSymbol();
OutStreamer->EmitLabel(RelocSymbol);
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(
MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
OutContext),
MCSymbolRefExpr::create(PICBase, OutContext),
OutContext);
OutStreamer->EmitValue(OffsExpr, 4);
OutStreamer->EmitLabel(CurrentFnSym);
return;
} else
return AsmPrinter::EmitFunctionEntryLabel();
}
// ELFv2 ABI - Normal entry label.
if (Subtarget->isELFv2ABI()) {
// In the Large code model, we allow arbitrary displacements between
// the text section and its associated TOC section. We place the
// full 8-byte offset to the TOC in memory immediately preceding
// the function global entry point.
if (TM.getCodeModel() == CodeModel::Large
&& !MF->getRegInfo().use_empty(PPC::X2)) {
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol();
const MCExpr *TOCDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
MCSymbolRefExpr::create(GlobalEPSymbol,
OutContext),
OutContext);
OutStreamer->EmitLabel(PPCFI->getTOCOffsetSymbol());
OutStreamer->EmitValue(TOCDeltaExpr, 8);
}
return AsmPrinter::EmitFunctionEntryLabel();
}
// Emit an official procedure descriptor.
MCSectionSubPair Current = OutStreamer->getCurrentSection();
MCSectionELF *Section = OutStreamer->getContext().getELFSection(
".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer->SwitchSection(Section);
OutStreamer->EmitLabel(CurrentFnSym);
OutStreamer->EmitValueToAlignment(8);
MCSymbol *Symbol1 = CurrentFnSymForSize;
// Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
// entry point.
OutStreamer->EmitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
8 /*size*/);
MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
// Generates a R_PPC64_TOC relocation for TOC base insertion.
OutStreamer->EmitValue(
MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
8/*size*/);
// Emit a null environment pointer.
OutStreamer->EmitIntValue(0, 8 /* size */);
OutStreamer->SwitchSection(Current.first, Current.second);
}
bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
const DataLayout &DL = getDataLayout();
bool isPPC64 = DL.getPointerSizeInBits() == 64;
PPCTargetStreamer &TS =
static_cast<PPCTargetStreamer &>(*OutStreamer->getTargetStreamer());
if (!TOC.empty()) {
MCSectionELF *Section;
if (isPPC64)
Section = OutStreamer->getContext().getELFSection(
".toc", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
else
Section = OutStreamer->getContext().getELFSection(
".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer->SwitchSection(Section);
for (MapVector<MCSymbol*, MCSymbol*>::iterator I = TOC.begin(),
E = TOC.end(); I != E; ++I) {
OutStreamer->EmitLabel(I->second);
MCSymbol *S = I->first;
if (isPPC64) {
TS.emitTCEntry(*S);
} else {
OutStreamer->EmitValueToAlignment(4);
OutStreamer->EmitSymbolValue(S, 4);
}
}
}
return AsmPrinter::doFinalization(M);
}
/// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
void PPCLinuxAsmPrinter::EmitFunctionBodyStart() {
// In the ELFv2 ABI, in functions that use the TOC register, we need to
// provide two entry points. The ABI guarantees that when calling the
// local entry point, r2 is set up by the caller to contain the TOC base
// for this function, and when calling the global entry point, r12 is set
// up by the caller to hold the address of the global entry point. We
// thus emit a prefix sequence along the following lines:
//
// func:
// .Lfunc_gepNN:
// # global entry point
// addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
// addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
// .Lfunc_lepNN:
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
// # local entry point, followed by function body
//
// For the Large code model, we create
//
// .Lfunc_tocNN:
// .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
// func:
// .Lfunc_gepNN:
// # global entry point
// ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
// add r2,r2,r12
// .Lfunc_lepNN:
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
// # local entry point, followed by function body
//
// This ensures we have r2 set up correctly while executing the function
// body, no matter which entry point is called.
if (Subtarget->isELFv2ABI()
// Only do all that if the function uses r2 in the first place.
&& !MF->getRegInfo().use_empty(PPC::X2)) {
// Note: The logic here must be synchronized with the code in the
// branch-selection pass which sets the offset of the first block in the
// function. This matters because it affects the alignment.
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol();
OutStreamer->EmitLabel(GlobalEntryLabel);
const MCSymbolRefExpr *GlobalEntryLabelExp =
MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
if (TM.getCodeModel() != CodeModel::Large) {
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
const MCExpr *TOCDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
GlobalEntryLabelExp, OutContext);
const MCExpr *TOCDeltaHi =
PPCMCExpr::createHa(TOCDeltaExpr, false, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
.addReg(PPC::X2)
.addReg(PPC::X12)
.addExpr(TOCDeltaHi));
const MCExpr *TOCDeltaLo =
PPCMCExpr::createLo(TOCDeltaExpr, false, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
.addReg(PPC::X2)
.addReg(PPC::X2)
.addExpr(TOCDeltaLo));
} else {
MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol();
const MCExpr *TOCOffsetDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
GlobalEntryLabelExp, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addExpr(TOCOffsetDeltaExpr)
.addReg(PPC::X12));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
.addReg(PPC::X2)
.addReg(PPC::X2)
.addReg(PPC::X12));
}
MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol();
OutStreamer->EmitLabel(LocalEntryLabel);
const MCSymbolRefExpr *LocalEntryLabelExp =
MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
const MCExpr *LocalOffsetExp =
MCBinaryExpr::createSub(LocalEntryLabelExp,
GlobalEntryLabelExp, OutContext);
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
if (TS)
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
}
}
/// EmitFunctionBodyEnd - Print the traceback table before the .size
/// directive.
///
void PPCLinuxAsmPrinter::EmitFunctionBodyEnd() {
// Only the 64-bit target requires a traceback table. For now,
// we only emit the word of zeroes that GDB requires to find
// the end of the function, and zeroes for the eight-byte
// mandatory fields.
// FIXME: We should fill in the eight-byte mandatory fields as described in
// the PPC64 ELF ABI (this is a low-priority item because GDB does not
// currently make use of these fields).
if (Subtarget->isPPC64()) {
OutStreamer->EmitIntValue(0, 4/*size*/);
OutStreamer->EmitIntValue(0, 8/*size*/);
}
}
void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
static const char *const CPUDirectives[] = {
"",
"ppc",
"ppc440",
"ppc601",
"ppc602",
"ppc603",
"ppc7400",
"ppc750",
"ppc970",
"ppcA2",
"ppce500",
"ppce500mc",
"ppce5500",
"power3",
"power4",
"power5",
"power5x",
"power6",
"power6x",
"power7",
// FIXME: why is power8 missing here?
"ppc64",
"ppc64le",
"power9"
};
// Get the numerically largest directive.
// FIXME: How should we merge darwin directives?
unsigned Directive = PPC::DIR_NONE;
for (const Function &F : M) {
const PPCSubtarget &STI = TM.getSubtarget<PPCSubtarget>(F);
unsigned FDir = STI.getDarwinDirective();
Directive = Directive > FDir ? FDir : STI.getDarwinDirective();
if (STI.hasMFOCRF() && Directive < PPC::DIR_970)
Directive = PPC::DIR_970;
if (STI.hasAltivec() && Directive < PPC::DIR_7400)
Directive = PPC::DIR_7400;
if (STI.isPPC64() && Directive < PPC::DIR_64)
Directive = PPC::DIR_64;
}
assert(Directive <= PPC::DIR_64 && "Directive out of range.");
assert(Directive < array_lengthof(CPUDirectives) &&
"CPUDirectives[] might not be up-to-date!");
PPCTargetStreamer &TStreamer =
*static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
TStreamer.emitMachine(CPUDirectives[Directive]);
// Prime text sections so they are adjacent. This reduces the likelihood a
// large data or debug section causes a branch to exceed 16M limit.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
OutStreamer->SwitchSection(TLOFMacho.getTextCoalSection());
if (TM.getRelocationModel() == Reloc::PIC_) {
OutStreamer->SwitchSection(
OutContext.getMachOSection("__TEXT", "__picsymbolstub1",
MachO::S_SYMBOL_STUBS |
MachO::S_ATTR_PURE_INSTRUCTIONS,
32, SectionKind::getText()));
} else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) {
OutStreamer->SwitchSection(
OutContext.getMachOSection("__TEXT","__symbol_stub1",
MachO::S_SYMBOL_STUBS |
MachO::S_ATTR_PURE_INSTRUCTIONS,
16, SectionKind::getText()));
}
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
}
bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
bool isPPC64 = getDataLayout().getPointerSizeInBits() == 64;
// Darwin/PPC always uses mach-o.
const TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
if (MMI) {
MachineModuleInfoMachO &MMIMacho =
MMI->getObjFileInfo<MachineModuleInfoMachO>();
if (MAI->doesSupportExceptionHandling()) {
// Add the (possibly multiple) personalities to the set of global values.
// Only referenced functions get into the Personalities list.
for (const Function *Personality : MMI->getPersonalities()) {
if (Personality) {
MCSymbol *NLPSym =
getSymbolWithGlobalValueBase(Personality, "$non_lazy_ptr");
MachineModuleInfoImpl::StubValueTy &StubSym =
MMIMacho.getGVStubEntry(NLPSym);
StubSym =
MachineModuleInfoImpl::StubValueTy(getSymbol(Personality), true);
}
}
}
// Output stubs for dynamically-linked functions.
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
// Output macho stubs for external and common global variables.
if (!Stubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(isPPC64 ? 3 : 2);
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
// L_foo$stub:
OutStreamer->EmitLabel(Stubs[i].first);
// .indirect_symbol _foo
MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second;
OutStreamer->EmitSymbolAttribute(MCSym.getPointer(),
MCSA_IndirectSymbol);
if (MCSym.getInt())
// External to current translation unit.
OutStreamer->EmitIntValue(0, isPPC64 ? 8 : 4 /*size*/);
else
// Internal to current translation unit.
//
// When we place the LSDA into the TEXT section, the type info
// pointers
// need to be indirect and pc-rel. We accomplish this by using NLPs.
// However, sometimes the types are local to the file. So we need to
// fill in the value for the NLP in those cases.
OutStreamer->EmitValue(
MCSymbolRefExpr::create(MCSym.getPointer(), OutContext),
isPPC64 ? 8 : 4 /*size*/);
}
Stubs.clear();
OutStreamer->AddBlankLine();
}
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never generates
// code that does this, it is always safe to set.
OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
return AsmPrinter::doFinalization(M);
}
/// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code
/// for a MachineFunction to the given output stream, in a format that the
/// Darwin assembler can deal with.
///
static AsmPrinter *
createPPCAsmPrinterPass(TargetMachine &tm,
std::unique_ptr<MCStreamer> &&Streamer) {
if (tm.getTargetTriple().isMacOSX())
return new PPCDarwinAsmPrinter(tm, std::move(Streamer));
return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
}
// Force static initialization.
extern "C" void LLVMInitializePowerPCAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
createPPCAsmPrinterPass);
}