forked from OSchip/llvm-project
576 lines
18 KiB
C++
576 lines
18 KiB
C++
//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements hazard recognizers for scheduling on GCN processors.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "GCNHazardRecognizer.h"
|
|
#include "SIDefines.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Hazard Recoginizer Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
|
|
CurrCycleInstr(nullptr),
|
|
MF(MF),
|
|
ST(MF.getSubtarget<SISubtarget>()),
|
|
TII(*ST.getInstrInfo()) {
|
|
MaxLookAhead = 5;
|
|
}
|
|
|
|
void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
|
|
EmitInstruction(SU->getInstr());
|
|
}
|
|
|
|
void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
|
|
CurrCycleInstr = MI;
|
|
}
|
|
|
|
static bool isDivFMas(unsigned Opcode) {
|
|
return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
|
|
}
|
|
|
|
static bool isSGetReg(unsigned Opcode) {
|
|
return Opcode == AMDGPU::S_GETREG_B32;
|
|
}
|
|
|
|
static bool isSSetReg(unsigned Opcode) {
|
|
return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32;
|
|
}
|
|
|
|
static bool isRWLane(unsigned Opcode) {
|
|
return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
|
|
}
|
|
|
|
static bool isRFE(unsigned Opcode) {
|
|
return Opcode == AMDGPU::S_RFE_B64;
|
|
}
|
|
|
|
static bool isSMovRel(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case AMDGPU::S_MOVRELS_B32:
|
|
case AMDGPU::S_MOVRELS_B64:
|
|
case AMDGPU::S_MOVRELD_B32:
|
|
case AMDGPU::S_MOVRELD_B64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
|
|
const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
|
|
AMDGPU::OpName::simm16);
|
|
return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
|
|
}
|
|
|
|
ScheduleHazardRecognizer::HazardType
|
|
GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
|
|
MachineInstr *MI = SU->getInstr();
|
|
|
|
if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (SIInstrInfo::isVMEM(*MI) && checkVMEMHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if ((TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
|
|
checkReadM0Hazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
if (checkAnyInstHazards(MI) > 0)
|
|
return NoopHazard;
|
|
|
|
return NoHazard;
|
|
}
|
|
|
|
unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) {
|
|
return PreEmitNoops(SU->getInstr());
|
|
}
|
|
|
|
unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
|
|
int WaitStates = std::max(0, checkAnyInstHazards(MI));
|
|
|
|
if (SIInstrInfo::isSMRD(*MI))
|
|
return std::max(WaitStates, checkSMRDHazards(MI));
|
|
|
|
if (SIInstrInfo::isVALU(*MI)) {
|
|
WaitStates = std::max(WaitStates, checkVALUHazards(MI));
|
|
|
|
if (SIInstrInfo::isVMEM(*MI))
|
|
WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
|
|
|
|
if (SIInstrInfo::isDPP(*MI))
|
|
WaitStates = std::max(WaitStates, checkDPPHazards(MI));
|
|
|
|
if (isDivFMas(MI->getOpcode()))
|
|
WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
|
|
|
|
if (isRWLane(MI->getOpcode()))
|
|
WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
|
|
|
|
if (TII.isVINTRP(*MI))
|
|
WaitStates = std::max(WaitStates, checkReadM0Hazards(MI));
|
|
|
|
return WaitStates;
|
|
}
|
|
|
|
if (isSGetReg(MI->getOpcode()))
|
|
return std::max(WaitStates, checkGetRegHazards(MI));
|
|
|
|
if (isSSetReg(MI->getOpcode()))
|
|
return std::max(WaitStates, checkSetRegHazards(MI));
|
|
|
|
if (isRFE(MI->getOpcode()))
|
|
return std::max(WaitStates, checkRFEHazards(MI));
|
|
|
|
if (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()))
|
|
return std::max(WaitStates, checkReadM0Hazards(MI));
|
|
|
|
return WaitStates;
|
|
}
|
|
|
|
void GCNHazardRecognizer::EmitNoop() {
|
|
EmittedInstrs.push_front(nullptr);
|
|
}
|
|
|
|
void GCNHazardRecognizer::AdvanceCycle() {
|
|
// When the scheduler detects a stall, it will call AdvanceCycle() without
|
|
// emitting any instructions.
|
|
if (!CurrCycleInstr)
|
|
return;
|
|
|
|
unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
|
|
|
|
// Keep track of emitted instructions
|
|
EmittedInstrs.push_front(CurrCycleInstr);
|
|
|
|
// Add a nullptr for each additional wait state after the first. Make sure
|
|
// not to add more than getMaxLookAhead() items to the list, since we
|
|
// truncate the list to that size right after this loop.
|
|
for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
|
|
i < e; ++i) {
|
|
EmittedInstrs.push_front(nullptr);
|
|
}
|
|
|
|
// getMaxLookahead() is the largest number of wait states we will ever need
|
|
// to insert, so there is no point in keeping track of more than that many
|
|
// wait states.
|
|
EmittedInstrs.resize(getMaxLookAhead());
|
|
|
|
CurrCycleInstr = nullptr;
|
|
}
|
|
|
|
void GCNHazardRecognizer::RecedeCycle() {
|
|
llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int GCNHazardRecognizer::getWaitStatesSince(
|
|
function_ref<bool(MachineInstr *)> IsHazard) {
|
|
int WaitStates = -1;
|
|
for (MachineInstr *MI : EmittedInstrs) {
|
|
++WaitStates;
|
|
if (!MI || !IsHazard(MI))
|
|
continue;
|
|
return WaitStates;
|
|
}
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
|
|
int GCNHazardRecognizer::getWaitStatesSinceDef(
|
|
unsigned Reg, function_ref<bool(MachineInstr *)> IsHazardDef) {
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
|
|
auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
|
|
return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
|
|
};
|
|
|
|
return getWaitStatesSince(IsHazardFn);
|
|
}
|
|
|
|
int GCNHazardRecognizer::getWaitStatesSinceSetReg(
|
|
function_ref<bool(MachineInstr *)> IsHazard) {
|
|
auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
|
|
return isSSetReg(MI->getOpcode()) && IsHazard(MI);
|
|
};
|
|
|
|
return getWaitStatesSince(IsHazardFn);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// No-op Hazard Detection
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void addRegsToSet(iterator_range<MachineInstr::const_mop_iterator> Ops,
|
|
std::set<unsigned> &Set) {
|
|
for (const MachineOperand &Op : Ops) {
|
|
if (Op.isReg())
|
|
Set.insert(Op.getReg());
|
|
}
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkSMEMSoftClauseHazards(MachineInstr *SMEM) {
|
|
// SMEM soft clause are only present on VI+
|
|
if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
|
|
return 0;
|
|
|
|
// A soft-clause is any group of consecutive SMEM instructions. The
|
|
// instructions in this group may return out of order and/or may be
|
|
// replayed (i.e. the same instruction issued more than once).
|
|
//
|
|
// In order to handle these situations correctly we need to make sure
|
|
// that when a clause has more than one instruction, no instruction in the
|
|
// clause writes to a register that is read another instruction in the clause
|
|
// (including itself). If we encounter this situaion, we need to break the
|
|
// clause by inserting a non SMEM instruction.
|
|
|
|
std::set<unsigned> ClauseDefs;
|
|
std::set<unsigned> ClauseUses;
|
|
|
|
for (MachineInstr *MI : EmittedInstrs) {
|
|
|
|
// When we hit a non-SMEM instruction then we have passed the start of the
|
|
// clause and we can stop.
|
|
if (!MI || !SIInstrInfo::isSMRD(*MI))
|
|
break;
|
|
|
|
addRegsToSet(MI->defs(), ClauseDefs);
|
|
addRegsToSet(MI->uses(), ClauseUses);
|
|
}
|
|
|
|
if (ClauseDefs.empty())
|
|
return 0;
|
|
|
|
// FIXME: When we support stores, we need to make sure not to put loads and
|
|
// stores in the same clause if they use the same address. For now, just
|
|
// start a new clause whenever we see a store.
|
|
if (SMEM->mayStore())
|
|
return 1;
|
|
|
|
addRegsToSet(SMEM->defs(), ClauseDefs);
|
|
addRegsToSet(SMEM->uses(), ClauseUses);
|
|
|
|
std::vector<unsigned> Result(std::max(ClauseDefs.size(), ClauseUses.size()));
|
|
std::vector<unsigned>::iterator End;
|
|
|
|
End = std::set_intersection(ClauseDefs.begin(), ClauseDefs.end(),
|
|
ClauseUses.begin(), ClauseUses.end(), Result.begin());
|
|
|
|
// If the set of defs and uses intersect then we cannot add this instruction
|
|
// to the clause, so we have a hazard.
|
|
if (End != Result.begin())
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
int WaitStatesNeeded = 0;
|
|
|
|
WaitStatesNeeded = checkSMEMSoftClauseHazards(SMRD);
|
|
|
|
// This SMRD hazard only affects SI.
|
|
if (ST.getGeneration() != SISubtarget::SOUTHERN_ISLANDS)
|
|
return WaitStatesNeeded;
|
|
|
|
// A read of an SGPR by SMRD instruction requires 4 wait states when the
|
|
// SGPR was written by a VALU instruction.
|
|
int SmrdSgprWaitStates = 4;
|
|
auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
|
|
|
|
for (const MachineOperand &Use : SMRD->uses()) {
|
|
if (!Use.isReg())
|
|
continue;
|
|
int WaitStatesNeededForUse =
|
|
SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
|
}
|
|
return WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
|
|
return 0;
|
|
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
|
|
// A read of an SGPR by a VMEM instruction requires 5 wait states when the
|
|
// SGPR was written by a VALU Instruction.
|
|
int VmemSgprWaitStates = 5;
|
|
int WaitStatesNeeded = 0;
|
|
auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
|
|
|
|
for (const MachineOperand &Use : VMEM->uses()) {
|
|
if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
|
|
continue;
|
|
|
|
int WaitStatesNeededForUse =
|
|
VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn);
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
|
}
|
|
return WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
|
|
// Check for DPP VGPR read after VALU VGPR write.
|
|
int DppVgprWaitStates = 2;
|
|
int WaitStatesNeeded = 0;
|
|
|
|
for (const MachineOperand &Use : DPP->uses()) {
|
|
if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
|
|
continue;
|
|
int WaitStatesNeededForUse =
|
|
DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg());
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
|
}
|
|
|
|
return WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
// v_div_fmas requires 4 wait states after a write to vcc from a VALU
|
|
// instruction.
|
|
const int DivFMasWaitStates = 4;
|
|
auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
|
|
int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn);
|
|
|
|
return DivFMasWaitStates - WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
|
|
|
|
const int GetRegWaitStates = 2;
|
|
auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
|
|
return GetRegHWReg == getHWReg(TII, *MI);
|
|
};
|
|
int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
|
|
|
|
return GetRegWaitStates - WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
unsigned HWReg = getHWReg(TII, *SetRegInstr);
|
|
|
|
const int SetRegWaitStates =
|
|
ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ? 1 : 2;
|
|
auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
|
|
return HWReg == getHWReg(TII, *MI);
|
|
};
|
|
int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
|
|
return SetRegWaitStates - WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
|
|
if (!MI.mayStore())
|
|
return -1;
|
|
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
unsigned Opcode = MI.getOpcode();
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
|
|
int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
|
|
int VDataRCID = -1;
|
|
if (VDataIdx != -1)
|
|
VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
|
|
|
|
if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
|
|
// There is no hazard if the instruction does not use vector regs
|
|
// (like wbinvl1)
|
|
if (VDataIdx == -1)
|
|
return -1;
|
|
// For MUBUF/MTBUF instructions this hazard only exists if the
|
|
// instruction is not using a register in the soffset field.
|
|
const MachineOperand *SOffset =
|
|
TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
|
|
// If we have no soffset operand, then assume this field has been
|
|
// hardcoded to zero.
|
|
if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
|
|
(!SOffset || !SOffset->isReg()))
|
|
return VDataIdx;
|
|
}
|
|
|
|
// MIMG instructions create a hazard if they don't use a 256-bit T# and
|
|
// the store size is greater than 8 bytes and they have more than two bits
|
|
// of their dmask set.
|
|
// All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
|
|
if (TII->isMIMG(MI)) {
|
|
int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
|
|
assert(SRsrcIdx != -1 &&
|
|
AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
|
|
(void)SRsrcIdx;
|
|
}
|
|
|
|
if (TII->isFLAT(MI)) {
|
|
int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
|
|
if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
|
|
return DataIdx;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
|
|
// This checks for the hazard where VMEM instructions that store more than
|
|
// 8 bytes can have there store data over written by the next instruction.
|
|
if (!ST.has12DWordStoreHazard())
|
|
return 0;
|
|
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
const MachineRegisterInfo &MRI = VALU->getParent()->getParent()->getRegInfo();
|
|
|
|
const int VALUWaitStates = 1;
|
|
int WaitStatesNeeded = 0;
|
|
|
|
for (const MachineOperand &Def : VALU->defs()) {
|
|
if (!TRI->isVGPR(MRI, Def.getReg()))
|
|
continue;
|
|
unsigned Reg = Def.getReg();
|
|
auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
|
|
int DataIdx = createsVALUHazard(*MI);
|
|
return DataIdx >= 0 &&
|
|
TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
|
|
};
|
|
int WaitStatesNeededForDef =
|
|
VALUWaitStates - getWaitStatesSince(IsHazardFn);
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
|
|
}
|
|
return WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
const MachineRegisterInfo &MRI =
|
|
RWLane->getParent()->getParent()->getRegInfo();
|
|
|
|
const MachineOperand *LaneSelectOp =
|
|
TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
|
|
|
|
if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
|
|
return 0;
|
|
|
|
unsigned LaneSelectReg = LaneSelectOp->getReg();
|
|
auto IsHazardFn = [TII] (MachineInstr *MI) {
|
|
return TII->isVALU(*MI);
|
|
};
|
|
|
|
const int RWLaneWaitStates = 4;
|
|
int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn);
|
|
return RWLaneWaitStates - WaitStatesSince;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
|
|
if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
|
|
return 0;
|
|
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
const int RFEWaitStates = 1;
|
|
|
|
auto IsHazardFn = [TII] (MachineInstr *MI) {
|
|
return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
|
|
};
|
|
int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn);
|
|
return RFEWaitStates - WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) {
|
|
if (MI->isDebugValue())
|
|
return 0;
|
|
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
if (!ST.hasSMovFedHazard())
|
|
return 0;
|
|
|
|
// Check for any instruction reading an SGPR after a write from
|
|
// s_mov_fed_b32.
|
|
int MovFedWaitStates = 1;
|
|
int WaitStatesNeeded = 0;
|
|
|
|
for (const MachineOperand &Use : MI->uses()) {
|
|
if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
|
|
continue;
|
|
auto IsHazardFn = [] (MachineInstr *MI) {
|
|
return MI->getOpcode() == AMDGPU::S_MOV_FED_B32;
|
|
};
|
|
int WaitStatesNeededForUse =
|
|
MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn);
|
|
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
|
}
|
|
|
|
return WaitStatesNeeded;
|
|
}
|
|
|
|
int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
|
|
if (!ST.hasReadM0Hazard())
|
|
return 0;
|
|
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
int SMovRelWaitStates = 1;
|
|
auto IsHazardFn = [TII] (MachineInstr *MI) {
|
|
return TII->isSALU(*MI);
|
|
};
|
|
return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn);
|
|
}
|