llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp

6787 lines
281 KiB
C++

//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides a class for OpenMP runtime code generation.
//
//===----------------------------------------------------------------------===//
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "ConstantBuilder.h"
#include "clang/AST/Decl.h"
#include "clang/AST/StmtOpenMP.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace clang;
using namespace CodeGen;
namespace {
/// \brief Base class for handling code generation inside OpenMP regions.
class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
public:
/// \brief Kinds of OpenMP regions used in codegen.
enum CGOpenMPRegionKind {
/// \brief Region with outlined function for standalone 'parallel'
/// directive.
ParallelOutlinedRegion,
/// \brief Region with outlined function for standalone 'task' directive.
TaskOutlinedRegion,
/// \brief Region for constructs that do not require function outlining,
/// like 'for', 'sections', 'atomic' etc. directives.
InlinedRegion,
/// \brief Region with outlined function for standalone 'target' directive.
TargetRegion,
};
CGOpenMPRegionInfo(const CapturedStmt &CS,
const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
Kind(Kind), HasCancel(HasCancel) {}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
virtual const VarDecl *getThreadIDVariable() const = 0;
/// \brief Emit the captured statement body.
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
/// \brief Get an LValue for the current ThreadID variable.
/// \return LValue for thread id variable. This LValue always has type int32*.
virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
bool hasCancel() const { return HasCancel; }
static bool classof(const CGCapturedStmtInfo *Info) {
return Info->getKind() == CR_OpenMP;
}
~CGOpenMPRegionInfo() override = default;
protected:
CGOpenMPRegionKind RegionKind;
RegionCodeGenTy CodeGen;
OpenMPDirectiveKind Kind;
bool HasCancel;
};
/// \brief API for captured statement code generation in OpenMP constructs.
class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
HasCancel),
ThreadIDVar(ThreadIDVar) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override { return ".omp_outlined."; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
ParallelOutlinedRegion;
}
private:
/// \brief A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
};
/// \brief API for captured statement code generation in OpenMP constructs.
class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
public:
class UntiedTaskActionTy final : public PrePostActionTy {
bool Untied;
const VarDecl *PartIDVar;
const RegionCodeGenTy UntiedCodeGen;
llvm::SwitchInst *UntiedSwitch = nullptr;
public:
UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
const RegionCodeGenTy &UntiedCodeGen)
: Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
void Enter(CodeGenFunction &CGF) override {
if (Untied) {
// Emit task switching point.
auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(PartIDVar),
PartIDVar->getType()->castAs<PointerType>());
auto *Res = CGF.EmitLoadOfScalar(PartIdLVal, SourceLocation());
auto *DoneBB = CGF.createBasicBlock(".untied.done.");
UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
CGF.EmitBlock(DoneBB);
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
UntiedSwitch->addCase(CGF.Builder.getInt32(0),
CGF.Builder.GetInsertBlock());
emitUntiedSwitch(CGF);
}
}
void emitUntiedSwitch(CodeGenFunction &CGF) const {
if (Untied) {
auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(PartIDVar),
PartIDVar->getType()->castAs<PointerType>());
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
PartIdLVal);
UntiedCodeGen(CGF);
CodeGenFunction::JumpDest CurPoint =
CGF.getJumpDestInCurrentScope(".untied.next.");
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
CGF.Builder.GetInsertBlock());
CGF.EmitBranchThroughCleanup(CurPoint);
CGF.EmitBlock(CurPoint.getBlock());
}
}
unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
};
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel,
const UntiedTaskActionTy &Action)
: CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
ThreadIDVar(ThreadIDVar), Action(Action) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// \brief Get an LValue for the current ThreadID variable.
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override { return ".omp_outlined."; }
void emitUntiedSwitch(CodeGenFunction &CGF) override {
Action.emitUntiedSwitch(CGF);
}
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
TaskOutlinedRegion;
}
private:
/// \brief A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
/// Action for emitting code for untied tasks.
const UntiedTaskActionTy &Action;
};
/// \brief API for inlined captured statement code generation in OpenMP
/// constructs.
class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
OldCSI(OldCSI),
OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
// \brief Retrieve the value of the context parameter.
llvm::Value *getContextValue() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getContextValue();
llvm_unreachable("No context value for inlined OpenMP region");
}
void setContextValue(llvm::Value *V) override {
if (OuterRegionInfo) {
OuterRegionInfo->setContextValue(V);
return;
}
llvm_unreachable("No context value for inlined OpenMP region");
}
/// \brief Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const override {
if (OuterRegionInfo)
return OuterRegionInfo->lookup(VD);
// If there is no outer outlined region,no need to lookup in a list of
// captured variables, we can use the original one.
return nullptr;
}
FieldDecl *getThisFieldDecl() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThisFieldDecl();
return nullptr;
}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThreadIDVariable();
return nullptr;
}
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override {
if (auto *OuterRegionInfo = getOldCSI())
return OuterRegionInfo->getHelperName();
llvm_unreachable("No helper name for inlined OpenMP construct");
}
void emitUntiedSwitch(CodeGenFunction &CGF) override {
if (OuterRegionInfo)
OuterRegionInfo->emitUntiedSwitch(CGF);
}
CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
}
~CGOpenMPInlinedRegionInfo() override = default;
private:
/// \brief CodeGen info about outer OpenMP region.
CodeGenFunction::CGCapturedStmtInfo *OldCSI;
CGOpenMPRegionInfo *OuterRegionInfo;
};
/// \brief API for captured statement code generation in OpenMP target
/// constructs. For this captures, implicit parameters are used instead of the
/// captured fields. The name of the target region has to be unique in a given
/// application so it is provided by the client, because only the client has
/// the information to generate that.
class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
public:
CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
const RegionCodeGenTy &CodeGen, StringRef HelperName)
: CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
/*HasCancel=*/false),
HelperName(HelperName) {}
/// \brief This is unused for target regions because each starts executing
/// with a single thread.
const VarDecl *getThreadIDVariable() const override { return nullptr; }
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override { return HelperName; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
}
private:
StringRef HelperName;
};
static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
llvm_unreachable("No codegen for expressions");
}
/// \brief API for generation of expressions captured in a innermost OpenMP
/// region.
class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
public:
CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
: CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
OMPD_unknown,
/*HasCancel=*/false),
PrivScope(CGF) {
// Make sure the globals captured in the provided statement are local by
// using the privatization logic. We assume the same variable is not
// captured more than once.
for (auto &C : CS.captures()) {
if (!C.capturesVariable() && !C.capturesVariableByCopy())
continue;
const VarDecl *VD = C.getCapturedVar();
if (VD->isLocalVarDeclOrParm())
continue;
DeclRefExpr DRE(const_cast<VarDecl *>(VD),
/*RefersToEnclosingVariableOrCapture=*/false,
VD->getType().getNonReferenceType(), VK_LValue,
SourceLocation());
PrivScope.addPrivate(VD, [&CGF, &DRE]() -> Address {
return CGF.EmitLValue(&DRE).getAddress();
});
}
(void)PrivScope.Privatize();
}
/// \brief Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const override {
if (auto *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
return FD;
return nullptr;
}
/// \brief Emit the captured statement body.
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
llvm_unreachable("No body for expressions");
}
/// \brief Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override {
llvm_unreachable("No thread id for expressions");
}
/// \brief Get the name of the capture helper.
StringRef getHelperName() const override {
llvm_unreachable("No helper name for expressions");
}
static bool classof(const CGCapturedStmtInfo *Info) { return false; }
private:
/// Private scope to capture global variables.
CodeGenFunction::OMPPrivateScope PrivScope;
};
/// \brief RAII for emitting code of OpenMP constructs.
class InlinedOpenMPRegionRAII {
CodeGenFunction &CGF;
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
FieldDecl *LambdaThisCaptureField = nullptr;
public:
/// \brief Constructs region for combined constructs.
/// \param CodeGen Code generation sequence for combined directives. Includes
/// a list of functions used for code generation of implicitly inlined
/// regions.
InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGF(CGF) {
// Start emission for the construct.
CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
LambdaThisCaptureField = CGF.LambdaThisCaptureField;
CGF.LambdaThisCaptureField = nullptr;
}
~InlinedOpenMPRegionRAII() {
// Restore original CapturedStmtInfo only if we're done with code emission.
auto *OldCSI =
cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
delete CGF.CapturedStmtInfo;
CGF.CapturedStmtInfo = OldCSI;
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
CGF.LambdaThisCaptureField = LambdaThisCaptureField;
}
};
/// \brief Values for bit flags used in the ident_t to describe the fields.
/// All enumeric elements are named and described in accordance with the code
/// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
enum OpenMPLocationFlags {
/// \brief Use trampoline for internal microtask.
OMP_IDENT_IMD = 0x01,
/// \brief Use c-style ident structure.
OMP_IDENT_KMPC = 0x02,
/// \brief Atomic reduction option for kmpc_reduce.
OMP_ATOMIC_REDUCE = 0x10,
/// \brief Explicit 'barrier' directive.
OMP_IDENT_BARRIER_EXPL = 0x20,
/// \brief Implicit barrier in code.
OMP_IDENT_BARRIER_IMPL = 0x40,
/// \brief Implicit barrier in 'for' directive.
OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
/// \brief Implicit barrier in 'sections' directive.
OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
/// \brief Implicit barrier in 'single' directive.
OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140
};
/// \brief Describes ident structure that describes a source location.
/// All descriptions are taken from
/// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
/// Original structure:
/// typedef struct ident {
/// kmp_int32 reserved_1; /**< might be used in Fortran;
/// see above */
/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
/// KMP_IDENT_KMPC identifies this union
/// member */
/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
/// see above */
///#if USE_ITT_BUILD
/// /* but currently used for storing
/// region-specific ITT */
/// /* contextual information. */
///#endif /* USE_ITT_BUILD */
/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
/// C++ */
/// char const *psource; /**< String describing the source location.
/// The string is composed of semi-colon separated
// fields which describe the source file,
/// the function and a pair of line numbers that
/// delimit the construct.
/// */
/// } ident_t;
enum IdentFieldIndex {
/// \brief might be used in Fortran
IdentField_Reserved_1,
/// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
IdentField_Flags,
/// \brief Not really used in Fortran any more
IdentField_Reserved_2,
/// \brief Source[4] in Fortran, do not use for C++
IdentField_Reserved_3,
/// \brief String describing the source location. The string is composed of
/// semi-colon separated fields which describe the source file, the function
/// and a pair of line numbers that delimit the construct.
IdentField_PSource
};
/// \brief Schedule types for 'omp for' loops (these enumerators are taken from
/// the enum sched_type in kmp.h).
enum OpenMPSchedType {
/// \brief Lower bound for default (unordered) versions.
OMP_sch_lower = 32,
OMP_sch_static_chunked = 33,
OMP_sch_static = 34,
OMP_sch_dynamic_chunked = 35,
OMP_sch_guided_chunked = 36,
OMP_sch_runtime = 37,
OMP_sch_auto = 38,
/// static with chunk adjustment (e.g., simd)
OMP_sch_static_balanced_chunked = 45,
/// \brief Lower bound for 'ordered' versions.
OMP_ord_lower = 64,
OMP_ord_static_chunked = 65,
OMP_ord_static = 66,
OMP_ord_dynamic_chunked = 67,
OMP_ord_guided_chunked = 68,
OMP_ord_runtime = 69,
OMP_ord_auto = 70,
OMP_sch_default = OMP_sch_static,
/// \brief dist_schedule types
OMP_dist_sch_static_chunked = 91,
OMP_dist_sch_static = 92,
/// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
/// Set if the monotonic schedule modifier was present.
OMP_sch_modifier_monotonic = (1 << 29),
/// Set if the nonmonotonic schedule modifier was present.
OMP_sch_modifier_nonmonotonic = (1 << 30),
};
enum OpenMPRTLFunction {
/// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
/// kmpc_micro microtask, ...);
OMPRTL__kmpc_fork_call,
/// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc,
/// kmp_int32 global_tid, void *data, size_t size, void ***cache);
OMPRTL__kmpc_threadprivate_cached,
/// \brief Call to void __kmpc_threadprivate_register( ident_t *,
/// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
OMPRTL__kmpc_threadprivate_register,
// Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
OMPRTL__kmpc_global_thread_num,
// Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
OMPRTL__kmpc_critical,
// Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
// global_tid, kmp_critical_name *crit, uintptr_t hint);
OMPRTL__kmpc_critical_with_hint,
// Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
OMPRTL__kmpc_end_critical,
// Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_cancel_barrier,
// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_barrier,
// Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_for_static_fini,
// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_serialized_parallel,
// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_end_serialized_parallel,
// Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_threads);
OMPRTL__kmpc_push_num_threads,
// Call to void __kmpc_flush(ident_t *loc);
OMPRTL__kmpc_flush,
// Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_master,
// Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_end_master,
// Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
// int end_part);
OMPRTL__kmpc_omp_taskyield,
// Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_single,
// Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_end_single,
// Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
OMPRTL__kmpc_omp_task_alloc,
// Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
// new_task);
OMPRTL__kmpc_omp_task,
// Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
// kmp_int32 didit);
OMPRTL__kmpc_copyprivate,
// Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
OMPRTL__kmpc_reduce,
// Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
// *lck);
OMPRTL__kmpc_reduce_nowait,
// Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
OMPRTL__kmpc_end_reduce,
// Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
OMPRTL__kmpc_end_reduce_nowait,
// Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t * new_task);
OMPRTL__kmpc_omp_task_begin_if0,
// Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t * new_task);
OMPRTL__kmpc_omp_task_complete_if0,
// Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_ordered,
// Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_end_ordered,
// Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_omp_taskwait,
// Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_taskgroup,
// Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_end_taskgroup,
// Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
// int proc_bind);
OMPRTL__kmpc_push_proc_bind,
// Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
// gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
// *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
OMPRTL__kmpc_omp_task_with_deps,
// Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
// gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
OMPRTL__kmpc_omp_wait_deps,
// Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind);
OMPRTL__kmpc_cancellationpoint,
// Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind);
OMPRTL__kmpc_cancel,
// Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_teams, kmp_int32 thread_limit);
OMPRTL__kmpc_push_num_teams,
// Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
// microtask, ...);
OMPRTL__kmpc_fork_teams,
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
// sched, kmp_uint64 grainsize, void *task_dup);
OMPRTL__kmpc_taskloop,
// Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
// num_dims, struct kmp_dim *dims);
OMPRTL__kmpc_doacross_init,
// Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
OMPRTL__kmpc_doacross_fini,
// Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
OMPRTL__kmpc_doacross_post,
// Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
OMPRTL__kmpc_doacross_wait,
//
// Offloading related calls
//
// Call to int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
// arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
// *arg_types);
OMPRTL__tgt_target,
// Call to int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
// int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
// int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
OMPRTL__tgt_target_teams,
// Call to void __tgt_register_lib(__tgt_bin_desc *desc);
OMPRTL__tgt_register_lib,
// Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
OMPRTL__tgt_unregister_lib,
// Call to void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
// void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
OMPRTL__tgt_target_data_begin,
// Call to void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
// void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
OMPRTL__tgt_target_data_end,
// Call to void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
// void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
OMPRTL__tgt_target_data_update,
};
/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
/// region.
class CleanupTy final : public EHScopeStack::Cleanup {
PrePostActionTy *Action;
public:
explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
Action->Exit(CGF);
}
};
} // anonymous namespace
void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
CodeGenFunction::RunCleanupsScope Scope(CGF);
if (PrePostAction) {
CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
Callback(CodeGen, CGF, *PrePostAction);
} else {
PrePostActionTy Action;
Callback(CodeGen, CGF, Action);
}
}
LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
return CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType()->castAs<PointerType>());
}
void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
if (!CGF.HaveInsertPoint())
return;
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CGF.EHStack.pushTerminate();
CodeGen(CGF);
CGF.EHStack.popTerminate();
}
LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
CodeGenFunction &CGF) {
return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType(),
AlignmentSource::Decl);
}
CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
: CGM(CGM), OffloadEntriesInfoManager(CGM) {
IdentTy = llvm::StructType::create(
"ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */,
CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */,
CGM.Int8PtrTy /* psource */, nullptr);
KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
loadOffloadInfoMetadata();
}
void CGOpenMPRuntime::clear() {
InternalVars.clear();
}
static llvm::Function *
emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
const Expr *CombinerInitializer, const VarDecl *In,
const VarDecl *Out, bool IsCombiner) {
// void .omp_combiner.(Ty *in, Ty *out);
auto &C = CGM.getContext();
QualType PtrTy = C.getPointerType(Ty).withRestrict();
FunctionArgList Args;
ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
/*Id=*/nullptr, PtrTy);
ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
/*Id=*/nullptr, PtrTy);
Args.push_back(&OmpOutParm);
Args.push_back(&OmpInParm);
auto &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
auto *Fn = llvm::Function::Create(
FnTy, llvm::GlobalValue::InternalLinkage,
IsCombiner ? ".omp_combiner." : ".omp_initializer.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, FnInfo);
Fn->addFnAttr(llvm::Attribute::AlwaysInline);
CodeGenFunction CGF(CGM);
// Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
// Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args);
CodeGenFunction::OMPPrivateScope Scope(CGF);
Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() -> Address {
return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
.getAddress();
});
Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() -> Address {
return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
.getAddress();
});
(void)Scope.Privatize();
CGF.EmitIgnoredExpr(CombinerInitializer);
Scope.ForceCleanup();
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitUserDefinedReduction(
CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
if (UDRMap.count(D) > 0)
return;
auto &C = CGM.getContext();
if (!In || !Out) {
In = &C.Idents.get("omp_in");
Out = &C.Idents.get("omp_out");
}
llvm::Function *Combiner = emitCombinerOrInitializer(
CGM, D->getType(), D->getCombiner(), cast<VarDecl>(D->lookup(In).front()),
cast<VarDecl>(D->lookup(Out).front()),
/*IsCombiner=*/true);
llvm::Function *Initializer = nullptr;
if (auto *Init = D->getInitializer()) {
if (!Priv || !Orig) {
Priv = &C.Idents.get("omp_priv");
Orig = &C.Idents.get("omp_orig");
}
Initializer = emitCombinerOrInitializer(
CGM, D->getType(), Init, cast<VarDecl>(D->lookup(Orig).front()),
cast<VarDecl>(D->lookup(Priv).front()),
/*IsCombiner=*/false);
}
UDRMap.insert(std::make_pair(D, std::make_pair(Combiner, Initializer)));
if (CGF) {
auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
Decls.second.push_back(D);
}
}
std::pair<llvm::Function *, llvm::Function *>
CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
auto I = UDRMap.find(D);
if (I != UDRMap.end())
return I->second;
emitUserDefinedReduction(/*CGF=*/nullptr, D);
return UDRMap.lookup(D);
}
// Layout information for ident_t.
static CharUnits getIdentAlign(CodeGenModule &CGM) {
return CGM.getPointerAlign();
}
static CharUnits getIdentSize(CodeGenModule &CGM) {
assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign()));
return CharUnits::fromQuantity(16) + CGM.getPointerSize();
}
static CharUnits getOffsetOfIdentField(IdentFieldIndex Field) {
// All the fields except the last are i32, so this works beautifully.
return unsigned(Field) * CharUnits::fromQuantity(4);
}
static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr,
IdentFieldIndex Field,
const llvm::Twine &Name = "") {
auto Offset = getOffsetOfIdentField(Field);
return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name);
}
llvm::Value *CGOpenMPRuntime::emitParallelOrTeamsOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
assert(ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 *");
const CapturedStmt *CS = cast<CapturedStmt>(D.getAssociatedStmt());
CodeGenFunction CGF(CGM, true);
bool HasCancel = false;
if (auto *OPD = dyn_cast<OMPParallelDirective>(&D))
HasCancel = OPD->hasCancel();
else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
HasCancel = OPSD->hasCancel();
else if (auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
HasCancel);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
}
llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
bool Tied, unsigned &NumberOfParts) {
auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
PrePostActionTy &) {
auto *ThreadID = getThreadID(CGF, D.getLocStart());
auto *UpLoc = emitUpdateLocation(CGF, D.getLocStart());
llvm::Value *TaskArgs[] = {
UpLoc, ThreadID,
CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
TaskTVar->getType()->castAs<PointerType>())
.getPointer()};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
};
CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
UntiedCodeGen);
CodeGen.setAction(Action);
assert(!ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 for tasks");
auto *CS = cast<CapturedStmt>(D.getAssociatedStmt());
auto *TD = dyn_cast<OMPTaskDirective>(&D);
CodeGenFunction CGF(CGM, true);
CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
InnermostKind,
TD ? TD->hasCancel() : false, Action);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
auto *Res = CGF.GenerateCapturedStmtFunction(*CS);
if (!Tied)
NumberOfParts = Action.getNumberOfParts();
return Res;
}
Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
CharUnits Align = getIdentAlign(CGM);
llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags);
if (!Entry) {
if (!DefaultOpenMPPSource) {
// Initialize default location for psource field of ident_t structure of
// all ident_t objects. Format is ";file;function;line;column;;".
// Taken from
// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c
DefaultOpenMPPSource =
CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
DefaultOpenMPPSource =
llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
}
ConstantInitBuilder builder(CGM);
auto fields = builder.beginStruct(IdentTy);
fields.addInt(CGM.Int32Ty, 0);
fields.addInt(CGM.Int32Ty, Flags);
fields.addInt(CGM.Int32Ty, 0);
fields.addInt(CGM.Int32Ty, 0);
fields.add(DefaultOpenMPPSource);
auto DefaultOpenMPLocation =
fields.finishAndCreateGlobal("", Align, /*isConstant*/ true,
llvm::GlobalValue::PrivateLinkage);
DefaultOpenMPLocation->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation;
}
return Address(Entry, Align);
}
llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned Flags) {
Flags |= OMP_IDENT_KMPC;
// If no debug info is generated - return global default location.
if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
Loc.isInvalid())
return getOrCreateDefaultLocation(Flags).getPointer();
assert(CGF.CurFn && "No function in current CodeGenFunction.");
Address LocValue = Address::invalid();
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
if (I != OpenMPLocThreadIDMap.end())
LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM));
// OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
// GetOpenMPThreadID was called before this routine.
if (!LocValue.isValid()) {
// Generate "ident_t .kmpc_loc.addr;"
Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM),
".kmpc_loc.addr");
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.DebugLoc = AI.getPointer();
LocValue = AI;
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
CGM.getSize(getIdentSize(CGF.CGM)));
}
// char **psource = &.kmpc_loc_<flags>.addr.psource;
Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource);
auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
if (OMPDebugLoc == nullptr) {
SmallString<128> Buffer2;
llvm::raw_svector_ostream OS2(Buffer2);
// Build debug location
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
OS2 << ";" << PLoc.getFilename() << ";";
if (const FunctionDecl *FD =
dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) {
OS2 << FD->getQualifiedNameAsString();
}
OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
}
// *psource = ";<File>;<Function>;<Line>;<Column>;;";
CGF.Builder.CreateStore(OMPDebugLoc, PSource);
// Our callers always pass this to a runtime function, so for
// convenience, go ahead and return a naked pointer.
return LocValue.getPointer();
}
llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
SourceLocation Loc) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
llvm::Value *ThreadID = nullptr;
// Check whether we've already cached a load of the thread id in this
// function.
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
if (I != OpenMPLocThreadIDMap.end()) {
ThreadID = I->second.ThreadID;
if (ThreadID != nullptr)
return ThreadID;
}
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (OMPRegionInfo->getThreadIDVariable()) {
// Check if this an outlined function with thread id passed as argument.
auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal();
// If value loaded in entry block, cache it and use it everywhere in
// function.
if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.ThreadID = ThreadID;
}
return ThreadID;
}
}
// This is not an outlined function region - need to call __kmpc_int32
// kmpc_global_thread_num(ident_t *loc).
// Generate thread id value and cache this value for use across the
// function.
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
ThreadID =
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
emitUpdateLocation(CGF, Loc));
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.ThreadID = ThreadID;
return ThreadID;
}
void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
if (OpenMPLocThreadIDMap.count(CGF.CurFn))
OpenMPLocThreadIDMap.erase(CGF.CurFn);
if (FunctionUDRMap.count(CGF.CurFn) > 0) {
for(auto *D : FunctionUDRMap[CGF.CurFn]) {
UDRMap.erase(D);
}
FunctionUDRMap.erase(CGF.CurFn);
}
}
llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
if (!IdentTy) {
}
return llvm::PointerType::getUnqual(IdentTy);
}
llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
if (!Kmpc_MicroTy) {
// Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
llvm::PointerType::getUnqual(CGM.Int32Ty)};
Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
}
return llvm::PointerType::getUnqual(Kmpc_MicroTy);
}
llvm::Constant *
CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
llvm::Constant *RTLFn = nullptr;
switch (static_cast<OpenMPRTLFunction>(Function)) {
case OMPRTL__kmpc_fork_call: {
// Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
// microtask, ...);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
getKmpc_MicroPointerTy()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
break;
}
case OMPRTL__kmpc_global_thread_num: {
// Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
break;
}
case OMPRTL__kmpc_threadprivate_cached: {
// Build void *__kmpc_threadprivate_cached(ident_t *loc,
// kmp_int32 global_tid, void *data, size_t size, void ***cache);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy, CGM.SizeTy,
CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
break;
}
case OMPRTL__kmpc_critical: {
// Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
break;
}
case OMPRTL__kmpc_critical_with_hint: {
// Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit, uintptr_t hint);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy),
CGM.IntPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
break;
}
case OMPRTL__kmpc_threadprivate_register: {
// Build void __kmpc_threadprivate_register(ident_t *, void *data,
// kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
// typedef void *(*kmpc_ctor)(void *);
auto KmpcCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
/*isVarArg*/ false)->getPointerTo();
// typedef void *(*kmpc_cctor)(void *, void *);
llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto KmpcCopyCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
/*isVarArg*/ false)->getPointerTo();
// typedef void (*kmpc_dtor)(void *);
auto KmpcDtorTy =
llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
->getPointerTo();
llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
KmpcCopyCtorTy, KmpcDtorTy};
auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
/*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
break;
}
case OMPRTL__kmpc_end_critical: {
// Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
break;
}
case OMPRTL__kmpc_cancel_barrier: {
// Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
break;
}
case OMPRTL__kmpc_barrier: {
// Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
break;
}
case OMPRTL__kmpc_for_static_fini: {
// Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
break;
}
case OMPRTL__kmpc_push_num_threads: {
// Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_threads)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
break;
}
case OMPRTL__kmpc_serialized_parallel: {
// Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
break;
}
case OMPRTL__kmpc_end_serialized_parallel: {
// Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
break;
}
case OMPRTL__kmpc_flush: {
// Build void __kmpc_flush(ident_t *loc);
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
break;
}
case OMPRTL__kmpc_master: {
// Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
break;
}
case OMPRTL__kmpc_end_master: {
// Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
break;
}
case OMPRTL__kmpc_omp_taskyield: {
// Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
// int end_part);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
break;
}
case OMPRTL__kmpc_single: {
// Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
break;
}
case OMPRTL__kmpc_end_single: {
// Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
break;
}
case OMPRTL__kmpc_omp_task_alloc: {
// Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
assert(KmpRoutineEntryPtrTy != nullptr &&
"Type kmp_routine_entry_t must be created.");
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
// Return void * and then cast to particular kmp_task_t type.
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
break;
}
case OMPRTL__kmpc_omp_task: {
// Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
break;
}
case OMPRTL__kmpc_copyprivate: {
// Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
// kmp_int32 didit);
llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *CpyFnTy =
llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
break;
}
case OMPRTL__kmpc_reduce: {
// Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
break;
}
case OMPRTL__kmpc_reduce_nowait: {
// Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
// *lck);
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
break;
}
case OMPRTL__kmpc_end_reduce: {
// Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
break;
}
case OMPRTL__kmpc_end_reduce_nowait: {
// Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
break;
}
case OMPRTL__kmpc_omp_task_begin_if0: {
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
break;
}
case OMPRTL__kmpc_omp_task_complete_if0: {
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy,
/*Name=*/"__kmpc_omp_task_complete_if0");
break;
}
case OMPRTL__kmpc_ordered: {
// Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
break;
}
case OMPRTL__kmpc_end_ordered: {
// Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
break;
}
case OMPRTL__kmpc_omp_taskwait: {
// Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
break;
}
case OMPRTL__kmpc_taskgroup: {
// Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
break;
}
case OMPRTL__kmpc_end_taskgroup: {
// Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
break;
}
case OMPRTL__kmpc_push_proc_bind: {
// Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
// int proc_bind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
break;
}
case OMPRTL__kmpc_omp_task_with_deps: {
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
break;
}
case OMPRTL__kmpc_omp_wait_deps: {
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
// kmp_depend_info_t *noalias_dep_list);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int32Ty, CGM.VoidPtrTy,
CGM.Int32Ty, CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
break;
}
case OMPRTL__kmpc_cancellationpoint: {
// Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
break;
}
case OMPRTL__kmpc_cancel: {
// Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
break;
}
case OMPRTL__kmpc_push_num_teams: {
// Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
// kmp_int32 num_teams, kmp_int32 num_threads)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
break;
}
case OMPRTL__kmpc_fork_teams: {
// Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
// microtask, ...);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
getKmpc_MicroPointerTy()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
break;
}
case OMPRTL__kmpc_taskloop: {
// Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
// sched, kmp_uint64 grainsize, void *task_dup);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
CGM.IntTy,
CGM.VoidPtrTy,
CGM.IntTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty,
CGM.IntTy,
CGM.IntTy,
CGM.Int64Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
break;
}
case OMPRTL__kmpc_doacross_init: {
// Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
// num_dims, struct kmp_dim *dims);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
CGM.Int32Ty,
CGM.Int32Ty,
CGM.VoidPtrTy};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
break;
}
case OMPRTL__kmpc_doacross_fini: {
// Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
break;
}
case OMPRTL__kmpc_doacross_post: {
// Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int64Ty->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
break;
}
case OMPRTL__kmpc_doacross_wait: {
// Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int64Ty->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
break;
}
case OMPRTL__tgt_target: {
// Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
// arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
// *arg_types);
llvm::Type *TypeParams[] = {CGM.Int32Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.SizeTy->getPointerTo(),
CGM.Int32Ty->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
break;
}
case OMPRTL__tgt_target_teams: {
// Build int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
// int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
// int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
llvm::Type *TypeParams[] = {CGM.Int32Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.SizeTy->getPointerTo(),
CGM.Int32Ty->getPointerTo(),
CGM.Int32Ty,
CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
break;
}
case OMPRTL__tgt_register_lib: {
// Build void __tgt_register_lib(__tgt_bin_desc *desc);
QualType ParamTy =
CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
break;
}
case OMPRTL__tgt_unregister_lib: {
// Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
QualType ParamTy =
CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
break;
}
case OMPRTL__tgt_target_data_begin: {
// Build void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
// void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
llvm::Type *TypeParams[] = {CGM.Int32Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.SizeTy->getPointerTo(),
CGM.Int32Ty->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
break;
}
case OMPRTL__tgt_target_data_end: {
// Build void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
// void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
llvm::Type *TypeParams[] = {CGM.Int32Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.SizeTy->getPointerTo(),
CGM.Int32Ty->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
break;
}
case OMPRTL__tgt_target_data_update: {
// Build void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
// void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
llvm::Type *TypeParams[] = {CGM.Int32Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.SizeTy->getPointerTo(),
CGM.Int32Ty->getPointerTo()};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
break;
}
}
assert(RTLFn && "Unable to find OpenMP runtime function");
return RTLFn;
}
llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
: "__kmpc_for_static_init_4u")
: (IVSigned ? "__kmpc_for_static_init_8"
: "__kmpc_for_static_init_8u");
auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
auto PtrTy = llvm::PointerType::getUnqual(ITy);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
CGM.Int32Ty, // schedtype
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
PtrTy, // p_lower
PtrTy, // p_upper
PtrTy, // p_stride
ITy, // incr
ITy // chunk
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
: (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
CGM.Int32Ty, // schedtype
ITy, // lower
ITy, // upper
ITy, // stride
ITy // chunk
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
: (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize,
bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
auto Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
: (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
auto PtrTy = llvm::PointerType::getUnqual(ITy);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
PtrTy, // p_lower
PtrTy, // p_upper
PtrTy // p_stride
};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::Constant *
CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
assert(!CGM.getLangOpts().OpenMPUseTLS ||
!CGM.getContext().getTargetInfo().isTLSSupported());
// Lookup the entry, lazily creating it if necessary.
return getOrCreateInternalVariable(CGM.Int8PtrPtrTy,
Twine(CGM.getMangledName(VD)) + ".cache.");
}
Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
const VarDecl *VD,
Address VDAddr,
SourceLocation Loc) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return VDAddr;
auto VarTy = VDAddr.getElementType();
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
CGM.Int8PtrTy),
CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
getOrCreateThreadPrivateCache(VD)};
return Address(CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
VDAddr.getAlignment());
}
void CGOpenMPRuntime::emitThreadPrivateVarInit(
CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
// Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
// library.
auto OMPLoc = emitUpdateLocation(CGF, Loc);
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
OMPLoc);
// Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
// to register constructor/destructor for variable.
llvm::Value *Args[] = {OMPLoc,
CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
CGM.VoidPtrTy),
Ctor, CopyCtor, Dtor};
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
}
llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
const VarDecl *VD, Address VDAddr, SourceLocation Loc,
bool PerformInit, CodeGenFunction *CGF) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return nullptr;
VD = VD->getDefinition(CGM.getContext());
if (VD && ThreadPrivateWithDefinition.count(VD) == 0) {
ThreadPrivateWithDefinition.insert(VD);
QualType ASTTy = VD->getType();
llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
auto Init = VD->getAnyInitializer();
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
// Generate function that re-emits the declaration's initializer into the
// threadprivate copy of the variable VD
CodeGenFunction CtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
/*Id=*/nullptr, CGM.getContext().VoidPtrTy);
Args.push_back(&Dst);
auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
CGM.getContext().VoidPtrTy, Args);
auto FTy = CGM.getTypes().GetFunctionType(FI);
auto Fn = CGM.CreateGlobalInitOrDestructFunction(
FTy, ".__kmpc_global_ctor_.", FI, Loc);
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
Args, SourceLocation());
auto ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
Address Arg = Address(ArgVal, VDAddr.getAlignment());
Arg = CtorCGF.Builder.CreateElementBitCast(Arg,
CtorCGF.ConvertTypeForMem(ASTTy));
CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
/*IsInitializer=*/true);
ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
CtorCGF.FinishFunction();
Ctor = Fn;
}
if (VD->getType().isDestructedType() != QualType::DK_none) {
// Generate function that emits destructor call for the threadprivate copy
// of the variable VD
CodeGenFunction DtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
/*Id=*/nullptr, CGM.getContext().VoidPtrTy);
Args.push_back(&Dst);
auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
CGM.getContext().VoidTy, Args);
auto FTy = CGM.getTypes().GetFunctionType(FI);
auto Fn = CGM.CreateGlobalInitOrDestructFunction(
FTy, ".__kmpc_global_dtor_.", FI, Loc);
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
SourceLocation());
// Create a scope with an artificial location for the body of this function.
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
auto ArgVal = DtorCGF.EmitLoadOfScalar(
DtorCGF.GetAddrOfLocalVar(&Dst),
/*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
DtorCGF.getDestroyer(ASTTy.isDestructedType()),
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
DtorCGF.FinishFunction();
Dtor = Fn;
}
// Do not emit init function if it is not required.
if (!Ctor && !Dtor)
return nullptr;
llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto CopyCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
/*isVarArg=*/false)->getPointerTo();
// Copying constructor for the threadprivate variable.
// Must be NULL - reserved by runtime, but currently it requires that this
// parameter is always NULL. Otherwise it fires assertion.
CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
if (Ctor == nullptr) {
auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
/*isVarArg=*/false)->getPointerTo();
Ctor = llvm::Constant::getNullValue(CtorTy);
}
if (Dtor == nullptr) {
auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
/*isVarArg=*/false)->getPointerTo();
Dtor = llvm::Constant::getNullValue(DtorTy);
}
if (!CGF) {
auto InitFunctionTy =
llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
auto InitFunction = CGM.CreateGlobalInitOrDestructFunction(
InitFunctionTy, ".__omp_threadprivate_init_.",
CGM.getTypes().arrangeNullaryFunction());
CodeGenFunction InitCGF(CGM);
FunctionArgList ArgList;
InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
CGM.getTypes().arrangeNullaryFunction(), ArgList,
Loc);
emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
InitCGF.FinishFunction();
return InitFunction;
}
emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
}
return nullptr;
}
/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
/// function. Here is the logic:
/// if (Cond) {
/// ThenGen();
/// } else {
/// ElseGen();
/// }
static void emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
const RegionCodeGenTy &ThenGen,
const RegionCodeGenTy &ElseGen) {
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
// If the condition constant folds and can be elided, try to avoid emitting
// the condition and the dead arm of the if/else.
bool CondConstant;
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
if (CondConstant)
ThenGen(CGF);
else
ElseGen(CGF);
return;
}
// Otherwise, the condition did not fold, or we couldn't elide it. Just
// emit the conditional branch.
auto ThenBlock = CGF.createBasicBlock("omp_if.then");
auto ElseBlock = CGF.createBasicBlock("omp_if.else");
auto ContBlock = CGF.createBasicBlock("omp_if.end");
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
// Emit the 'then' code.
CGF.EmitBlock(ThenBlock);
ThenGen(CGF);
CGF.EmitBranch(ContBlock);
// Emit the 'else' code if present.
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ElseBlock);
ElseGen(CGF);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBranch(ContBlock);
// Emit the continuation block for code after the if.
CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
}
void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
llvm::Value *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars,
const Expr *IfCond) {
if (!CGF.HaveInsertPoint())
return;
auto *RTLoc = emitUpdateLocation(CGF, Loc);
auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
PrePostActionTy &) {
// Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
auto &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *Args[] = {
RTLoc,
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
llvm::SmallVector<llvm::Value *, 16> RealArgs;
RealArgs.append(std::begin(Args), std::end(Args));
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
auto RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
CGF.EmitRuntimeCall(RTLFn, RealArgs);
};
auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
PrePostActionTy &) {
auto &RT = CGF.CGM.getOpenMPRuntime();
auto ThreadID = RT.getThreadID(CGF, Loc);
// Build calls:
// __kmpc_serialized_parallel(&Loc, GTid);
llvm::Value *Args[] = {RTLoc, ThreadID};
CGF.EmitRuntimeCall(
RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
// OutlinedFn(&GTid, &zero, CapturedStruct);
auto ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
Address ZeroAddr =
CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
/*Name*/ ".zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
// __kmpc_end_serialized_parallel(&Loc, GTid);
llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
CGF.EmitRuntimeCall(
RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
EndArgs);
};
if (IfCond)
emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
else {
RegionCodeGenTy ThenRCG(ThenGen);
ThenRCG(CGF);
}
}
// If we're inside an (outlined) parallel region, use the region info's
// thread-ID variable (it is passed in a first argument of the outlined function
// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
// regular serial code region, get thread ID by calling kmp_int32
// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
// return the address of that temp.
Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
SourceLocation Loc) {
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
if (OMPRegionInfo->getThreadIDVariable())
return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
auto ThreadID = getThreadID(CGF, Loc);
auto Int32Ty =
CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
CGF.EmitStoreOfScalar(ThreadID,
CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
return ThreadIDTemp;
}
llvm::Constant *
CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty,
const llvm::Twine &Name) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << Name;
auto RuntimeName = Out.str();
auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first;
if (Elem.second) {
assert(Elem.second->getType()->getPointerElementType() == Ty &&
"OMP internal variable has different type than requested");
return &*Elem.second;
}
return Elem.second = new llvm::GlobalVariable(
CGM.getModule(), Ty, /*IsConstant*/ false,
llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
Elem.first());
}
llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
llvm::Twine Name(".gomp_critical_user_", CriticalName);
return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var"));
}
namespace {
/// Common pre(post)-action for different OpenMP constructs.
class CommonActionTy final : public PrePostActionTy {
llvm::Value *EnterCallee;
ArrayRef<llvm::Value *> EnterArgs;
llvm::Value *ExitCallee;
ArrayRef<llvm::Value *> ExitArgs;
bool Conditional;
llvm::BasicBlock *ContBlock = nullptr;
public:
CommonActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
bool Conditional = false)
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
ExitArgs(ExitArgs), Conditional(Conditional) {}
void Enter(CodeGenFunction &CGF) override {
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
if (Conditional) {
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
ContBlock = CGF.createBasicBlock("omp_if.end");
// Generate the branch (If-stmt)
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
CGF.EmitBlock(ThenBlock);
}
}
void Done(CodeGenFunction &CGF) {
// Emit the rest of blocks/branches
CGF.EmitBranch(ContBlock);
CGF.EmitBlock(ContBlock, true);
}
void Exit(CodeGenFunction &CGF) override {
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
}
};
} // anonymous namespace
void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
StringRef CriticalName,
const RegionCodeGenTy &CriticalOpGen,
SourceLocation Loc, const Expr *Hint) {
// __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
// CriticalOpGen();
// __kmpc_end_critical(ident_t *, gtid, Lock);
// Prepare arguments and build a call to __kmpc_critical
if (!CGF.HaveInsertPoint())
return;
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
getCriticalRegionLock(CriticalName)};
llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
std::end(Args));
if (Hint) {
EnterArgs.push_back(CGF.Builder.CreateIntCast(
CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
}
CommonActionTy Action(
createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
: OMPRTL__kmpc_critical),
EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
CriticalOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
}
void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MasterOpGen,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// if(__kmpc_master(ident_t *, gtid)) {
// MasterOpGen();
// __kmpc_end_master(ident_t *, gtid);
// }
// Prepare arguments and build a call to __kmpc_master
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
/*Conditional=*/true);
MasterOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
Action.Done(CGF);
}
void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_omp_taskyield(loc, thread_id, 0);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
}
void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &TaskgroupOpGen,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// __kmpc_taskgroup(ident_t *, gtid);
// TaskgroupOpGen();
// __kmpc_end_taskgroup(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_taskgroup
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
Args);
TaskgroupOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
}
/// Given an array of pointers to variables, project the address of a
/// given variable.
static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
unsigned Index, const VarDecl *Var) {
// Pull out the pointer to the variable.
Address PtrAddr =
CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize());
llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
Addr = CGF.Builder.CreateElementBitCast(
Addr, CGF.ConvertTypeForMem(Var->getType()));
return Addr;
}
static llvm::Value *emitCopyprivateCopyFunction(
CodeGenModule &CGM, llvm::Type *ArgsType,
ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) {
auto &C = CGM.getContext();
// void copy_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
".omp.copyprivate.copy_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
// Dest = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
ArgsType), CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
ArgsType), CGF.getPointerAlign());
// *(Type0*)Dst[0] = *(Type0*)Src[0];
// *(Type1*)Dst[1] = *(Type1*)Src[1];
// ...
// *(Typen*)Dst[n] = *(Typen*)Src[n];
for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
auto DestVar = cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
auto SrcVar = cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
QualType Type = VD->getType();
CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
}
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &SingleOpGen,
SourceLocation Loc,
ArrayRef<const Expr *> CopyprivateVars,
ArrayRef<const Expr *> SrcExprs,
ArrayRef<const Expr *> DstExprs,
ArrayRef<const Expr *> AssignmentOps) {
if (!CGF.HaveInsertPoint())
return;
assert(CopyprivateVars.size() == SrcExprs.size() &&
CopyprivateVars.size() == DstExprs.size() &&
CopyprivateVars.size() == AssignmentOps.size());
auto &C = CGM.getContext();
// int32 did_it = 0;
// if(__kmpc_single(ident_t *, gtid)) {
// SingleOpGen();
// __kmpc_end_single(ident_t *, gtid);
// did_it = 1;
// }
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
Address DidIt = Address::invalid();
if (!CopyprivateVars.empty()) {
// int32 did_it = 0;
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
}
// Prepare arguments and build a call to __kmpc_single
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
/*Conditional=*/true);
SingleOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
if (DidIt.isValid()) {
// did_it = 1;
CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
}
Action.Done(CGF);
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
if (DidIt.isValid()) {
llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
auto CopyprivateArrayTy =
C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
/*IndexTypeQuals=*/0);
// Create a list of all private variables for copyprivate.
Address CopyprivateList =
CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
Address Elem = CGF.Builder.CreateConstArrayGEP(
CopyprivateList, I, CGF.getPointerSize());
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
Elem);
}
// Build function that copies private values from single region to all other
// threads in the corresponding parallel region.
auto *CpyFn = emitCopyprivateCopyFunction(
CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
auto *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
Address CL =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
CGF.VoidPtrTy);
auto *DidItVal = CGF.Builder.CreateLoad(DidIt);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), // ident_t *<loc>
getThreadID(CGF, Loc), // i32 <gtid>
BufSize, // size_t <buf_size>
CL.getPointer(), // void *<copyprivate list>
CpyFn, // void (*) (void *, void *) <copy_func>
DidItVal // i32 did_it
};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
}
}
void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &OrderedOpGen,
SourceLocation Loc, bool IsThreads) {
if (!CGF.HaveInsertPoint())
return;
// __kmpc_ordered(ident_t *, gtid);
// OrderedOpGen();
// __kmpc_end_ordered(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_ordered
if (IsThreads) {
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
createRuntimeFunction(OMPRTL__kmpc_end_ordered),
Args);
OrderedOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
return;
}
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
}
void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind Kind, bool EmitChecks,
bool ForceSimpleCall) {
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_cancel_barrier(loc, thread_id);
// Build call __kmpc_barrier(loc, thread_id);
unsigned Flags;
if (Kind == OMPD_for)
Flags = OMP_IDENT_BARRIER_IMPL_FOR;
else if (Kind == OMPD_sections)
Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
else if (Kind == OMPD_single)
Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
else if (Kind == OMPD_barrier)
Flags = OMP_IDENT_BARRIER_EXPL;
else
Flags = OMP_IDENT_BARRIER_IMPL;
// Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
// thread_id);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
getThreadID(CGF, Loc)};
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
auto *Result = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
if (EmitChecks) {
// if (__kmpc_cancel_barrier()) {
// exit from construct;
// }
auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
auto *ContBB = CGF.createBasicBlock(".cancel.continue");
auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// exit from construct;
auto CancelDestination =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDestination);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
return;
}
}
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
}
/// \brief Map the OpenMP loop schedule to the runtime enumeration.
static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked, bool Ordered) {
switch (ScheduleKind) {
case OMPC_SCHEDULE_static:
return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
: (Ordered ? OMP_ord_static : OMP_sch_static);
case OMPC_SCHEDULE_dynamic:
return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
case OMPC_SCHEDULE_guided:
return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
case OMPC_SCHEDULE_runtime:
return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
case OMPC_SCHEDULE_auto:
return Ordered ? OMP_ord_auto : OMP_sch_auto;
case OMPC_SCHEDULE_unknown:
assert(!Chunked && "chunk was specified but schedule kind not known");
return Ordered ? OMP_ord_static : OMP_sch_static;
}
llvm_unreachable("Unexpected runtime schedule");
}
/// \brief Map the OpenMP distribute schedule to the runtime enumeration.
static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
// only static is allowed for dist_schedule
return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
}
bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked) const {
auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
return Schedule == OMP_sch_static;
}
bool CGOpenMPRuntime::isStaticNonchunked(
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
return Schedule == OMP_dist_sch_static;
}
bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
auto Schedule =
getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
return Schedule != OMP_sch_static;
}
static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
OpenMPScheduleClauseModifier M1,
OpenMPScheduleClauseModifier M2) {
int Modifier = 0;
switch (M1) {
case OMPC_SCHEDULE_MODIFIER_monotonic:
Modifier = OMP_sch_modifier_monotonic;
break;
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
Modifier = OMP_sch_modifier_nonmonotonic;
break;
case OMPC_SCHEDULE_MODIFIER_simd:
if (Schedule == OMP_sch_static_chunked)
Schedule = OMP_sch_static_balanced_chunked;
break;
case OMPC_SCHEDULE_MODIFIER_last:
case OMPC_SCHEDULE_MODIFIER_unknown:
break;
}
switch (M2) {
case OMPC_SCHEDULE_MODIFIER_monotonic:
Modifier = OMP_sch_modifier_monotonic;
break;
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
Modifier = OMP_sch_modifier_nonmonotonic;
break;
case OMPC_SCHEDULE_MODIFIER_simd:
if (Schedule == OMP_sch_static_chunked)
Schedule = OMP_sch_static_balanced_chunked;
break;
case OMPC_SCHEDULE_MODIFIER_last:
case OMPC_SCHEDULE_MODIFIER_unknown:
break;
}
return Schedule | Modifier;
}
void CGOpenMPRuntime::emitForDispatchInit(CodeGenFunction &CGF,
SourceLocation Loc,
const OpenMPScheduleTy &ScheduleKind,
unsigned IVSize, bool IVSigned,
bool Ordered, llvm::Value *UB,
llvm::Value *Chunk) {
if (!CGF.HaveInsertPoint())
return;
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered);
assert(Ordered ||
(Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
Schedule != OMP_sch_static_balanced_chunked));
// Call __kmpc_dispatch_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
// kmp_int[32|64] lower, kmp_int[32|64] upper,
// kmp_int[32|64] stride, kmp_int[32|64] chunk);
// If the Chunk was not specified in the clause - use default value 1.
if (Chunk == nullptr)
Chunk = CGF.Builder.getIntN(IVSize, 1);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.getInt32(addMonoNonMonoModifier(
Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
CGF.Builder.getIntN(IVSize, 0), // Lower
UB, // Upper
CGF.Builder.getIntN(IVSize, 1), // Stride
Chunk // Chunk
};
CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
}
static void emitForStaticInitCall(
CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule,
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
unsigned IVSize, bool Ordered, Address IL, Address LB, Address UB,
Address ST, llvm::Value *Chunk) {
if (!CGF.HaveInsertPoint())
return;
assert(!Ordered);
assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
Schedule == OMP_dist_sch_static ||
Schedule == OMP_dist_sch_static_chunked);
// Call __kmpc_for_static_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
// kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
// kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
// kmp_int[32|64] incr, kmp_int[32|64] chunk);
if (Chunk == nullptr) {
assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static) &&
"expected static non-chunked schedule");
// If the Chunk was not specified in the clause - use default value 1.
Chunk = CGF.Builder.getIntN(IVSize, 1);
} else {
assert((Schedule == OMP_sch_static_chunked ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static_chunked ||
Schedule == OMP_dist_sch_static_chunked) &&
"expected static chunked schedule");
}
llvm::Value *Args[] = {
UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier(
Schedule, M1, M2)), // Schedule type
IL.getPointer(), // &isLastIter
LB.getPointer(), // &LB
UB.getPointer(), // &UB
ST.getPointer(), // &Stride
CGF.Builder.getIntN(IVSize, 1), // Incr
Chunk // Chunk
};
CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
}
void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
SourceLocation Loc,
const OpenMPScheduleTy &ScheduleKind,
unsigned IVSize, bool IVSigned,
bool Ordered, Address IL, Address LB,
Address UB, Address ST,
llvm::Value *Chunk) {
OpenMPSchedType ScheduleNum =
getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered);
auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
auto *ThreadId = getThreadID(CGF, Loc);
auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, IVSize,
Ordered, IL, LB, UB, ST, Chunk);
}
void CGOpenMPRuntime::emitDistributeStaticInit(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDistScheduleClauseKind SchedKind, unsigned IVSize, bool IVSigned,
bool Ordered, Address IL, Address LB, Address UB, Address ST,
llvm::Value *Chunk) {
OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Chunk != nullptr);
auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
auto *ThreadId = getThreadID(CGF, Loc);
auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
OMPC_SCHEDULE_MODIFIER_unknown, IVSize, Ordered, IL, LB,
UB, ST, Chunk);
}
void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
Args);
}
void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize,
bool IVSigned) {
if (!CGF.HaveInsertPoint())
return;
// Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
}
llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
SourceLocation Loc, unsigned IVSize,
bool IVSigned, Address IL,
Address LB, Address UB,
Address ST) {
// Call __kmpc_dispatch_next(
// ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
// kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
// kmp_int[32|64] *p_stride);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc),
IL.getPointer(), // &isLastIter
LB.getPointer(), // &Lower
UB.getPointer(), // &Upper
ST.getPointer() // &Stride
};
llvm::Value *Call =
CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
return CGF.EmitScalarConversion(
Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true),
CGF.getContext().BoolTy, Loc);
}
void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
llvm::Value *NumThreads,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
Args);
}
void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
OpenMPProcBindClauseKind ProcBind,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Constants for proc bind value accepted by the runtime.
enum ProcBindTy {
ProcBindFalse = 0,
ProcBindTrue,
ProcBindMaster,
ProcBindClose,
ProcBindSpread,
ProcBindIntel,
ProcBindDefault
} RuntimeProcBind;
switch (ProcBind) {
case OMPC_PROC_BIND_master:
RuntimeProcBind = ProcBindMaster;
break;
case OMPC_PROC_BIND_close:
RuntimeProcBind = ProcBindClose;
break;
case OMPC_PROC_BIND_spread:
RuntimeProcBind = ProcBindSpread;
break;
case OMPC_PROC_BIND_unknown:
llvm_unreachable("Unsupported proc_bind value.");
}
// Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
}
void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call void __kmpc_flush(ident_t *loc)
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
emitUpdateLocation(CGF, Loc));
}
namespace {
/// \brief Indexes of fields for type kmp_task_t.
enum KmpTaskTFields {
/// \brief List of shared variables.
KmpTaskTShareds,
/// \brief Task routine.
KmpTaskTRoutine,
/// \brief Partition id for the untied tasks.
KmpTaskTPartId,
/// Function with call of destructors for private variables.
Data1,
/// Task priority.
Data2,
/// (Taskloops only) Lower bound.
KmpTaskTLowerBound,
/// (Taskloops only) Upper bound.
KmpTaskTUpperBound,
/// (Taskloops only) Stride.
KmpTaskTStride,
/// (Taskloops only) Is last iteration flag.
KmpTaskTLastIter,
};
} // anonymous namespace
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
// FIXME: Add other entries type when they become supported.
return OffloadEntriesTargetRegion.empty();
}
/// \brief Initialize target region entry.
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
StringRef ParentName, unsigned LineNum,
unsigned Order) {
assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device "
"code generation.");
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr);
++OffloadingEntriesNum;
}
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
StringRef ParentName, unsigned LineNum,
llvm::Constant *Addr, llvm::Constant *ID) {
// If we are emitting code for a target, the entry is already initialized,
// only has to be registered.
if (CGM.getLangOpts().OpenMPIsDevice) {
assert(hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
"Entry must exist.");
auto &Entry =
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
assert(Entry.isValid() && "Entry not initialized!");
Entry.setAddress(Addr);
Entry.setID(ID);
return;
} else {
OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum++, Addr, ID);
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
}
}
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
unsigned DeviceID, unsigned FileID, StringRef ParentName,
unsigned LineNum) const {
auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
if (PerDevice == OffloadEntriesTargetRegion.end())
return false;
auto PerFile = PerDevice->second.find(FileID);
if (PerFile == PerDevice->second.end())
return false;
auto PerParentName = PerFile->second.find(ParentName);
if (PerParentName == PerFile->second.end())
return false;
auto PerLine = PerParentName->second.find(LineNum);
if (PerLine == PerParentName->second.end())
return false;
// Fail if this entry is already registered.
if (PerLine->second.getAddress() || PerLine->second.getID())
return false;
return true;
}
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
const OffloadTargetRegionEntryInfoActTy &Action) {
// Scan all target region entries and perform the provided action.
for (auto &D : OffloadEntriesTargetRegion)
for (auto &F : D.second)
for (auto &P : F.second)
for (auto &L : P.second)
Action(D.first, F.first, P.first(), L.first, L.second);
}
/// \brief Create a Ctor/Dtor-like function whose body is emitted through
/// \a Codegen. This is used to emit the two functions that register and
/// unregister the descriptor of the current compilation unit.
static llvm::Function *
createOffloadingBinaryDescriptorFunction(CodeGenModule &CGM, StringRef Name,
const RegionCodeGenTy &Codegen) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl DummyPtr(C, /*DC=*/nullptr, SourceLocation(),
/*Id=*/nullptr, C.VoidPtrTy);
Args.push_back(&DummyPtr);
CodeGenFunction CGF(CGM);
GlobalDecl();
auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto FTy = CGM.getTypes().GetFunctionType(FI);
auto *Fn =
CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, SourceLocation());
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FI, Args, SourceLocation());
Codegen(CGF);
CGF.FinishFunction();
return Fn;
}
llvm::Function *
CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
// If we don't have entries or if we are emitting code for the device, we
// don't need to do anything.
if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
return nullptr;
auto &M = CGM.getModule();
auto &C = CGM.getContext();
// Get list of devices we care about
auto &Devices = CGM.getLangOpts().OMPTargetTriples;
// We should be creating an offloading descriptor only if there are devices
// specified.
assert(!Devices.empty() && "No OpenMP offloading devices??");
// Create the external variables that will point to the begin and end of the
// host entries section. These will be defined by the linker.
auto *OffloadEntryTy =
CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
llvm::GlobalVariable *HostEntriesBegin = new llvm::GlobalVariable(
M, OffloadEntryTy, /*isConstant=*/true,
llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
".omp_offloading.entries_begin");
llvm::GlobalVariable *HostEntriesEnd = new llvm::GlobalVariable(
M, OffloadEntryTy, /*isConstant=*/true,
llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
".omp_offloading.entries_end");
// Create all device images
auto *DeviceImageTy = cast<llvm::StructType>(
CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
ConstantInitBuilder DeviceImagesBuilder(CGM);
auto DeviceImagesEntries = DeviceImagesBuilder.beginArray(DeviceImageTy);
for (unsigned i = 0; i < Devices.size(); ++i) {
StringRef T = Devices[i].getTriple();
auto *ImgBegin = new llvm::GlobalVariable(
M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
/*Initializer=*/nullptr,
Twine(".omp_offloading.img_start.") + Twine(T));
auto *ImgEnd = new llvm::GlobalVariable(
M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
/*Initializer=*/nullptr, Twine(".omp_offloading.img_end.") + Twine(T));
auto Dev = DeviceImagesEntries.beginStruct(DeviceImageTy);
Dev.add(ImgBegin);
Dev.add(ImgEnd);
Dev.add(HostEntriesBegin);
Dev.add(HostEntriesEnd);
Dev.finishAndAddTo(DeviceImagesEntries);
}
// Create device images global array.
llvm::GlobalVariable *DeviceImages =
DeviceImagesEntries.finishAndCreateGlobal(".omp_offloading.device_images",
CGM.getPointerAlign(),
/*isConstant=*/true);
DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
// This is a Zero array to be used in the creation of the constant expressions
llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
llvm::Constant::getNullValue(CGM.Int32Ty)};
// Create the target region descriptor.
auto *BinaryDescriptorTy = cast<llvm::StructType>(
CGM.getTypes().ConvertTypeForMem(getTgtBinaryDescriptorQTy()));
ConstantInitBuilder DescBuilder(CGM);
auto DescInit = DescBuilder.beginStruct(BinaryDescriptorTy);
DescInit.addInt(CGM.Int32Ty, Devices.size());
DescInit.add(llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(),
DeviceImages,
Index));
DescInit.add(HostEntriesBegin);
DescInit.add(HostEntriesEnd);
auto *Desc = DescInit.finishAndCreateGlobal(".omp_offloading.descriptor",
CGM.getPointerAlign(),
/*isConstant=*/true);
// Emit code to register or unregister the descriptor at execution
// startup or closing, respectively.
// Create a variable to drive the registration and unregistration of the
// descriptor, so we can reuse the logic that emits Ctors and Dtors.
auto *IdentInfo = &C.Idents.get(".omp_offloading.reg_unreg_var");
ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), SourceLocation(),
IdentInfo, C.CharTy);
auto *UnRegFn = createOffloadingBinaryDescriptorFunction(
CGM, ".omp_offloading.descriptor_unreg",
[&](CodeGenFunction &CGF, PrePostActionTy &) {
CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
Desc);
});
auto *RegFn = createOffloadingBinaryDescriptorFunction(
CGM, ".omp_offloading.descriptor_reg",
[&](CodeGenFunction &CGF, PrePostActionTy &) {
CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_register_lib),
Desc);
CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
});
return RegFn;
}
void CGOpenMPRuntime::createOffloadEntry(llvm::Constant *ID,
llvm::Constant *Addr, uint64_t Size) {
StringRef Name = Addr->getName();
auto *TgtOffloadEntryType = cast<llvm::StructType>(
CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()));
llvm::LLVMContext &C = CGM.getModule().getContext();
llvm::Module &M = CGM.getModule();
// Make sure the address has the right type.
llvm::Constant *AddrPtr = llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy);
// Create constant string with the name.
llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
llvm::GlobalVariable *Str =
new llvm::GlobalVariable(M, StrPtrInit->getType(), /*isConstant=*/true,
llvm::GlobalValue::InternalLinkage, StrPtrInit,
".omp_offloading.entry_name");
Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
llvm::Constant *StrPtr = llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy);
// We can't have any padding between symbols, so we need to have 1-byte
// alignment.
auto Align = CharUnits::fromQuantity(1);
// Create the entry struct.
ConstantInitBuilder EntryBuilder(CGM);
auto EntryInit = EntryBuilder.beginStruct(TgtOffloadEntryType);
EntryInit.add(AddrPtr);
EntryInit.add(StrPtr);
EntryInit.addInt(CGM.SizeTy, Size);
llvm::GlobalVariable *Entry =
EntryInit.finishAndCreateGlobal(".omp_offloading.entry",
Align,
/*constant*/ true,
llvm::GlobalValue::ExternalLinkage);
// The entry has to be created in the section the linker expects it to be.
Entry->setSection(".omp_offloading.entries");
}
void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
// Emit the offloading entries and metadata so that the device codegen side
// can
// easily figure out what to emit. The produced metadata looks like this:
//
// !omp_offload.info = !{!1, ...}
//
// Right now we only generate metadata for function that contain target
// regions.
// If we do not have entries, we dont need to do anything.
if (OffloadEntriesInfoManager.empty())
return;
llvm::Module &M = CGM.getModule();
llvm::LLVMContext &C = M.getContext();
SmallVector<OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
OrderedEntries(OffloadEntriesInfoManager.size());
// Create the offloading info metadata node.
llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
// Auxiliar methods to create metadata values and strings.
auto getMDInt = [&](unsigned v) {
return llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(llvm::Type::getInt32Ty(C), v));
};
auto getMDString = [&](StringRef v) { return llvm::MDString::get(C, v); };
// Create function that emits metadata for each target region entry;
auto &&TargetRegionMetadataEmitter = [&](
unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line,
OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
llvm::SmallVector<llvm::Metadata *, 32> Ops;
// Generate metadata for target regions. Each entry of this metadata
// contains:
// - Entry 0 -> Kind of this type of metadata (0).
// - Entry 1 -> Device ID of the file where the entry was identified.
// - Entry 2 -> File ID of the file where the entry was identified.
// - Entry 3 -> Mangled name of the function where the entry was identified.
// - Entry 4 -> Line in the file where the entry was identified.
// - Entry 5 -> Order the entry was created.
// The first element of the metadata node is the kind.
Ops.push_back(getMDInt(E.getKind()));
Ops.push_back(getMDInt(DeviceID));
Ops.push_back(getMDInt(FileID));
Ops.push_back(getMDString(ParentName));
Ops.push_back(getMDInt(Line));
Ops.push_back(getMDInt(E.getOrder()));
// Save this entry in the right position of the ordered entries array.
OrderedEntries[E.getOrder()] = &E;
// Add metadata to the named metadata node.
MD->addOperand(llvm::MDNode::get(C, Ops));
};
OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
TargetRegionMetadataEmitter);
for (auto *E : OrderedEntries) {
assert(E && "All ordered entries must exist!");
if (auto *CE =
dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
E)) {
assert(CE->getID() && CE->getAddress() &&
"Entry ID and Addr are invalid!");
createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0);
} else
llvm_unreachable("Unsupported entry kind.");
}
}
/// \brief Loads all the offload entries information from the host IR
/// metadata.
void CGOpenMPRuntime::loadOffloadInfoMetadata() {
// If we are in target mode, load the metadata from the host IR. This code has
// to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
if (!CGM.getLangOpts().OpenMPIsDevice)
return;
if (CGM.getLangOpts().OMPHostIRFile.empty())
return;
auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
if (Buf.getError())
return;
llvm::LLVMContext C;
auto ME = expectedToErrorOrAndEmitErrors(
C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
if (ME.getError())
return;
llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
if (!MD)
return;
for (auto I : MD->operands()) {
llvm::MDNode *MN = cast<llvm::MDNode>(I);
auto getMDInt = [&](unsigned Idx) {
llvm::ConstantAsMetadata *V =
cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
};
auto getMDString = [&](unsigned Idx) {
llvm::MDString *V = cast<llvm::MDString>(MN->getOperand(Idx));
return V->getString();
};
switch (getMDInt(0)) {
default:
llvm_unreachable("Unexpected metadata!");
break;
case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
OFFLOAD_ENTRY_INFO_TARGET_REGION:
OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
/*DeviceID=*/getMDInt(1), /*FileID=*/getMDInt(2),
/*ParentName=*/getMDString(3), /*Line=*/getMDInt(4),
/*Order=*/getMDInt(5));
break;
}
}
}
void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
if (!KmpRoutineEntryPtrTy) {
// Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
auto &C = CGM.getContext();
QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
KmpRoutineEntryPtrQTy = C.getPointerType(
C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
}
}
static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
QualType FieldTy) {
auto *Field = FieldDecl::Create(
C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
DC->addDecl(Field);
return Field;
}
QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
// Make sure the type of the entry is already created. This is the type we
// have to create:
// struct __tgt_offload_entry{
// void *addr; // Pointer to the offload entry info.
// // (function or global)
// char *name; // Name of the function or global.
// size_t size; // Size of the entry info (0 if it a function).
// };
if (TgtOffloadEntryQTy.isNull()) {
ASTContext &C = CGM.getContext();
auto *RD = C.buildImplicitRecord("__tgt_offload_entry");
RD->startDefinition();
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
addFieldToRecordDecl(C, RD, C.getSizeType());
RD->completeDefinition();
TgtOffloadEntryQTy = C.getRecordType(RD);
}
return TgtOffloadEntryQTy;
}
QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
// These are the types we need to build:
// struct __tgt_device_image{
// void *ImageStart; // Pointer to the target code start.
// void *ImageEnd; // Pointer to the target code end.
// // We also add the host entries to the device image, as it may be useful
// // for the target runtime to have access to that information.
// __tgt_offload_entry *EntriesBegin; // Begin of the table with all
// // the entries.
// __tgt_offload_entry *EntriesEnd; // End of the table with all the
// // entries (non inclusive).
// };
if (TgtDeviceImageQTy.isNull()) {
ASTContext &C = CGM.getContext();
auto *RD = C.buildImplicitRecord("__tgt_device_image");
RD->startDefinition();
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
RD->completeDefinition();
TgtDeviceImageQTy = C.getRecordType(RD);
}
return TgtDeviceImageQTy;
}
QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
// struct __tgt_bin_desc{
// int32_t NumDevices; // Number of devices supported.
// __tgt_device_image *DeviceImages; // Arrays of device images
// // (one per device).
// __tgt_offload_entry *EntriesBegin; // Begin of the table with all the
// // entries.
// __tgt_offload_entry *EntriesEnd; // End of the table with all the
// // entries (non inclusive).
// };
if (TgtBinaryDescriptorQTy.isNull()) {
ASTContext &C = CGM.getContext();
auto *RD = C.buildImplicitRecord("__tgt_bin_desc");
RD->startDefinition();
addFieldToRecordDecl(
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
RD->completeDefinition();
TgtBinaryDescriptorQTy = C.getRecordType(RD);
}
return TgtBinaryDescriptorQTy;
}
namespace {
struct PrivateHelpersTy {
PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
const VarDecl *PrivateElemInit)
: Original(Original), PrivateCopy(PrivateCopy),
PrivateElemInit(PrivateElemInit) {}
const VarDecl *Original;
const VarDecl *PrivateCopy;
const VarDecl *PrivateElemInit;
};
typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
} // anonymous namespace
static RecordDecl *
createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
if (!Privates.empty()) {
auto &C = CGM.getContext();
// Build struct .kmp_privates_t. {
// /* private vars */
// };
auto *RD = C.buildImplicitRecord(".kmp_privates.t");
RD->startDefinition();
for (auto &&Pair : Privates) {
auto *VD = Pair.second.Original;
auto Type = VD->getType();
Type = Type.getNonReferenceType();
auto *FD = addFieldToRecordDecl(C, RD, Type);
if (VD->hasAttrs()) {
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
E(VD->getAttrs().end());
I != E; ++I)
FD->addAttr(*I);
}
}
RD->completeDefinition();
return RD;
}
return nullptr;
}
static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
QualType KmpInt32Ty,
QualType KmpRoutineEntryPointerQTy) {
auto &C = CGM.getContext();
// Build struct kmp_task_t {
// void * shareds;
// kmp_routine_entry_t routine;
// kmp_int32 part_id;
// kmp_cmplrdata_t data1;
// kmp_cmplrdata_t data2;
// For taskloops additional fields:
// kmp_uint64 lb;
// kmp_uint64 ub;
// kmp_int64 st;
// kmp_int32 liter;
// };
auto *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
UD->startDefinition();
addFieldToRecordDecl(C, UD, KmpInt32Ty);
addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
UD->completeDefinition();
QualType KmpCmplrdataTy = C.getRecordType(UD);
auto *RD = C.buildImplicitRecord("kmp_task_t");
RD->startDefinition();
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
addFieldToRecordDecl(C, RD, KmpInt32Ty);
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
if (isOpenMPTaskLoopDirective(Kind)) {
QualType KmpUInt64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
QualType KmpInt64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
addFieldToRecordDecl(C, RD, KmpInt64Ty);
addFieldToRecordDecl(C, RD, KmpInt32Ty);
}
RD->completeDefinition();
return RD;
}
static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
ArrayRef<PrivateDataTy> Privates) {
auto &C = CGM.getContext();
// Build struct kmp_task_t_with_privates {
// kmp_task_t task_data;
// .kmp_privates_t. privates;
// };
auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
RD->startDefinition();
addFieldToRecordDecl(C, RD, KmpTaskTQTy);
if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) {
addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
}
RD->completeDefinition();
return RD;
}
/// \brief Emit a proxy function which accepts kmp_task_t as the second
/// argument.
/// \code
/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
/// For taskloops:
/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
/// tt->shareds);
/// return 0;
/// }
/// \endcode
static llvm::Value *
emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
QualType SharedsPtrTy, llvm::Value *TaskFunction,
llvm::Value *TaskPrivatesMap) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict());
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
auto &TaskEntryFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
auto *TaskEntry =
llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage,
".omp_task_entry.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo);
CodeGenFunction CGF(CGM);
CGF.disableDebugInfo();
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args);
// TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
// tt,
// For taskloops:
// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
// tt->task_data.shareds);
auto *GtidParam = CGF.EmitLoadOfScalar(
CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskTypeArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
LValue Base =
CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
auto *PartidParam = PartIdLVal.getPointer();
auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(),
CGF.ConvertTypeForMem(SharedsPtrTy));
auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
llvm::Value *PrivatesParam;
if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivatesLVal.getPointer(), CGF.VoidPtrTy);
} else
PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
TaskPrivatesMap,
CGF.Builder
.CreatePointerBitCastOrAddrSpaceCast(
TDBase.getAddress(), CGF.VoidPtrTy)
.getPointer()};
SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
std::end(CommonArgs));
if (isOpenMPTaskLoopDirective(Kind)) {
auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
auto LBLVal = CGF.EmitLValueForField(Base, *LBFI);
auto *LBParam = CGF.EmitLoadOfLValue(LBLVal, Loc).getScalarVal();
auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
auto UBLVal = CGF.EmitLValueForField(Base, *UBFI);
auto *UBParam = CGF.EmitLoadOfLValue(UBLVal, Loc).getScalarVal();
auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
auto StLVal = CGF.EmitLValueForField(Base, *StFI);
auto *StParam = CGF.EmitLoadOfLValue(StLVal, Loc).getScalarVal();
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
auto LILVal = CGF.EmitLValueForField(Base, *LIFI);
auto *LIParam = CGF.EmitLoadOfLValue(LILVal, Loc).getScalarVal();
CallArgs.push_back(LBParam);
CallArgs.push_back(UBParam);
CallArgs.push_back(StParam);
CallArgs.push_back(LIParam);
}
CallArgs.push_back(SharedsParam);
CGF.EmitCallOrInvoke(TaskFunction, CallArgs);
CGF.EmitStoreThroughLValue(
RValue::get(CGF.Builder.getInt32(/*C=*/0)),
CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
CGF.FinishFunction();
return TaskEntry;
}
static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
SourceLocation Loc,
QualType KmpInt32Ty,
QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict());
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
FunctionType::ExtInfo Info;
auto &DestructorFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo);
auto *DestructorFn =
llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
".omp_task_destructor.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn,
DestructorFnInfo);
CodeGenFunction CGF(CGM);
CGF.disableDebugInfo();
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
Args);
LValue Base = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskTypeArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
Base = CGF.EmitLValueForField(Base, *FI);
for (auto *Field :
cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
if (auto DtorKind = Field->getType().isDestructedType()) {
auto FieldLValue = CGF.EmitLValueForField(Base, Field);
CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
}
}
CGF.FinishFunction();
return DestructorFn;
}
/// \brief Emit a privates mapping function for correct handling of private and
/// firstprivate variables.
/// \code
/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
/// **noalias priv1,..., <tyn> **noalias privn) {
/// *priv1 = &.privates.priv1;
/// ...;
/// *privn = &.privates.privn;
/// }
/// \endcode
static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
ArrayRef<const Expr *> PrivateVars,
ArrayRef<const Expr *> FirstprivateVars,
ArrayRef<const Expr *> LastprivateVars,
QualType PrivatesQTy,
ArrayRef<PrivateDataTy> Privates) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl TaskPrivatesArg(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(PrivatesQTy).withConst().withRestrict());
Args.push_back(&TaskPrivatesArg);
llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
unsigned Counter = 1;
for (auto *E: PrivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict()));
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (auto *E : FirstprivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict()));
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (auto *E: LastprivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict()));
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
auto &TaskPrivatesMapFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *TaskPrivatesMapTy =
CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
auto *TaskPrivatesMap = llvm::Function::Create(
TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage,
".omp_task_privates_map.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap,
TaskPrivatesMapFnInfo);
TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
CodeGenFunction CGF(CGM);
CGF.disableDebugInfo();
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
TaskPrivatesMapFnInfo, Args);
// *privi = &.privates.privi;
LValue Base = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
TaskPrivatesArg.getType()->castAs<PointerType>());
auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
Counter = 0;
for (auto *Field : PrivatesQTyRD->fields()) {
auto FieldLVal = CGF.EmitLValueForField(Base, Field);
auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
auto RefLoadLVal = CGF.EmitLoadOfPointerLValue(
RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
++Counter;
}
CGF.FinishFunction();
return TaskPrivatesMap;
}
static int array_pod_sort_comparator(const PrivateDataTy *P1,
const PrivateDataTy *P2) {
return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0);
}
/// Emit initialization for private variables in task-based directives.
static void emitPrivatesInit(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
Address KmpTaskSharedsPtr, LValue TDBase,
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
QualType SharedsTy, QualType SharedsPtrTy,
const OMPTaskDataTy &Data,
ArrayRef<PrivateDataTy> Privates, bool ForDup) {
auto &C = CGF.getContext();
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
LValue SrcBase;
if (!Data.FirstprivateVars.empty()) {
SrcBase = CGF.MakeAddrLValue(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
SharedsTy);
}
CodeGenFunction::CGCapturedStmtInfo CapturesInfo(
cast<CapturedStmt>(*D.getAssociatedStmt()));
FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
for (auto &&Pair : Privates) {
auto *VD = Pair.second.PrivateCopy;
auto *Init = VD->getAnyInitializer();
if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
!CGF.isTrivialInitializer(Init)))) {
LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
if (auto *Elem = Pair.second.PrivateElemInit) {
auto *OriginalVD = Pair.second.Original;
auto *SharedField = CapturesInfo.lookup(OriginalVD);
auto SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
SharedRefLValue = CGF.MakeAddrLValue(
Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
SharedRefLValue.getType(), AlignmentSource::Decl);
QualType Type = OriginalVD->getType();
if (Type->isArrayType()) {
// Initialize firstprivate array.
if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
// Perform simple memcpy.
CGF.EmitAggregateAssign(PrivateLValue.getAddress(),
SharedRefLValue.getAddress(), Type);
} else {
// Initialize firstprivate array using element-by-element
// intialization.
CGF.EmitOMPAggregateAssign(
PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
[&CGF, Elem, Init, &CapturesInfo](Address DestElement,
Address SrcElement) {
// Clean up any temporaries needed by the initialization.
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(
Elem, [SrcElement]() -> Address { return SrcElement; });
(void)InitScope.Privatize();
// Emit initialization for single element.
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
CGF, &CapturesInfo);
CGF.EmitAnyExprToMem(Init, DestElement,
Init->getType().getQualifiers(),
/*IsInitializer=*/false);
});
}
} else {
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
return SharedRefLValue.getAddress();
});
(void)InitScope.Privatize();
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
CGF.EmitExprAsInit(Init, VD, PrivateLValue,
/*capturedByInit=*/false);
}
} else
CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
}
++FI;
}
}
/// Check if duplication function is required for taskloops.
static bool checkInitIsRequired(CodeGenFunction &CGF,
ArrayRef<PrivateDataTy> Privates) {
bool InitRequired = false;
for (auto &&Pair : Privates) {
auto *VD = Pair.second.PrivateCopy;
auto *Init = VD->getAnyInitializer();
InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
!CGF.isTrivialInitializer(Init));
}
return InitRequired;
}
/// Emit task_dup function (for initialization of
/// private/firstprivate/lastprivate vars and last_iter flag)
/// \code
/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
/// lastpriv) {
/// // setup lastprivate flag
/// task_dst->last = lastpriv;
/// // could be constructor calls here...
/// }
/// \endcode
static llvm::Value *
emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
const OMPExecutableDirective &D,
QualType KmpTaskTWithPrivatesPtrQTy,
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
QualType SharedsPtrTy, const OMPTaskDataTy &Data,
ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
auto &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc,
/*Id=*/nullptr, C.IntTy);
Args.push_back(&DstArg);
Args.push_back(&SrcArg);
Args.push_back(&LastprivArg);
auto &TaskDupFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
auto *TaskDup =
llvm::Function::Create(TaskDupTy, llvm::GlobalValue::InternalLinkage,
".omp_task_dup.", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskDup, TaskDupFnInfo);
CodeGenFunction CGF(CGM);
CGF.disableDebugInfo();
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args);
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&DstArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
// task_dst->liter = lastpriv;
if (WithLastIter) {
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
LValue Base = CGF.EmitLValueForField(
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
CGF.EmitStoreOfScalar(Lastpriv, LILVal);
}
// Emit initial values for private copies (if any).
assert(!Privates.empty());
Address KmpTaskSharedsPtr = Address::invalid();
if (!Data.FirstprivateVars.empty()) {
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&SrcArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
LValue Base = CGF.EmitLValueForField(
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
KmpTaskSharedsPtr = Address(
CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
Base, *std::next(KmpTaskTQTyRD->field_begin(),
KmpTaskTShareds)),
Loc),
CGF.getNaturalTypeAlignment(SharedsTy));
}
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
CGF.FinishFunction();
return TaskDup;
}
/// Checks if destructor function is required to be generated.
/// \return true if cleanups are required, false otherwise.
static bool
checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
bool NeedsCleanup = false;
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
for (auto *FD : PrivateRD->fields()) {
NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
if (NeedsCleanup)
break;
}
return NeedsCleanup;
}
CGOpenMPRuntime::TaskResultTy
CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Value *TaskFunction, QualType SharedsTy,
Address Shareds, const OMPTaskDataTy &Data) {
auto &C = CGM.getContext();
llvm::SmallVector<PrivateDataTy, 4> Privates;
// Aggregate privates and sort them by the alignment.
auto I = Data.PrivateCopies.begin();
for (auto *E : Data.PrivateVars) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.push_back(std::make_pair(
C.getDeclAlign(VD),
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
/*PrivateElemInit=*/nullptr)));
++I;
}
I = Data.FirstprivateCopies.begin();
auto IElemInitRef = Data.FirstprivateInits.begin();
for (auto *E : Data.FirstprivateVars) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.push_back(std::make_pair(
C.getDeclAlign(VD),
PrivateHelpersTy(
VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))));
++I;
++IElemInitRef;
}
I = Data.LastprivateCopies.begin();
for (auto *E : Data.LastprivateVars) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.push_back(std::make_pair(
C.getDeclAlign(VD),
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
/*PrivateElemInit=*/nullptr)));
++I;
}
llvm::array_pod_sort(Privates.begin(), Privates.end(),
array_pod_sort_comparator);
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
// Build type kmp_routine_entry_t (if not built yet).
emitKmpRoutineEntryT(KmpInt32Ty);
// Build type kmp_task_t (if not built yet).
if (KmpTaskTQTy.isNull()) {
KmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
}
auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
// Build particular struct kmp_task_t for the given task.
auto *KmpTaskTWithPrivatesQTyRD =
createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
QualType KmpTaskTWithPrivatesPtrQTy =
C.getPointerType(KmpTaskTWithPrivatesQTy);
auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo();
auto *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
QualType SharedsPtrTy = C.getPointerType(SharedsTy);
// Emit initial values for private copies (if any).
llvm::Value *TaskPrivatesMap = nullptr;
auto *TaskPrivatesMapTy =
std::next(cast<llvm::Function>(TaskFunction)->getArgumentList().begin(),
3)
->getType();
if (!Privates.empty()) {
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
TaskPrivatesMap = emitTaskPrivateMappingFunction(
CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
FI->getType(), Privates);
TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskPrivatesMap, TaskPrivatesMapTy);
} else {
TaskPrivatesMap = llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(TaskPrivatesMapTy));
}
// Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
// kmp_task_t *tt);
auto *TaskEntry = emitProxyTaskFunction(
CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
TaskPrivatesMap);
// Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
// Task flags. Format is taken from
// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h,
// description of kmp_tasking_flags struct.
enum {
TiedFlag = 0x1,
FinalFlag = 0x2,
DestructorsFlag = 0x8,
PriorityFlag = 0x20
};
unsigned Flags = Data.Tied ? TiedFlag : 0;
bool NeedsCleanup = false;
if (!Privates.empty()) {
NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
if (NeedsCleanup)
Flags = Flags | DestructorsFlag;
}
if (Data.Priority.getInt())
Flags = Flags | PriorityFlag;
auto *TaskFlags =
Data.Final.getPointer()
? CGF.Builder.CreateSelect(Data.Final.getPointer(),
CGF.Builder.getInt32(FinalFlag),
CGF.Builder.getInt32(/*C=*/0))
: CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
auto *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc), TaskFlags,
KmpTaskTWithPrivatesTySize, SharedsSize,
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskEntry, KmpRoutineEntryPtrTy)};
auto *NewTask = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
NewTask, KmpTaskTWithPrivatesPtrTy);
LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
KmpTaskTWithPrivatesQTy);
LValue TDBase =
CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
// Fill the data in the resulting kmp_task_t record.
// Copy shareds if there are any.
Address KmpTaskSharedsPtr = Address::invalid();
if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
KmpTaskSharedsPtr =
Address(CGF.EmitLoadOfScalar(
CGF.EmitLValueForField(
TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
KmpTaskTShareds)),
Loc),
CGF.getNaturalTypeAlignment(SharedsTy));
CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy);
}
// Emit initial values for private copies (if any).
TaskResultTy Result;
if (!Privates.empty()) {
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
SharedsTy, SharedsPtrTy, Data, Privates,
/*ForDup=*/false);
if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
(!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
Result.TaskDupFn = emitTaskDupFunction(
CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
/*WithLastIter=*/!Data.LastprivateVars.empty());
}
}
// Fields of union "kmp_cmplrdata_t" for destructors and priority.
enum { Priority = 0, Destructors = 1 };
// Provide pointer to function with destructors for privates.
auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
auto *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl();
if (NeedsCleanup) {
llvm::Value *DestructorFn = emitDestructorsFunction(
CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
KmpTaskTWithPrivatesQTy);
LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
LValue DestructorsLV = CGF.EmitLValueForField(
Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
DestructorFn, KmpRoutineEntryPtrTy),
DestructorsLV);
}
// Set priority.
if (Data.Priority.getInt()) {
LValue Data2LV = CGF.EmitLValueForField(
TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
LValue PriorityLV = CGF.EmitLValueForField(
Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
}
Result.NewTask = NewTask;
Result.TaskEntry = TaskEntry;
Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
Result.TDBase = TDBase;
Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
return Result;
}
void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Value *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint())
return;
TaskResultTy Result =
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
llvm::Value *NewTask = Result.NewTask;
llvm::Value *TaskEntry = Result.TaskEntry;
llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
LValue TDBase = Result.TDBase;
RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
auto &C = CGM.getContext();
// Process list of dependences.
Address DependenciesArray = Address::invalid();
unsigned NumDependencies = Data.Dependences.size();
if (NumDependencies) {
// Dependence kind for RTL.
enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 };
enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
RecordDecl *KmpDependInfoRD;
QualType FlagsTy =
C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
if (KmpDependInfoTy.isNull()) {
KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
KmpDependInfoRD->startDefinition();
addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
KmpDependInfoRD->completeDefinition();
KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
} else
KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy);
// Define type kmp_depend_info[<Dependences.size()>];
QualType KmpDependInfoArrayTy = C.getConstantArrayType(
KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
ArrayType::Normal, /*IndexTypeQuals=*/0);
// kmp_depend_info[<Dependences.size()>] deps;
DependenciesArray =
CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
for (unsigned i = 0; i < NumDependencies; ++i) {
const Expr *E = Data.Dependences[i].second;
auto Addr = CGF.EmitLValue(E);
llvm::Value *Size;
QualType Ty = E->getType();
if (auto *ASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
LValue UpAddrLVal =
CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false);
llvm::Value *UpAddr =
CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
llvm::Value *LowIntPtr =
CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
} else
Size = CGF.getTypeSize(Ty);
auto Base = CGF.MakeAddrLValue(
CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize),
KmpDependInfoTy);
// deps[i].base_addr = &<Dependences[i].second>;
auto BaseAddrLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
CGF.EmitStoreOfScalar(
CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
BaseAddrLVal);
// deps[i].len = sizeof(<Dependences[i].second>);
auto LenLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), Len));
CGF.EmitStoreOfScalar(Size, LenLVal);
// deps[i].flags = <Dependences[i].first>;
RTLDependenceKindTy DepKind;
switch (Data.Dependences[i].first) {
case OMPC_DEPEND_in:
DepKind = DepIn;
break;
// Out and InOut dependencies must use the same code.
case OMPC_DEPEND_out:
case OMPC_DEPEND_inout:
DepKind = DepInOut;
break;
case OMPC_DEPEND_source:
case OMPC_DEPEND_sink:
case OMPC_DEPEND_unknown:
llvm_unreachable("Unknown task dependence type");
}
auto FlagsLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
FlagsLVal);
}
DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()),
CGF.VoidPtrTy);
}
// NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
// libcall.
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
// list is not empty
auto *ThreadID = getThreadID(CGF, Loc);
auto *UpLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
llvm::Value *DepTaskArgs[7];
if (NumDependencies) {
DepTaskArgs[0] = UpLoc;
DepTaskArgs[1] = ThreadID;
DepTaskArgs[2] = NewTask;
DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
DepTaskArgs[4] = DependenciesArray.getPointer();
DepTaskArgs[5] = CGF.Builder.getInt32(0);
DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
auto &&ThenCodeGen = [this, Loc, &Data, TDBase, KmpTaskTQTyRD,
NumDependencies, &TaskArgs,
&DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
if (!Data.Tied) {
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
auto PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
}
if (NumDependencies) {
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
} else {
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
TaskArgs);
}
// Check if parent region is untied and build return for untied task;
if (auto *Region =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
};
llvm::Value *DepWaitTaskArgs[6];
if (NumDependencies) {
DepWaitTaskArgs[0] = UpLoc;
DepWaitTaskArgs[1] = ThreadID;
DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
DepWaitTaskArgs[3] = DependenciesArray.getPointer();
DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF,
PrePostActionTy &) {
auto &RT = CGF.CGM.getOpenMPRuntime();
CodeGenFunction::RunCleanupsScope LocalScope(CGF);
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
// is specified.
if (NumDependencies)
CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
DepWaitTaskArgs);
// Call proxy_task_entry(gtid, new_task);
auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy](
CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs);
};
// Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
// Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
RegionCodeGenTy RCG(CodeGen);
CommonActionTy Action(
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
RCG.setAction(Action);
RCG(CGF);
};
if (IfCond)
emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
else {
RegionCodeGenTy ThenRCG(ThenCodeGen);
ThenRCG(CGF);
}
}
void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPLoopDirective &D,
llvm::Value *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint())
return;
TaskResultTy Result =
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
// NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
// libcall.
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
// sched, kmp_uint64 grainsize, void *task_dup);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *IfVal;
if (IfCond) {
IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
/*isSigned=*/true);
} else
IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
LValue LBLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
auto *LBVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
/*IsInitializer=*/true);
LValue UBLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
auto *UBVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
/*IsInitializer=*/true);
LValue StLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
auto *StVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
/*IsInitializer=*/true);
enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
llvm::Value *TaskArgs[] = {
UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(),
UBLVal.getPointer(), CGF.EmitLoadOfScalar(StLVal, SourceLocation()),
llvm::ConstantInt::getSigned(CGF.IntTy, Data.Nogroup ? 1 : 0),
llvm::ConstantInt::getSigned(
CGF.IntTy, Data.Schedule.getPointer()
? Data.Schedule.getInt() ? NumTasks : Grainsize
: NoSchedule),
Data.Schedule.getPointer()
? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
/*isSigned=*/false)
: llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
Result.TaskDupFn
? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Result.TaskDupFn,
CGF.VoidPtrTy)
: llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
}
/// \brief Emit reduction operation for each element of array (required for
/// array sections) LHS op = RHS.
/// \param Type Type of array.
/// \param LHSVar Variable on the left side of the reduction operation
/// (references element of array in original variable).
/// \param RHSVar Variable on the right side of the reduction operation
/// (references element of array in original variable).
/// \param RedOpGen Generator of reduction operation with use of LHSVar and
/// RHSVar.
static void EmitOMPAggregateReduction(
CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
const VarDecl *RHSVar,
const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *)> &RedOpGen,
const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
const Expr *UpExpr = nullptr) {
// Perform element-by-element initialization.
QualType ElementTy;
Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
// Drill down to the base element type on both arrays.
auto ArrayTy = Type->getAsArrayTypeUnsafe();
auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
auto RHSBegin = RHSAddr.getPointer();
auto LHSBegin = LHSAddr.getPointer();
// Cast from pointer to array type to pointer to single element.
auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
// The basic structure here is a while-do loop.
auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
auto IsEmpty =
CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
auto EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
RHSElementPHI->addIncoming(RHSBegin, EntryBB);
Address RHSElementCurrent =
Address(RHSElementPHI,
RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
LHSElementPHI->addIncoming(LHSBegin, EntryBB);
Address LHSElementCurrent =
Address(LHSElementPHI,
LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
CodeGenFunction::OMPPrivateScope Scope(CGF);
Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; });
Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; });
Scope.Privatize();
RedOpGen(CGF, XExpr, EExpr, UpExpr);
Scope.ForceCleanup();
// Shift the address forward by one element.
auto LHSElementNext = CGF.Builder.CreateConstGEP1_32(
LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
auto RHSElementNext = CGF.Builder.CreateConstGEP1_32(
RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
// Check whether we've reached the end.
auto Done =
CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
/// Emit reduction combiner. If the combiner is a simple expression emit it as
/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
/// UDR combiner function.
static void emitReductionCombiner(CodeGenFunction &CGF,
const Expr *ReductionOp) {
if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
if (auto *DRE =
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
std::pair<llvm::Function *, llvm::Function *> Reduction =
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
RValue Func = RValue::get(Reduction.first);
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
CGF.EmitIgnoredExpr(ReductionOp);
return;
}
CGF.EmitIgnoredExpr(ReductionOp);
}
static llvm::Value *emitReductionFunction(CodeGenModule &CGM,
llvm::Type *ArgsType,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps) {
auto &C = CGM.getContext();
// void reduction_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
C.VoidPtrTy);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
".omp.reduction.reduction_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
// Dst = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
ArgsType), CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
ArgsType), CGF.getPointerAlign());
// ...
// *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
// ...
CodeGenFunction::OMPPrivateScope Scope(CGF);
auto IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
auto RHSVar = cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
Scope.addPrivate(RHSVar, [&]() -> Address {
return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
});
auto LHSVar = cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
Scope.addPrivate(LHSVar, [&]() -> Address {
return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
});
QualType PrivTy = (*IPriv)->getType();
if (PrivTy->isVariablyModifiedType()) {
// Get array size and emit VLA type.
++Idx;
Address Elem =
CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize());
llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
auto *VLA = CGF.getContext().getAsVariableArrayType(PrivTy);
auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
CGF.EmitVariablyModifiedType(PrivTy);
}
}
Scope.Privatize();
IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (auto *E : ReductionOps) {
if ((*IPriv)->getType()->isArrayType()) {
// Emit reduction for array section.
auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(
CGF, (*IPriv)->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
emitReductionCombiner(CGF, E);
});
} else
// Emit reduction for array subscript or single variable.
emitReductionCombiner(CGF, E);
++IPriv;
++ILHS;
++IRHS;
}
Scope.ForceCleanup();
CGF.FinishFunction();
return Fn;
}
static void emitSingleReductionCombiner(CodeGenFunction &CGF,
const Expr *ReductionOp,
const Expr *PrivateRef,
const DeclRefExpr *LHS,
const DeclRefExpr *RHS) {
if (PrivateRef->getType()->isArrayType()) {
// Emit reduction for array section.
auto *LHSVar = cast<VarDecl>(LHS->getDecl());
auto *RHSVar = cast<VarDecl>(RHS->getDecl());
EmitOMPAggregateReduction(
CGF, PrivateRef->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
emitReductionCombiner(CGF, ReductionOp);
});
} else
// Emit reduction for array subscript or single variable.
emitReductionCombiner(CGF, ReductionOp);
}
void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps,
bool WithNowait, bool SimpleReduction) {
if (!CGF.HaveInsertPoint())
return;
// Next code should be emitted for reduction:
//
// static kmp_critical_name lock = { 0 };
//
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
// ...
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
// *(Type<n>-1*)rhs[<n>-1]);
// }
//
// ...
// void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
// switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>)) {
// case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
// case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
// break;
// default:;
// }
//
// if SimpleReduction is true, only the next code is generated:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
auto &C = CGM.getContext();
if (SimpleReduction) {
CodeGenFunction::RunCleanupsScope Scope(CGF);
auto IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (auto *E : ReductionOps) {
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
cast<DeclRefExpr>(*IRHS));
++IPriv;
++ILHS;
++IRHS;
}
return;
}
// 1. Build a list of reduction variables.
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
auto Size = RHSExprs.size();
for (auto *E : Privates) {
if (E->getType()->isVariablyModifiedType())
// Reserve place for array size.
++Size;
}
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
QualType ReductionArrayTy =
C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Address ReductionList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
auto IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
Address Elem =
CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize());
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
Elem);
if ((*IPriv)->getType()->isVariablyModifiedType()) {
// Store array size.
++Idx;
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
CGF.getPointerSize());
llvm::Value *Size = CGF.Builder.CreateIntCast(
CGF.getVLASize(
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
.first,
CGF.SizeTy, /*isSigned=*/false);
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
Elem);
}
}
// 2. Emit reduce_func().
auto *ReductionFn = emitReductionFunction(
CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
LHSExprs, RHSExprs, ReductionOps);
// 3. Create static kmp_critical_name lock = { 0 };
auto *Lock = getCriticalRegionLock(".reduction");
// 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>);
auto *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
auto *ThreadId = getThreadID(CGF, Loc);
auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
auto *RL =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList.getPointer(),
CGF.VoidPtrTy);
llvm::Value *Args[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
ReductionArrayTySize, // size_type sizeof(RedList)
RL, // void *RedList
ReductionFn, // void (*) (void *, void *) <reduce_func>
Lock // kmp_critical_name *&<lock>
};
auto Res = CGF.EmitRuntimeCall(
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
: OMPRTL__kmpc_reduce),
Args);
// 5. Build switch(res)
auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
// 6. Build case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
CGF.EmitBlock(Case1BB);
// Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps](
CodeGenFunction &CGF, PrePostActionTy &Action) {
auto IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (auto *E : ReductionOps) {
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
cast<DeclRefExpr>(*IRHS));
++IPriv;
++ILHS;
++IRHS;
}
};
RegionCodeGenTy RCG(CodeGen);
CommonActionTy Action(
nullptr, llvm::None,
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
: OMPRTL__kmpc_end_reduce),
EndArgs);
RCG.setAction(Action);
RCG(CGF);
CGF.EmitBranch(DefaultBB);
// 7. Build case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// break;
auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
CGF.EmitBlock(Case2BB);
auto &&AtomicCodeGen = [Loc, &Privates, &LHSExprs, &RHSExprs, &ReductionOps](
CodeGenFunction &CGF, PrePostActionTy &Action) {
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
auto IPriv = Privates.begin();
for (auto *E : ReductionOps) {
const Expr *XExpr = nullptr;
const Expr *EExpr = nullptr;
const Expr *UpExpr = nullptr;
BinaryOperatorKind BO = BO_Comma;
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Assign) {
XExpr = BO->getLHS();
UpExpr = BO->getRHS();
}
}
// Try to emit update expression as a simple atomic.
auto *RHSExpr = UpExpr;
if (RHSExpr) {
// Analyze RHS part of the whole expression.
if (auto *ACO = dyn_cast<AbstractConditionalOperator>(
RHSExpr->IgnoreParenImpCasts())) {
// If this is a conditional operator, analyze its condition for
// min/max reduction operator.
RHSExpr = ACO->getCond();
}
if (auto *BORHS =
dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
EExpr = BORHS->getRHS();
BO = BORHS->getOpcode();
}
}
if (XExpr) {
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto &&AtomicRedGen = [BO, VD, IPriv,
Loc](CodeGenFunction &CGF, const Expr *XExpr,
const Expr *EExpr, const Expr *UpExpr) {
LValue X = CGF.EmitLValue(XExpr);
RValue E;
if (EExpr)
E = CGF.EmitAnyExpr(EExpr);
CGF.EmitOMPAtomicSimpleUpdateExpr(
X, E, BO, /*IsXLHSInRHSPart=*/true,
llvm::AtomicOrdering::Monotonic, Loc,
[&CGF, UpExpr, VD, IPriv, Loc](RValue XRValue) {
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(
VD, [&CGF, VD, XRValue, Loc]() -> Address {
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
CGF.emitOMPSimpleStore(
CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
VD->getType().getNonReferenceType(), Loc);
return LHSTemp;
});
(void)PrivateScope.Privatize();
return CGF.EmitAnyExpr(UpExpr);
});
};
if ((*IPriv)->getType()->isArrayType()) {
// Emit atomic reduction for array section.
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
AtomicRedGen, XExpr, EExpr, UpExpr);
} else
// Emit atomic reduction for array subscript or single variable.
AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
} else {
// Emit as a critical region.
auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *) {
auto &RT = CGF.CGM.getOpenMPRuntime();
RT.emitCriticalRegion(
CGF, ".atomic_reduction",
[=](CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
emitReductionCombiner(CGF, E);
},
Loc);
};
if ((*IPriv)->getType()->isArrayType()) {
auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
CritRedGen);
} else
CritRedGen(CGF, nullptr, nullptr, nullptr);
}
++ILHS;
++IRHS;
++IPriv;
}
};
RegionCodeGenTy AtomicRCG(AtomicCodeGen);
if (!WithNowait) {
// Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
CommonActionTy Action(nullptr, llvm::None,
createRuntimeFunction(OMPRTL__kmpc_end_reduce),
EndArgs);
AtomicRCG.setAction(Action);
AtomicRCG(CGF);
} else
AtomicRCG(CGF);
CGF.EmitBranch(DefaultBB);
CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
}
void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
// global_tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
// Ignore return result until untied tasks are supported.
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
}
void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
OpenMPDirectiveKind InnerKind,
const RegionCodeGenTy &CodeGen,
bool HasCancel) {
if (!CGF.HaveInsertPoint())
return;
InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
}
namespace {
enum RTCancelKind {
CancelNoreq = 0,
CancelParallel = 1,
CancelLoop = 2,
CancelSections = 3,
CancelTaskgroup = 4
};
} // anonymous namespace
static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
RTCancelKind CancelKind = CancelNoreq;
if (CancelRegion == OMPD_parallel)
CancelKind = CancelParallel;
else if (CancelRegion == OMPD_for)
CancelKind = CancelLoop;
else if (CancelRegion == OMPD_sections)
CancelKind = CancelSections;
else {
assert(CancelRegion == OMPD_taskgroup);
CancelKind = CancelTaskgroup;
}
return CancelKind;
}
void CGOpenMPRuntime::emitCancellationPointCall(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind CancelRegion) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind);
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (OMPRegionInfo->hasCancel()) {
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
auto *Result = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
// if (__kmpc_cancellationpoint()) {
// __kmpc_cancel_barrier();
// exit from construct;
// }
auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
auto *ContBB = CGF.createBasicBlock(".cancel.continue");
auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// __kmpc_cancel_barrier();
emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
// exit from construct;
auto CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
}
}
void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
const Expr *IfCond,
OpenMPDirectiveKind CancelRegion) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind);
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
PrePostActionTy &) {
auto &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *Args[] = {
RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
auto *Result = CGF.EmitRuntimeCall(
RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
// if (__kmpc_cancel()) {
// __kmpc_cancel_barrier();
// exit from construct;
// }
auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
auto *ContBB = CGF.createBasicBlock(".cancel.continue");
auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// __kmpc_cancel_barrier();
RT.emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
// exit from construct;
auto CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
};
if (IfCond)
emitOMPIfClause(CGF, IfCond, ThenGen,
[](CodeGenFunction &, PrePostActionTy &) {});
else {
RegionCodeGenTy ThenRCG(ThenGen);
ThenRCG(CGF);
}
}
}
/// \brief Obtain information that uniquely identifies a target entry. This
/// consists of the file and device IDs as well as line number associated with
/// the relevant entry source location.
static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
unsigned &DeviceID, unsigned &FileID,
unsigned &LineNum) {
auto &SM = C.getSourceManager();
// The loc should be always valid and have a file ID (the user cannot use
// #pragma directives in macros)
assert(Loc.isValid() && "Source location is expected to be always valid.");
assert(Loc.isFileID() && "Source location is expected to refer to a file.");
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
assert(PLoc.isValid() && "Source location is expected to be always valid.");
llvm::sys::fs::UniqueID ID;
if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
llvm_unreachable("Source file with target region no longer exists!");
DeviceID = ID.getDevice();
FileID = ID.getFile();
LineNum = PLoc.getLine();
}
void CGOpenMPRuntime::emitTargetOutlinedFunction(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
assert(!ParentName.empty() && "Invalid target region parent name!");
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
IsOffloadEntry, CodeGen);
}
void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
// Create a unique name for the entry function using the source location
// information of the current target region. The name will be something like:
//
// __omp_offloading_DD_FFFF_PP_lBB
//
// where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
// mangled name of the function that encloses the target region and BB is the
// line number of the target region.
unsigned DeviceID;
unsigned FileID;
unsigned Line;
getTargetEntryUniqueInfo(CGM.getContext(), D.getLocStart(), DeviceID, FileID,
Line);
SmallString<64> EntryFnName;
{
llvm::raw_svector_ostream OS(EntryFnName);
OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
<< llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
}
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
CodeGenFunction CGF(CGM, true);
CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
// If this target outline function is not an offload entry, we don't need to
// register it.
if (!IsOffloadEntry)
return;
// The target region ID is used by the runtime library to identify the current
// target region, so it only has to be unique and not necessarily point to
// anything. It could be the pointer to the outlined function that implements
// the target region, but we aren't using that so that the compiler doesn't
// need to keep that, and could therefore inline the host function if proven
// worthwhile during optimization. In the other hand, if emitting code for the
// device, the ID has to be the function address so that it can retrieved from
// the offloading entry and launched by the runtime library. We also mark the
// outlined function to have external linkage in case we are emitting code for
// the device, because these functions will be entry points to the device.
if (CGM.getLangOpts().OpenMPIsDevice) {
OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
OutlinedFn->setLinkage(llvm::GlobalValue::ExternalLinkage);
} else
OutlinedFnID = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage,
llvm::Constant::getNullValue(CGM.Int8Ty), ".omp_offload.region_id");
// Register the information for the entry associated with this target region.
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID);
}
/// discard all CompoundStmts intervening between two constructs
static const Stmt *ignoreCompoundStmts(const Stmt *Body) {
while (auto *CS = dyn_cast_or_null<CompoundStmt>(Body))
Body = CS->body_front();
return Body;
}
/// \brief Emit the num_teams clause of an enclosed teams directive at the
/// target region scope. If there is no teams directive associated with the
/// target directive, or if there is no num_teams clause associated with the
/// enclosed teams directive, return nullptr.
static llvm::Value *
emitNumTeamsClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime,
CodeGenFunction &CGF,
const OMPExecutableDirective &D) {
assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
"teams directive expected to be "
"emitted only for the host!");
// FIXME: For the moment we do not support combined directives with target and
// teams, so we do not expect to get any num_teams clause in the provided
// directive. Once we support that, this assertion can be replaced by the
// actual emission of the clause expression.
assert(D.getSingleClause<OMPNumTeamsClause>() == nullptr &&
"Not expecting clause in directive.");
// If the current target region has a teams region enclosed, we need to get
// the number of teams to pass to the runtime function call. This is done
// by generating the expression in a inlined region. This is required because
// the expression is captured in the enclosing target environment when the
// teams directive is not combined with target.
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
// FIXME: Accommodate other combined directives with teams when they become
// available.
if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
ignoreCompoundStmts(CS.getCapturedStmt()))) {
if (auto *NTE = TeamsDir->getSingleClause<OMPNumTeamsClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams());
return CGF.Builder.CreateIntCast(NumTeams, CGF.Int32Ty,
/*IsSigned=*/true);
}
// If we have an enclosed teams directive but no num_teams clause we use
// the default value 0.
return CGF.Builder.getInt32(0);
}
// No teams associated with the directive.
return nullptr;
}
/// \brief Emit the thread_limit clause of an enclosed teams directive at the
/// target region scope. If there is no teams directive associated with the
/// target directive, or if there is no thread_limit clause associated with the
/// enclosed teams directive, return nullptr.
static llvm::Value *
emitThreadLimitClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime,
CodeGenFunction &CGF,
const OMPExecutableDirective &D) {
assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
"teams directive expected to be "
"emitted only for the host!");
// FIXME: For the moment we do not support combined directives with target and
// teams, so we do not expect to get any thread_limit clause in the provided
// directive. Once we support that, this assertion can be replaced by the
// actual emission of the clause expression.
assert(D.getSingleClause<OMPThreadLimitClause>() == nullptr &&
"Not expecting clause in directive.");
// If the current target region has a teams region enclosed, we need to get
// the thread limit to pass to the runtime function call. This is done
// by generating the expression in a inlined region. This is required because
// the expression is captured in the enclosing target environment when the
// teams directive is not combined with target.
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
// FIXME: Accommodate other combined directives with teams when they become
// available.
if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
ignoreCompoundStmts(CS.getCapturedStmt()))) {
if (auto *TLE = TeamsDir->getSingleClause<OMPThreadLimitClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit());
return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty,
/*IsSigned=*/true);
}
// If we have an enclosed teams directive but no thread_limit clause we use
// the default value 0.
return CGF.Builder.getInt32(0);
}
// No teams associated with the directive.
return nullptr;
}
namespace {
// \brief Utility to handle information from clauses associated with a given
// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
// It provides a convenient interface to obtain the information and generate
// code for that information.
class MappableExprsHandler {
public:
/// \brief Values for bit flags used to specify the mapping type for
/// offloading.
enum OpenMPOffloadMappingFlags {
/// \brief Allocate memory on the device and move data from host to device.
OMP_MAP_TO = 0x01,
/// \brief Allocate memory on the device and move data from device to host.
OMP_MAP_FROM = 0x02,
/// \brief Always perform the requested mapping action on the element, even
/// if it was already mapped before.
OMP_MAP_ALWAYS = 0x04,
/// \brief Delete the element from the device environment, ignoring the
/// current reference count associated with the element.
OMP_MAP_DELETE = 0x08,
/// \brief The element being mapped is a pointer, therefore the pointee
/// should be mapped as well.
OMP_MAP_IS_PTR = 0x10,
/// \brief This flags signals that an argument is the first one relating to
/// a map/private clause expression. For some cases a single
/// map/privatization results in multiple arguments passed to the runtime
/// library.
OMP_MAP_FIRST_REF = 0x20,
/// \brief Signal that the runtime library has to return the device pointer
/// in the current position for the data being mapped.
OMP_MAP_RETURN_PTR = 0x40,
/// \brief This flag signals that the reference being passed is a pointer to
/// private data.
OMP_MAP_PRIVATE_PTR = 0x80,
/// \brief Pass the element to the device by value.
OMP_MAP_PRIVATE_VAL = 0x100,
};
/// Class that associates information with a base pointer to be passed to the
/// runtime library.
class BasePointerInfo {
/// The base pointer.
llvm::Value *Ptr = nullptr;
/// The base declaration that refers to this device pointer, or null if
/// there is none.
const ValueDecl *DevPtrDecl = nullptr;
public:
BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
: Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
llvm::Value *operator*() const { return Ptr; }
const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
};
typedef SmallVector<BasePointerInfo, 16> MapBaseValuesArrayTy;
typedef SmallVector<llvm::Value *, 16> MapValuesArrayTy;
typedef SmallVector<unsigned, 16> MapFlagsArrayTy;
private:
/// \brief Directive from where the map clauses were extracted.
const OMPExecutableDirective &CurDir;
/// \brief Function the directive is being generated for.
CodeGenFunction &CGF;
/// \brief Set of all first private variables in the current directive.
llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls;
/// Map between device pointer declarations and their expression components.
/// The key value for declarations in 'this' is null.
llvm::DenseMap<
const ValueDecl *,
SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
DevPointersMap;
llvm::Value *getExprTypeSize(const Expr *E) const {
auto ExprTy = E->getType().getCanonicalType();
// Reference types are ignored for mapping purposes.
if (auto *RefTy = ExprTy->getAs<ReferenceType>())
ExprTy = RefTy->getPointeeType().getCanonicalType();
// Given that an array section is considered a built-in type, we need to
// do the calculation based on the length of the section instead of relying
// on CGF.getTypeSize(E->getType()).
if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
OAE->getBase()->IgnoreParenImpCasts())
.getCanonicalType();
// If there is no length associated with the expression, that means we
// are using the whole length of the base.
if (!OAE->getLength() && OAE->getColonLoc().isValid())
return CGF.getTypeSize(BaseTy);
llvm::Value *ElemSize;
if (auto *PTy = BaseTy->getAs<PointerType>())
ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
else {
auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
assert(ATy && "Expecting array type if not a pointer type.");
ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
}
// If we don't have a length at this point, that is because we have an
// array section with a single element.
if (!OAE->getLength())
return ElemSize;
auto *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
LengthVal =
CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
}
return CGF.getTypeSize(ExprTy);
}
/// \brief Return the corresponding bits for a given map clause modifier. Add
/// a flag marking the map as a pointer if requested. Add a flag marking the
/// map as the first one of a series of maps that relate to the same map
/// expression.
unsigned getMapTypeBits(OpenMPMapClauseKind MapType,
OpenMPMapClauseKind MapTypeModifier, bool AddPtrFlag,
bool AddIsFirstFlag) const {
unsigned Bits = 0u;
switch (MapType) {
case OMPC_MAP_alloc:
case OMPC_MAP_release:
// alloc and release is the default behavior in the runtime library, i.e.
// if we don't pass any bits alloc/release that is what the runtime is
// going to do. Therefore, we don't need to signal anything for these two
// type modifiers.
break;
case OMPC_MAP_to:
Bits = OMP_MAP_TO;
break;
case OMPC_MAP_from:
Bits = OMP_MAP_FROM;
break;
case OMPC_MAP_tofrom:
Bits = OMP_MAP_TO | OMP_MAP_FROM;
break;
case OMPC_MAP_delete:
Bits = OMP_MAP_DELETE;
break;
default:
llvm_unreachable("Unexpected map type!");
break;
}
if (AddPtrFlag)
Bits |= OMP_MAP_IS_PTR;
if (AddIsFirstFlag)
Bits |= OMP_MAP_FIRST_REF;
if (MapTypeModifier == OMPC_MAP_always)
Bits |= OMP_MAP_ALWAYS;
return Bits;
}
/// \brief Return true if the provided expression is a final array section. A
/// final array section, is one whose length can't be proved to be one.
bool isFinalArraySectionExpression(const Expr *E) const {
auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
// It is not an array section and therefore not a unity-size one.
if (!OASE)
return false;
// An array section with no colon always refer to a single element.
if (OASE->getColonLoc().isInvalid())
return false;
auto *Length = OASE->getLength();
// If we don't have a length we have to check if the array has size 1
// for this dimension. Also, we should always expect a length if the
// base type is pointer.
if (!Length) {
auto BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
OASE->getBase()->IgnoreParenImpCasts())
.getCanonicalType();
if (auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
return ATy->getSize().getSExtValue() != 1;
// If we don't have a constant dimension length, we have to consider
// the current section as having any size, so it is not necessarily
// unitary. If it happen to be unity size, that's user fault.
return true;
}
// Check if the length evaluates to 1.
llvm::APSInt ConstLength;
if (!Length->EvaluateAsInt(ConstLength, CGF.getContext()))
return true; // Can have more that size 1.
return ConstLength.getSExtValue() != 1;
}
/// \brief Generate the base pointers, section pointers, sizes and map type
/// bits for the provided map type, map modifier, and expression components.
/// \a IsFirstComponent should be set to true if the provided set of
/// components is the first associated with a capture.
void generateInfoForComponentList(
OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier,
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
bool IsFirstComponentList) const {
// The following summarizes what has to be generated for each map and the
// types bellow. The generated information is expressed in this order:
// base pointer, section pointer, size, flags
// (to add to the ones that come from the map type and modifier).
//
// double d;
// int i[100];
// float *p;
//
// struct S1 {
// int i;
// float f[50];
// }
// struct S2 {
// int i;
// float f[50];
// S1 s;
// double *p;
// struct S2 *ps;
// }
// S2 s;
// S2 *ps;
//
// map(d)
// &d, &d, sizeof(double), noflags
//
// map(i)
// &i, &i, 100*sizeof(int), noflags
//
// map(i[1:23])
// &i(=&i[0]), &i[1], 23*sizeof(int), noflags
//
// map(p)
// &p, &p, sizeof(float*), noflags
//
// map(p[1:24])
// p, &p[1], 24*sizeof(float), noflags
//
// map(s)
// &s, &s, sizeof(S2), noflags
//
// map(s.i)
// &s, &(s.i), sizeof(int), noflags
//
// map(s.s.f)
// &s, &(s.i.f), 50*sizeof(int), noflags
//
// map(s.p)
// &s, &(s.p), sizeof(double*), noflags
//
// map(s.p[:22], s.a s.b)
// &s, &(s.p), sizeof(double*), noflags
// &(s.p), &(s.p[0]), 22*sizeof(double), ptr_flag + extra_flag
//
// map(s.ps)
// &s, &(s.ps), sizeof(S2*), noflags
//
// map(s.ps->s.i)
// &s, &(s.ps), sizeof(S2*), noflags
// &(s.ps), &(s.ps->s.i), sizeof(int), ptr_flag + extra_flag
//
// map(s.ps->ps)
// &s, &(s.ps), sizeof(S2*), noflags
// &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
//
// map(s.ps->ps->ps)
// &s, &(s.ps), sizeof(S2*), noflags
// &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
// &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
//
// map(s.ps->ps->s.f[:22])
// &s, &(s.ps), sizeof(S2*), noflags
// &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
// &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + extra_flag
//
// map(ps)
// &ps, &ps, sizeof(S2*), noflags
//
// map(ps->i)
// ps, &(ps->i), sizeof(int), noflags
//
// map(ps->s.f)
// ps, &(ps->s.f[0]), 50*sizeof(float), noflags
//
// map(ps->p)
// ps, &(ps->p), sizeof(double*), noflags
//
// map(ps->p[:22])
// ps, &(ps->p), sizeof(double*), noflags
// &(ps->p), &(ps->p[0]), 22*sizeof(double), ptr_flag + extra_flag
//
// map(ps->ps)
// ps, &(ps->ps), sizeof(S2*), noflags
//
// map(ps->ps->s.i)
// ps, &(ps->ps), sizeof(S2*), noflags
// &(ps->ps), &(ps->ps->s.i), sizeof(int), ptr_flag + extra_flag
//
// map(ps->ps->ps)
// ps, &(ps->ps), sizeof(S2*), noflags
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
//
// map(ps->ps->ps->ps)
// ps, &(ps->ps), sizeof(S2*), noflags
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
// &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
//
// map(ps->ps->ps->s.f[:22])
// ps, &(ps->ps), sizeof(S2*), noflags
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
// &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), ptr_flag +
// extra_flag
// Track if the map information being generated is the first for a capture.
bool IsCaptureFirstInfo = IsFirstComponentList;
// Scan the components from the base to the complete expression.
auto CI = Components.rbegin();
auto CE = Components.rend();
auto I = CI;
// Track if the map information being generated is the first for a list of
// components.
bool IsExpressionFirstInfo = true;
llvm::Value *BP = nullptr;
if (auto *ME = dyn_cast<MemberExpr>(I->getAssociatedExpression())) {
// The base is the 'this' pointer. The content of the pointer is going
// to be the base of the field being mapped.
BP = CGF.EmitScalarExpr(ME->getBase());
} else {
// The base is the reference to the variable.
// BP = &Var.
BP = CGF.EmitLValue(cast<DeclRefExpr>(I->getAssociatedExpression()))
.getPointer();
// If the variable is a pointer and is being dereferenced (i.e. is not
// the last component), the base has to be the pointer itself, not its
// reference. References are ignored for mapping purposes.
QualType Ty =
I->getAssociatedDeclaration()->getType().getNonReferenceType();
if (Ty->isAnyPointerType() && std::next(I) != CE) {
auto PtrAddr = CGF.MakeNaturalAlignAddrLValue(BP, Ty);
BP = CGF.EmitLoadOfPointerLValue(PtrAddr.getAddress(),
Ty->castAs<PointerType>())
.getPointer();
// We do not need to generate individual map information for the
// pointer, it can be associated with the combined storage.
++I;
}
}
for (; I != CE; ++I) {
auto Next = std::next(I);
// We need to generate the addresses and sizes if this is the last
// component, if the component is a pointer or if it is an array section
// whose length can't be proved to be one. If this is a pointer, it
// becomes the base address for the following components.
// A final array section, is one whose length can't be proved to be one.
bool IsFinalArraySection =
isFinalArraySectionExpression(I->getAssociatedExpression());
// Get information on whether the element is a pointer. Have to do a
// special treatment for array sections given that they are built-in
// types.
const auto *OASE =
dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
bool IsPointer =
(OASE &&
OMPArraySectionExpr::getBaseOriginalType(OASE)
.getCanonicalType()
->isAnyPointerType()) ||
I->getAssociatedExpression()->getType()->isAnyPointerType();
if (Next == CE || IsPointer || IsFinalArraySection) {
// If this is not the last component, we expect the pointer to be
// associated with an array expression or member expression.
assert((Next == CE ||
isa<MemberExpr>(Next->getAssociatedExpression()) ||
isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
"Unexpected expression");
auto *LB = CGF.EmitLValue(I->getAssociatedExpression()).getPointer();
auto *Size = getExprTypeSize(I->getAssociatedExpression());
// If we have a member expression and the current component is a
// reference, we have to map the reference too. Whenever we have a
// reference, the section that reference refers to is going to be a
// load instruction from the storage assigned to the reference.
if (isa<MemberExpr>(I->getAssociatedExpression()) &&
I->getAssociatedDeclaration()->getType()->isReferenceType()) {
auto *LI = cast<llvm::LoadInst>(LB);
auto *RefAddr = LI->getPointerOperand();
BasePointers.push_back(BP);
Pointers.push_back(RefAddr);
Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
Types.push_back(getMapTypeBits(
/*MapType*/ OMPC_MAP_alloc, /*MapTypeModifier=*/OMPC_MAP_unknown,
!IsExpressionFirstInfo, IsCaptureFirstInfo));
IsExpressionFirstInfo = false;
IsCaptureFirstInfo = false;
// The reference will be the next base address.
BP = RefAddr;
}
BasePointers.push_back(BP);
Pointers.push_back(LB);
Sizes.push_back(Size);
// We need to add a pointer flag for each map that comes from the
// same expression except for the first one. We also need to signal
// this map is the first one that relates with the current capture
// (there is a set of entries for each capture).
Types.push_back(getMapTypeBits(MapType, MapTypeModifier,
!IsExpressionFirstInfo,
IsCaptureFirstInfo));
// If we have a final array section, we are done with this expression.
if (IsFinalArraySection)
break;
// The pointer becomes the base for the next element.
if (Next != CE)
BP = LB;
IsExpressionFirstInfo = false;
IsCaptureFirstInfo = false;
continue;
}
}
}
/// \brief Return the adjusted map modifiers if the declaration a capture
/// refers to appears in a first-private clause. This is expected to be used
/// only with directives that start with 'target'.
unsigned adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap,
unsigned CurrentModifiers) {
assert(Cap.capturesVariable() && "Expected capture by reference only!");
// A first private variable captured by reference will use only the
// 'private ptr' and 'map to' flag. Return the right flags if the captured
// declaration is known as first-private in this handler.
if (FirstPrivateDecls.count(Cap.getCapturedVar()))
return MappableExprsHandler::OMP_MAP_PRIVATE_PTR |
MappableExprsHandler::OMP_MAP_TO;
// We didn't modify anything.
return CurrentModifiers;
}
public:
MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
: CurDir(Dir), CGF(CGF) {
// Extract firstprivate clause information.
for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
for (const auto *D : C->varlists())
FirstPrivateDecls.insert(
cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
// Extract device pointer clause information.
for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
for (auto L : C->component_lists())
DevPointersMap[L.first].push_back(L.second);
}
/// \brief Generate all the base pointers, section pointers, sizes and map
/// types for the extracted mappable expressions. Also, for each item that
/// relates with a device pointer, a pair of the relevant declaration and
/// index where it occurs is appended to the device pointers info array.
void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
MapFlagsArrayTy &Types) const {
BasePointers.clear();
Pointers.clear();
Sizes.clear();
Types.clear();
struct MapInfo {
/// Kind that defines how a device pointer has to be returned.
enum ReturnPointerKind {
// Don't have to return any pointer.
RPK_None,
// Pointer is the base of the declaration.
RPK_Base,
// Pointer is a member of the base declaration - 'this'
RPK_Member,
// Pointer is a reference and a member of the base declaration - 'this'
RPK_MemberReference,
};
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType;
OpenMPMapClauseKind MapTypeModifier;
ReturnPointerKind ReturnDevicePointer;
MapInfo()
: MapType(OMPC_MAP_unknown), MapTypeModifier(OMPC_MAP_unknown),
ReturnDevicePointer(RPK_None) {}
MapInfo(
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier,
ReturnPointerKind ReturnDevicePointer)
: Components(Components), MapType(MapType),
MapTypeModifier(MapTypeModifier),
ReturnDevicePointer(ReturnDevicePointer) {}
};
// We have to process the component lists that relate with the same
// declaration in a single chunk so that we can generate the map flags
// correctly. Therefore, we organize all lists in a map.
llvm::DenseMap<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
// Helper function to fill the information map for the different supported
// clauses.
auto &&InfoGen = [&Info](
const ValueDecl *D,
OMPClauseMappableExprCommon::MappableExprComponentListRef L,
OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapModifier,
MapInfo::ReturnPointerKind ReturnDevicePointer) {
const ValueDecl *VD =
D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
Info[VD].push_back({L, MapType, MapModifier, ReturnDevicePointer});
};
// FIXME: MSVC 2013 seems to require this-> to find member CurDir.
for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
for (auto L : C->component_lists())
InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifier(),
MapInfo::RPK_None);
for (auto *C : this->CurDir.getClausesOfKind<OMPToClause>())
for (auto L : C->component_lists())
InfoGen(L.first, L.second, OMPC_MAP_to, OMPC_MAP_unknown,
MapInfo::RPK_None);
for (auto *C : this->CurDir.getClausesOfKind<OMPFromClause>())
for (auto L : C->component_lists())
InfoGen(L.first, L.second, OMPC_MAP_from, OMPC_MAP_unknown,
MapInfo::RPK_None);
// Look at the use_device_ptr clause information and mark the existing map
// entries as such. If there is no map information for an entry in the
// use_device_ptr list, we create one with map type 'alloc' and zero size
// section. It is the user fault if that was not mapped before.
// FIXME: MSVC 2013 seems to require this-> to find member CurDir.
for (auto *C : this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>())
for (auto L : C->component_lists()) {
assert(!L.second.empty() && "Not expecting empty list of components!");
const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
VD = cast<ValueDecl>(VD->getCanonicalDecl());
auto *IE = L.second.back().getAssociatedExpression();
// If the first component is a member expression, we have to look into
// 'this', which maps to null in the map of map information. Otherwise
// look directly for the information.
auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
// We potentially have map information for this declaration already.
// Look for the first set of components that refer to it.
if (It != Info.end()) {
auto CI = std::find_if(
It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
return MI.Components.back().getAssociatedDeclaration() == VD;
});
// If we found a map entry, signal that the pointer has to be returned
// and move on to the next declaration.
if (CI != It->second.end()) {
CI->ReturnDevicePointer = isa<MemberExpr>(IE)
? (VD->getType()->isReferenceType()
? MapInfo::RPK_MemberReference
: MapInfo::RPK_Member)
: MapInfo::RPK_Base;
continue;
}
}
// We didn't find any match in our map information - generate a zero
// size array section.
// FIXME: MSVC 2013 seems to require this-> to find member CGF.
llvm::Value *Ptr =
this->CGF
.EmitLoadOfLValue(this->CGF.EmitLValue(IE), SourceLocation())
.getScalarVal();
BasePointers.push_back({Ptr, VD});
Pointers.push_back(Ptr);
Sizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy));
Types.push_back(OMP_MAP_RETURN_PTR | OMP_MAP_FIRST_REF);
}
for (auto &M : Info) {
// We need to know when we generate information for the first component
// associated with a capture, because the mapping flags depend on it.
bool IsFirstComponentList = true;
for (MapInfo &L : M.second) {
assert(!L.Components.empty() &&
"Not expecting declaration with no component lists.");
// Remember the current base pointer index.
unsigned CurrentBasePointersIdx = BasePointers.size();
// FIXME: MSVC 2013 seems to require this-> to find the member method.
this->generateInfoForComponentList(L.MapType, L.MapTypeModifier,
L.Components, BasePointers, Pointers,
Sizes, Types, IsFirstComponentList);
// If this entry relates with a device pointer, set the relevant
// declaration and add the 'return pointer' flag.
if (IsFirstComponentList &&
L.ReturnDevicePointer != MapInfo::RPK_None) {
// If the pointer is not the base of the map, we need to skip the
// base. If it is a reference in a member field, we also need to skip
// the map of the reference.
if (L.ReturnDevicePointer != MapInfo::RPK_Base) {
++CurrentBasePointersIdx;
if (L.ReturnDevicePointer == MapInfo::RPK_MemberReference)
++CurrentBasePointersIdx;
}
assert(BasePointers.size() > CurrentBasePointersIdx &&
"Unexpected number of mapped base pointers.");
auto *RelevantVD = L.Components.back().getAssociatedDeclaration();
assert(RelevantVD &&
"No relevant declaration related with device pointer??");
BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PTR;
}
IsFirstComponentList = false;
}
}
}
/// \brief Generate the base pointers, section pointers, sizes and map types
/// associated to a given capture.
void generateInfoForCapture(const CapturedStmt::Capture *Cap,
llvm::Value *Arg,
MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers,
MapValuesArrayTy &Sizes,
MapFlagsArrayTy &Types) const {
assert(!Cap->capturesVariableArrayType() &&
"Not expecting to generate map info for a variable array type!");
BasePointers.clear();
Pointers.clear();
Sizes.clear();
Types.clear();
// We need to know when we generating information for the first component
// associated with a capture, because the mapping flags depend on it.
bool IsFirstComponentList = true;
const ValueDecl *VD =
Cap->capturesThis()
? nullptr
: cast<ValueDecl>(Cap->getCapturedVar()->getCanonicalDecl());
// If this declaration appears in a is_device_ptr clause we just have to
// pass the pointer by value. If it is a reference to a declaration, we just
// pass its value, otherwise, if it is a member expression, we need to map
// 'to' the field.
if (!VD) {
auto It = DevPointersMap.find(VD);
if (It != DevPointersMap.end()) {
for (auto L : It->second) {
generateInfoForComponentList(
/*MapType=*/OMPC_MAP_to, /*MapTypeModifier=*/OMPC_MAP_unknown, L,
BasePointers, Pointers, Sizes, Types, IsFirstComponentList);
IsFirstComponentList = false;
}
return;
}
} else if (DevPointersMap.count(VD)) {
BasePointers.push_back({Arg, VD});
Pointers.push_back(Arg);
Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
Types.push_back(OMP_MAP_PRIVATE_VAL | OMP_MAP_FIRST_REF);
return;
}
// FIXME: MSVC 2013 seems to require this-> to find member CurDir.
for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
for (auto L : C->decl_component_lists(VD)) {
assert(L.first == VD &&
"We got information for the wrong declaration??");
assert(!L.second.empty() &&
"Not expecting declaration with no component lists.");
generateInfoForComponentList(C->getMapType(), C->getMapTypeModifier(),
L.second, BasePointers, Pointers, Sizes,
Types, IsFirstComponentList);
IsFirstComponentList = false;
}
return;
}
/// \brief Generate the default map information for a given capture \a CI,
/// record field declaration \a RI and captured value \a CV.
void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
const FieldDecl &RI, llvm::Value *CV,
MapBaseValuesArrayTy &CurBasePointers,
MapValuesArrayTy &CurPointers,
MapValuesArrayTy &CurSizes,
MapFlagsArrayTy &CurMapTypes) {
// Do the default mapping.
if (CI.capturesThis()) {
CurBasePointers.push_back(CV);
CurPointers.push_back(CV);
const PointerType *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType()));
// Default map type.
CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
} else if (CI.capturesVariableByCopy()) {
CurBasePointers.push_back(CV);
CurPointers.push_back(CV);
if (!RI.getType()->isAnyPointerType()) {
// We have to signal to the runtime captures passed by value that are
// not pointers.
CurMapTypes.push_back(OMP_MAP_PRIVATE_VAL);
CurSizes.push_back(CGF.getTypeSize(RI.getType()));
} else {
// Pointers are implicitly mapped with a zero size and no flags
// (other than first map that is added for all implicit maps).
CurMapTypes.push_back(0u);
CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy));
}
} else {
assert(CI.capturesVariable() && "Expected captured reference.");
CurBasePointers.push_back(CV);
CurPointers.push_back(CV);
const ReferenceType *PtrTy =
cast<ReferenceType>(RI.getType().getTypePtr());
QualType ElementType = PtrTy->getPointeeType();
CurSizes.push_back(CGF.getTypeSize(ElementType));
// The default map type for a scalar/complex type is 'to' because by
// default the value doesn't have to be retrieved. For an aggregate
// type, the default is 'tofrom'.
CurMapTypes.push_back(ElementType->isAggregateType()
? (OMP_MAP_TO | OMP_MAP_FROM)
: OMP_MAP_TO);
// If we have a capture by reference we may need to add the private
// pointer flag if the base declaration shows in some first-private
// clause.
CurMapTypes.back() =
adjustMapModifiersForPrivateClauses(CI, CurMapTypes.back());
}
// Every default map produces a single argument, so, it is always the
// first one.
CurMapTypes.back() |= OMP_MAP_FIRST_REF;
}
};
enum OpenMPOffloadingReservedDeviceIDs {
/// \brief Device ID if the device was not defined, runtime should get it
/// from environment variables in the spec.
OMP_DEVICEID_UNDEF = -1,
};
} // anonymous namespace
/// \brief Emit the arrays used to pass the captures and map information to the
/// offloading runtime library. If there is no map or capture information,
/// return nullptr by reference.
static void
emitOffloadingArrays(CodeGenFunction &CGF,
MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
MappableExprsHandler::MapValuesArrayTy &Pointers,
MappableExprsHandler::MapValuesArrayTy &Sizes,
MappableExprsHandler::MapFlagsArrayTy &MapTypes,
CGOpenMPRuntime::TargetDataInfo &Info) {
auto &CGM = CGF.CGM;
auto &Ctx = CGF.getContext();
// Reset the array information.
Info.clearArrayInfo();
Info.NumberOfPtrs = BasePointers.size();
if (Info.NumberOfPtrs) {
// Detect if we have any capture size requiring runtime evaluation of the
// size so that a constant array could be eventually used.
bool hasRuntimeEvaluationCaptureSize = false;
for (auto *S : Sizes)
if (!isa<llvm::Constant>(S)) {
hasRuntimeEvaluationCaptureSize = true;
break;
}
llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
QualType PointerArrayType =
Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Info.BasePointersArray =
CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
Info.PointersArray =
CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
// If we don't have any VLA types or other types that require runtime
// evaluation, we can use a constant array for the map sizes, otherwise we
// need to fill up the arrays as we do for the pointers.
if (hasRuntimeEvaluationCaptureSize) {
QualType SizeArrayType = Ctx.getConstantArrayType(
Ctx.getSizeType(), PointerNumAP, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Info.SizesArray =
CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
} else {
// We expect all the sizes to be constant, so we collect them to create
// a constant array.
SmallVector<llvm::Constant *, 16> ConstSizes;
for (auto S : Sizes)
ConstSizes.push_back(cast<llvm::Constant>(S));
auto *SizesArrayInit = llvm::ConstantArray::get(
llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes);
auto *SizesArrayGbl = new llvm::GlobalVariable(
CGM.getModule(), SizesArrayInit->getType(),
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
SizesArrayInit, ".offload_sizes");
SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
Info.SizesArray = SizesArrayGbl;
}
// The map types are always constant so we don't need to generate code to
// fill arrays. Instead, we create an array constant.
llvm::Constant *MapTypesArrayInit =
llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes);
auto *MapTypesArrayGbl = new llvm::GlobalVariable(
CGM.getModule(), MapTypesArrayInit->getType(),
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
MapTypesArrayInit, ".offload_maptypes");
MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
Info.MapTypesArray = MapTypesArrayGbl;
for (unsigned i = 0; i < Info.NumberOfPtrs; ++i) {
llvm::Value *BPVal = *BasePointers[i];
if (BPVal->getType()->isPointerTy())
BPVal = CGF.Builder.CreateBitCast(BPVal, CGM.VoidPtrTy);
else {
assert(BPVal->getType()->isIntegerTy() &&
"If not a pointer, the value type must be an integer.");
BPVal = CGF.Builder.CreateIntToPtr(BPVal, CGM.VoidPtrTy);
}
llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.BasePointersArray, 0, i);
Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
CGF.Builder.CreateStore(BPVal, BPAddr);
if (Info.requiresDevicePointerInfo())
if (auto *DevVD = BasePointers[i].getDevicePtrDecl())
Info.CaptureDeviceAddrMap.insert(std::make_pair(DevVD, BPAddr));
llvm::Value *PVal = Pointers[i];
if (PVal->getType()->isPointerTy())
PVal = CGF.Builder.CreateBitCast(PVal, CGM.VoidPtrTy);
else {
assert(PVal->getType()->isIntegerTy() &&
"If not a pointer, the value type must be an integer.");
PVal = CGF.Builder.CreateIntToPtr(PVal, CGM.VoidPtrTy);
}
llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.PointersArray, 0, i);
Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
CGF.Builder.CreateStore(PVal, PAddr);
if (hasRuntimeEvaluationCaptureSize) {
llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs),
Info.SizesArray,
/*Idx0=*/0,
/*Idx1=*/i);
Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType()));
CGF.Builder.CreateStore(
CGF.Builder.CreateIntCast(Sizes[i], CGM.SizeTy, /*isSigned=*/true),
SAddr);
}
}
}
}
/// \brief Emit the arguments to be passed to the runtime library based on the
/// arrays of pointers, sizes and map types.
static void emitOffloadingArraysArgument(
CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
auto &CGM = CGF.CGM;
if (Info.NumberOfPtrs) {
BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.BasePointersArray,
/*Idx0=*/0, /*Idx1=*/0);
PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.PointersArray,
/*Idx0=*/0,
/*Idx1=*/0);
SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), Info.SizesArray,
/*Idx0=*/0, /*Idx1=*/0);
MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.Int32Ty, Info.NumberOfPtrs),
Info.MapTypesArray,
/*Idx0=*/0,
/*Idx1=*/0);
} else {
BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo());
MapTypesArrayArg =
llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo());
}
}
void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
llvm::Value *OutlinedFn,
llvm::Value *OutlinedFnID,
const Expr *IfCond, const Expr *Device,
ArrayRef<llvm::Value *> CapturedVars) {
if (!CGF.HaveInsertPoint())
return;
assert(OutlinedFn && "Invalid outlined function!");
auto &Ctx = CGF.getContext();
// Fill up the arrays with all the captured variables.
MappableExprsHandler::MapValuesArrayTy KernelArgs;
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
MappableExprsHandler::MapValuesArrayTy Pointers;
MappableExprsHandler::MapValuesArrayTy Sizes;
MappableExprsHandler::MapFlagsArrayTy MapTypes;
MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
MappableExprsHandler::MapValuesArrayTy CurPointers;
MappableExprsHandler::MapValuesArrayTy CurSizes;
MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
// Get mappable expression information.
MappableExprsHandler MEHandler(D, CGF);
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
auto RI = CS.getCapturedRecordDecl()->field_begin();
auto CV = CapturedVars.begin();
for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
CE = CS.capture_end();
CI != CE; ++CI, ++RI, ++CV) {
StringRef Name;
QualType Ty;
CurBasePointers.clear();
CurPointers.clear();
CurSizes.clear();
CurMapTypes.clear();
// VLA sizes are passed to the outlined region by copy and do not have map
// information associated.
if (CI->capturesVariableArrayType()) {
CurBasePointers.push_back(*CV);
CurPointers.push_back(*CV);
CurSizes.push_back(CGF.getTypeSize(RI->getType()));
// Copy to the device as an argument. No need to retrieve it.
CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL |
MappableExprsHandler::OMP_MAP_FIRST_REF);
} else {
// If we have any information in the map clause, we use it, otherwise we
// just do a default mapping.
MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
CurSizes, CurMapTypes);
if (CurBasePointers.empty())
MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
CurPointers, CurSizes, CurMapTypes);
}
// We expect to have at least an element of information for this capture.
assert(!CurBasePointers.empty() && "Non-existing map pointer for capture!");
assert(CurBasePointers.size() == CurPointers.size() &&
CurBasePointers.size() == CurSizes.size() &&
CurBasePointers.size() == CurMapTypes.size() &&
"Inconsistent map information sizes!");
// The kernel args are always the first elements of the base pointers
// associated with a capture.
KernelArgs.push_back(*CurBasePointers.front());
// We need to append the results of this capture to what we already have.
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
Pointers.append(CurPointers.begin(), CurPointers.end());
Sizes.append(CurSizes.begin(), CurSizes.end());
MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
}
// Keep track on whether the host function has to be executed.
auto OffloadErrorQType =
Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true);
auto OffloadError = CGF.MakeAddrLValue(
CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"),
OffloadErrorQType);
CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty),
OffloadError);
// Fill up the pointer arrays and transfer execution to the device.
auto &&ThenGen = [&Ctx, &BasePointers, &Pointers, &Sizes, &MapTypes, Device,
OutlinedFnID, OffloadError, OffloadErrorQType,
&D](CodeGenFunction &CGF, PrePostActionTy &) {
auto &RT = CGF.CGM.getOpenMPRuntime();
// Emit the offloading arrays.
TargetDataInfo Info;
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
Info.PointersArray, Info.SizesArray,
Info.MapTypesArray, Info);
// On top of the arrays that were filled up, the target offloading call
// takes as arguments the device id as well as the host pointer. The host
// pointer is used by the runtime library to identify the current target
// region, so it only has to be unique and not necessarily point to
// anything. It could be the pointer to the outlined function that
// implements the target region, but we aren't using that so that the
// compiler doesn't need to keep that, and could therefore inline the host
// function if proven worthwhile during optimization.
// From this point on, we need to have an ID of the target region defined.
assert(OutlinedFnID && "Invalid outlined function ID!");
// Emit device ID if any.
llvm::Value *DeviceID;
if (Device)
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int32Ty, /*isSigned=*/true);
else
DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
// Emit the number of elements in the offloading arrays.
llvm::Value *PointerNum = CGF.Builder.getInt32(BasePointers.size());
// Return value of the runtime offloading call.
llvm::Value *Return;
auto *NumTeams = emitNumTeamsClauseForTargetDirective(RT, CGF, D);
auto *ThreadLimit = emitThreadLimitClauseForTargetDirective(RT, CGF, D);
// If we have NumTeams defined this means that we have an enclosed teams
// region. Therefore we also expect to have ThreadLimit defined. These two
// values should be defined in the presence of a teams directive, regardless
// of having any clauses associated. If the user is using teams but no
// clauses, these two values will be the default that should be passed to
// the runtime library - a 32-bit integer with the value zero.
if (NumTeams) {
assert(ThreadLimit && "Thread limit expression should be available along "
"with number of teams.");
llvm::Value *OffloadingArgs[] = {
DeviceID, OutlinedFnID,
PointerNum, Info.BasePointersArray,
Info.PointersArray, Info.SizesArray,
Info.MapTypesArray, NumTeams,
ThreadLimit};
Return = CGF.EmitRuntimeCall(
RT.createRuntimeFunction(OMPRTL__tgt_target_teams), OffloadingArgs);
} else {
llvm::Value *OffloadingArgs[] = {
DeviceID, OutlinedFnID,
PointerNum, Info.BasePointersArray,
Info.PointersArray, Info.SizesArray,
Info.MapTypesArray};
Return = CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target),
OffloadingArgs);
}
CGF.EmitStoreOfScalar(Return, OffloadError);
};
// Notify that the host version must be executed.
auto &&ElseGen = [OffloadError](CodeGenFunction &CGF, PrePostActionTy &) {
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/-1u),
OffloadError);
};
// If we have a target function ID it means that we need to support
// offloading, otherwise, just execute on the host. We need to execute on host
// regardless of the conditional in the if clause if, e.g., the user do not
// specify target triples.
if (OutlinedFnID) {
if (IfCond)
emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
else {
RegionCodeGenTy ThenRCG(ThenGen);
ThenRCG(CGF);
}
} else {
RegionCodeGenTy ElseRCG(ElseGen);
ElseRCG(CGF);
}
// Check the error code and execute the host version if required.
auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed");
auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont");
auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation());
auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal);
CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
CGF.EmitBlock(OffloadFailedBlock);
CGF.Builder.CreateCall(OutlinedFn, KernelArgs);
CGF.EmitBranch(OffloadContBlock);
CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
}
void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
StringRef ParentName) {
if (!S)
return;
// If we find a OMP target directive, codegen the outline function and
// register the result.
// FIXME: Add other directives with target when they become supported.
bool isTargetDirective = isa<OMPTargetDirective>(S);
if (isTargetDirective) {
auto *E = cast<OMPExecutableDirective>(S);
unsigned DeviceID;
unsigned FileID;
unsigned Line;
getTargetEntryUniqueInfo(CGM.getContext(), E->getLocStart(), DeviceID,
FileID, Line);
// Is this a target region that should not be emitted as an entry point? If
// so just signal we are done with this target region.
if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
ParentName, Line))
return;
llvm::Function *Fn;
llvm::Constant *Addr;
std::tie(Fn, Addr) =
CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
CGM, cast<OMPTargetDirective>(*E), ParentName,
/*isOffloadEntry=*/true);
assert(Fn && Addr && "Target region emission failed.");
return;
}
if (const OMPExecutableDirective *E = dyn_cast<OMPExecutableDirective>(S)) {
if (!E->hasAssociatedStmt())
return;
scanForTargetRegionsFunctions(
cast<CapturedStmt>(E->getAssociatedStmt())->getCapturedStmt(),
ParentName);
return;
}
// If this is a lambda function, look into its body.
if (auto *L = dyn_cast<LambdaExpr>(S))
S = L->getBody();
// Keep looking for target regions recursively.
for (auto *II : S->children())
scanForTargetRegionsFunctions(II, ParentName);
}
bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
auto &FD = *cast<FunctionDecl>(GD.getDecl());
// If emitting code for the host, we do not process FD here. Instead we do
// the normal code generation.
if (!CGM.getLangOpts().OpenMPIsDevice)
return false;
// Try to detect target regions in the function.
scanForTargetRegionsFunctions(FD.getBody(), CGM.getMangledName(GD));
// We should not emit any function othen that the ones created during the
// scanning. Therefore, we signal that this function is completely dealt
// with.
return true;
}
bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
if (!CGM.getLangOpts().OpenMPIsDevice)
return false;
// Check if there are Ctors/Dtors in this declaration and look for target
// regions in it. We use the complete variant to produce the kernel name
// mangling.
QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
if (auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
for (auto *Ctor : RD->ctors()) {
StringRef ParentName =
CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
}
auto *Dtor = RD->getDestructor();
if (Dtor) {
StringRef ParentName =
CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
}
}
// If we are in target mode we do not emit any global (declare target is not
// implemented yet). Therefore we signal that GD was processed in this case.
return true;
}
bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
auto *VD = GD.getDecl();
if (isa<FunctionDecl>(VD))
return emitTargetFunctions(GD);
return emitTargetGlobalVariable(GD);
}
llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
// If we have offloading in the current module, we need to emit the entries
// now and register the offloading descriptor.
createOffloadEntriesAndInfoMetadata();
// Create and register the offloading binary descriptors. This is the main
// entity that captures all the information about offloading in the current
// compilation unit.
return createOffloadingBinaryDescriptorRegistration();
}
void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
SourceLocation Loc,
llvm::Value *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars) {
if (!CGF.HaveInsertPoint())
return;
auto *RTLoc = emitUpdateLocation(CGF, Loc);
CodeGenFunction::RunCleanupsScope Scope(CGF);
// Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
llvm::Value *Args[] = {
RTLoc,
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
llvm::SmallVector<llvm::Value *, 16> RealArgs;
RealArgs.append(std::begin(Args), std::end(Args));
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
CGF.EmitRuntimeCall(RTLFn, RealArgs);
}
void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
const Expr *NumTeams,
const Expr *ThreadLimit,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
auto *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *NumTeamsVal =
(NumTeams)
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
CGF.CGM.Int32Ty, /* isSigned = */ true)
: CGF.Builder.getInt32(0);
llvm::Value *ThreadLimitVal =
(ThreadLimit)
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
CGF.CGM.Int32Ty, /* isSigned = */ true)
: CGF.Builder.getInt32(0);
// Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
ThreadLimitVal};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
PushNumTeamsArgs);
}
void CGOpenMPRuntime::emitTargetDataCalls(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
if (!CGF.HaveInsertPoint())
return;
// Action used to replace the default codegen action and turn privatization
// off.
PrePostActionTy NoPrivAction;
// Generate the code for the opening of the data environment. Capture all the
// arguments of the runtime call by reference because they are used in the
// closing of the region.
auto &&BeginThenGen = [&D, &CGF, Device, &Info, &CodeGen, &NoPrivAction](
CodeGenFunction &CGF, PrePostActionTy &) {
// Fill up the arrays with all the mapped variables.
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
MappableExprsHandler::MapValuesArrayTy Pointers;
MappableExprsHandler::MapValuesArrayTy Sizes;
MappableExprsHandler::MapFlagsArrayTy MapTypes;
// Get map clause information.
MappableExprsHandler MCHandler(D, CGF);
MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
// Fill up the arrays and create the arguments.
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
llvm::Value *BasePointersArrayArg = nullptr;
llvm::Value *PointersArrayArg = nullptr;
llvm::Value *SizesArrayArg = nullptr;
llvm::Value *MapTypesArrayArg = nullptr;
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
SizesArrayArg, MapTypesArrayArg, Info);
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device)
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int32Ty, /*isSigned=*/true);
else
DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
// Emit the number of elements in the offloading arrays.
auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
llvm::Value *OffloadingArgs[] = {
DeviceID, PointerNum, BasePointersArrayArg,
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
auto &RT = CGF.CGM.getOpenMPRuntime();
CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_begin),
OffloadingArgs);
// If device pointer privatization is required, emit the body of the region
// here. It will have to be duplicated: with and without privatization.
if (!Info.CaptureDeviceAddrMap.empty())
CodeGen(CGF);
};
// Generate code for the closing of the data region.
auto &&EndThenGen = [&CGF, Device, &Info](CodeGenFunction &CGF,
PrePostActionTy &) {
assert(Info.isValid() && "Invalid data environment closing arguments.");
llvm::Value *BasePointersArrayArg = nullptr;
llvm::Value *PointersArrayArg = nullptr;
llvm::Value *SizesArrayArg = nullptr;
llvm::Value *MapTypesArrayArg = nullptr;
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
SizesArrayArg, MapTypesArrayArg, Info);
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device)
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int32Ty, /*isSigned=*/true);
else
DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
// Emit the number of elements in the offloading arrays.
auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
llvm::Value *OffloadingArgs[] = {
DeviceID, PointerNum, BasePointersArrayArg,
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
auto &RT = CGF.CGM.getOpenMPRuntime();
CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_end),
OffloadingArgs);
};
// If we need device pointer privatization, we need to emit the body of the
// region with no privatization in the 'else' branch of the conditional.
// Otherwise, we don't have to do anything.
auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
PrePostActionTy &) {
if (!Info.CaptureDeviceAddrMap.empty()) {
CodeGen.setAction(NoPrivAction);
CodeGen(CGF);
}
};
// We don't have to do anything to close the region if the if clause evaluates
// to false.
auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
if (IfCond) {
emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
} else {
RegionCodeGenTy RCG(BeginThenGen);
RCG(CGF);
}
// If we don't require privatization of device pointers, we emit the body in
// between the runtime calls. This avoids duplicating the body code.
if (Info.CaptureDeviceAddrMap.empty()) {
CodeGen.setAction(NoPrivAction);
CodeGen(CGF);
}
if (IfCond) {
emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen);
} else {
RegionCodeGenTy RCG(EndThenGen);
RCG(CGF);
}
}
void CGOpenMPRuntime::emitTargetDataStandAloneCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device) {
if (!CGF.HaveInsertPoint())
return;
assert((isa<OMPTargetEnterDataDirective>(D) ||
isa<OMPTargetExitDataDirective>(D) ||
isa<OMPTargetUpdateDirective>(D)) &&
"Expecting either target enter, exit data, or update directives.");
// Generate the code for the opening of the data environment.
auto &&ThenGen = [&D, &CGF, Device](CodeGenFunction &CGF, PrePostActionTy &) {
// Fill up the arrays with all the mapped variables.
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
MappableExprsHandler::MapValuesArrayTy Pointers;
MappableExprsHandler::MapValuesArrayTy Sizes;
MappableExprsHandler::MapFlagsArrayTy MapTypes;
// Get map clause information.
MappableExprsHandler MEHandler(D, CGF);
MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
// Fill up the arrays and create the arguments.
TargetDataInfo Info;
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
Info.PointersArray, Info.SizesArray,
Info.MapTypesArray, Info);
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device)
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int32Ty, /*isSigned=*/true);
else
DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
// Emit the number of elements in the offloading arrays.
auto *PointerNum = CGF.Builder.getInt32(BasePointers.size());
llvm::Value *OffloadingArgs[] = {
DeviceID, PointerNum, Info.BasePointersArray,
Info.PointersArray, Info.SizesArray, Info.MapTypesArray};
auto &RT = CGF.CGM.getOpenMPRuntime();
// Select the right runtime function call for each expected standalone
// directive.
OpenMPRTLFunction RTLFn;
switch (D.getDirectiveKind()) {
default:
llvm_unreachable("Unexpected standalone target data directive.");
break;
case OMPD_target_enter_data:
RTLFn = OMPRTL__tgt_target_data_begin;
break;
case OMPD_target_exit_data:
RTLFn = OMPRTL__tgt_target_data_end;
break;
case OMPD_target_update:
RTLFn = OMPRTL__tgt_target_data_update;
break;
}
CGF.EmitRuntimeCall(RT.createRuntimeFunction(RTLFn), OffloadingArgs);
};
// In the event we get an if clause, we don't have to take any action on the
// else side.
auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
if (IfCond) {
emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
} else {
RegionCodeGenTy ThenGenRCG(ThenGen);
ThenGenRCG(CGF);
}
}
namespace {
/// Kind of parameter in a function with 'declare simd' directive.
enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
/// Attribute set of the parameter.
struct ParamAttrTy {
ParamKindTy Kind = Vector;
llvm::APSInt StrideOrArg;
llvm::APSInt Alignment;
};
} // namespace
static unsigned evaluateCDTSize(const FunctionDecl *FD,
ArrayRef<ParamAttrTy> ParamAttrs) {
// Every vector variant of a SIMD-enabled function has a vector length (VLEN).
// If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
// of that clause. The VLEN value must be power of 2.
// In other case the notion of the function`s "characteristic data type" (CDT)
// is used to compute the vector length.
// CDT is defined in the following order:
// a) For non-void function, the CDT is the return type.
// b) If the function has any non-uniform, non-linear parameters, then the
// CDT is the type of the first such parameter.
// c) If the CDT determined by a) or b) above is struct, union, or class
// type which is pass-by-value (except for the type that maps to the
// built-in complex data type), the characteristic data type is int.
// d) If none of the above three cases is applicable, the CDT is int.
// The VLEN is then determined based on the CDT and the size of vector
// register of that ISA for which current vector version is generated. The
// VLEN is computed using the formula below:
// VLEN = sizeof(vector_register) / sizeof(CDT),
// where vector register size specified in section 3.2.1 Registers and the
// Stack Frame of original AMD64 ABI document.
QualType RetType = FD->getReturnType();
if (RetType.isNull())
return 0;
ASTContext &C = FD->getASTContext();
QualType CDT;
if (!RetType.isNull() && !RetType->isVoidType())
CDT = RetType;
else {
unsigned Offset = 0;
if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (ParamAttrs[Offset].Kind == Vector)
CDT = C.getPointerType(C.getRecordType(MD->getParent()));
++Offset;
}
if (CDT.isNull()) {
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
if (ParamAttrs[I + Offset].Kind == Vector) {
CDT = FD->getParamDecl(I)->getType();
break;
}
}
}
}
if (CDT.isNull())
CDT = C.IntTy;
CDT = CDT->getCanonicalTypeUnqualified();
if (CDT->isRecordType() || CDT->isUnionType())
CDT = C.IntTy;
return C.getTypeSize(CDT);
}
static void
emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
const llvm::APSInt &VLENVal,
ArrayRef<ParamAttrTy> ParamAttrs,
OMPDeclareSimdDeclAttr::BranchStateTy State) {
struct ISADataTy {
char ISA;
unsigned VecRegSize;
};
ISADataTy ISAData[] = {
{
'b', 128
}, // SSE
{
'c', 256
}, // AVX
{
'd', 256
}, // AVX2
{
'e', 512
}, // AVX512
};
llvm::SmallVector<char, 2> Masked;
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
Masked.push_back('N');
Masked.push_back('M');
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
Masked.push_back('N');
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
Masked.push_back('M');
break;
}
for (auto Mask : Masked) {
for (auto &Data : ISAData) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << "_ZGV" << Data.ISA << Mask;
if (!VLENVal) {
Out << llvm::APSInt::getUnsigned(Data.VecRegSize /
evaluateCDTSize(FD, ParamAttrs));
} else
Out << VLENVal;
for (auto &ParamAttr : ParamAttrs) {
switch (ParamAttr.Kind){
case LinearWithVarStride:
Out << 's' << ParamAttr.StrideOrArg;
break;
case Linear:
Out << 'l';
if (!!ParamAttr.StrideOrArg)
Out << ParamAttr.StrideOrArg;
break;
case Uniform:
Out << 'u';
break;
case Vector:
Out << 'v';
break;
}
if (!!ParamAttr.Alignment)
Out << 'a' << ParamAttr.Alignment;
}
Out << '_' << Fn->getName();
Fn->addFnAttr(Out.str());
}
}
}
void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
llvm::Function *Fn) {
ASTContext &C = CGM.getContext();
FD = FD->getCanonicalDecl();
// Map params to their positions in function decl.
llvm::DenseMap<const Decl *, unsigned> ParamPositions;
if (isa<CXXMethodDecl>(FD))
ParamPositions.insert({FD, 0});
unsigned ParamPos = ParamPositions.size();
for (auto *P : FD->parameters()) {
ParamPositions.insert({P->getCanonicalDecl(), ParamPos});
++ParamPos;
}
for (auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
// Mark uniform parameters.
for (auto *E : Attr->uniforms()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
if (isa<CXXThisExpr>(E))
Pos = ParamPositions[FD];
else {
auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
Pos = ParamPositions[PVD];
}
ParamAttrs[Pos].Kind = Uniform;
}
// Get alignment info.
auto NI = Attr->alignments_begin();
for (auto *E : Attr->aligneds()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
QualType ParmTy;
if (isa<CXXThisExpr>(E)) {
Pos = ParamPositions[FD];
ParmTy = E->getType();
} else {
auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
Pos = ParamPositions[PVD];
ParmTy = PVD->getType();
}
ParamAttrs[Pos].Alignment =
(*NI) ? (*NI)->EvaluateKnownConstInt(C)
: llvm::APSInt::getUnsigned(
C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
.getQuantity());
++NI;
}
// Mark linear parameters.
auto SI = Attr->steps_begin();
auto MI = Attr->modifiers_begin();
for (auto *E : Attr->linears()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
if (isa<CXXThisExpr>(E))
Pos = ParamPositions[FD];
else {
auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
Pos = ParamPositions[PVD];
}
auto &ParamAttr = ParamAttrs[Pos];
ParamAttr.Kind = Linear;
if (*SI) {
if (!(*SI)->EvaluateAsInt(ParamAttr.StrideOrArg, C,
Expr::SE_AllowSideEffects)) {
if (auto *DRE = cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
if (auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
ParamAttr.Kind = LinearWithVarStride;
ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
ParamPositions[StridePVD->getCanonicalDecl()]);
}
}
}
}
++SI;
++MI;
}
llvm::APSInt VLENVal;
if (const Expr *VLEN = Attr->getSimdlen())
VLENVal = VLEN->EvaluateKnownConstInt(C);
OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
CGM.getTriple().getArch() == llvm::Triple::x86_64)
emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
}
}
namespace {
/// Cleanup action for doacross support.
class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
public:
static const int DoacrossFinArgs = 2;
private:
llvm::Value *RTLFn;
llvm::Value *Args[DoacrossFinArgs];
public:
DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef<llvm::Value *> CallArgs)
: RTLFn(RTLFn) {
assert(CallArgs.size() == DoacrossFinArgs);
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
CGF.EmitRuntimeCall(RTLFn, Args);
}
};
} // namespace
void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
const OMPLoopDirective &D) {
if (!CGF.HaveInsertPoint())
return;
ASTContext &C = CGM.getContext();
QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
RecordDecl *RD;
if (KmpDimTy.isNull()) {
// Build struct kmp_dim { // loop bounds info casted to kmp_int64
// kmp_int64 lo; // lower
// kmp_int64 up; // upper
// kmp_int64 st; // stride
// };
RD = C.buildImplicitRecord("kmp_dim");
RD->startDefinition();
addFieldToRecordDecl(C, RD, Int64Ty);
addFieldToRecordDecl(C, RD, Int64Ty);
addFieldToRecordDecl(C, RD, Int64Ty);
RD->completeDefinition();
KmpDimTy = C.getRecordType(RD);
} else
RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
Address DimsAddr = CGF.CreateMemTemp(KmpDimTy, "dims");
CGF.EmitNullInitialization(DimsAddr, KmpDimTy);
enum { LowerFD = 0, UpperFD, StrideFD };
// Fill dims with data.
LValue DimsLVal = CGF.MakeAddrLValue(DimsAddr, KmpDimTy);
// dims.upper = num_iterations;
LValue UpperLVal =
CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), UpperFD));
llvm::Value *NumIterVal = CGF.EmitScalarConversion(
CGF.EmitScalarExpr(D.getNumIterations()), D.getNumIterations()->getType(),
Int64Ty, D.getNumIterations()->getExprLoc());
CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
// dims.stride = 1;
LValue StrideLVal =
CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), StrideFD));
CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
StrideLVal);
// Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
// kmp_int32 num_dims, struct kmp_dim * dims);
llvm::Value *Args[] = {emitUpdateLocation(CGF, D.getLocStart()),
getThreadID(CGF, D.getLocStart()),
llvm::ConstantInt::getSigned(CGM.Int32Ty, 1),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
DimsAddr.getPointer(), CGM.VoidPtrTy)};
llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init);
CGF.EmitRuntimeCall(RTLFn, Args);
llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
emitUpdateLocation(CGF, D.getLocEnd()), getThreadID(CGF, D.getLocEnd())};
llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
llvm::makeArrayRef(FiniArgs));
}
void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
const OMPDependClause *C) {
QualType Int64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
const Expr *CounterVal = C->getCounterValue();
assert(CounterVal);
llvm::Value *CntVal = CGF.EmitScalarConversion(CGF.EmitScalarExpr(CounterVal),
CounterVal->getType(), Int64Ty,
CounterVal->getExprLoc());
Address CntAddr = CGF.CreateMemTemp(Int64Ty, ".cnt.addr");
CGF.EmitStoreOfScalar(CntVal, CntAddr, /*Volatile=*/false, Int64Ty);
llvm::Value *Args[] = {emitUpdateLocation(CGF, C->getLocStart()),
getThreadID(CGF, C->getLocStart()),
CntAddr.getPointer()};
llvm::Value *RTLFn;
if (C->getDependencyKind() == OMPC_DEPEND_source)
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
else {
assert(C->getDependencyKind() == OMPC_DEPEND_sink);
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
}
CGF.EmitRuntimeCall(RTLFn, Args);
}