llvm-project/llvm/lib/IR/LegacyPassManager.cpp

1942 lines
63 KiB
C++

//===- LegacyPassManager.cpp - LLVM Pass Infrastructure Implementation ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the legacy LLVM Pass Manager infrastructure.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LegacyPassManagers.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/TimeValue.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <map>
using namespace llvm;
using namespace llvm::legacy;
// See PassManagers.h for Pass Manager infrastructure overview.
//===----------------------------------------------------------------------===//
// Pass debugging information. Often it is useful to find out what pass is
// running when a crash occurs in a utility. When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//
namespace {
// Different debug levels that can be enabled...
enum PassDebugLevel {
Disabled, Arguments, Structure, Executions, Details
};
}
static cl::opt<enum PassDebugLevel>
PassDebugging("debug-pass", cl::Hidden,
cl::desc("Print PassManager debugging information"),
cl::values(
clEnumVal(Disabled , "disable debug output"),
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
clEnumVal(Structure , "print pass structure before run()"),
clEnumVal(Executions, "print pass name before it is executed"),
clEnumVal(Details , "print pass details when it is executed"),
clEnumValEnd));
namespace {
typedef llvm::cl::list<const llvm::PassInfo *, bool, PassNameParser>
PassOptionList;
}
// Print IR out before/after specified passes.
static PassOptionList
PrintBefore("print-before",
llvm::cl::desc("Print IR before specified passes"),
cl::Hidden);
static PassOptionList
PrintAfter("print-after",
llvm::cl::desc("Print IR after specified passes"),
cl::Hidden);
static cl::opt<bool>
PrintBeforeAll("print-before-all",
llvm::cl::desc("Print IR before each pass"),
cl::init(false));
static cl::opt<bool>
PrintAfterAll("print-after-all",
llvm::cl::desc("Print IR after each pass"),
cl::init(false));
/// This is a helper to determine whether to print IR before or
/// after a pass.
static bool ShouldPrintBeforeOrAfterPass(const PassInfo *PI,
PassOptionList &PassesToPrint) {
for (unsigned i = 0, ie = PassesToPrint.size(); i < ie; ++i) {
const llvm::PassInfo *PassInf = PassesToPrint[i];
if (PassInf)
if (PassInf->getPassArgument() == PI->getPassArgument()) {
return true;
}
}
return false;
}
/// This is a utility to check whether a pass should have IR dumped
/// before it.
static bool ShouldPrintBeforePass(const PassInfo *PI) {
return PrintBeforeAll || ShouldPrintBeforeOrAfterPass(PI, PrintBefore);
}
/// This is a utility to check whether a pass should have IR dumped
/// after it.
static bool ShouldPrintAfterPass(const PassInfo *PI) {
return PrintAfterAll || ShouldPrintBeforeOrAfterPass(PI, PrintAfter);
}
/// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions
/// or higher is specified.
bool PMDataManager::isPassDebuggingExecutionsOrMore() const {
return PassDebugging >= Executions;
}
void PassManagerPrettyStackEntry::print(raw_ostream &OS) const {
if (!V && !M)
OS << "Releasing pass '";
else
OS << "Running pass '";
OS << P->getPassName() << "'";
if (M) {
OS << " on module '" << M->getModuleIdentifier() << "'.\n";
return;
}
if (!V) {
OS << '\n';
return;
}
OS << " on ";
if (isa<Function>(V))
OS << "function";
else if (isa<BasicBlock>(V))
OS << "basic block";
else
OS << "value";
OS << " '";
V->printAsOperand(OS, /*PrintTy=*/false, M);
OS << "'\n";
}
namespace {
//===----------------------------------------------------------------------===//
// BBPassManager
//
/// BBPassManager manages BasicBlockPass. It batches all the
/// pass together and sequence them to process one basic block before
/// processing next basic block.
class BBPassManager : public PMDataManager, public FunctionPass {
public:
static char ID;
explicit BBPassManager()
: PMDataManager(), FunctionPass(ID) {}
/// Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the function, and if so, return true.
bool runOnFunction(Function &F) override;
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const override {
Info.setPreservesAll();
}
bool doInitialization(Module &M) override;
bool doInitialization(Function &F);
bool doFinalization(Module &M) override;
bool doFinalization(Function &F);
PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }
const char *getPassName() const override {
return "BasicBlock Pass Manager";
}
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) override {
dbgs().indent(Offset*2) << "BasicBlockPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
BP->dumpPassStructure(Offset + 1);
dumpLastUses(BP, Offset+1);
}
}
BasicBlockPass *getContainedPass(unsigned N) {
assert(N < PassVector.size() && "Pass number out of range!");
BasicBlockPass *BP = static_cast<BasicBlockPass *>(PassVector[N]);
return BP;
}
PassManagerType getPassManagerType() const override {
return PMT_BasicBlockPassManager;
}
};
char BBPassManager::ID = 0;
} // End anonymous namespace
namespace llvm {
namespace legacy {
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl
//
/// FunctionPassManagerImpl manages FPPassManagers
class FunctionPassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
virtual void anchor();
private:
bool wasRun;
public:
static char ID;
explicit FunctionPassManagerImpl() :
Pass(PT_PassManager, ID), PMDataManager(),
PMTopLevelManager(new FPPassManager()), wasRun(false) {}
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// createPrinterPass - Get a function printer pass.
Pass *createPrinterPass(raw_ostream &O,
const std::string &Banner) const override {
return createPrintFunctionPass(O, Banner);
}
// Prepare for running an on the fly pass, freeing memory if needed
// from a previous run.
void releaseMemoryOnTheFly();
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Function &F);
/// doInitialization - Run all of the initializers for the function passes.
///
bool doInitialization(Module &M) override;
/// doFinalization - Run all of the finalizers for the function passes.
///
bool doFinalization(Module &M) override;
PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }
PassManagerType getTopLevelPassManagerType() override {
return PMT_FunctionPassManager;
}
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const override {
Info.setPreservesAll();
}
FPPassManager *getContainedManager(unsigned N) {
assert(N < PassManagers.size() && "Pass number out of range!");
FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
return FP;
}
};
void FunctionPassManagerImpl::anchor() {}
char FunctionPassManagerImpl::ID = 0;
} // End of legacy namespace
} // End of llvm namespace
namespace {
//===----------------------------------------------------------------------===//
// MPPassManager
//
/// MPPassManager manages ModulePasses and function pass managers.
/// It batches all Module passes and function pass managers together and
/// sequences them to process one module.
class MPPassManager : public Pass, public PMDataManager {
public:
static char ID;
explicit MPPassManager() :
Pass(PT_PassManager, ID), PMDataManager() { }
// Delete on the fly managers.
virtual ~MPPassManager() {
for (std::map<Pass *, FunctionPassManagerImpl *>::iterator
I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end();
I != E; ++I) {
FunctionPassManagerImpl *FPP = I->second;
delete FPP;
}
}
/// createPrinterPass - Get a module printer pass.
Pass *createPrinterPass(raw_ostream &O,
const std::string &Banner) const override {
return createPrintModulePass(O, Banner);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool runOnModule(Module &M);
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
/// doInitialization - Run all of the initializers for the module passes.
///
bool doInitialization();
/// doFinalization - Run all of the finalizers for the module passes.
///
bool doFinalization();
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const override {
Info.setPreservesAll();
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) override;
/// Return function pass corresponding to PassInfo PI, that is
/// required by module pass MP. Instantiate analysis pass, by using
/// its runOnFunction() for function F.
Pass* getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F) override;
const char *getPassName() const override {
return "Module Pass Manager";
}
PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) override {
dbgs().indent(Offset*2) << "ModulePass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
MP->dumpPassStructure(Offset + 1);
std::map<Pass *, FunctionPassManagerImpl *>::const_iterator I =
OnTheFlyManagers.find(MP);
if (I != OnTheFlyManagers.end())
I->second->dumpPassStructure(Offset + 2);
dumpLastUses(MP, Offset+1);
}
}
ModulePass *getContainedPass(unsigned N) {
assert(N < PassVector.size() && "Pass number out of range!");
return static_cast<ModulePass *>(PassVector[N]);
}
PassManagerType getPassManagerType() const override {
return PMT_ModulePassManager;
}
private:
/// Collection of on the fly FPPassManagers. These managers manage
/// function passes that are required by module passes.
std::map<Pass *, FunctionPassManagerImpl *> OnTheFlyManagers;
};
char MPPassManager::ID = 0;
} // End anonymous namespace
namespace llvm {
namespace legacy {
//===----------------------------------------------------------------------===//
// PassManagerImpl
//
/// PassManagerImpl manages MPPassManagers
class PassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
virtual void anchor();
public:
static char ID;
explicit PassManagerImpl() :
Pass(PT_PassManager, ID), PMDataManager(),
PMTopLevelManager(new MPPassManager()) {}
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// createPrinterPass - Get a module printer pass.
Pass *createPrinterPass(raw_ostream &O,
const std::string &Banner) const override {
return createPrintModulePass(O, Banner);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Module &M);
using llvm::Pass::doInitialization;
using llvm::Pass::doFinalization;
/// doInitialization - Run all of the initializers for the module passes.
///
bool doInitialization();
/// doFinalization - Run all of the finalizers for the module passes.
///
bool doFinalization();
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const override {
Info.setPreservesAll();
}
PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }
PassManagerType getTopLevelPassManagerType() override {
return PMT_ModulePassManager;
}
MPPassManager *getContainedManager(unsigned N) {
assert(N < PassManagers.size() && "Pass number out of range!");
MPPassManager *MP = static_cast<MPPassManager *>(PassManagers[N]);
return MP;
}
};
void PassManagerImpl::anchor() {}
char PassManagerImpl::ID = 0;
} // End of legacy namespace
} // End of llvm namespace
namespace {
//===----------------------------------------------------------------------===//
/// TimingInfo Class - This class is used to calculate information about the
/// amount of time each pass takes to execute. This only happens when
/// -time-passes is enabled on the command line.
///
static ManagedStatic<sys::SmartMutex<true> > TimingInfoMutex;
class TimingInfo {
DenseMap<Pass*, Timer*> TimingData;
TimerGroup TG;
public:
// Use 'create' member to get this.
TimingInfo() : TG("... Pass execution timing report ...") {}
// TimingDtor - Print out information about timing information
~TimingInfo() {
// Delete all of the timers, which accumulate their info into the
// TimerGroup.
for (DenseMap<Pass*, Timer*>::iterator I = TimingData.begin(),
E = TimingData.end(); I != E; ++I)
delete I->second;
// TimerGroup is deleted next, printing the report.
}
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer
// to a non-null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
static void createTheTimeInfo();
/// getPassTimer - Return the timer for the specified pass if it exists.
Timer *getPassTimer(Pass *P) {
if (P->getAsPMDataManager())
return nullptr;
sys::SmartScopedLock<true> Lock(*TimingInfoMutex);
Timer *&T = TimingData[P];
if (!T)
T = new Timer(P->getPassName(), TG);
return T;
}
};
} // End of anon namespace
static TimingInfo *TheTimeInfo;
//===----------------------------------------------------------------------===//
// PMTopLevelManager implementation
/// Initialize top level manager. Create first pass manager.
PMTopLevelManager::PMTopLevelManager(PMDataManager *PMDM) {
PMDM->setTopLevelManager(this);
addPassManager(PMDM);
activeStack.push(PMDM);
}
/// Set pass P as the last user of the given analysis passes.
void
PMTopLevelManager::setLastUser(ArrayRef<Pass*> AnalysisPasses, Pass *P) {
unsigned PDepth = 0;
if (P->getResolver())
PDepth = P->getResolver()->getPMDataManager().getDepth();
for (SmallVectorImpl<Pass *>::const_iterator I = AnalysisPasses.begin(),
E = AnalysisPasses.end(); I != E; ++I) {
Pass *AP = *I;
LastUser[AP] = P;
if (P == AP)
continue;
// Update the last users of passes that are required transitive by AP.
AnalysisUsage *AnUsage = findAnalysisUsage(AP);
const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet();
SmallVector<Pass *, 12> LastUses;
SmallVector<Pass *, 12> LastPMUses;
for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(),
E = IDs.end(); I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I);
assert(AnalysisPass && "Expected analysis pass to exist.");
AnalysisResolver *AR = AnalysisPass->getResolver();
assert(AR && "Expected analysis resolver to exist.");
unsigned APDepth = AR->getPMDataManager().getDepth();
if (PDepth == APDepth)
LastUses.push_back(AnalysisPass);
else if (PDepth > APDepth)
LastPMUses.push_back(AnalysisPass);
}
setLastUser(LastUses, P);
// If this pass has a corresponding pass manager, push higher level
// analysis to this pass manager.
if (P->getResolver())
setLastUser(LastPMUses, P->getResolver()->getPMDataManager().getAsPass());
// If AP is the last user of other passes then make P last user of
// such passes.
for (DenseMap<Pass *, Pass *>::iterator LUI = LastUser.begin(),
LUE = LastUser.end(); LUI != LUE; ++LUI) {
if (LUI->second == AP)
// DenseMap iterator is not invalidated here because
// this is just updating existing entries.
LastUser[LUI->first] = P;
}
}
}
/// Collect passes whose last user is P
void PMTopLevelManager::collectLastUses(SmallVectorImpl<Pass *> &LastUses,
Pass *P) {
DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator DMI =
InversedLastUser.find(P);
if (DMI == InversedLastUser.end())
return;
SmallPtrSet<Pass *, 8> &LU = DMI->second;
for (SmallPtrSet<Pass *, 8>::iterator I = LU.begin(),
E = LU.end(); I != E; ++I) {
LastUses.push_back(*I);
}
}
AnalysisUsage *PMTopLevelManager::findAnalysisUsage(Pass *P) {
AnalysisUsage *AnUsage = nullptr;
DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.find(P);
if (DMI != AnUsageMap.end())
AnUsage = DMI->second;
else {
AnUsage = new AnalysisUsage();
P->getAnalysisUsage(*AnUsage);
AnUsageMap[P] = AnUsage;
}
return AnUsage;
}
/// Schedule pass P for execution. Make sure that passes required by
/// P are run before P is run. Update analysis info maintained by
/// the manager. Remove dead passes. This is a recursive function.
void PMTopLevelManager::schedulePass(Pass *P) {
// TODO : Allocate function manager for this pass, other wise required set
// may be inserted into previous function manager
// Give pass a chance to prepare the stage.
P->preparePassManager(activeStack);
// If P is an analysis pass and it is available then do not
// generate the analysis again. Stale analysis info should not be
// available at this point.
const PassInfo *PI =
PassRegistry::getPassRegistry()->getPassInfo(P->getPassID());
if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) {
delete P;
return;
}
AnalysisUsage *AnUsage = findAnalysisUsage(P);
bool checkAnalysis = true;
while (checkAnalysis) {
checkAnalysis = false;
const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet();
for (AnalysisUsage::VectorType::const_iterator I = RequiredSet.begin(),
E = RequiredSet.end(); I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I);
if (!AnalysisPass) {
const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I);
if (!PI) {
// Pass P is not in the global PassRegistry
dbgs() << "Pass '" << P->getPassName() << "' is not initialized." << "\n";
dbgs() << "Verify if there is a pass dependency cycle." << "\n";
dbgs() << "Required Passes:" << "\n";
for (AnalysisUsage::VectorType::const_iterator I2 = RequiredSet.begin(),
E = RequiredSet.end(); I2 != E && I2 != I; ++I2) {
Pass *AnalysisPass2 = findAnalysisPass(*I2);
if (AnalysisPass2) {
dbgs() << "\t" << AnalysisPass2->getPassName() << "\n";
} else {
dbgs() << "\t" << "Error: Required pass not found! Possible causes:" << "\n";
dbgs() << "\t\t" << "- Pass misconfiguration (e.g.: missing macros)" << "\n";
dbgs() << "\t\t" << "- Corruption of the global PassRegistry" << "\n";
}
}
}
assert(PI && "Expected required passes to be initialized");
AnalysisPass = PI->createPass();
if (P->getPotentialPassManagerType () ==
AnalysisPass->getPotentialPassManagerType())
// Schedule analysis pass that is managed by the same pass manager.
schedulePass(AnalysisPass);
else if (P->getPotentialPassManagerType () >
AnalysisPass->getPotentialPassManagerType()) {
// Schedule analysis pass that is managed by a new manager.
schedulePass(AnalysisPass);
// Recheck analysis passes to ensure that required analyses that
// are already checked are still available.
checkAnalysis = true;
} else
// Do not schedule this analysis. Lower level analsyis
// passes are run on the fly.
delete AnalysisPass;
}
}
}
// Now all required passes are available.
if (ImmutablePass *IP = P->getAsImmutablePass()) {
// P is a immutable pass and it will be managed by this
// top level manager. Set up analysis resolver to connect them.
PMDataManager *DM = getAsPMDataManager();
AnalysisResolver *AR = new AnalysisResolver(*DM);
P->setResolver(AR);
DM->initializeAnalysisImpl(P);
addImmutablePass(IP);
DM->recordAvailableAnalysis(IP);
return;
}
if (PI && !PI->isAnalysis() && ShouldPrintBeforePass(PI)) {
Pass *PP = P->createPrinterPass(
dbgs(), std::string("*** IR Dump Before ") + P->getPassName() + " ***");
PP->assignPassManager(activeStack, getTopLevelPassManagerType());
}
// Add the requested pass to the best available pass manager.
P->assignPassManager(activeStack, getTopLevelPassManagerType());
if (PI && !PI->isAnalysis() && ShouldPrintAfterPass(PI)) {
Pass *PP = P->createPrinterPass(
dbgs(), std::string("*** IR Dump After ") + P->getPassName() + " ***");
PP->assignPassManager(activeStack, getTopLevelPassManagerType());
}
}
/// Find the pass that implements Analysis AID. Search immutable
/// passes and all pass managers. If desired pass is not found
/// then return NULL.
Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
// Check pass managers
for (SmallVectorImpl<PMDataManager *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
if (Pass *P = (*I)->findAnalysisPass(AID, false))
return P;
// Check other pass managers
for (SmallVectorImpl<PMDataManager *>::iterator
I = IndirectPassManagers.begin(),
E = IndirectPassManagers.end(); I != E; ++I)
if (Pass *P = (*I)->findAnalysisPass(AID, false))
return P;
// Check the immutable passes. Iterate in reverse order so that we find
// the most recently registered passes first.
for (SmallVectorImpl<ImmutablePass *>::reverse_iterator I =
ImmutablePasses.rbegin(), E = ImmutablePasses.rend(); I != E; ++I) {
AnalysisID PI = (*I)->getPassID();
if (PI == AID)
return *I;
// If Pass not found then check the interfaces implemented by Immutable Pass
const PassInfo *PassInf =
PassRegistry::getPassRegistry()->getPassInfo(PI);
assert(PassInf && "Expected all immutable passes to be initialized");
const std::vector<const PassInfo*> &ImmPI =
PassInf->getInterfacesImplemented();
for (std::vector<const PassInfo*>::const_iterator II = ImmPI.begin(),
EE = ImmPI.end(); II != EE; ++II) {
if ((*II)->getTypeInfo() == AID)
return *I;
}
}
return nullptr;
}
// Print passes managed by this top level manager.
void PMTopLevelManager::dumpPasses() const {
if (PassDebugging < Structure)
return;
// Print out the immutable passes
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
ImmutablePasses[i]->dumpPassStructure(0);
}
// Every class that derives from PMDataManager also derives from Pass
// (sometimes indirectly), but there's no inheritance relationship
// between PMDataManager and Pass, so we have to getAsPass to get
// from a PMDataManager* to a Pass*.
for (SmallVectorImpl<PMDataManager *>::const_iterator I =
PassManagers.begin(), E = PassManagers.end(); I != E; ++I)
(*I)->getAsPass()->dumpPassStructure(1);
}
void PMTopLevelManager::dumpArguments() const {
if (PassDebugging < Arguments)
return;
dbgs() << "Pass Arguments: ";
for (SmallVectorImpl<ImmutablePass *>::const_iterator I =
ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
if (const PassInfo *PI =
PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID())) {
assert(PI && "Expected all immutable passes to be initialized");
if (!PI->isAnalysisGroup())
dbgs() << " -" << PI->getPassArgument();
}
for (SmallVectorImpl<PMDataManager *>::const_iterator I =
PassManagers.begin(), E = PassManagers.end(); I != E; ++I)
(*I)->dumpPassArguments();
dbgs() << "\n";
}
void PMTopLevelManager::initializeAllAnalysisInfo() {
for (SmallVectorImpl<PMDataManager *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
(*I)->initializeAnalysisInfo();
// Initailize other pass managers
for (SmallVectorImpl<PMDataManager *>::iterator
I = IndirectPassManagers.begin(), E = IndirectPassManagers.end();
I != E; ++I)
(*I)->initializeAnalysisInfo();
for (DenseMap<Pass *, Pass *>::iterator DMI = LastUser.begin(),
DME = LastUser.end(); DMI != DME; ++DMI) {
DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator InvDMI =
InversedLastUser.find(DMI->second);
if (InvDMI != InversedLastUser.end()) {
SmallPtrSet<Pass *, 8> &L = InvDMI->second;
L.insert(DMI->first);
} else {
SmallPtrSet<Pass *, 8> L; L.insert(DMI->first);
InversedLastUser[DMI->second] = L;
}
}
}
/// Destructor
PMTopLevelManager::~PMTopLevelManager() {
for (SmallVectorImpl<PMDataManager *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
delete *I;
for (SmallVectorImpl<ImmutablePass *>::iterator
I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
delete *I;
for (DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.begin(),
DME = AnUsageMap.end(); DMI != DME; ++DMI)
delete DMI->second;
}
//===----------------------------------------------------------------------===//
// PMDataManager implementation
/// Augement AvailableAnalysis by adding analysis made available by pass P.
void PMDataManager::recordAvailableAnalysis(Pass *P) {
AnalysisID PI = P->getPassID();
AvailableAnalysis[PI] = P;
assert(!AvailableAnalysis.empty());
// This pass is the current implementation of all of the interfaces it
// implements as well.
const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI);
if (!PInf) return;
const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
AvailableAnalysis[II[i]->getTypeInfo()] = P;
}
// Return true if P preserves high level analysis used by other
// passes managed by this manager
bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
if (AnUsage->getPreservesAll())
return true;
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
for (SmallVectorImpl<Pass *>::iterator I = HigherLevelAnalysis.begin(),
E = HigherLevelAnalysis.end(); I != E; ++I) {
Pass *P1 = *I;
if (P1->getAsImmutablePass() == nullptr &&
std::find(PreservedSet.begin(), PreservedSet.end(),
P1->getPassID()) ==
PreservedSet.end())
return false;
}
return true;
}
/// verifyPreservedAnalysis -- Verify analysis preserved by pass P.
void PMDataManager::verifyPreservedAnalysis(Pass *P) {
// Don't do this unless assertions are enabled.
#ifdef NDEBUG
return;
#endif
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
// Verify preserved analysis
for (AnalysisUsage::VectorType::const_iterator I = PreservedSet.begin(),
E = PreservedSet.end(); I != E; ++I) {
AnalysisID AID = *I;
if (Pass *AP = findAnalysisPass(AID, true)) {
TimeRegion PassTimer(getPassTimer(AP));
AP->verifyAnalysis();
}
}
}
/// Remove Analysis not preserved by Pass P
void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
if (AnUsage->getPreservesAll())
return;
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
for (DenseMap<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(),
E = AvailableAnalysis.end(); I != E; ) {
DenseMap<AnalysisID, Pass*>::iterator Info = I++;
if (Info->second->getAsImmutablePass() == nullptr &&
std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) ==
PreservedSet.end()) {
// Remove this analysis
if (PassDebugging >= Details) {
Pass *S = Info->second;
dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
dbgs() << S->getPassName() << "'\n";
}
AvailableAnalysis.erase(Info);
}
}
// Check inherited analysis also. If P is not preserving analysis
// provided by parent manager then remove it here.
for (unsigned Index = 0; Index < PMT_Last; ++Index) {
if (!InheritedAnalysis[Index])
continue;
for (DenseMap<AnalysisID, Pass*>::iterator
I = InheritedAnalysis[Index]->begin(),
E = InheritedAnalysis[Index]->end(); I != E; ) {
DenseMap<AnalysisID, Pass *>::iterator Info = I++;
if (Info->second->getAsImmutablePass() == nullptr &&
std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) ==
PreservedSet.end()) {
// Remove this analysis
if (PassDebugging >= Details) {
Pass *S = Info->second;
dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
dbgs() << S->getPassName() << "'\n";
}
InheritedAnalysis[Index]->erase(Info);
}
}
}
}
/// Remove analysis passes that are not used any longer
void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg,
enum PassDebuggingString DBG_STR) {
SmallVector<Pass *, 12> DeadPasses;
// If this is a on the fly manager then it does not have TPM.
if (!TPM)
return;
TPM->collectLastUses(DeadPasses, P);
if (PassDebugging >= Details && !DeadPasses.empty()) {
dbgs() << " -*- '" << P->getPassName();
dbgs() << "' is the last user of following pass instances.";
dbgs() << " Free these instances\n";
}
for (SmallVectorImpl<Pass *>::iterator I = DeadPasses.begin(),
E = DeadPasses.end(); I != E; ++I)
freePass(*I, Msg, DBG_STR);
}
void PMDataManager::freePass(Pass *P, StringRef Msg,
enum PassDebuggingString DBG_STR) {
dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg);
{
// If the pass crashes releasing memory, remember this.
PassManagerPrettyStackEntry X(P);
TimeRegion PassTimer(getPassTimer(P));
P->releaseMemory();
}
AnalysisID PI = P->getPassID();
if (const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI)) {
// Remove the pass itself (if it is not already removed).
AvailableAnalysis.erase(PI);
// Remove all interfaces this pass implements, for which it is also
// listed as the available implementation.
const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i) {
DenseMap<AnalysisID, Pass*>::iterator Pos =
AvailableAnalysis.find(II[i]->getTypeInfo());
if (Pos != AvailableAnalysis.end() && Pos->second == P)
AvailableAnalysis.erase(Pos);
}
}
}
/// Add pass P into the PassVector. Update
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
void PMDataManager::add(Pass *P, bool ProcessAnalysis) {
// This manager is going to manage pass P. Set up analysis resolver
// to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
// If a FunctionPass F is the last user of ModulePass info M
// then the F's manager, not F, records itself as a last user of M.
SmallVector<Pass *, 12> TransferLastUses;
if (!ProcessAnalysis) {
// Add pass
PassVector.push_back(P);
return;
}
// At the moment, this pass is the last user of all required passes.
SmallVector<Pass *, 12> LastUses;
SmallVector<Pass *, 8> RequiredPasses;
SmallVector<AnalysisID, 8> ReqAnalysisNotAvailable;
unsigned PDepth = this->getDepth();
collectRequiredAnalysis(RequiredPasses,
ReqAnalysisNotAvailable, P);
for (SmallVectorImpl<Pass *>::iterator I = RequiredPasses.begin(),
E = RequiredPasses.end(); I != E; ++I) {
Pass *PRequired = *I;
unsigned RDepth = 0;
assert(PRequired->getResolver() && "Analysis Resolver is not set");
PMDataManager &DM = PRequired->getResolver()->getPMDataManager();
RDepth = DM.getDepth();
if (PDepth == RDepth)
LastUses.push_back(PRequired);
else if (PDepth > RDepth) {
// Let the parent claim responsibility of last use
TransferLastUses.push_back(PRequired);
// Keep track of higher level analysis used by this manager.
HigherLevelAnalysis.push_back(PRequired);
} else
llvm_unreachable("Unable to accommodate Required Pass");
}
// Set P as P's last user until someone starts using P.
// However, if P is a Pass Manager then it does not need
// to record its last user.
if (!P->getAsPMDataManager())
LastUses.push_back(P);
TPM->setLastUser(LastUses, P);
if (!TransferLastUses.empty()) {
Pass *My_PM = getAsPass();
TPM->setLastUser(TransferLastUses, My_PM);
TransferLastUses.clear();
}
// Now, take care of required analyses that are not available.
for (SmallVectorImpl<AnalysisID>::iterator
I = ReqAnalysisNotAvailable.begin(),
E = ReqAnalysisNotAvailable.end() ;I != E; ++I) {
const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I);
Pass *AnalysisPass = PI->createPass();
this->addLowerLevelRequiredPass(P, AnalysisPass);
}
// Take a note of analysis required and made available by this pass.
// Remove the analysis not preserved by this pass
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
// Add pass
PassVector.push_back(P);
}
/// Populate RP with analysis pass that are required by
/// pass P and are available. Populate RP_NotAvail with analysis
/// pass that are required by pass P but are not available.
void PMDataManager::collectRequiredAnalysis(SmallVectorImpl<Pass *> &RP,
SmallVectorImpl<AnalysisID> &RP_NotAvail,
Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet();
for (AnalysisUsage::VectorType::const_iterator
I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) {
if (Pass *AnalysisPass = findAnalysisPass(*I, true))
RP.push_back(AnalysisPass);
else
RP_NotAvail.push_back(*I);
}
const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet();
for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(),
E = IDs.end(); I != E; ++I) {
if (Pass *AnalysisPass = findAnalysisPass(*I, true))
RP.push_back(AnalysisPass);
else
RP_NotAvail.push_back(*I);
}
}
// All Required analyses should be available to the pass as it runs! Here
// we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the
// implementations it needs.
//
void PMDataManager::initializeAnalysisImpl(Pass *P) {
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
for (AnalysisUsage::VectorType::const_iterator
I = AnUsage->getRequiredSet().begin(),
E = AnUsage->getRequiredSet().end(); I != E; ++I) {
Pass *Impl = findAnalysisPass(*I, true);
if (!Impl)
// This may be analysis pass that is initialized on the fly.
// If that is not the case then it will raise an assert when it is used.
continue;
AnalysisResolver *AR = P->getResolver();
assert(AR && "Analysis Resolver is not set");
AR->addAnalysisImplsPair(*I, Impl);
}
}
/// Find the pass that implements Analysis AID. If desired pass is not found
/// then return NULL.
Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) {
// Check if AvailableAnalysis map has one entry.
DenseMap<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID);
if (I != AvailableAnalysis.end())
return I->second;
// Search Parents through TopLevelManager
if (SearchParent)
return TPM->findAnalysisPass(AID);
return nullptr;
}
// Print list of passes that are last used by P.
void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{
SmallVector<Pass *, 12> LUses;
// If this is a on the fly manager then it does not have TPM.
if (!TPM)
return;
TPM->collectLastUses(LUses, P);
for (SmallVectorImpl<Pass *>::iterator I = LUses.begin(),
E = LUses.end(); I != E; ++I) {
dbgs() << "--" << std::string(Offset*2, ' ');
(*I)->dumpPassStructure(0);
}
}
void PMDataManager::dumpPassArguments() const {
for (SmallVectorImpl<Pass *>::const_iterator I = PassVector.begin(),
E = PassVector.end(); I != E; ++I) {
if (PMDataManager *PMD = (*I)->getAsPMDataManager())
PMD->dumpPassArguments();
else
if (const PassInfo *PI =
PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID()))
if (!PI->isAnalysisGroup())
dbgs() << " -" << PI->getPassArgument();
}
}
void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1,
enum PassDebuggingString S2,
StringRef Msg) {
if (PassDebugging < Executions)
return;
dbgs() << "[" << sys::TimeValue::now().str() << "] " << (void *)this
<< std::string(getDepth() * 2 + 1, ' ');
switch (S1) {
case EXECUTION_MSG:
dbgs() << "Executing Pass '" << P->getPassName();
break;
case MODIFICATION_MSG:
dbgs() << "Made Modification '" << P->getPassName();
break;
case FREEING_MSG:
dbgs() << " Freeing Pass '" << P->getPassName();
break;
default:
break;
}
switch (S2) {
case ON_BASICBLOCK_MSG:
dbgs() << "' on BasicBlock '" << Msg << "'...\n";
break;
case ON_FUNCTION_MSG:
dbgs() << "' on Function '" << Msg << "'...\n";
break;
case ON_MODULE_MSG:
dbgs() << "' on Module '" << Msg << "'...\n";
break;
case ON_REGION_MSG:
dbgs() << "' on Region '" << Msg << "'...\n";
break;
case ON_LOOP_MSG:
dbgs() << "' on Loop '" << Msg << "'...\n";
break;
case ON_CG_MSG:
dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n";
break;
default:
break;
}
}
void PMDataManager::dumpRequiredSet(const Pass *P) const {
if (PassDebugging < Details)
return;
AnalysisUsage analysisUsage;
P->getAnalysisUsage(analysisUsage);
dumpAnalysisUsage("Required", P, analysisUsage.getRequiredSet());
}
void PMDataManager::dumpPreservedSet(const Pass *P) const {
if (PassDebugging < Details)
return;
AnalysisUsage analysisUsage;
P->getAnalysisUsage(analysisUsage);
dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet());
}
void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P,
const AnalysisUsage::VectorType &Set) const {
assert(PassDebugging >= Details);
if (Set.empty())
return;
dbgs() << (const void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
if (i) dbgs() << ',';
const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(Set[i]);
if (!PInf) {
// Some preserved passes, such as AliasAnalysis, may not be initialized by
// all drivers.
dbgs() << " Uninitialized Pass";
continue;
}
dbgs() << ' ' << PInf->getPassName();
}
dbgs() << '\n';
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
/// This should be handled by specific pass manager.
void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
if (TPM) {
TPM->dumpArguments();
TPM->dumpPasses();
}
// Module Level pass may required Function Level analysis info
// (e.g. dominator info). Pass manager uses on the fly function pass manager
// to provide this on demand. In that case, in Pass manager terminology,
// module level pass is requiring lower level analysis info managed by
// lower level pass manager.
// When Pass manager is not able to order required analysis info, Pass manager
// checks whether any lower level manager will be able to provide this
// analysis info on demand or not.
#ifndef NDEBUG
dbgs() << "Unable to schedule '" << RequiredPass->getPassName();
dbgs() << "' required by '" << P->getPassName() << "'\n";
#endif
llvm_unreachable("Unable to schedule pass");
}
Pass *PMDataManager::getOnTheFlyPass(Pass *P, AnalysisID PI, Function &F) {
llvm_unreachable("Unable to find on the fly pass");
}
// Destructor
PMDataManager::~PMDataManager() {
for (SmallVectorImpl<Pass *>::iterator I = PassVector.begin(),
E = PassVector.end(); I != E; ++I)
delete *I;
}
//===----------------------------------------------------------------------===//
// NOTE: Is this the right place to define this method ?
// getAnalysisIfAvailable - Return analysis result or null if it doesn't exist.
Pass *AnalysisResolver::getAnalysisIfAvailable(AnalysisID ID, bool dir) const {
return PM.findAnalysisPass(ID, dir);
}
Pass *AnalysisResolver::findImplPass(Pass *P, AnalysisID AnalysisPI,
Function &F) {
return PM.getOnTheFlyPass(P, AnalysisPI, F);
}
//===----------------------------------------------------------------------===//
// BBPassManager implementation
/// Execute all of the passes scheduled for execution by invoking
/// runOnBasicBlock method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool BBPassManager::runOnFunction(Function &F) {
if (F.isDeclaration())
return false;
bool Changed = doInitialization(F);
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
bool LocalChanged = false;
dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getName());
dumpRequiredSet(BP);
initializeAnalysisImpl(BP);
{
// If the pass crashes, remember this.
PassManagerPrettyStackEntry X(BP, *I);
TimeRegion PassTimer(getPassTimer(BP));
LocalChanged |= BP->runOnBasicBlock(*I);
}
Changed |= LocalChanged;
if (LocalChanged)
dumpPassInfo(BP, MODIFICATION_MSG, ON_BASICBLOCK_MSG,
I->getName());
dumpPreservedSet(BP);
verifyPreservedAnalysis(BP);
removeNotPreservedAnalysis(BP);
recordAvailableAnalysis(BP);
removeDeadPasses(BP, I->getName(), ON_BASICBLOCK_MSG);
}
return doFinalization(F) || Changed;
}
// Implement doInitialization and doFinalization
bool BBPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
Changed |= getContainedPass(Index)->doInitialization(M);
return Changed;
}
bool BBPassManager::doFinalization(Module &M) {
bool Changed = false;
for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index)
Changed |= getContainedPass(Index)->doFinalization(M);
return Changed;
}
bool BBPassManager::doInitialization(Function &F) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doInitialization(F);
}
return Changed;
}
bool BBPassManager::doFinalization(Function &F) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doFinalization(F);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// FunctionPassManager implementation
/// Create new Function pass manager
FunctionPassManager::FunctionPassManager(Module *m) : M(m) {
FPM = new FunctionPassManagerImpl();
// FPM is the top level manager.
FPM->setTopLevelManager(FPM);
AnalysisResolver *AR = new AnalysisResolver(*FPM);
FPM->setResolver(AR);
}
FunctionPassManager::~FunctionPassManager() {
delete FPM;
}
/// add - Add a pass to the queue of passes to run. This passes
/// ownership of the Pass to the PassManager. When the
/// PassManager_X is destroyed, the pass will be destroyed as well, so
/// there is no need to delete the pass. (TODO delete passes.)
/// This implies that all passes MUST be allocated with 'new'.
void FunctionPassManager::add(Pass *P) {
FPM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
///
bool FunctionPassManager::run(Function &F) {
if (F.isMaterializable()) {
std::string errstr;
if (F.Materialize(&errstr))
report_fatal_error("Error reading bitcode file: " + Twine(errstr));
}
return FPM->run(F);
}
/// doInitialization - Run all of the initializers for the function passes.
///
bool FunctionPassManager::doInitialization() {
return FPM->doInitialization(*M);
}
/// doFinalization - Run all of the finalizers for the function passes.
///
bool FunctionPassManager::doFinalization() {
return FPM->doFinalization(*M);
}
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl implementation
//
bool FunctionPassManagerImpl::doInitialization(Module &M) {
bool Changed = false;
dumpArguments();
dumpPasses();
SmallVectorImpl<ImmutablePass *>& IPV = getImmutablePasses();
for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(),
E = IPV.end(); I != E; ++I) {
Changed |= (*I)->doInitialization(M);
}
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
Changed |= getContainedManager(Index)->doInitialization(M);
return Changed;
}
bool FunctionPassManagerImpl::doFinalization(Module &M) {
bool Changed = false;
for (int Index = getNumContainedManagers() - 1; Index >= 0; --Index)
Changed |= getContainedManager(Index)->doFinalization(M);
SmallVectorImpl<ImmutablePass *>& IPV = getImmutablePasses();
for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(),
E = IPV.end(); I != E; ++I) {
Changed |= (*I)->doFinalization(M);
}
return Changed;
}
/// cleanup - After running all passes, clean up pass manager cache.
void FPPassManager::cleanup() {
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
AnalysisResolver *AR = FP->getResolver();
assert(AR && "Analysis Resolver is not set");
AR->clearAnalysisImpls();
}
}
void FunctionPassManagerImpl::releaseMemoryOnTheFly() {
if (!wasRun)
return;
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FPPM = getContainedManager(Index);
for (unsigned Index = 0; Index < FPPM->getNumContainedPasses(); ++Index) {
FPPM->getContainedPass(Index)->releaseMemory();
}
}
wasRun = false;
}
// Execute all the passes managed by this top level manager.
// Return true if any function is modified by a pass.
bool FunctionPassManagerImpl::run(Function &F) {
bool Changed = false;
TimingInfo::createTheTimeInfo();
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
Changed |= getContainedManager(Index)->runOnFunction(F);
F.getContext().yield();
}
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
getContainedManager(Index)->cleanup();
wasRun = true;
return Changed;
}
//===----------------------------------------------------------------------===//
// FPPassManager implementation
char FPPassManager::ID = 0;
/// Print passes managed by this manager
void FPPassManager::dumpPassStructure(unsigned Offset) {
dbgs().indent(Offset*2) << "FunctionPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
FP->dumpPassStructure(Offset + 1);
dumpLastUses(FP, Offset+1);
}
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnFunction method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool FPPassManager::runOnFunction(Function &F) {
if (F.isDeclaration())
return false;
bool Changed = false;
// Collect inherited analysis from Module level pass manager.
populateInheritedAnalysis(TPM->activeStack);
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
bool LocalChanged = false;
dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName());
dumpRequiredSet(FP);
initializeAnalysisImpl(FP);
{
PassManagerPrettyStackEntry X(FP, F);
TimeRegion PassTimer(getPassTimer(FP));
LocalChanged |= FP->runOnFunction(F);
}
Changed |= LocalChanged;
if (LocalChanged)
dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName());
dumpPreservedSet(FP);
verifyPreservedAnalysis(FP);
removeNotPreservedAnalysis(FP);
recordAvailableAnalysis(FP);
removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG);
}
return Changed;
}
bool FPPassManager::runOnModule(Module &M) {
bool Changed = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
Changed |= runOnFunction(*I);
return Changed;
}
bool FPPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
Changed |= getContainedPass(Index)->doInitialization(M);
return Changed;
}
bool FPPassManager::doFinalization(Module &M) {
bool Changed = false;
for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index)
Changed |= getContainedPass(Index)->doFinalization(M);
return Changed;
}
//===----------------------------------------------------------------------===//
// MPPassManager implementation
/// Execute all of the passes scheduled for execution by invoking
/// runOnModule method. Keep track of whether any of the passes modifies
/// the module, and if so, return true.
bool
MPPassManager::runOnModule(Module &M) {
bool Changed = false;
// Initialize on-the-fly passes
for (std::map<Pass *, FunctionPassManagerImpl *>::iterator
I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end();
I != E; ++I) {
FunctionPassManagerImpl *FPP = I->second;
Changed |= FPP->doInitialization(M);
}
// Initialize module passes
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
Changed |= getContainedPass(Index)->doInitialization(M);
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
bool LocalChanged = false;
dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG, M.getModuleIdentifier());
dumpRequiredSet(MP);
initializeAnalysisImpl(MP);
{
PassManagerPrettyStackEntry X(MP, M);
TimeRegion PassTimer(getPassTimer(MP));
LocalChanged |= MP->runOnModule(M);
}
Changed |= LocalChanged;
if (LocalChanged)
dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG,
M.getModuleIdentifier());
dumpPreservedSet(MP);
verifyPreservedAnalysis(MP);
removeNotPreservedAnalysis(MP);
recordAvailableAnalysis(MP);
removeDeadPasses(MP, M.getModuleIdentifier(), ON_MODULE_MSG);
}
// Finalize module passes
for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index)
Changed |= getContainedPass(Index)->doFinalization(M);
// Finalize on-the-fly passes
for (std::map<Pass *, FunctionPassManagerImpl *>::iterator
I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end();
I != E; ++I) {
FunctionPassManagerImpl *FPP = I->second;
// We don't know when is the last time an on-the-fly pass is run,
// so we need to releaseMemory / finalize here
FPP->releaseMemoryOnTheFly();
Changed |= FPP->doFinalization(M);
}
return Changed;
}
/// Add RequiredPass into list of lower level passes required by pass P.
/// RequiredPass is run on the fly by Pass Manager when P requests it
/// through getAnalysis interface.
void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
assert(P->getPotentialPassManagerType() == PMT_ModulePassManager &&
"Unable to handle Pass that requires lower level Analysis pass");
assert((P->getPotentialPassManagerType() <
RequiredPass->getPotentialPassManagerType()) &&
"Unable to handle Pass that requires lower level Analysis pass");
if (!RequiredPass)
return;
FunctionPassManagerImpl *FPP = OnTheFlyManagers[P];
if (!FPP) {
FPP = new FunctionPassManagerImpl();
// FPP is the top level manager.
FPP->setTopLevelManager(FPP);
OnTheFlyManagers[P] = FPP;
}
const PassInfo * RequiredPassPI =
PassRegistry::getPassRegistry()->getPassInfo(RequiredPass->getPassID());
Pass *FoundPass = nullptr;
if (RequiredPassPI && RequiredPassPI->isAnalysis()) {
FoundPass =
((PMTopLevelManager*)FPP)->findAnalysisPass(RequiredPass->getPassID());
}
if (!FoundPass) {
FoundPass = RequiredPass;
// This should be guaranteed to add RequiredPass to the passmanager given
// that we checked for an avaiable analysis above.
FPP->add(RequiredPass);
}
// Register P as the last user of FoundPass or RequiredPass.
SmallVector<Pass *, 1> LU;
LU.push_back(FoundPass);
FPP->setLastUser(LU, P);
}
/// Return function pass corresponding to PassInfo PI, that is
/// required by module pass MP. Instantiate analysis pass, by using
/// its runOnFunction() for function F.
Pass* MPPassManager::getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F){
FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP];
assert(FPP && "Unable to find on the fly pass");
FPP->releaseMemoryOnTheFly();
FPP->run(F);
return ((PMTopLevelManager*)FPP)->findAnalysisPass(PI);
}
//===----------------------------------------------------------------------===//
// PassManagerImpl implementation
//
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool PassManagerImpl::run(Module &M) {
bool Changed = false;
TimingInfo::createTheTimeInfo();
dumpArguments();
dumpPasses();
SmallVectorImpl<ImmutablePass *>& IPV = getImmutablePasses();
for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(),
E = IPV.end(); I != E; ++I) {
Changed |= (*I)->doInitialization(M);
}
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
Changed |= getContainedManager(Index)->runOnModule(M);
M.getContext().yield();
}
for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(),
E = IPV.end(); I != E; ++I) {
Changed |= (*I)->doFinalization(M);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// PassManager implementation
/// Create new pass manager
PassManager::PassManager() {
PM = new PassManagerImpl();
// PM is the top level manager
PM->setTopLevelManager(PM);
}
PassManager::~PassManager() {
delete PM;
}
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void PassManager::add(Pass *P) {
PM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool PassManager::run(Module &M) {
return PM->run(M);
}
//===----------------------------------------------------------------------===//
// TimingInfo implementation
bool llvm::TimePassesIsEnabled = false;
static cl::opt<bool,true>
EnableTiming("time-passes", cl::location(TimePassesIsEnabled),
cl::desc("Time each pass, printing elapsed time for each on exit"));
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer to
// a non-null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
void TimingInfo::createTheTimeInfo() {
if (!TimePassesIsEnabled || TheTimeInfo) return;
// Constructed the first time this is called, iff -time-passes is enabled.
// This guarantees that the object will be constructed before static globals,
// thus it will be destroyed before them.
static ManagedStatic<TimingInfo> TTI;
TheTimeInfo = &*TTI;
}
/// If TimingInfo is enabled then start pass timer.
Timer *llvm::getPassTimer(Pass *P) {
if (TheTimeInfo)
return TheTimeInfo->getPassTimer(P);
return nullptr;
}
//===----------------------------------------------------------------------===//
// PMStack implementation
//
// Pop Pass Manager from the stack and clear its analysis info.
void PMStack::pop() {
PMDataManager *Top = this->top();
Top->initializeAnalysisInfo();
S.pop_back();
}
// Push PM on the stack and set its top level manager.
void PMStack::push(PMDataManager *PM) {
assert(PM && "Unable to push. Pass Manager expected");
assert(PM->getDepth()==0 && "Pass Manager depth set too early");
if (!this->empty()) {
assert(PM->getPassManagerType() > this->top()->getPassManagerType()
&& "pushing bad pass manager to PMStack");
PMTopLevelManager *TPM = this->top()->getTopLevelManager();
assert(TPM && "Unable to find top level manager");
TPM->addIndirectPassManager(PM);
PM->setTopLevelManager(TPM);
PM->setDepth(this->top()->getDepth()+1);
} else {
assert((PM->getPassManagerType() == PMT_ModulePassManager
|| PM->getPassManagerType() == PMT_FunctionPassManager)
&& "pushing bad pass manager to PMStack");
PM->setDepth(1);
}
S.push_back(PM);
}
// Dump content of the pass manager stack.
void PMStack::dump() const {
for (std::vector<PMDataManager *>::const_iterator I = S.begin(),
E = S.end(); I != E; ++I)
dbgs() << (*I)->getAsPass()->getPassName() << ' ';
if (!S.empty())
dbgs() << '\n';
}
/// Find appropriate Module Pass Manager in the PM Stack and
/// add self into that manager.
void ModulePass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
// Find Module Pass Manager
while (!PMS.empty()) {
PassManagerType TopPMType = PMS.top()->getPassManagerType();
if (TopPMType == PreferredType)
break; // We found desired pass manager
else if (TopPMType > PMT_ModulePassManager)
PMS.pop(); // Pop children pass managers
else
break;
}
assert(!PMS.empty() && "Unable to find appropriate Pass Manager");
PMS.top()->add(this);
}
/// Find appropriate Function Pass Manager or Call Graph Pass Manager
/// in the PM Stack and add self into that manager.
void FunctionPass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
// Find Function Pass Manager
while (!PMS.empty()) {
if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager)
PMS.pop();
else
break;
}
// Create new Function Pass Manager if needed.
FPPassManager *FPP;
if (PMS.top()->getPassManagerType() == PMT_FunctionPassManager) {
FPP = (FPPassManager *)PMS.top();
} else {
assert(!PMS.empty() && "Unable to create Function Pass Manager");
PMDataManager *PMD = PMS.top();
// [1] Create new Function Pass Manager
FPP = new FPPassManager();
FPP->populateInheritedAnalysis(PMS);
// [2] Set up new manager's top level manager
PMTopLevelManager *TPM = PMD->getTopLevelManager();
TPM->addIndirectPassManager(FPP);
// [3] Assign manager to manage this new manager. This may create
// and push new managers into PMS
FPP->assignPassManager(PMS, PMD->getPassManagerType());
// [4] Push new manager into PMS
PMS.push(FPP);
}
// Assign FPP as the manager of this pass.
FPP->add(this);
}
/// Find appropriate Basic Pass Manager or Call Graph Pass Manager
/// in the PM Stack and add self into that manager.
void BasicBlockPass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
BBPassManager *BBP;
// Basic Pass Manager is a leaf pass manager. It does not handle
// any other pass manager.
if (!PMS.empty() &&
PMS.top()->getPassManagerType() == PMT_BasicBlockPassManager) {
BBP = (BBPassManager *)PMS.top();
} else {
// If leaf manager is not Basic Block Pass manager then create new
// basic Block Pass manager.
assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager");
PMDataManager *PMD = PMS.top();
// [1] Create new Basic Block Manager
BBP = new BBPassManager();
// [2] Set up new manager's top level manager
// Basic Block Pass Manager does not live by itself
PMTopLevelManager *TPM = PMD->getTopLevelManager();
TPM->addIndirectPassManager(BBP);
// [3] Assign manager to manage this new manager. This may create
// and push new managers into PMS
BBP->assignPassManager(PMS, PreferredType);
// [4] Push new manager into PMS
PMS.push(BBP);
}
// Assign BBP as the manager of this pass.
BBP->add(this);
}
PassManagerBase::~PassManagerBase() {}