llvm-project/lld/ELF/OutputSections.h

556 lines
18 KiB
C++

//===- OutputSections.h -----------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_OUTPUT_SECTIONS_H
#define LLD_ELF_OUTPUT_SECTIONS_H
#include "Config.h"
#include "GdbIndex.h"
#include "Relocations.h"
#include "lld/Core/LLVM.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELF.h"
namespace lld {
namespace elf {
class SymbolBody;
struct EhSectionPiece;
template <class ELFT> class SymbolTable;
template <class ELFT> class SymbolTableSection;
template <class ELFT> class StringTableSection;
template <class ELFT> class EhInputSection;
template <class ELFT> class InputSection;
template <class ELFT> class InputSectionBase;
template <class ELFT> class MergeInputSection;
template <class ELFT> class OutputSection;
template <class ELFT> class ObjectFile;
template <class ELFT> class SharedFile;
template <class ELFT> class SharedSymbol;
template <class ELFT> class DefinedRegular;
// This represents a section in an output file.
// Different sub classes represent different types of sections. Some contain
// input sections, others are created by the linker.
// The writer creates multiple OutputSections and assign them unique,
// non-overlapping file offsets and VAs.
class OutputSectionBase {
public:
enum Kind {
Base,
EHFrame,
EHFrameHdr,
GnuHashTable,
HashTable,
Merge,
Plt,
Regular,
SymTable,
VersDef,
VersNeed,
VersTable
};
OutputSectionBase(StringRef Name, uint32_t Type, uint64_t Flags);
void setLMAOffset(uint64_t LMAOff) { LMAOffset = LMAOff; }
uint64_t getLMA() const { return Addr + LMAOffset; }
template <typename ELFT> void writeHeaderTo(typename ELFT::Shdr *SHdr);
StringRef getName() const { return Name; }
virtual void addSection(InputSectionData *C) {}
virtual Kind getKind() const { return Base; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == Base;
}
unsigned SectionIndex;
uint32_t getPhdrFlags() const;
void updateAlignment(uint64_t Alignment) {
if (Alignment > Addralign)
Addralign = Alignment;
}
// If true, this section will be page aligned on disk.
// Typically the first section of each PT_LOAD segment has this flag.
bool PageAlign = false;
// Pointer to the first section in PT_LOAD segment, which this section
// also resides in. This field is used to correctly compute file offset
// of a section. When two sections share the same load segment, difference
// between their file offsets should be equal to difference between their
// virtual addresses. To compute some section offset we use the following
// formula: Off = Off_first + VA - VA_first.
OutputSectionBase *FirstInPtLoad = nullptr;
virtual void finalize() {}
virtual void finalizePieces() {}
virtual void assignOffsets() {}
virtual void writeTo(uint8_t *Buf) {}
virtual ~OutputSectionBase() = default;
StringRef Name;
// The following fields correspond to Elf_Shdr members.
uint64_t Size = 0;
uint64_t Entsize = 0;
uint64_t Addralign = 0;
uint64_t Offset = 0;
uint64_t Flags = 0;
uint64_t LMAOffset = 0;
uint64_t Addr = 0;
uint32_t ShName = 0;
uint32_t Type = 0;
uint32_t Info = 0;
uint32_t Link = 0;
};
template <class ELFT> class GdbIndexSection final : public OutputSectionBase {
typedef typename ELFT::uint uintX_t;
const unsigned OffsetTypeSize = 4;
const unsigned CuListOffset = 6 * OffsetTypeSize;
const unsigned CompilationUnitSize = 16;
const unsigned AddressEntrySize = 16 + OffsetTypeSize;
const unsigned SymTabEntrySize = 2 * OffsetTypeSize;
public:
GdbIndexSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
// Pairs of [CU Offset, CU length].
std::vector<std::pair<uintX_t, uintX_t>> CompilationUnits;
private:
void parseDebugSections();
void readDwarf(InputSection<ELFT> *I);
uint32_t CuTypesOffset;
};
template <class ELFT> class PltSection final : public OutputSectionBase {
typedef typename ELFT::uint uintX_t;
public:
PltSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
void addEntry(SymbolBody &Sym);
bool empty() const { return Entries.empty(); }
Kind getKind() const override { return Plt; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == Plt;
}
private:
std::vector<std::pair<const SymbolBody *, unsigned>> Entries;
};
struct SymbolTableEntry {
SymbolBody *Symbol;
size_t StrTabOffset;
};
template <class ELFT>
class SymbolTableSection final : public OutputSectionBase {
typedef OutputSectionBase Base;
public:
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::SymRange Elf_Sym_Range;
typedef typename ELFT::uint uintX_t;
SymbolTableSection(StringTableSection<ELFT> &StrTabSec);
void finalize() override;
void writeTo(uint8_t *Buf) override;
void addSymbol(SymbolBody *Body);
StringTableSection<ELFT> &getStrTabSec() const { return StrTabSec; }
unsigned getNumSymbols() const { return NumLocals + Symbols.size() + 1; }
typename Base::Kind getKind() const override { return Base::SymTable; }
static bool classof(const Base *B) { return B->getKind() == Base::SymTable; }
ArrayRef<SymbolTableEntry> getSymbols() const { return Symbols; }
unsigned NumLocals = 0;
StringTableSection<ELFT> &StrTabSec;
private:
void writeLocalSymbols(uint8_t *&Buf);
void writeGlobalSymbols(uint8_t *Buf);
const OutputSectionBase *getOutputSection(SymbolBody *Sym);
// A vector of symbols and their string table offsets.
std::vector<SymbolTableEntry> Symbols;
};
// For more information about .gnu.version and .gnu.version_r see:
// https://www.akkadia.org/drepper/symbol-versioning
// The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
// contain symbol version definitions. The number of entries in this section
// shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
// The section shall contain an array of Elf_Verdef structures, optionally
// followed by an array of Elf_Verdaux structures.
template <class ELFT>
class VersionDefinitionSection final : public OutputSectionBase {
typedef typename ELFT::Verdef Elf_Verdef;
typedef typename ELFT::Verdaux Elf_Verdaux;
public:
VersionDefinitionSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
Kind getKind() const override { return VersDef; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == VersDef;
}
private:
void writeOne(uint8_t *Buf, uint32_t Index, StringRef Name, size_t NameOff);
unsigned FileDefNameOff;
};
// The .gnu.version section specifies the required version of each symbol in the
// dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
// table entry. An Elf_Versym is just a 16-bit integer that refers to a version
// identifier defined in the either .gnu.version_r or .gnu.version_d section.
// The values 0 and 1 are reserved. All other values are used for versions in
// the own object or in any of the dependencies.
template <class ELFT>
class VersionTableSection final : public OutputSectionBase {
typedef typename ELFT::Versym Elf_Versym;
public:
VersionTableSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
Kind getKind() const override { return VersTable; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == VersTable;
}
};
// The .gnu.version_r section defines the version identifiers used by
// .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
// Elf_Verneed specifies the version requirements for a single DSO, and contains
// a reference to a linked list of Elf_Vernaux data structures which define the
// mapping from version identifiers to version names.
template <class ELFT>
class VersionNeedSection final : public OutputSectionBase {
typedef typename ELFT::Verneed Elf_Verneed;
typedef typename ELFT::Vernaux Elf_Vernaux;
// A vector of shared files that need Elf_Verneed data structures and the
// string table offsets of their sonames.
std::vector<std::pair<SharedFile<ELFT> *, size_t>> Needed;
// The next available version identifier.
unsigned NextIndex;
public:
VersionNeedSection();
void addSymbol(SharedSymbol<ELFT> *SS);
void finalize() override;
void writeTo(uint8_t *Buf) override;
size_t getNeedNum() const { return Needed.size(); }
Kind getKind() const override { return VersNeed; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == VersNeed;
}
};
template <class ELFT> class OutputSection final : public OutputSectionBase {
public:
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::uint uintX_t;
OutputSection(StringRef Name, uint32_t Type, uintX_t Flags);
void addSection(InputSectionData *C) override;
void sort(std::function<unsigned(InputSection<ELFT> *S)> Order);
void sortInitFini();
void sortCtorsDtors();
void writeTo(uint8_t *Buf) override;
void finalize() override;
void assignOffsets() override;
Kind getKind() const override { return Regular; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == Regular;
}
std::vector<InputSection<ELFT> *> Sections;
};
template <class ELFT>
class MergeOutputSection final : public OutputSectionBase {
typedef typename ELFT::uint uintX_t;
public:
MergeOutputSection(StringRef Name, uint32_t Type, uintX_t Flags,
uintX_t Alignment);
void addSection(InputSectionData *S) override;
void writeTo(uint8_t *Buf) override;
unsigned getOffset(llvm::CachedHashStringRef Val);
void finalize() override;
void finalizePieces() override;
bool shouldTailMerge() const;
Kind getKind() const override { return Merge; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == Merge;
}
private:
llvm::StringTableBuilder Builder;
std::vector<MergeInputSection<ELFT> *> Sections;
};
struct CieRecord {
EhSectionPiece *Piece = nullptr;
std::vector<EhSectionPiece *> FdePieces;
};
// Output section for .eh_frame.
template <class ELFT> class EhOutputSection final : public OutputSectionBase {
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
public:
EhOutputSection();
void writeTo(uint8_t *Buf) override;
void finalize() override;
bool empty() const { return Sections.empty(); }
void addSection(InputSectionData *S) override;
Kind getKind() const override { return EHFrame; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == EHFrame;
}
size_t NumFdes = 0;
private:
template <class RelTy>
void addSectionAux(EhInputSection<ELFT> *S, llvm::ArrayRef<RelTy> Rels);
template <class RelTy>
CieRecord *addCie(EhSectionPiece &Piece, EhInputSection<ELFT> *Sec,
ArrayRef<RelTy> Rels);
template <class RelTy>
bool isFdeLive(EhSectionPiece &Piece, EhInputSection<ELFT> *Sec,
ArrayRef<RelTy> Rels);
uintX_t getFdePc(uint8_t *Buf, size_t Off, uint8_t Enc);
std::vector<EhInputSection<ELFT> *> Sections;
std::vector<CieRecord *> Cies;
// CIE records are uniquified by their contents and personality functions.
llvm::DenseMap<std::pair<ArrayRef<uint8_t>, SymbolBody *>, CieRecord> CieMap;
};
template <class ELFT> class HashTableSection final : public OutputSectionBase {
typedef typename ELFT::Word Elf_Word;
public:
HashTableSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
Kind getKind() const override { return HashTable; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == HashTable;
}
};
// Outputs GNU Hash section. For detailed explanation see:
// https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
template <class ELFT>
class GnuHashTableSection final : public OutputSectionBase {
typedef typename ELFT::Off Elf_Off;
typedef typename ELFT::Word Elf_Word;
typedef typename ELFT::uint uintX_t;
public:
GnuHashTableSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
// Adds symbols to the hash table.
// Sorts the input to satisfy GNU hash section requirements.
void addSymbols(std::vector<SymbolTableEntry> &Symbols);
Kind getKind() const override { return GnuHashTable; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == GnuHashTable;
}
private:
static unsigned calcNBuckets(unsigned NumHashed);
static unsigned calcMaskWords(unsigned NumHashed);
void writeHeader(uint8_t *&Buf);
void writeBloomFilter(uint8_t *&Buf);
void writeHashTable(uint8_t *Buf);
struct SymbolData {
SymbolBody *Body;
size_t STName;
uint32_t Hash;
};
std::vector<SymbolData> Symbols;
unsigned MaskWords;
unsigned NBuckets;
unsigned Shift2;
};
// --eh-frame-hdr option tells linker to construct a header for all the
// .eh_frame sections. This header is placed to a section named .eh_frame_hdr
// and also to a PT_GNU_EH_FRAME segment.
// At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
// calling dl_iterate_phdr.
// This section contains a lookup table for quick binary search of FDEs.
// Detailed info about internals can be found in Ian Lance Taylor's blog:
// http://www.airs.com/blog/archives/460 (".eh_frame")
// http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
template <class ELFT> class EhFrameHeader final : public OutputSectionBase {
typedef typename ELFT::uint uintX_t;
public:
EhFrameHeader();
void finalize() override;
void writeTo(uint8_t *Buf) override;
void addFde(uint32_t Pc, uint32_t FdeVA);
Kind getKind() const override { return EHFrameHdr; }
static bool classof(const OutputSectionBase *B) {
return B->getKind() == EHFrameHdr;
}
private:
struct FdeData {
uint32_t Pc;
uint32_t FdeVA;
};
std::vector<FdeData> Fdes;
};
// All output sections that are hadnled by the linker specially are
// globally accessible. Writer initializes them, so don't use them
// until Writer is initialized.
template <class ELFT> struct Out {
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Phdr Elf_Phdr;
static uint8_t First;
static EhFrameHeader<ELFT> *EhFrameHdr;
static EhOutputSection<ELFT> *EhFrame;
static GdbIndexSection<ELFT> *GdbIndex;
static GnuHashTableSection<ELFT> *GnuHashTab;
static HashTableSection<ELFT> *HashTab;
static OutputSection<ELFT> *Bss;
static OutputSection<ELFT> *MipsRldMap;
static OutputSectionBase *Opd;
static uint8_t *OpdBuf;
static PltSection<ELFT> *Plt;
static SymbolTableSection<ELFT> *DynSymTab;
static SymbolTableSection<ELFT> *SymTab;
static VersionDefinitionSection<ELFT> *VerDef;
static VersionTableSection<ELFT> *VerSym;
static VersionNeedSection<ELFT> *VerNeed;
static Elf_Phdr *TlsPhdr;
static OutputSectionBase *DebugInfo;
static OutputSectionBase *ElfHeader;
static OutputSectionBase *ProgramHeaders;
static OutputSectionBase *PreinitArray;
static OutputSectionBase *InitArray;
static OutputSectionBase *FiniArray;
};
template <bool Is64Bits> struct SectionKey {
typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t;
StringRef Name;
uint32_t Type;
uintX_t Flags;
uintX_t Alignment;
};
// This class knows how to create an output section for a given
// input section. Output section type is determined by various
// factors, including input section's sh_flags, sh_type and
// linker scripts.
template <class ELFT> class OutputSectionFactory {
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::uint uintX_t;
typedef typename elf::SectionKey<ELFT::Is64Bits> Key;
public:
std::pair<OutputSectionBase *, bool> create(InputSectionBase<ELFT> *C,
StringRef OutsecName);
std::pair<OutputSectionBase *, bool>
create(const SectionKey<ELFT::Is64Bits> &Key, InputSectionBase<ELFT> *C);
private:
llvm::SmallDenseMap<Key, OutputSectionBase *> Map;
};
template <class ELFT> uint64_t getHeaderSize() {
if (Config->OFormatBinary)
return 0;
return Out<ELFT>::ElfHeader->Size + Out<ELFT>::ProgramHeaders->Size;
}
template <class ELFT> uint8_t Out<ELFT>::First;
template <class ELFT> EhFrameHeader<ELFT> *Out<ELFT>::EhFrameHdr;
template <class ELFT> EhOutputSection<ELFT> *Out<ELFT>::EhFrame;
template <class ELFT> GdbIndexSection<ELFT> *Out<ELFT>::GdbIndex;
template <class ELFT> GnuHashTableSection<ELFT> *Out<ELFT>::GnuHashTab;
template <class ELFT> HashTableSection<ELFT> *Out<ELFT>::HashTab;
template <class ELFT> OutputSection<ELFT> *Out<ELFT>::Bss;
template <class ELFT> OutputSection<ELFT> *Out<ELFT>::MipsRldMap;
template <class ELFT> OutputSectionBase *Out<ELFT>::Opd;
template <class ELFT> uint8_t *Out<ELFT>::OpdBuf;
template <class ELFT> PltSection<ELFT> *Out<ELFT>::Plt;
template <class ELFT> SymbolTableSection<ELFT> *Out<ELFT>::DynSymTab;
template <class ELFT> SymbolTableSection<ELFT> *Out<ELFT>::SymTab;
template <class ELFT> VersionDefinitionSection<ELFT> *Out<ELFT>::VerDef;
template <class ELFT> VersionTableSection<ELFT> *Out<ELFT>::VerSym;
template <class ELFT> VersionNeedSection<ELFT> *Out<ELFT>::VerNeed;
template <class ELFT> typename ELFT::Phdr *Out<ELFT>::TlsPhdr;
template <class ELFT> OutputSectionBase *Out<ELFT>::DebugInfo;
template <class ELFT> OutputSectionBase *Out<ELFT>::ElfHeader;
template <class ELFT> OutputSectionBase *Out<ELFT>::ProgramHeaders;
template <class ELFT> OutputSectionBase *Out<ELFT>::PreinitArray;
template <class ELFT> OutputSectionBase *Out<ELFT>::InitArray;
template <class ELFT> OutputSectionBase *Out<ELFT>::FiniArray;
} // namespace elf
} // namespace lld
namespace llvm {
template <bool Is64Bits> struct DenseMapInfo<lld::elf::SectionKey<Is64Bits>> {
typedef typename lld::elf::SectionKey<Is64Bits> Key;
static Key getEmptyKey();
static Key getTombstoneKey();
static unsigned getHashValue(const Key &Val);
static bool isEqual(const Key &LHS, const Key &RHS);
};
}
#endif