forked from OSchip/llvm-project
1327 lines
45 KiB
C++
1327 lines
45 KiB
C++
//===- OutputSections.cpp -------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OutputSections.h"
|
|
#include "Config.h"
|
|
#include "EhFrame.h"
|
|
#include "GdbIndex.h"
|
|
#include "LinkerScript.h"
|
|
#include "Memory.h"
|
|
#include "Strings.h"
|
|
#include "SymbolListFile.h"
|
|
#include "SymbolTable.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Core/Parallel.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/MD5.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/SHA1.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::dwarf;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type,
|
|
uint64_t Flags)
|
|
: Name(Name) {
|
|
this->Type = Type;
|
|
this->Flags = Flags;
|
|
this->Addralign = 1;
|
|
}
|
|
|
|
uint32_t OutputSectionBase::getPhdrFlags() const {
|
|
uint32_t Ret = PF_R;
|
|
if (Flags & SHF_WRITE)
|
|
Ret |= PF_W;
|
|
if (Flags & SHF_EXECINSTR)
|
|
Ret |= PF_X;
|
|
return Ret;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSectionBase::writeHeaderTo(typename ELFT::Shdr *Shdr) {
|
|
Shdr->sh_entsize = Entsize;
|
|
Shdr->sh_addralign = Addralign;
|
|
Shdr->sh_type = Type;
|
|
Shdr->sh_offset = Offset;
|
|
Shdr->sh_flags = Flags;
|
|
Shdr->sh_info = Info;
|
|
Shdr->sh_link = Link;
|
|
Shdr->sh_addr = Addr;
|
|
Shdr->sh_size = Size;
|
|
Shdr->sh_name = ShName;
|
|
}
|
|
|
|
template <class ELFT>
|
|
GdbIndexSection<ELFT>::GdbIndexSection()
|
|
: OutputSectionBase(".gdb_index", SHT_PROGBITS, 0) {}
|
|
|
|
template <class ELFT> void GdbIndexSection<ELFT>::parseDebugSections() {
|
|
std::vector<InputSection<ELFT> *> &IS =
|
|
static_cast<OutputSection<ELFT> *>(Out<ELFT>::DebugInfo)->Sections;
|
|
|
|
for (InputSection<ELFT> *I : IS)
|
|
readDwarf(I);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GdbIndexSection<ELFT>::readDwarf(InputSection<ELFT> *I) {
|
|
std::vector<std::pair<uintX_t, uintX_t>> CuList = readCuList(I);
|
|
CompilationUnits.insert(CompilationUnits.end(), CuList.begin(), CuList.end());
|
|
}
|
|
|
|
template <class ELFT> void GdbIndexSection<ELFT>::finalize() {
|
|
parseDebugSections();
|
|
|
|
// GdbIndex header consist from version fields
|
|
// and 5 more fields with different kinds of offsets.
|
|
CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize;
|
|
this->Size = CuTypesOffset;
|
|
}
|
|
|
|
template <class ELFT> void GdbIndexSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
write32le(Buf, 7); // Write Version
|
|
write32le(Buf + 4, CuListOffset); // CU list offset
|
|
write32le(Buf + 8, CuTypesOffset); // Types CU list offset
|
|
write32le(Buf + 12, CuTypesOffset); // Address area offset
|
|
write32le(Buf + 16, CuTypesOffset); // Symbol table offset
|
|
write32le(Buf + 20, CuTypesOffset); // Constant pool offset
|
|
Buf += 24;
|
|
|
|
// Write the CU list.
|
|
for (std::pair<uintX_t, uintX_t> CU : CompilationUnits) {
|
|
write64le(Buf, CU.first);
|
|
write64le(Buf + 8, CU.second);
|
|
Buf += 16;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
PltSection<ELFT>::PltSection()
|
|
: OutputSectionBase(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) {
|
|
this->Addralign = 16;
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
// At beginning of PLT, we have code to call the dynamic linker
|
|
// to resolve dynsyms at runtime. Write such code.
|
|
Target->writePltHeader(Buf);
|
|
size_t Off = Target->PltHeaderSize;
|
|
|
|
for (auto &I : Entries) {
|
|
const SymbolBody *B = I.first;
|
|
unsigned RelOff = I.second;
|
|
uint64_t Got = B->getGotPltVA<ELFT>();
|
|
uint64_t Plt = this->Addr + Off;
|
|
Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
|
|
Off += Target->PltEntrySize;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) {
|
|
Sym.PltIndex = Entries.size();
|
|
unsigned RelOff = In<ELFT>::RelaPlt->getRelocOffset();
|
|
Entries.push_back(std::make_pair(&Sym, RelOff));
|
|
}
|
|
|
|
template <class ELFT> void PltSection<ELFT>::finalize() {
|
|
this->Size = Target->PltHeaderSize + Entries.size() * Target->PltEntrySize;
|
|
}
|
|
|
|
template <class ELFT>
|
|
HashTableSection<ELFT>::HashTableSection()
|
|
: OutputSectionBase(".hash", SHT_HASH, SHF_ALLOC) {
|
|
this->Entsize = sizeof(Elf_Word);
|
|
this->Addralign = sizeof(Elf_Word);
|
|
}
|
|
|
|
template <class ELFT> void HashTableSection<ELFT>::finalize() {
|
|
this->Link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
|
|
unsigned NumEntries = 2; // nbucket and nchain.
|
|
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
|
|
|
|
// Create as many buckets as there are symbols.
|
|
// FIXME: This is simplistic. We can try to optimize it, but implementing
|
|
// support for SHT_GNU_HASH is probably even more profitable.
|
|
NumEntries += Out<ELFT>::DynSymTab->getNumSymbols();
|
|
this->Size = NumEntries * sizeof(Elf_Word);
|
|
}
|
|
|
|
template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
unsigned NumSymbols = Out<ELFT>::DynSymTab->getNumSymbols();
|
|
auto *P = reinterpret_cast<Elf_Word *>(Buf);
|
|
*P++ = NumSymbols; // nbucket
|
|
*P++ = NumSymbols; // nchain
|
|
|
|
Elf_Word *Buckets = P;
|
|
Elf_Word *Chains = P + NumSymbols;
|
|
|
|
for (const SymbolTableEntry &S : Out<ELFT>::DynSymTab->getSymbols()) {
|
|
SymbolBody *Body = S.Symbol;
|
|
StringRef Name = Body->getName();
|
|
unsigned I = Body->DynsymIndex;
|
|
uint32_t Hash = hashSysV(Name) % NumSymbols;
|
|
Chains[I] = Buckets[Hash];
|
|
Buckets[Hash] = I;
|
|
}
|
|
}
|
|
|
|
static uint32_t hashGnu(StringRef Name) {
|
|
uint32_t H = 5381;
|
|
for (uint8_t C : Name)
|
|
H = (H << 5) + H + C;
|
|
return H;
|
|
}
|
|
|
|
template <class ELFT>
|
|
GnuHashTableSection<ELFT>::GnuHashTableSection()
|
|
: OutputSectionBase(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) {
|
|
this->Entsize = ELFT::Is64Bits ? 0 : 4;
|
|
this->Addralign = sizeof(uintX_t);
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
|
|
if (!NumHashed)
|
|
return 0;
|
|
|
|
// These values are prime numbers which are not greater than 2^(N-1) + 1.
|
|
// In result, for any particular NumHashed we return a prime number
|
|
// which is not greater than NumHashed.
|
|
static const unsigned Primes[] = {
|
|
1, 1, 3, 3, 7, 13, 31, 61, 127, 251,
|
|
509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
|
|
|
|
return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
|
|
array_lengthof(Primes) - 1)];
|
|
}
|
|
|
|
// Bloom filter estimation: at least 8 bits for each hashed symbol.
|
|
// GNU Hash table requirement: it should be a power of 2,
|
|
// the minimum value is 1, even for an empty table.
|
|
// Expected results for a 32-bit target:
|
|
// calcMaskWords(0..4) = 1
|
|
// calcMaskWords(5..8) = 2
|
|
// calcMaskWords(9..16) = 4
|
|
// For a 64-bit target:
|
|
// calcMaskWords(0..8) = 1
|
|
// calcMaskWords(9..16) = 2
|
|
// calcMaskWords(17..32) = 4
|
|
template <class ELFT>
|
|
unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
|
|
if (!NumHashed)
|
|
return 1;
|
|
return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
|
|
}
|
|
|
|
template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
|
|
unsigned NumHashed = Symbols.size();
|
|
NBuckets = calcNBuckets(NumHashed);
|
|
MaskWords = calcMaskWords(NumHashed);
|
|
// Second hash shift estimation: just predefined values.
|
|
Shift2 = ELFT::Is64Bits ? 6 : 5;
|
|
|
|
this->Link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
this->Size = sizeof(Elf_Word) * 4 // Header
|
|
+ sizeof(Elf_Off) * MaskWords // Bloom Filter
|
|
+ sizeof(Elf_Word) * NBuckets // Hash Buckets
|
|
+ sizeof(Elf_Word) * NumHashed; // Hash Values
|
|
}
|
|
|
|
template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
writeHeader(Buf);
|
|
if (Symbols.empty())
|
|
return;
|
|
writeBloomFilter(Buf);
|
|
writeHashTable(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
|
|
auto *P = reinterpret_cast<Elf_Word *>(Buf);
|
|
*P++ = NBuckets;
|
|
*P++ = Out<ELFT>::DynSymTab->getNumSymbols() - Symbols.size();
|
|
*P++ = MaskWords;
|
|
*P++ = Shift2;
|
|
Buf = reinterpret_cast<uint8_t *>(P);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
|
|
unsigned C = sizeof(Elf_Off) * 8;
|
|
|
|
auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
|
|
for (const SymbolData &Sym : Symbols) {
|
|
size_t Pos = (Sym.Hash / C) & (MaskWords - 1);
|
|
uintX_t V = (uintX_t(1) << (Sym.Hash % C)) |
|
|
(uintX_t(1) << ((Sym.Hash >> Shift2) % C));
|
|
Masks[Pos] |= V;
|
|
}
|
|
Buf += sizeof(Elf_Off) * MaskWords;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
|
|
Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
|
|
Elf_Word *Values = Buckets + NBuckets;
|
|
|
|
int PrevBucket = -1;
|
|
int I = 0;
|
|
for (const SymbolData &Sym : Symbols) {
|
|
int Bucket = Sym.Hash % NBuckets;
|
|
assert(PrevBucket <= Bucket);
|
|
if (Bucket != PrevBucket) {
|
|
Buckets[Bucket] = Sym.Body->DynsymIndex;
|
|
PrevBucket = Bucket;
|
|
if (I > 0)
|
|
Values[I - 1] |= 1;
|
|
}
|
|
Values[I] = Sym.Hash & ~1;
|
|
++I;
|
|
}
|
|
if (I > 0)
|
|
Values[I - 1] |= 1;
|
|
}
|
|
|
|
// Add symbols to this symbol hash table. Note that this function
|
|
// destructively sort a given vector -- which is needed because
|
|
// GNU-style hash table places some sorting requirements.
|
|
template <class ELFT>
|
|
void GnuHashTableSection<ELFT>::addSymbols(std::vector<SymbolTableEntry> &V) {
|
|
// Ideally this will just be 'auto' but GCC 6.1 is not able
|
|
// to deduce it correctly.
|
|
std::vector<SymbolTableEntry>::iterator Mid =
|
|
std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) {
|
|
return S.Symbol->isUndefined();
|
|
});
|
|
if (Mid == V.end())
|
|
return;
|
|
for (auto I = Mid, E = V.end(); I != E; ++I) {
|
|
SymbolBody *B = I->Symbol;
|
|
size_t StrOff = I->StrTabOffset;
|
|
Symbols.push_back({B, StrOff, hashGnu(B->getName())});
|
|
}
|
|
|
|
unsigned NBuckets = calcNBuckets(Symbols.size());
|
|
std::stable_sort(Symbols.begin(), Symbols.end(),
|
|
[&](const SymbolData &L, const SymbolData &R) {
|
|
return L.Hash % NBuckets < R.Hash % NBuckets;
|
|
});
|
|
|
|
V.erase(Mid, V.end());
|
|
for (const SymbolData &Sym : Symbols)
|
|
V.push_back({Sym.Body, Sym.STName});
|
|
}
|
|
|
|
// Returns the number of version definition entries. Because the first entry
|
|
// is for the version definition itself, it is the number of versioned symbols
|
|
// plus one. Note that we don't support multiple versions yet.
|
|
static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }
|
|
|
|
template <class ELFT>
|
|
EhFrameHeader<ELFT>::EhFrameHeader()
|
|
: OutputSectionBase(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {}
|
|
|
|
// .eh_frame_hdr contains a binary search table of pointers to FDEs.
|
|
// Each entry of the search table consists of two values,
|
|
// the starting PC from where FDEs covers, and the FDE's address.
|
|
// It is sorted by PC.
|
|
template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
// Sort the FDE list by their PC and uniqueify. Usually there is only
|
|
// one FDE for a PC (i.e. function), but if ICF merges two functions
|
|
// into one, there can be more than one FDEs pointing to the address.
|
|
auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; };
|
|
std::stable_sort(Fdes.begin(), Fdes.end(), Less);
|
|
auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; };
|
|
Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end());
|
|
|
|
Buf[0] = 1;
|
|
Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
|
|
Buf[2] = DW_EH_PE_udata4;
|
|
Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
|
|
write32<E>(Buf + 4, Out<ELFT>::EhFrame->Addr - this->Addr - 4);
|
|
write32<E>(Buf + 8, Fdes.size());
|
|
Buf += 12;
|
|
|
|
uintX_t VA = this->Addr;
|
|
for (FdeData &Fde : Fdes) {
|
|
write32<E>(Buf, Fde.Pc - VA);
|
|
write32<E>(Buf + 4, Fde.FdeVA - VA);
|
|
Buf += 8;
|
|
}
|
|
}
|
|
|
|
template <class ELFT> void EhFrameHeader<ELFT>::finalize() {
|
|
// .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
|
|
this->Size = 12 + Out<ELFT>::EhFrame->NumFdes * 8;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) {
|
|
Fdes.push_back({Pc, FdeVA});
|
|
}
|
|
|
|
template <class ELFT> static uint64_t getEntsize(uint32_t Type) {
|
|
switch (Type) {
|
|
case SHT_RELA:
|
|
return sizeof(typename ELFT::Rela);
|
|
case SHT_REL:
|
|
return sizeof(typename ELFT::Rel);
|
|
case SHT_MIPS_REGINFO:
|
|
return sizeof(Elf_Mips_RegInfo<ELFT>);
|
|
case SHT_MIPS_OPTIONS:
|
|
return sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
|
|
case SHT_MIPS_ABIFLAGS:
|
|
return sizeof(Elf_Mips_ABIFlags<ELFT>);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
OutputSection<ELFT>::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags)
|
|
: OutputSectionBase(Name, Type, Flags) {
|
|
this->Entsize = getEntsize<ELFT>(Type);
|
|
}
|
|
|
|
template <class ELFT> void OutputSection<ELFT>::finalize() {
|
|
if (!Config->Relocatable) {
|
|
// SHF_LINK_ORDER only has meaning in relocatable objects
|
|
this->Flags &= ~SHF_LINK_ORDER;
|
|
return;
|
|
}
|
|
|
|
uint32_t Type = this->Type;
|
|
if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) {
|
|
// When doing a relocatable link we must preserve the link order
|
|
// dependency of sections with the SHF_LINK_ORDER flag. The dependency
|
|
// is indicated by the sh_link field. We need to translate the
|
|
// InputSection sh_link to the OutputSection sh_link, all InputSections
|
|
// in the OutputSection have the same dependency.
|
|
if (auto *D = this->Sections.front()->getLinkOrderDep())
|
|
this->Link = D->OutSec->SectionIndex;
|
|
}
|
|
|
|
if (Type != SHT_RELA && Type != SHT_REL)
|
|
return;
|
|
this->Link = Out<ELFT>::SymTab->SectionIndex;
|
|
// sh_info for SHT_REL[A] sections should contain the section header index of
|
|
// the section to which the relocation applies.
|
|
InputSectionBase<ELFT> *S = Sections[0]->getRelocatedSection();
|
|
this->Info = S->OutSec->SectionIndex;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection<ELFT>::addSection(InputSectionData *C) {
|
|
assert(C->Live);
|
|
auto *S = cast<InputSection<ELFT>>(C);
|
|
Sections.push_back(S);
|
|
S->OutSec = this;
|
|
this->updateAlignment(S->Alignment);
|
|
// Keep sh_entsize value of the input section to be able to perform merging
|
|
// later during a final linking using the generated relocatable object.
|
|
if (Config->Relocatable && (S->Flags & SHF_MERGE))
|
|
this->Entsize = S->Entsize;
|
|
}
|
|
|
|
// This function is called after we sort input sections
|
|
// and scan relocations to setup sections' offsets.
|
|
template <class ELFT> void OutputSection<ELFT>::assignOffsets() {
|
|
uintX_t Off = this->Size;
|
|
for (InputSection<ELFT> *S : Sections) {
|
|
Off = alignTo(Off, S->Alignment);
|
|
S->OutSecOff = Off;
|
|
Off += S->getSize();
|
|
}
|
|
this->Size = Off;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void OutputSection<ELFT>::sort(
|
|
std::function<unsigned(InputSection<ELFT> *S)> Order) {
|
|
typedef std::pair<unsigned, InputSection<ELFT> *> Pair;
|
|
auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; };
|
|
|
|
std::vector<Pair> V;
|
|
for (InputSection<ELFT> *S : Sections)
|
|
V.push_back({Order(S), S});
|
|
std::stable_sort(V.begin(), V.end(), Comp);
|
|
Sections.clear();
|
|
for (Pair &P : V)
|
|
Sections.push_back(P.second);
|
|
}
|
|
|
|
// Sorts input sections by section name suffixes, so that .foo.N comes
|
|
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
|
|
// We want to keep the original order if the priorities are the same
|
|
// because the compiler keeps the original initialization order in a
|
|
// translation unit and we need to respect that.
|
|
// For more detail, read the section of the GCC's manual about init_priority.
|
|
template <class ELFT> void OutputSection<ELFT>::sortInitFini() {
|
|
// Sort sections by priority.
|
|
sort([](InputSection<ELFT> *S) { return getPriority(S->Name); });
|
|
}
|
|
|
|
// Returns true if S matches /Filename.?\.o$/.
|
|
static bool isCrtBeginEnd(StringRef S, StringRef Filename) {
|
|
if (!S.endswith(".o"))
|
|
return false;
|
|
S = S.drop_back(2);
|
|
if (S.endswith(Filename))
|
|
return true;
|
|
return !S.empty() && S.drop_back().endswith(Filename);
|
|
}
|
|
|
|
static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); }
|
|
static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); }
|
|
|
|
// .ctors and .dtors are sorted by this priority from highest to lowest.
|
|
//
|
|
// 1. The section was contained in crtbegin (crtbegin contains
|
|
// some sentinel value in its .ctors and .dtors so that the runtime
|
|
// can find the beginning of the sections.)
|
|
//
|
|
// 2. The section has an optional priority value in the form of ".ctors.N"
|
|
// or ".dtors.N" where N is a number. Unlike .{init,fini}_array,
|
|
// they are compared as string rather than number.
|
|
//
|
|
// 3. The section is just ".ctors" or ".dtors".
|
|
//
|
|
// 4. The section was contained in crtend, which contains an end marker.
|
|
//
|
|
// In an ideal world, we don't need this function because .init_array and
|
|
// .ctors are duplicate features (and .init_array is newer.) However, there
|
|
// are too many real-world use cases of .ctors, so we had no choice to
|
|
// support that with this rather ad-hoc semantics.
|
|
template <class ELFT>
|
|
static bool compCtors(const InputSection<ELFT> *A,
|
|
const InputSection<ELFT> *B) {
|
|
bool BeginA = isCrtbegin(A->getFile()->getName());
|
|
bool BeginB = isCrtbegin(B->getFile()->getName());
|
|
if (BeginA != BeginB)
|
|
return BeginA;
|
|
bool EndA = isCrtend(A->getFile()->getName());
|
|
bool EndB = isCrtend(B->getFile()->getName());
|
|
if (EndA != EndB)
|
|
return EndB;
|
|
StringRef X = A->Name;
|
|
StringRef Y = B->Name;
|
|
assert(X.startswith(".ctors") || X.startswith(".dtors"));
|
|
assert(Y.startswith(".ctors") || Y.startswith(".dtors"));
|
|
X = X.substr(6);
|
|
Y = Y.substr(6);
|
|
if (X.empty() && Y.empty())
|
|
return false;
|
|
return X < Y;
|
|
}
|
|
|
|
// Sorts input sections by the special rules for .ctors and .dtors.
|
|
// Unfortunately, the rules are different from the one for .{init,fini}_array.
|
|
// Read the comment above.
|
|
template <class ELFT> void OutputSection<ELFT>::sortCtorsDtors() {
|
|
std::stable_sort(Sections.begin(), Sections.end(), compCtors<ELFT>);
|
|
}
|
|
|
|
static void fill(uint8_t *Buf, size_t Size, ArrayRef<uint8_t> A) {
|
|
size_t I = 0;
|
|
for (; I + A.size() < Size; I += A.size())
|
|
memcpy(Buf + I, A.data(), A.size());
|
|
memcpy(Buf + I, A.data(), Size - I);
|
|
}
|
|
|
|
template <class ELFT> void OutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
ArrayRef<uint8_t> Filler = Script<ELFT>::X->getFiller(this->Name);
|
|
if (!Filler.empty())
|
|
fill(Buf, this->Size, Filler);
|
|
if (Config->Threads) {
|
|
parallel_for_each(Sections.begin(), Sections.end(),
|
|
[=](InputSection<ELFT> *C) { C->writeTo(Buf); });
|
|
} else {
|
|
for (InputSection<ELFT> *C : Sections)
|
|
C->writeTo(Buf);
|
|
}
|
|
// Linker scripts may have BYTE()-family commands with which you
|
|
// can write arbitrary bytes to the output. Process them if any.
|
|
Script<ELFT>::X->writeDataBytes(this->Name, Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
EhOutputSection<ELFT>::EhOutputSection()
|
|
: OutputSectionBase(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {}
|
|
|
|
// Search for an existing CIE record or create a new one.
|
|
// CIE records from input object files are uniquified by their contents
|
|
// and where their relocations point to.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
CieRecord *EhOutputSection<ELFT>::addCie(EhSectionPiece &Piece,
|
|
EhInputSection<ELFT> *Sec,
|
|
ArrayRef<RelTy> Rels) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
if (read32<E>(Piece.data().data() + 4) != 0)
|
|
fatal("CIE expected at beginning of .eh_frame: " + Sec->Name);
|
|
|
|
SymbolBody *Personality = nullptr;
|
|
unsigned FirstRelI = Piece.FirstRelocation;
|
|
if (FirstRelI != (unsigned)-1)
|
|
Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]);
|
|
|
|
// Search for an existing CIE by CIE contents/relocation target pair.
|
|
CieRecord *Cie = &CieMap[{Piece.data(), Personality}];
|
|
|
|
// If not found, create a new one.
|
|
if (Cie->Piece == nullptr) {
|
|
Cie->Piece = &Piece;
|
|
Cies.push_back(Cie);
|
|
}
|
|
return Cie;
|
|
}
|
|
|
|
// There is one FDE per function. Returns true if a given FDE
|
|
// points to a live function.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool EhOutputSection<ELFT>::isFdeLive(EhSectionPiece &Piece,
|
|
EhInputSection<ELFT> *Sec,
|
|
ArrayRef<RelTy> Rels) {
|
|
unsigned FirstRelI = Piece.FirstRelocation;
|
|
if (FirstRelI == (unsigned)-1)
|
|
fatal("FDE doesn't reference another section");
|
|
const RelTy &Rel = Rels[FirstRelI];
|
|
SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel);
|
|
auto *D = dyn_cast<DefinedRegular<ELFT>>(&B);
|
|
if (!D || !D->Section)
|
|
return false;
|
|
InputSectionBase<ELFT> *Target = D->Section->Repl;
|
|
return Target && Target->Live;
|
|
}
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records. In general, there
|
|
// is one CIE record per input object file which is followed by
|
|
// a list of FDEs. This function searches an existing CIE or create a new
|
|
// one and associates FDEs to the CIE.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
void EhOutputSection<ELFT>::addSectionAux(EhInputSection<ELFT> *Sec,
|
|
ArrayRef<RelTy> Rels) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
|
|
DenseMap<size_t, CieRecord *> OffsetToCie;
|
|
for (EhSectionPiece &Piece : Sec->Pieces) {
|
|
// The empty record is the end marker.
|
|
if (Piece.size() == 4)
|
|
return;
|
|
|
|
size_t Offset = Piece.InputOff;
|
|
uint32_t ID = read32<E>(Piece.data().data() + 4);
|
|
if (ID == 0) {
|
|
OffsetToCie[Offset] = addCie(Piece, Sec, Rels);
|
|
continue;
|
|
}
|
|
|
|
uint32_t CieOffset = Offset + 4 - ID;
|
|
CieRecord *Cie = OffsetToCie[CieOffset];
|
|
if (!Cie)
|
|
fatal("invalid CIE reference");
|
|
|
|
if (!isFdeLive(Piece, Sec, Rels))
|
|
continue;
|
|
Cie->FdePieces.push_back(&Piece);
|
|
NumFdes++;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void EhOutputSection<ELFT>::addSection(InputSectionData *C) {
|
|
auto *Sec = cast<EhInputSection<ELFT>>(C);
|
|
Sec->OutSec = this;
|
|
this->updateAlignment(Sec->Alignment);
|
|
Sections.push_back(Sec);
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records. This function
|
|
// splits it into pieces so that we can call
|
|
// SplitInputSection::getSectionPiece on the section.
|
|
Sec->split();
|
|
if (Sec->Pieces.empty())
|
|
return;
|
|
|
|
if (Sec->NumRelocations) {
|
|
if (Sec->AreRelocsRela)
|
|
addSectionAux(Sec, Sec->relas());
|
|
else
|
|
addSectionAux(Sec, Sec->rels());
|
|
return;
|
|
}
|
|
addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
|
|
memcpy(Buf, D.data(), D.size());
|
|
|
|
// Fix the size field. -4 since size does not include the size field itself.
|
|
const endianness E = ELFT::TargetEndianness;
|
|
write32<E>(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4);
|
|
}
|
|
|
|
template <class ELFT> void EhOutputSection<ELFT>::finalize() {
|
|
if (this->Size)
|
|
return; // Already finalized.
|
|
|
|
size_t Off = 0;
|
|
for (CieRecord *Cie : Cies) {
|
|
Cie->Piece->OutputOff = Off;
|
|
Off += alignTo(Cie->Piece->size(), sizeof(uintX_t));
|
|
|
|
for (EhSectionPiece *Fde : Cie->FdePieces) {
|
|
Fde->OutputOff = Off;
|
|
Off += alignTo(Fde->size(), sizeof(uintX_t));
|
|
}
|
|
}
|
|
this->Size = Off;
|
|
}
|
|
|
|
template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
switch (Size) {
|
|
case DW_EH_PE_udata2:
|
|
return read16<E>(Buf);
|
|
case DW_EH_PE_udata4:
|
|
return read32<E>(Buf);
|
|
case DW_EH_PE_udata8:
|
|
return read64<E>(Buf);
|
|
case DW_EH_PE_absptr:
|
|
if (ELFT::Is64Bits)
|
|
return read64<E>(Buf);
|
|
return read32<E>(Buf);
|
|
}
|
|
fatal("unknown FDE size encoding");
|
|
}
|
|
|
|
// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
|
|
// We need it to create .eh_frame_hdr section.
|
|
template <class ELFT>
|
|
typename ELFT::uint EhOutputSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
|
|
uint8_t Enc) {
|
|
// The starting address to which this FDE applies is
|
|
// stored at FDE + 8 byte.
|
|
size_t Off = FdeOff + 8;
|
|
uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
|
|
if ((Enc & 0x70) == DW_EH_PE_absptr)
|
|
return Addr;
|
|
if ((Enc & 0x70) == DW_EH_PE_pcrel)
|
|
return Addr + this->Addr + Off;
|
|
fatal("unknown FDE size relative encoding");
|
|
}
|
|
|
|
template <class ELFT> void EhOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
for (CieRecord *Cie : Cies) {
|
|
size_t CieOffset = Cie->Piece->OutputOff;
|
|
writeCieFde<ELFT>(Buf + CieOffset, Cie->Piece->data());
|
|
|
|
for (EhSectionPiece *Fde : Cie->FdePieces) {
|
|
size_t Off = Fde->OutputOff;
|
|
writeCieFde<ELFT>(Buf + Off, Fde->data());
|
|
|
|
// FDE's second word should have the offset to an associated CIE.
|
|
// Write it.
|
|
write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
|
|
}
|
|
}
|
|
|
|
for (EhInputSection<ELFT> *S : Sections)
|
|
S->relocate(Buf, nullptr);
|
|
|
|
// Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
|
|
// to get a FDE from an address to which FDE is applied. So here
|
|
// we obtain two addresses and pass them to EhFrameHdr object.
|
|
if (Out<ELFT>::EhFrameHdr) {
|
|
for (CieRecord *Cie : Cies) {
|
|
uint8_t Enc = getFdeEncoding<ELFT>(Cie->Piece->data());
|
|
for (SectionPiece *Fde : Cie->FdePieces) {
|
|
uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
|
|
uintX_t FdeVA = this->Addr + Fde->OutputOff;
|
|
Out<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
MergeOutputSection<ELFT>::MergeOutputSection(StringRef Name, uint32_t Type,
|
|
uintX_t Flags, uintX_t Alignment)
|
|
: OutputSectionBase(Name, Type, Flags),
|
|
Builder(StringTableBuilder::RAW, Alignment) {}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Builder.write(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MergeOutputSection<ELFT>::addSection(InputSectionData *C) {
|
|
auto *Sec = cast<MergeInputSection<ELFT>>(C);
|
|
Sec->OutSec = this;
|
|
this->updateAlignment(Sec->Alignment);
|
|
this->Entsize = Sec->Entsize;
|
|
Sections.push_back(Sec);
|
|
|
|
auto HashI = Sec->Hashes.begin();
|
|
for (auto I = Sec->Pieces.begin(), E = Sec->Pieces.end(); I != E; ++I) {
|
|
SectionPiece &Piece = *I;
|
|
uint32_t Hash = *HashI;
|
|
++HashI;
|
|
if (!Piece.Live)
|
|
continue;
|
|
StringRef Data = toStringRef(Sec->getData(I));
|
|
CachedHashStringRef V(Data, Hash);
|
|
uintX_t OutputOffset = Builder.add(V);
|
|
if (!shouldTailMerge())
|
|
Piece.OutputOff = OutputOffset;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
unsigned MergeOutputSection<ELFT>::getOffset(CachedHashStringRef Val) {
|
|
return Builder.getOffset(Val);
|
|
}
|
|
|
|
template <class ELFT> bool MergeOutputSection<ELFT>::shouldTailMerge() const {
|
|
return Config->Optimize >= 2 && this->Flags & SHF_STRINGS;
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalize() {
|
|
if (shouldTailMerge())
|
|
Builder.finalize();
|
|
else
|
|
Builder.finalizeInOrder();
|
|
this->Size = Builder.getSize();
|
|
}
|
|
|
|
template <class ELFT> void MergeOutputSection<ELFT>::finalizePieces() {
|
|
for (MergeInputSection<ELFT> *Sec : Sections)
|
|
Sec->finalizePieces();
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolTableSection<ELFT>::SymbolTableSection(
|
|
StringTableSection<ELFT> &StrTabSec)
|
|
: OutputSectionBase(StrTabSec.isDynamic() ? ".dynsym" : ".symtab",
|
|
StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
|
|
StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0),
|
|
StrTabSec(StrTabSec) {
|
|
this->Entsize = sizeof(Elf_Sym);
|
|
this->Addralign = sizeof(uintX_t);
|
|
}
|
|
|
|
// Orders symbols according to their positions in the GOT,
|
|
// in compliance with MIPS ABI rules.
|
|
// See "Global Offset Table" in Chapter 5 in the following document
|
|
// for detailed description:
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
static bool sortMipsSymbols(const SymbolBody *L, const SymbolBody *R) {
|
|
// Sort entries related to non-local preemptible symbols by GOT indexes.
|
|
// All other entries go to the first part of GOT in arbitrary order.
|
|
bool LIsInLocalGot = !L->IsInGlobalMipsGot;
|
|
bool RIsInLocalGot = !R->IsInGlobalMipsGot;
|
|
if (LIsInLocalGot || RIsInLocalGot)
|
|
return !RIsInLocalGot;
|
|
return L->GotIndex < R->GotIndex;
|
|
}
|
|
|
|
static uint8_t getSymbolBinding(SymbolBody *Body) {
|
|
Symbol *S = Body->symbol();
|
|
if (Config->Relocatable)
|
|
return S->Binding;
|
|
uint8_t Visibility = S->Visibility;
|
|
if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
|
|
return STB_LOCAL;
|
|
if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE)
|
|
return STB_GLOBAL;
|
|
return S->Binding;
|
|
}
|
|
|
|
template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
|
|
if (this->Size)
|
|
return; // Already finalized.
|
|
|
|
this->Size = getNumSymbols() * sizeof(Elf_Sym);
|
|
this->Link = StrTabSec.OutSec->SectionIndex;
|
|
this->Info = NumLocals + 1;
|
|
|
|
if (Config->Relocatable) {
|
|
size_t I = NumLocals;
|
|
for (const SymbolTableEntry &S : Symbols)
|
|
S.Symbol->DynsymIndex = ++I;
|
|
return;
|
|
}
|
|
|
|
if (!StrTabSec.isDynamic()) {
|
|
std::stable_sort(Symbols.begin(), Symbols.end(),
|
|
[](const SymbolTableEntry &L, const SymbolTableEntry &R) {
|
|
return getSymbolBinding(L.Symbol) == STB_LOCAL &&
|
|
getSymbolBinding(R.Symbol) != STB_LOCAL;
|
|
});
|
|
return;
|
|
}
|
|
if (Out<ELFT>::GnuHashTab)
|
|
// NB: It also sorts Symbols to meet the GNU hash table requirements.
|
|
Out<ELFT>::GnuHashTab->addSymbols(Symbols);
|
|
else if (Config->EMachine == EM_MIPS)
|
|
std::stable_sort(Symbols.begin(), Symbols.end(),
|
|
[](const SymbolTableEntry &L, const SymbolTableEntry &R) {
|
|
return sortMipsSymbols(L.Symbol, R.Symbol);
|
|
});
|
|
size_t I = 0;
|
|
for (const SymbolTableEntry &S : Symbols)
|
|
S.Symbol->DynsymIndex = ++I;
|
|
}
|
|
|
|
template <class ELFT> void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) {
|
|
Symbols.push_back({B, StrTabSec.addString(B->getName(), false)});
|
|
}
|
|
|
|
template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
Buf += sizeof(Elf_Sym);
|
|
|
|
// All symbols with STB_LOCAL binding precede the weak and global symbols.
|
|
// .dynsym only contains global symbols.
|
|
if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic())
|
|
writeLocalSymbols(Buf);
|
|
|
|
writeGlobalSymbols(Buf);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
|
|
// Iterate over all input object files to copy their local symbols
|
|
// to the output symbol table pointed by Buf.
|
|
for (ObjectFile<ELFT> *File : Symtab<ELFT>::X->getObjectFiles()) {
|
|
for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P :
|
|
File->KeptLocalSyms) {
|
|
const DefinedRegular<ELFT> &Body = *P.first;
|
|
InputSectionBase<ELFT> *Section = Body.Section;
|
|
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
|
|
|
|
if (!Section) {
|
|
ESym->st_shndx = SHN_ABS;
|
|
ESym->st_value = Body.Value;
|
|
} else {
|
|
const OutputSectionBase *OutSec = Section->OutSec;
|
|
ESym->st_shndx = OutSec->SectionIndex;
|
|
ESym->st_value = OutSec->Addr + Section->getOffset(Body);
|
|
}
|
|
ESym->st_name = P.second;
|
|
ESym->st_size = Body.template getSize<ELFT>();
|
|
ESym->setBindingAndType(STB_LOCAL, Body.Type);
|
|
Buf += sizeof(*ESym);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
|
|
// Write the internal symbol table contents to the output symbol table
|
|
// pointed by Buf.
|
|
auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
|
|
for (const SymbolTableEntry &S : Symbols) {
|
|
SymbolBody *Body = S.Symbol;
|
|
size_t StrOff = S.StrTabOffset;
|
|
|
|
uint8_t Type = Body->Type;
|
|
uintX_t Size = Body->getSize<ELFT>();
|
|
|
|
ESym->setBindingAndType(getSymbolBinding(Body), Type);
|
|
ESym->st_size = Size;
|
|
ESym->st_name = StrOff;
|
|
ESym->setVisibility(Body->symbol()->Visibility);
|
|
ESym->st_value = Body->getVA<ELFT>();
|
|
|
|
if (const OutputSectionBase *OutSec = getOutputSection(Body))
|
|
ESym->st_shndx = OutSec->SectionIndex;
|
|
else if (isa<DefinedRegular<ELFT>>(Body))
|
|
ESym->st_shndx = SHN_ABS;
|
|
|
|
if (Config->EMachine == EM_MIPS) {
|
|
// On MIPS we need to mark symbol which has a PLT entry and requires
|
|
// pointer equality by STO_MIPS_PLT flag. That is necessary to help
|
|
// dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
|
|
// https://sourceware.org/ml/binutils/2008-07/txt00000.txt
|
|
if (Body->isInPlt() && Body->NeedsCopyOrPltAddr)
|
|
ESym->st_other |= STO_MIPS_PLT;
|
|
if (Config->Relocatable) {
|
|
auto *D = dyn_cast<DefinedRegular<ELFT>>(Body);
|
|
if (D && D->isMipsPIC())
|
|
ESym->st_other |= STO_MIPS_PIC;
|
|
}
|
|
}
|
|
++ESym;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
const OutputSectionBase *
|
|
SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) {
|
|
switch (Sym->kind()) {
|
|
case SymbolBody::DefinedSyntheticKind:
|
|
return cast<DefinedSynthetic<ELFT>>(Sym)->Section;
|
|
case SymbolBody::DefinedRegularKind: {
|
|
auto &D = cast<DefinedRegular<ELFT>>(*Sym);
|
|
if (D.Section)
|
|
return D.Section->OutSec;
|
|
break;
|
|
}
|
|
case SymbolBody::DefinedCommonKind:
|
|
return In<ELFT>::Common->OutSec;
|
|
case SymbolBody::SharedKind:
|
|
if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy())
|
|
return Out<ELFT>::Bss;
|
|
break;
|
|
case SymbolBody::UndefinedKind:
|
|
case SymbolBody::LazyArchiveKind:
|
|
case SymbolBody::LazyObjectKind:
|
|
break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ELFT>
|
|
VersionDefinitionSection<ELFT>::VersionDefinitionSection()
|
|
: OutputSectionBase(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) {
|
|
this->Addralign = sizeof(uint32_t);
|
|
}
|
|
|
|
static StringRef getFileDefName() {
|
|
if (!Config->SoName.empty())
|
|
return Config->SoName;
|
|
return Config->OutputFile;
|
|
}
|
|
|
|
template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() {
|
|
FileDefNameOff = In<ELFT>::DynStrTab->addString(getFileDefName());
|
|
for (VersionDefinition &V : Config->VersionDefinitions)
|
|
V.NameOff = In<ELFT>::DynStrTab->addString(V.Name);
|
|
|
|
this->Size = (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum();
|
|
this->Link = In<ELFT>::DynStrTab->OutSec->SectionIndex;
|
|
|
|
// sh_info should be set to the number of definitions. This fact is missed in
|
|
// documentation, but confirmed by binutils community:
|
|
// https://sourceware.org/ml/binutils/2014-11/msg00355.html
|
|
this->Info = getVerDefNum();
|
|
}
|
|
|
|
template <class ELFT>
|
|
void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index,
|
|
StringRef Name, size_t NameOff) {
|
|
auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
|
|
Verdef->vd_version = 1;
|
|
Verdef->vd_cnt = 1;
|
|
Verdef->vd_aux = sizeof(Elf_Verdef);
|
|
Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
|
|
Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0);
|
|
Verdef->vd_ndx = Index;
|
|
Verdef->vd_hash = hashSysV(Name);
|
|
|
|
auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef));
|
|
Verdaux->vda_name = NameOff;
|
|
Verdaux->vda_next = 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
writeOne(Buf, 1, getFileDefName(), FileDefNameOff);
|
|
|
|
for (VersionDefinition &V : Config->VersionDefinitions) {
|
|
Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
|
|
writeOne(Buf, V.Id, V.Name, V.NameOff);
|
|
}
|
|
|
|
// Need to terminate the last version definition.
|
|
Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
|
|
Verdef->vd_next = 0;
|
|
}
|
|
|
|
template <class ELFT>
|
|
VersionTableSection<ELFT>::VersionTableSection()
|
|
: OutputSectionBase(".gnu.version", SHT_GNU_versym, SHF_ALLOC) {
|
|
this->Addralign = sizeof(uint16_t);
|
|
}
|
|
|
|
template <class ELFT> void VersionTableSection<ELFT>::finalize() {
|
|
this->Size =
|
|
sizeof(Elf_Versym) * (Out<ELFT>::DynSymTab->getSymbols().size() + 1);
|
|
this->Entsize = sizeof(Elf_Versym);
|
|
// At the moment of june 2016 GNU docs does not mention that sh_link field
|
|
// should be set, but Sun docs do. Also readelf relies on this field.
|
|
this->Link = Out<ELFT>::DynSymTab->SectionIndex;
|
|
}
|
|
|
|
template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
|
|
for (const SymbolTableEntry &S : Out<ELFT>::DynSymTab->getSymbols()) {
|
|
OutVersym->vs_index = S.Symbol->symbol()->VersionId;
|
|
++OutVersym;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
VersionNeedSection<ELFT>::VersionNeedSection()
|
|
: OutputSectionBase(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) {
|
|
this->Addralign = sizeof(uint32_t);
|
|
|
|
// Identifiers in verneed section start at 2 because 0 and 1 are reserved
|
|
// for VER_NDX_LOCAL and VER_NDX_GLOBAL.
|
|
// First identifiers are reserved by verdef section if it exist.
|
|
NextIndex = getVerDefNum() + 1;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
|
|
if (!SS->Verdef) {
|
|
SS->symbol()->VersionId = VER_NDX_GLOBAL;
|
|
return;
|
|
}
|
|
SharedFile<ELFT> *F = SS->file();
|
|
// If we don't already know that we need an Elf_Verneed for this DSO, prepare
|
|
// to create one by adding it to our needed list and creating a dynstr entry
|
|
// for the soname.
|
|
if (F->VerdefMap.empty())
|
|
Needed.push_back({F, In<ELFT>::DynStrTab->addString(F->getSoName())});
|
|
typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
|
|
// If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
|
|
// prepare to create one by allocating a version identifier and creating a
|
|
// dynstr entry for the version name.
|
|
if (NV.Index == 0) {
|
|
NV.StrTab = In<ELFT>::DynStrTab->addString(
|
|
SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name);
|
|
NV.Index = NextIndex++;
|
|
}
|
|
SS->symbol()->VersionId = NV.Index;
|
|
}
|
|
|
|
template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
|
|
// The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
|
|
auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
|
|
auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
|
|
|
|
for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
|
|
// Create an Elf_Verneed for this DSO.
|
|
Verneed->vn_version = 1;
|
|
Verneed->vn_cnt = P.first->VerdefMap.size();
|
|
Verneed->vn_file = P.second;
|
|
Verneed->vn_aux =
|
|
reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
|
|
Verneed->vn_next = sizeof(Elf_Verneed);
|
|
++Verneed;
|
|
|
|
// Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
|
|
// VerdefMap, which will only contain references to needed version
|
|
// definitions. Each Elf_Vernaux is based on the information contained in
|
|
// the Elf_Verdef in the source DSO. This loop iterates over a std::map of
|
|
// pointers, but is deterministic because the pointers refer to Elf_Verdef
|
|
// data structures within a single input file.
|
|
for (auto &NV : P.first->VerdefMap) {
|
|
Vernaux->vna_hash = NV.first->vd_hash;
|
|
Vernaux->vna_flags = 0;
|
|
Vernaux->vna_other = NV.second.Index;
|
|
Vernaux->vna_name = NV.second.StrTab;
|
|
Vernaux->vna_next = sizeof(Elf_Vernaux);
|
|
++Vernaux;
|
|
}
|
|
|
|
Vernaux[-1].vna_next = 0;
|
|
}
|
|
Verneed[-1].vn_next = 0;
|
|
}
|
|
|
|
template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
|
|
this->Link = In<ELFT>::DynStrTab->OutSec->SectionIndex;
|
|
this->Info = Needed.size();
|
|
unsigned Size = Needed.size() * sizeof(Elf_Verneed);
|
|
for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
|
|
Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
|
|
this->Size = Size;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static typename ELFT::uint getOutFlags(InputSectionBase<ELFT> *S) {
|
|
return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C,
|
|
StringRef OutsecName) {
|
|
typedef typename ELFT::uint uintX_t;
|
|
uintX_t Flags = getOutFlags(C);
|
|
|
|
// For SHF_MERGE we create different output sections for each alignment.
|
|
// This makes each output section simple and keeps a single level mapping from
|
|
// input to output.
|
|
// In case of relocatable object generation we do not try to perform merging
|
|
// and treat SHF_MERGE sections as regular ones, but also create different
|
|
// output sections for them to allow merging at final linking stage.
|
|
uintX_t Alignment = 0;
|
|
if (isa<MergeInputSection<ELFT>>(C) ||
|
|
(Config->Relocatable && (C->Flags & SHF_MERGE)))
|
|
Alignment = std::max<uintX_t>(C->Alignment, C->Entsize);
|
|
|
|
return SectionKey<ELFT::Is64Bits>{OutsecName, C->Type, Flags, Alignment};
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::pair<OutputSectionBase *, bool>
|
|
OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C,
|
|
StringRef OutsecName) {
|
|
SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName);
|
|
return create(Key, C);
|
|
}
|
|
|
|
template <class ELFT>
|
|
std::pair<OutputSectionBase *, bool>
|
|
OutputSectionFactory<ELFT>::create(const SectionKey<ELFT::Is64Bits> &Key,
|
|
InputSectionBase<ELFT> *C) {
|
|
uintX_t Flags = getOutFlags(C);
|
|
OutputSectionBase *&Sec = Map[Key];
|
|
if (Sec) {
|
|
Sec->Flags |= Flags;
|
|
return {Sec, false};
|
|
}
|
|
|
|
uint32_t Type = C->Type;
|
|
switch (C->kind()) {
|
|
case InputSectionBase<ELFT>::Regular:
|
|
case InputSectionBase<ELFT>::Synthetic:
|
|
Sec = make<OutputSection<ELFT>>(Key.Name, Type, Flags);
|
|
break;
|
|
case InputSectionBase<ELFT>::EHFrame:
|
|
return {Out<ELFT>::EhFrame, false};
|
|
case InputSectionBase<ELFT>::Merge:
|
|
Sec = make<MergeOutputSection<ELFT>>(Key.Name, Type, Flags, Key.Alignment);
|
|
break;
|
|
}
|
|
return {Sec, true};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
typename lld::elf::SectionKey<Is64Bits>
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getEmptyKey() {
|
|
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, 0};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
typename lld::elf::SectionKey<Is64Bits>
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getTombstoneKey() {
|
|
return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0,
|
|
0};
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
unsigned
|
|
DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::getHashValue(const Key &Val) {
|
|
return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment);
|
|
}
|
|
|
|
template <bool Is64Bits>
|
|
bool DenseMapInfo<lld::elf::SectionKey<Is64Bits>>::isEqual(const Key &LHS,
|
|
const Key &RHS) {
|
|
return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) &&
|
|
LHS.Type == RHS.Type && LHS.Flags == RHS.Flags &&
|
|
LHS.Alignment == RHS.Alignment;
|
|
}
|
|
|
|
namespace llvm {
|
|
template struct DenseMapInfo<SectionKey<true>>;
|
|
template struct DenseMapInfo<SectionKey<false>>;
|
|
}
|
|
|
|
namespace lld {
|
|
namespace elf {
|
|
|
|
template void OutputSectionBase::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
|
|
template void OutputSectionBase::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
|
|
template void OutputSectionBase::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
|
|
template void OutputSectionBase::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
|
|
|
|
template class EhFrameHeader<ELF32LE>;
|
|
template class EhFrameHeader<ELF32BE>;
|
|
template class EhFrameHeader<ELF64LE>;
|
|
template class EhFrameHeader<ELF64BE>;
|
|
|
|
template class PltSection<ELF32LE>;
|
|
template class PltSection<ELF32BE>;
|
|
template class PltSection<ELF64LE>;
|
|
template class PltSection<ELF64BE>;
|
|
|
|
template class GnuHashTableSection<ELF32LE>;
|
|
template class GnuHashTableSection<ELF32BE>;
|
|
template class GnuHashTableSection<ELF64LE>;
|
|
template class GnuHashTableSection<ELF64BE>;
|
|
|
|
template class HashTableSection<ELF32LE>;
|
|
template class HashTableSection<ELF32BE>;
|
|
template class HashTableSection<ELF64LE>;
|
|
template class HashTableSection<ELF64BE>;
|
|
|
|
template class OutputSection<ELF32LE>;
|
|
template class OutputSection<ELF32BE>;
|
|
template class OutputSection<ELF64LE>;
|
|
template class OutputSection<ELF64BE>;
|
|
|
|
template class EhOutputSection<ELF32LE>;
|
|
template class EhOutputSection<ELF32BE>;
|
|
template class EhOutputSection<ELF64LE>;
|
|
template class EhOutputSection<ELF64BE>;
|
|
|
|
template class MergeOutputSection<ELF32LE>;
|
|
template class MergeOutputSection<ELF32BE>;
|
|
template class MergeOutputSection<ELF64LE>;
|
|
template class MergeOutputSection<ELF64BE>;
|
|
|
|
template class SymbolTableSection<ELF32LE>;
|
|
template class SymbolTableSection<ELF32BE>;
|
|
template class SymbolTableSection<ELF64LE>;
|
|
template class SymbolTableSection<ELF64BE>;
|
|
|
|
template class VersionTableSection<ELF32LE>;
|
|
template class VersionTableSection<ELF32BE>;
|
|
template class VersionTableSection<ELF64LE>;
|
|
template class VersionTableSection<ELF64BE>;
|
|
|
|
template class VersionNeedSection<ELF32LE>;
|
|
template class VersionNeedSection<ELF32BE>;
|
|
template class VersionNeedSection<ELF64LE>;
|
|
template class VersionNeedSection<ELF64BE>;
|
|
|
|
template class VersionDefinitionSection<ELF32LE>;
|
|
template class VersionDefinitionSection<ELF32BE>;
|
|
template class VersionDefinitionSection<ELF64LE>;
|
|
template class VersionDefinitionSection<ELF64BE>;
|
|
|
|
template class GdbIndexSection<ELF32LE>;
|
|
template class GdbIndexSection<ELF32BE>;
|
|
template class GdbIndexSection<ELF64LE>;
|
|
template class GdbIndexSection<ELF64BE>;
|
|
|
|
template class OutputSectionFactory<ELF32LE>;
|
|
template class OutputSectionFactory<ELF32BE>;
|
|
template class OutputSectionFactory<ELF64LE>;
|
|
template class OutputSectionFactory<ELF64BE>;
|
|
}
|
|
}
|