llvm-project/clang-tools-extra/clangd/Selection.cpp

521 lines
20 KiB
C++

//===--- Selection.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Selection.h"
#include "ClangdUnit.h"
#include "Logger.h"
#include "SourceCode.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
namespace clang {
namespace clangd {
namespace {
using Node = SelectionTree::Node;
using ast_type_traits::DynTypedNode;
// Identifies which tokens are selected, and evaluates claims of source ranges
// by AST nodes. Tokens may be claimed only once: first-come, first-served.
class SelectedTokens {
public:
SelectedTokens(llvm::ArrayRef<syntax::Token> Spelled, const SourceManager &SM,
unsigned SelBegin, unsigned SelEnd)
: SelBegin(SelBegin), SelEnd(SelEnd) {
// Extract bounds and selected-ness for all tokens spelled in the file.
Tokens.reserve(Spelled.size());
for (const auto& Tok : Spelled) {
// As well as comments, don't count semicolons as real tokens.
// They're not properly claimed as expr-statement is missing from the AST.
if (Tok.kind() == tok::comment || Tok.kind() == tok::semi)
continue;
Tokens.emplace_back();
TokInfo &S = Tokens.back();
S.StartOffset = SM.getFileOffset(Tok.location());
S.EndOffset = S.StartOffset + Tok.length();
if (S.StartOffset >= SelBegin && S.EndOffset <= SelEnd)
S.Selected = SelectionTree::Complete;
else if (S.EndOffset > SelBegin && S.StartOffset < SelEnd)
S.Selected = SelectionTree::Partial;
else
S.Selected = SelectionTree::Unselected;
S.Claimed = false;
}
}
// Associates any tokens overlapping [Begin, End) with an AST node.
// Tokens that were already claimed by another AST node are not claimed again.
// Returns whether the node is selected in the sense of SelectionTree.
SelectionTree::Selection claim(unsigned Begin, unsigned End) {
assert(Begin <= End);
// Fast-path for missing the selection entirely.
if (Begin >= SelEnd || End <= SelBegin)
return SelectionTree::Unselected;
// We will consider the range (at least partially) selected if it hit any
// selected and previously unclaimed token.
bool ClaimedAnyToken = false;
// The selection is (at most) partial if:
// - any claimed token is partially selected
// - any token in the range is unselected
bool PartialSelection = false;
// Find the first token that (maybe) overlaps the claimed range.
auto Start = llvm::partition_point(Tokens, [&](const TokInfo &Tok) {
return Tok.EndOffset <= Begin;
});
// Iterate over every token that overlaps the range.
// Claim selected tokens, and update the two result flags.
for (auto It = Start; It != Tokens.end() && It->StartOffset < End; ++It) {
if (It->Selected) {
if (!It->Claimed) {
// Token is selected, in the node's range, and unclaimed; claim it.
It->Claimed = true;
ClaimedAnyToken = true;
// If the token was only partially selected, so is the node.
PartialSelection |= (It->Selected == SelectionTree::Partial);
}
} else {
// If the node covers an unselected token, it's not completely selected.
PartialSelection = true;
}
}
if (!ClaimedAnyToken)
return SelectionTree::Unselected;
return PartialSelection ? SelectionTree::Partial : SelectionTree::Complete;
}
private:
struct TokInfo {
unsigned StartOffset;
unsigned EndOffset;
SelectionTree::Selection Selected;
bool Claimed;
bool operator<(const TokInfo &Other) const {
return StartOffset < Other.StartOffset;
}
};
std::vector<TokInfo> Tokens;
unsigned SelBegin, SelEnd;
};
// Show the type of a node for debugging.
void printNodeKind(llvm::raw_ostream &OS, const DynTypedNode &N) {
if (const TypeLoc *TL = N.get<TypeLoc>()) {
// TypeLoc is a hierarchy, but has only a single ASTNodeKind.
// Synthesize the name from the Type subclass (except for QualifiedTypeLoc).
if (TL->getTypeLocClass() == TypeLoc::Qualified)
OS << "QualifiedTypeLoc";
else
OS << TL->getType()->getTypeClassName() << "TypeLoc";
} else {
OS << N.getNodeKind().asStringRef();
}
}
#ifndef NDEBUG
std::string printNodeToString(const DynTypedNode &N, const PrintingPolicy &PP) {
std::string S;
llvm::raw_string_ostream OS(S);
printNodeKind(OS, N);
OS << " ";
return std::move(OS.str());
}
#endif
// We find the selection by visiting written nodes in the AST, looking for nodes
// that intersect with the selected character range.
//
// While traversing, we maintain a parent stack. As nodes pop off the stack,
// we decide whether to keep them or not. To be kept, they must either be
// selected or contain some nodes that are.
//
// For simple cases (not inside macros) we prune subtrees that don't intersect.
class SelectionVisitor : public RecursiveASTVisitor<SelectionVisitor> {
public:
// Runs the visitor to gather selected nodes and their ancestors.
// If there is any selection, the root (TUDecl) is the first node.
static std::deque<Node> collect(ASTContext &AST,
const syntax::TokenBuffer &Tokens,
const PrintingPolicy &PP, unsigned Begin,
unsigned End, FileID File) {
SelectionVisitor V(AST, Tokens, PP, Begin, End, File);
V.TraverseAST(AST);
assert(V.Stack.size() == 1 && "Unpaired push/pop?");
assert(V.Stack.top() == &V.Nodes.front());
// We selected TUDecl if tokens were unclaimed (or the file is empty).
if (V.Nodes.size() == 1 || V.Claimed.claim(Begin, End)) {
StringRef FileContent = AST.getSourceManager().getBufferData(File);
// Don't require the trailing newlines to be selected.
bool SelectedAll = Begin == 0 && End >= FileContent.rtrim().size();
V.Stack.top()->Selected =
SelectedAll ? SelectionTree::Complete : SelectionTree::Partial;
}
return std::move(V.Nodes);
}
// We traverse all "well-behaved" nodes the same way:
// - push the node onto the stack
// - traverse its children recursively
// - pop it from the stack
// - hit testing: is intersection(node, selection) - union(children) empty?
// - attach it to the tree if it or any children hit the selection
//
// Two categories of nodes are not "well-behaved":
// - those without source range information, we don't record those
// - those that can't be stored in DynTypedNode.
// We're missing some interesting things like Attr due to the latter.
bool TraverseDecl(Decl *X) {
if (X && isa<TranslationUnitDecl>(X))
return Base::TraverseDecl(X); // Already pushed by constructor.
// Base::TraverseDecl will suppress children, but not this node itself.
if (X && X->isImplicit())
return true;
return traverseNode(X, [&] { return Base::TraverseDecl(X); });
}
bool TraverseTypeLoc(TypeLoc X) {
return traverseNode(&X, [&] { return Base::TraverseTypeLoc(X); });
}
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc X) {
return traverseNode(
&X, [&] { return Base::TraverseNestedNameSpecifierLoc(X); });
}
bool TraverseConstructorInitializer(CXXCtorInitializer *X) {
return traverseNode(
X, [&] { return Base::TraverseConstructorInitializer(X); });
}
// Stmt is the same, but this form allows the data recursion optimization.
bool dataTraverseStmtPre(Stmt *X) {
if (!X)
return false;
auto N = DynTypedNode::create(*X);
if (canSafelySkipNode(N))
return false;
push(std::move(N));
return true;
}
bool dataTraverseStmtPost(Stmt *X) {
pop();
return true;
}
// QualifiedTypeLoc is handled strangely in RecursiveASTVisitor: the derived
// TraverseTypeLoc is not called for the inner UnqualTypeLoc.
// This means we'd never see 'int' in 'const int'! Work around that here.
// (The reason for the behavior is to avoid traversing the nested Type twice,
// but we ignore TraverseType anyway).
bool TraverseQualifiedTypeLoc(QualifiedTypeLoc QX) {
return traverseNode<TypeLoc>(
&QX, [&] { return TraverseTypeLoc(QX.getUnqualifiedLoc()); });
}
// Uninteresting parts of the AST that don't have locations within them.
bool TraverseNestedNameSpecifier(NestedNameSpecifier *) { return true; }
bool TraverseType(QualType) { return true; }
private:
using Base = RecursiveASTVisitor<SelectionVisitor>;
SelectionVisitor(ASTContext &AST, const syntax::TokenBuffer &Tokens,
const PrintingPolicy &PP, unsigned SelBegin, unsigned SelEnd,
FileID SelFile)
: SM(AST.getSourceManager()), LangOpts(AST.getLangOpts()),
#ifndef NDEBUG
PrintPolicy(PP),
#endif
Claimed(Tokens.spelledTokens(SelFile), SM, SelBegin, SelEnd),
SelFile(SelFile),
SelBeginTokenStart(SM.getFileOffset(Lexer::GetBeginningOfToken(
SM.getComposedLoc(SelFile, SelBegin), SM, LangOpts))),
SelEnd(SelEnd) {
// Ensure we have a node for the TU decl, regardless of traversal scope.
Nodes.emplace_back();
Nodes.back().ASTNode = DynTypedNode::create(*AST.getTranslationUnitDecl());
Nodes.back().Parent = nullptr;
Nodes.back().Selected = SelectionTree::Unselected;
Stack.push(&Nodes.back());
}
// Generic case of TraverseFoo. Func should be the call to Base::TraverseFoo.
// Node is always a pointer so the generic code can handle any null checks.
template <typename T, typename Func>
bool traverseNode(T *Node, const Func &Body) {
if (Node == nullptr)
return true;
auto N = DynTypedNode::create(*Node);
if (canSafelySkipNode(N))
return true;
push(DynTypedNode::create(*Node));
bool Ret = Body();
pop();
return Ret;
}
// HIT TESTING
//
// We do rough hit testing on the way down the tree to avoid traversing
// subtrees that don't touch the selection (canSafelySkipNode), but
// fine-grained hit-testing is mostly done on the way back up (in pop()).
// This means children get to claim parts of the selection first, and parents
// are only selected if they own tokens that no child owned.
//
// Nodes *usually* nest nicely: a child's getSourceRange() lies within the
// parent's, and a node (transitively) owns all tokens in its range.
//
// Exception 1: child range claims tokens that should be owned by the parent.
// e.g. in `void foo(int);`, the FunctionTypeLoc should own
// `void (int)` but the parent FunctionDecl should own `foo`.
// To handle this case, certain nodes claim small token ranges *before*
// their children are traversed. (see earlySourceRange).
//
// Exception 2: siblings both claim the same node.
// e.g. `int x, y;` produces two sibling VarDecls.
// ~~~~~ x
// ~~~~~~~~ y
// Here the first ("leftmost") sibling claims the tokens it wants, and the
// other sibling gets what's left. So selecting "int" only includes the left
// VarDecl in the selection tree.
// An optimization for a common case: nodes outside macro expansions that
// don't intersect the selection may be recursively skipped.
bool canSafelySkipNode(const DynTypedNode &N) {
SourceRange S = N.getSourceRange();
auto B = SM.getDecomposedLoc(S.getBegin());
auto E = SM.getDecomposedLoc(S.getEnd());
// Node lies in a macro expansion?
if (B.first != SelFile || E.first != SelFile)
return false;
// Node intersects selection tokens?
if (B.second < SelEnd && E.second >= SelBeginTokenStart)
return false;
// Otherwise, allow skipping over the node.
dlog("{1}skip: {0}", printNodeToString(N, PrintPolicy), indent());
dlog("{1}skipped range = {0}", S.printToString(SM), indent(1));
return true;
}
// Pushes a node onto the ancestor stack. Pairs with pop().
// Performs early hit detection for some nodes (on the earlySourceRange).
void push(DynTypedNode Node) {
SourceRange Early = earlySourceRange(Node);
dlog("{1}push: {0}", printNodeToString(Node, PrintPolicy), indent());
Nodes.emplace_back();
Nodes.back().ASTNode = std::move(Node);
Nodes.back().Parent = Stack.top();
// Early hit detection never selects the whole node.
Stack.push(&Nodes.back());
Nodes.back().Selected =
claimRange(Early) ? SelectionTree::Partial : SelectionTree::Unselected;
}
// Pops a node off the ancestor stack, and finalizes it. Pairs with push().
// Performs primary hit detection.
void pop() {
Node &N = *Stack.top();
dlog("{1}pop: {0}", printNodeToString(N.ASTNode, PrintPolicy), indent(-1));
if (auto Sel = claimRange(N.ASTNode.getSourceRange()))
N.Selected = Sel;
if (N.Selected || !N.Children.empty()) {
// Attach to the tree.
N.Parent->Children.push_back(&N);
} else {
// Neither N any children are selected, it doesn't belong in the tree.
assert(&N == &Nodes.back());
Nodes.pop_back();
}
Stack.pop();
}
// Returns the range of tokens that this node will claim directly, and
// is not available to the node's children.
// Usually empty, but sometimes children cover tokens but shouldn't own them.
SourceRange earlySourceRange(const DynTypedNode &N) {
if (const Decl *D = N.get<Decl>()) {
// void [[foo]]();
if (auto *FD = llvm::dyn_cast<FunctionDecl>(D))
return FD->getNameInfo().getSourceRange();
// int (*[[s]])();
else if (auto *VD = llvm::dyn_cast<VarDecl>(D))
return VD->getLocation();
}
return SourceRange();
}
// Perform hit-testing of a complete Node against the selection.
// This runs for every node in the AST, and must be fast in common cases.
// This is usually called from pop(), so we can take children into account.
SelectionTree::Selection claimRange(SourceRange S) {
if (!S.isValid())
return SelectionTree::Unselected;
// toHalfOpenFileRange() allows selection of constructs in macro args. e.g:
// #define LOOP_FOREVER(Body) for(;;) { Body }
// void IncrementLots(int &x) {
// LOOP_FOREVER( ++x; )
// }
// Selecting "++x" or "x" will do the right thing.
auto Range = toHalfOpenFileRange(SM, LangOpts, S);
assert(Range && "We should be able to get the File Range");
dlog("{1}claimRange: {0}", Range->printToString(SM), indent());
auto B = SM.getDecomposedLoc(Range->getBegin());
auto E = SM.getDecomposedLoc(Range->getEnd());
// Otherwise, nodes in macro expansions can't be selected.
if (B.first != SelFile || E.first != SelFile)
return SelectionTree::Unselected;
// Attempt to claim the remaining range. If there's nothing to claim, only
// children were selected.
SelectionTree::Selection Result = Claimed.claim(B.second, E.second);
if (Result)
dlog("{1}hit selection: {0}",
SourceRange(SM.getComposedLoc(B.first, B.second),
SM.getComposedLoc(E.first, E.second))
.printToString(SM),
indent());
return Result;
}
std::string indent(int Offset = 0) {
// Cast for signed arithmetic.
int Amount = int(Stack.size()) + Offset;
assert(Amount >= 0);
return std::string(Amount, ' ');
}
SourceManager &SM;
const LangOptions &LangOpts;
#ifndef NDEBUG
const PrintingPolicy &PrintPolicy;
#endif
std::stack<Node *> Stack;
SelectedTokens Claimed;
std::deque<Node> Nodes; // Stable pointers as we add more nodes.
FileID SelFile;
// If the selection start slices a token in half, the beginning of that token.
// This is useful for checking whether the end of a token range overlaps
// the selection: range.end < SelBeginTokenStart is equivalent to
// range.end + measureToken(range.end) < SelBegin (assuming range.end points
// to a token), and it saves a lex every time.
unsigned SelBeginTokenStart;
unsigned SelEnd;
};
} // namespace
void SelectionTree::print(llvm::raw_ostream &OS, const SelectionTree::Node &N,
int Indent) const {
if (N.Selected)
OS.indent(Indent - 1) << (N.Selected == SelectionTree::Complete ? '*'
: '.');
else
OS.indent(Indent);
printNodeKind(OS, N.ASTNode);
OS << ' ';
N.ASTNode.print(OS, PrintPolicy);
OS << "\n";
for (const Node *Child : N.Children)
print(OS, *Child, Indent + 2);
}
std::string SelectionTree::Node::kind() const {
std::string S;
llvm::raw_string_ostream OS(S);
printNodeKind(OS, ASTNode);
return std::move(OS.str());
}
// Decide which selection emulates a "point" query in between characters.
static std::pair<unsigned, unsigned> pointBounds(unsigned Offset, FileID FID,
ASTContext &AST) {
StringRef Buf = AST.getSourceManager().getBufferData(FID);
// Edge-cases where the choice is forced.
if (Buf.size() == 0)
return {0, 0};
if (Offset == 0)
return {0, 1};
if (Offset == Buf.size())
return {Offset - 1, Offset};
// We could choose either this byte or the previous. Usually we prefer the
// character on the right of the cursor (or under a block cursor).
// But if that's whitespace, we likely want the token on the left.
if (isWhitespace(Buf[Offset]) && !isWhitespace(Buf[Offset - 1]))
return {Offset - 1, Offset};
return {Offset, Offset + 1};
}
SelectionTree::SelectionTree(ASTContext &AST, const syntax::TokenBuffer &Tokens,
unsigned Begin, unsigned End)
: PrintPolicy(AST.getLangOpts()) {
// No fundamental reason the selection needs to be in the main file,
// but that's all clangd has needed so far.
const SourceManager &SM = AST.getSourceManager();
FileID FID = SM.getMainFileID();
if (Begin == End)
std::tie(Begin, End) = pointBounds(Begin, FID, AST);
PrintPolicy.TerseOutput = true;
PrintPolicy.IncludeNewlines = false;
dlog("Computing selection for {0}",
SourceRange(SM.getComposedLoc(FID, Begin), SM.getComposedLoc(FID, End))
.printToString(SM));
Nodes = SelectionVisitor::collect(AST, Tokens, PrintPolicy, Begin, End, FID);
Root = Nodes.empty() ? nullptr : &Nodes.front();
dlog("Built selection tree\n{0}", *this);
}
SelectionTree::SelectionTree(ASTContext &AST, const syntax::TokenBuffer &Tokens,
unsigned Offset)
: SelectionTree(AST, Tokens, Offset, Offset) {}
const Node *SelectionTree::commonAncestor() const {
const Node *Ancestor = Root;
while (Ancestor->Children.size() == 1 && !Ancestor->Selected)
Ancestor = Ancestor->Children.front();
// Returning nullptr here is a bit unprincipled, but it makes the API safer:
// the TranslationUnitDecl contains all of the preamble, so traversing it is a
// performance cliff. Callers can check for null and use root() if they want.
return Ancestor != Root ? Ancestor : nullptr;
}
const DeclContext& SelectionTree::Node::getDeclContext() const {
for (const Node* CurrentNode = this; CurrentNode != nullptr;
CurrentNode = CurrentNode->Parent) {
if (const Decl* Current = CurrentNode->ASTNode.get<Decl>()) {
if (CurrentNode != this)
if (auto *DC = dyn_cast<DeclContext>(Current))
return *DC;
return *Current->getDeclContext();
}
}
llvm_unreachable("A tree must always be rooted at TranslationUnitDecl.");
}
const SelectionTree::Node &SelectionTree::Node::ignoreImplicit() const {
if (Children.size() == 1 &&
Children.front()->ASTNode.getSourceRange() == ASTNode.getSourceRange())
return Children.front()->ignoreImplicit();
return *this;
}
const SelectionTree::Node &SelectionTree::Node::outerImplicit() const {
if (Parent && Parent->ASTNode.getSourceRange() == ASTNode.getSourceRange())
return Parent->outerImplicit();
return *this;
}
} // namespace clangd
} // namespace clang