forked from OSchip/llvm-project
1090 lines
39 KiB
C++
1090 lines
39 KiB
C++
//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Derive information about array elements between statements ("Zones").
|
|
//
|
|
// The algorithms here work on the scatter space - the image space of the
|
|
// schedule returned by Scop::getSchedule(). We call an element in that space a
|
|
// "timepoint". Timepoints are lexicographically ordered such that we can
|
|
// defined ranges in the scatter space. We use two flavors of such ranges:
|
|
// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
|
|
// space and is directly stored as isl_set.
|
|
//
|
|
// Zones are used to describe the space between timepoints as open sets, i.e.
|
|
// they do not contain the extrema. Using isl rational sets to express these
|
|
// would be overkill. We also cannot store them as the integer timepoints they
|
|
// contain; the (nonempty) zone between 1 and 2 would be empty and
|
|
// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
|
|
// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
|
|
// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
|
|
// Instead, we store the "half-open" integer extrema, including the lower bound,
|
|
// but excluding the upper bound. Examples:
|
|
//
|
|
// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
|
|
// integer points 1 and 2, but not 0 or 3)
|
|
//
|
|
// * { [1] } represents the zone ]0,1[
|
|
//
|
|
// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
|
|
//
|
|
// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
|
|
// speaking the integer points never belong to the zone. However, depending an
|
|
// the interpretation, one might want to include them. Part of the
|
|
// interpretation may not be known when the zone is constructed.
|
|
//
|
|
// Reads are assumed to always take place before writes, hence we can think of
|
|
// reads taking place at the beginning of a timepoint and writes at the end.
|
|
//
|
|
// Let's assume that the zone represents the lifetime of a variable. That is,
|
|
// the zone begins with a write that defines the value during its lifetime and
|
|
// ends with the last read of that value. In the following we consider whether a
|
|
// read/write at the beginning/ending of the lifetime zone should be within the
|
|
// zone or outside of it.
|
|
//
|
|
// * A read at the timepoint that starts the live-range loads the previous
|
|
// value. Hence, exclude the timepoint starting the zone.
|
|
//
|
|
// * A write at the timepoint that starts the live-range is not defined whether
|
|
// it occurs before or after the write that starts the lifetime. We do not
|
|
// allow this situation to occur. Hence, we include the timepoint starting the
|
|
// zone to determine whether they are conflicting.
|
|
//
|
|
// * A read at the timepoint that ends the live-range reads the same variable.
|
|
// We include the timepoint at the end of the zone to include that read into
|
|
// the live-range. Doing otherwise would mean that the two reads access
|
|
// different values, which would mean that the value they read are both alive
|
|
// at the same time but occupy the same variable.
|
|
//
|
|
// * A write at the timepoint that ends the live-range starts a new live-range.
|
|
// It must not be included in the live-range of the previous definition.
|
|
//
|
|
// All combinations of reads and writes at the endpoints are possible, but most
|
|
// of the time only the write->read (for instance, a live-range from definition
|
|
// to last use) and read->write (for instance, an unused range from last use to
|
|
// overwrite) and combinations are interesting (half-open ranges). write->write
|
|
// zones might be useful as well in some context to represent
|
|
// output-dependencies.
|
|
//
|
|
// @see convertZoneToTimepoints
|
|
//
|
|
//
|
|
// The code makes use of maps and sets in many different spaces. To not loose
|
|
// track in which space a set or map is expected to be in, variables holding an
|
|
// isl reference are usually annotated in the comments. They roughly follow isl
|
|
// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
|
|
// meaning as follows:
|
|
//
|
|
// * Space[] - An unspecified tuple. Used for function parameters such that the
|
|
// function caller can use it for anything they like.
|
|
//
|
|
// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
|
|
// isl_id_get_name: Stmt_<NameOfBasicBlock>
|
|
// isl_id_get_user: Pointer to ScopStmt
|
|
//
|
|
// * Element[] - An array element as in the range part of
|
|
// MemoryAccess::getAccessRelation()
|
|
// isl_id_get_name: MemRef_<NameOfArrayVariable>
|
|
// isl_id_get_user: Pointer to ScopArrayInfo
|
|
//
|
|
// * Scatter[] - Scatter space or space of timepoints
|
|
// Has no tuple id
|
|
//
|
|
// * Zone[] - Range between timepoints as described above
|
|
// Has no tuple id
|
|
//
|
|
// * ValInst[] - An llvm::Value as defined at a specific timepoint.
|
|
//
|
|
// A ValInst[] itself can be structured as one of:
|
|
//
|
|
// * [] - An unknown value.
|
|
// Always zero dimensions
|
|
// Has no tuple id
|
|
//
|
|
// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
|
|
// runtime content does not depend on the timepoint.
|
|
// Always zero dimensions
|
|
// isl_id_get_name: Val_<NameOfValue>
|
|
// isl_id_get_user: A pointer to an llvm::Value
|
|
//
|
|
// * SCEV[...] - A synthesizable llvm::SCEV Expression.
|
|
// In contrast to a Value[] is has at least one dimension per
|
|
// SCEVAddRecExpr in the SCEV.
|
|
//
|
|
// * [Domain[] -> Value[]] - An llvm::Value that may change during the
|
|
// Scop's execution.
|
|
// The tuple itself has no id, but it wraps a map space holding a
|
|
// statement instance which defines the llvm::Value as the map's domain
|
|
// and llvm::Value itself as range.
|
|
//
|
|
// @see makeValInst()
|
|
//
|
|
// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
|
|
// statement instance to a timepoint, aka a schedule. There is only one scatter
|
|
// space, but most of the time multiple statements are processed in one set.
|
|
// This is why most of the time isl_union_map has to be used.
|
|
//
|
|
// The basic algorithm works as follows:
|
|
// At first we verify that the SCoP is compatible with this technique. For
|
|
// instance, two writes cannot write to the same location at the same statement
|
|
// instance because we cannot determine within the polyhedral model which one
|
|
// comes first. Once this was verified, we compute zones at which an array
|
|
// element is unused. This computation can fail if it takes too long. Then the
|
|
// main algorithm is executed. Because every store potentially trails an unused
|
|
// zone, we start at stores. We search for a scalar (MemoryKind::Value or
|
|
// MemoryKind::PHI) that we can map to the array element overwritten by the
|
|
// store, preferably one that is used by the store or at least the ScopStmt.
|
|
// When it does not conflict with the lifetime of the values in the array
|
|
// element, the map is applied and the unused zone updated as it is now used. We
|
|
// continue to try to map scalars to the array element until there are no more
|
|
// candidates to map. The algorithm is greedy in the sense that the first scalar
|
|
// not conflicting will be mapped. Other scalars processed later that could have
|
|
// fit the same unused zone will be rejected. As such the result depends on the
|
|
// processing order.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/ZoneAlgo.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/ISLTools.h"
|
|
#include "polly/Support/VirtualInstruction.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "polly-zone"
|
|
|
|
STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
|
|
STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
|
|
STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
|
|
STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
|
|
STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
|
|
|
|
using namespace polly;
|
|
using namespace llvm;
|
|
|
|
static isl::union_map computeReachingDefinition(isl::union_map Schedule,
|
|
isl::union_map Writes,
|
|
bool InclDef, bool InclRedef) {
|
|
return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
|
|
}
|
|
|
|
/// Compute the reaching definition of a scalar.
|
|
///
|
|
/// Compared to computeReachingDefinition, there is just one element which is
|
|
/// accessed and therefore only a set if instances that accesses that element is
|
|
/// required.
|
|
///
|
|
/// @param Schedule { DomainWrite[] -> Scatter[] }
|
|
/// @param Writes { DomainWrite[] }
|
|
/// @param InclDef Include the timepoint of the definition to the result.
|
|
/// @param InclRedef Include the timepoint of the overwrite into the result.
|
|
///
|
|
/// @return { Scatter[] -> DomainWrite[] }
|
|
static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
|
|
isl::union_set Writes,
|
|
bool InclDef,
|
|
bool InclRedef) {
|
|
// { DomainWrite[] -> Element[] }
|
|
isl::union_map Defs = isl::union_map::from_domain(Writes);
|
|
|
|
// { [Element[] -> Scatter[]] -> DomainWrite[] }
|
|
auto ReachDefs =
|
|
computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
|
|
|
|
// { Scatter[] -> DomainWrite[] }
|
|
return ReachDefs.curry().range().unwrap();
|
|
}
|
|
|
|
/// Compute the reaching definition of a scalar.
|
|
///
|
|
/// This overload accepts only a single writing statement as an isl_map,
|
|
/// consequently the result also is only a single isl_map.
|
|
///
|
|
/// @param Schedule { DomainWrite[] -> Scatter[] }
|
|
/// @param Writes { DomainWrite[] }
|
|
/// @param InclDef Include the timepoint of the definition to the result.
|
|
/// @param InclRedef Include the timepoint of the overwrite into the result.
|
|
///
|
|
/// @return { Scatter[] -> DomainWrite[] }
|
|
static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
|
|
isl::set Writes, bool InclDef,
|
|
bool InclRedef) {
|
|
isl::space DomainSpace = Writes.get_space();
|
|
isl::space ScatterSpace = getScatterSpace(Schedule);
|
|
|
|
// { Scatter[] -> DomainWrite[] }
|
|
isl::union_map UMap = computeScalarReachingDefinition(
|
|
Schedule, isl::union_set(Writes), InclDef, InclRedef);
|
|
|
|
isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
|
|
return singleton(UMap, ResultSpace);
|
|
}
|
|
|
|
isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
|
|
return isl::union_map::from_domain(Domain);
|
|
}
|
|
|
|
/// Create a domain-to-unknown value mapping.
|
|
///
|
|
/// @see makeUnknownForDomain(isl::union_set)
|
|
///
|
|
/// @param Domain { Domain[] }
|
|
///
|
|
/// @return { Domain[] -> ValInst[] }
|
|
static isl::map makeUnknownForDomain(isl::set Domain) {
|
|
return isl::map::from_domain(Domain);
|
|
}
|
|
|
|
/// Return whether @p Map maps to an unknown value.
|
|
///
|
|
/// @param { [] -> ValInst[] }
|
|
static bool isMapToUnknown(const isl::map &Map) {
|
|
isl::space Space = Map.get_space().range();
|
|
return Space.has_tuple_id(isl::dim::set).is_false() &&
|
|
Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
|
|
}
|
|
|
|
isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
|
|
isl::union_map Result = isl::union_map::empty(UMap.get_space());
|
|
isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
|
|
if (!isMapToUnknown(Map))
|
|
Result = Result.add_map(Map);
|
|
return isl::stat::ok;
|
|
});
|
|
if (Success != isl::stat::ok)
|
|
return {};
|
|
return Result;
|
|
}
|
|
|
|
ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
|
|
: PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
|
|
Schedule(S->getSchedule()) {
|
|
auto Domains = S->getDomains();
|
|
|
|
Schedule = Schedule.intersect_domain(Domains);
|
|
ParamSpace = Schedule.get_space();
|
|
ScatterSpace = getScatterSpace(Schedule);
|
|
}
|
|
|
|
/// Check if all stores in @p Stmt store the very same value.
|
|
///
|
|
/// This covers a special situation occurring in Polybench's
|
|
/// covariance/correlation (which is typical for algorithms that cover symmetric
|
|
/// matrices):
|
|
///
|
|
/// for (int i = 0; i < n; i += 1)
|
|
/// for (int j = 0; j <= i; j += 1) {
|
|
/// double x = ...;
|
|
/// C[i][j] = x;
|
|
/// C[j][i] = x;
|
|
/// }
|
|
///
|
|
/// For i == j, the same value is written twice to the same element.Double
|
|
/// writes to the same element are not allowed in DeLICM because its algorithm
|
|
/// does not see which of the writes is effective.But if its the same value
|
|
/// anyway, it doesn't matter.
|
|
///
|
|
/// LLVM passes, however, cannot simplify this because the write is necessary
|
|
/// for i != j (unless it would add a condition for one of the writes to occur
|
|
/// only if i != j).
|
|
///
|
|
/// TODO: In the future we may want to extent this to make the checks
|
|
/// specific to different memory locations.
|
|
static bool onlySameValueWrites(ScopStmt *Stmt) {
|
|
Value *V = nullptr;
|
|
|
|
for (auto *MA : *Stmt) {
|
|
if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
|
|
!MA->isOriginalArrayKind())
|
|
continue;
|
|
|
|
if (!V) {
|
|
V = MA->getAccessValue();
|
|
continue;
|
|
}
|
|
|
|
if (V != MA->getAccessValue())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
|
|
isl::union_set &IncompatibleElts,
|
|
isl::union_set &AllElts) {
|
|
auto Stores = makeEmptyUnionMap();
|
|
auto Loads = makeEmptyUnionMap();
|
|
|
|
// This assumes that the MemoryKind::Array MemoryAccesses are iterated in
|
|
// order.
|
|
for (auto *MA : *Stmt) {
|
|
if (!MA->isOriginalArrayKind())
|
|
continue;
|
|
|
|
isl::map AccRelMap = getAccessRelationFor(MA);
|
|
isl::union_map AccRel = AccRelMap;
|
|
|
|
// To avoid solving any ILP problems, always add entire arrays instead of
|
|
// just the elements that are accessed.
|
|
auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
|
|
AllElts = AllElts.add_set(ArrayElts);
|
|
|
|
if (MA->isRead()) {
|
|
// Reject load after store to same location.
|
|
if (!Stores.is_disjoint(AccRel)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Load after store of same element in same statement\n");
|
|
OptimizationRemarkMissed R(PassName, "LoadAfterStore",
|
|
MA->getAccessInstruction());
|
|
R << "load after store of same element in same statement";
|
|
R << " (previous stores: " << Stores;
|
|
R << ", loading: " << AccRel << ")";
|
|
S->getFunction().getContext().diagnose(R);
|
|
|
|
IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
|
|
}
|
|
|
|
Loads = Loads.unite(AccRel);
|
|
|
|
continue;
|
|
}
|
|
|
|
// In region statements the order is less clear, eg. the load and store
|
|
// might be in a boxed loop.
|
|
if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) {
|
|
LLVM_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
|
|
OptimizationRemarkMissed R(PassName, "StoreInSubregion",
|
|
MA->getAccessInstruction());
|
|
R << "store is in a non-affine subregion";
|
|
S->getFunction().getContext().diagnose(R);
|
|
|
|
IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
|
|
}
|
|
|
|
// Do not allow more than one store to the same location.
|
|
if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) {
|
|
LLVM_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
|
|
OptimizationRemarkMissed R(PassName, "StoreAfterStore",
|
|
MA->getAccessInstruction());
|
|
R << "store after store of same element in same statement";
|
|
R << " (previous stores: " << Stores;
|
|
R << ", storing: " << AccRel << ")";
|
|
S->getFunction().getContext().diagnose(R);
|
|
|
|
IncompatibleElts = IncompatibleElts.add_set(ArrayElts);
|
|
}
|
|
|
|
Stores = Stores.unite(AccRel);
|
|
}
|
|
}
|
|
|
|
void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
|
|
assert(MA->isLatestArrayKind());
|
|
assert(MA->isRead());
|
|
ScopStmt *Stmt = MA->getStatement();
|
|
|
|
// { DomainRead[] -> Element[] }
|
|
auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
|
|
AllReads = AllReads.add_map(AccRel);
|
|
|
|
if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
|
|
// { DomainRead[] -> ValInst[] }
|
|
isl::map LoadValInst = makeValInst(
|
|
Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
|
|
|
|
// { DomainRead[] -> [Element[] -> DomainRead[]] }
|
|
isl::map IncludeElement = AccRel.domain_map().curry();
|
|
|
|
// { [Element[] -> DomainRead[]] -> ValInst[] }
|
|
isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement);
|
|
|
|
AllReadValInst = AllReadValInst.add_map(EltLoadValInst);
|
|
}
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
|
|
isl::map AccRel) {
|
|
if (!MA->isMustWrite())
|
|
return {};
|
|
|
|
Value *AccVal = MA->getAccessValue();
|
|
ScopStmt *Stmt = MA->getStatement();
|
|
Instruction *AccInst = MA->getAccessInstruction();
|
|
|
|
// Write a value to a single element.
|
|
auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
|
|
: Stmt->getSurroundingLoop();
|
|
if (AccVal &&
|
|
AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
|
|
AccRel.is_single_valued().is_true())
|
|
return makeNormalizedValInst(AccVal, Stmt, L);
|
|
|
|
// memset(_, '0', ) is equivalent to writing the null value to all touched
|
|
// elements. isMustWrite() ensures that all of an element's bytes are
|
|
// overwritten.
|
|
if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
|
|
auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
|
|
Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
|
|
if (WrittenConstant && WrittenConstant->isZeroValue()) {
|
|
Constant *Zero = Constant::getNullValue(Ty);
|
|
return makeNormalizedValInst(Zero, Stmt, L);
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
|
|
assert(MA->isLatestArrayKind());
|
|
assert(MA->isWrite());
|
|
auto *Stmt = MA->getStatement();
|
|
|
|
// { Domain[] -> Element[] }
|
|
isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
|
|
|
|
if (MA->isMustWrite())
|
|
AllMustWrites = AllMustWrites.add_map(AccRel);
|
|
|
|
if (MA->isMayWrite())
|
|
AllMayWrites = AllMayWrites.add_map(AccRel);
|
|
|
|
// { Domain[] -> ValInst[] }
|
|
isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
|
|
if (!WriteValInstance)
|
|
WriteValInstance = makeUnknownForDomain(Stmt);
|
|
|
|
// { Domain[] -> [Element[] -> Domain[]] }
|
|
isl::map IncludeElement = AccRel.domain_map().curry();
|
|
|
|
// { [Element[] -> DomainWrite[]] -> ValInst[] }
|
|
isl::union_map EltWriteValInst =
|
|
WriteValInstance.apply_domain(IncludeElement);
|
|
|
|
AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
|
|
}
|
|
|
|
/// Return whether @p PHI refers (also transitively through other PHIs) to
|
|
/// itself.
|
|
///
|
|
/// loop:
|
|
/// %phi1 = phi [0, %preheader], [%phi1, %loop]
|
|
/// br i1 %c, label %loop, label %exit
|
|
///
|
|
/// exit:
|
|
/// %phi2 = phi [%phi1, %bb]
|
|
///
|
|
/// In this example, %phi1 is recursive, but %phi2 is not.
|
|
static bool isRecursivePHI(const PHINode *PHI) {
|
|
SmallVector<const PHINode *, 8> Worklist;
|
|
SmallPtrSet<const PHINode *, 8> Visited;
|
|
Worklist.push_back(PHI);
|
|
|
|
while (!Worklist.empty()) {
|
|
const PHINode *Cur = Worklist.pop_back_val();
|
|
|
|
if (Visited.count(Cur))
|
|
continue;
|
|
Visited.insert(Cur);
|
|
|
|
for (const Use &Incoming : Cur->incoming_values()) {
|
|
Value *IncomingVal = Incoming.get();
|
|
auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
|
|
if (!IncomingPHI)
|
|
continue;
|
|
|
|
if (IncomingPHI == PHI)
|
|
return true;
|
|
Worklist.push_back(IncomingPHI);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
|
|
// TODO: If the PHI has an incoming block from before the SCoP, it is not
|
|
// represented in any ScopStmt.
|
|
|
|
auto *PHI = cast<PHINode>(SAI->getBasePtr());
|
|
auto It = PerPHIMaps.find(PHI);
|
|
if (It != PerPHIMaps.end())
|
|
return It->second;
|
|
|
|
assert(SAI->isPHIKind());
|
|
|
|
// { DomainPHIWrite[] -> Scatter[] }
|
|
isl::union_map PHIWriteScatter = makeEmptyUnionMap();
|
|
|
|
// Collect all incoming block timepoints.
|
|
for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
|
|
isl::map Scatter = getScatterFor(MA);
|
|
PHIWriteScatter = PHIWriteScatter.add_map(Scatter);
|
|
}
|
|
|
|
// { DomainPHIRead[] -> Scatter[] }
|
|
isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
|
|
|
|
// { DomainPHIRead[] -> Scatter[] }
|
|
isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
|
|
|
|
// { Scatter[] }
|
|
isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
|
|
|
|
// { DomainPHIRead[] -> Scatter[] }
|
|
isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
|
|
isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
|
|
|
|
// { DomainPHIRead[] -> DomainPHIWrite[] }
|
|
isl::union_map Result =
|
|
isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
|
|
assert(!Result.is_single_valued().is_false());
|
|
assert(!Result.is_injective().is_false());
|
|
|
|
PerPHIMaps.insert({PHI, Result});
|
|
return Result;
|
|
}
|
|
|
|
isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
|
|
return isl::union_set::empty(ParamSpace);
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
|
|
return isl::union_map::empty(ParamSpace);
|
|
}
|
|
|
|
void ZoneAlgorithm::collectCompatibleElts() {
|
|
// First find all the incompatible elements, then take the complement.
|
|
// We compile the list of compatible (rather than incompatible) elements so
|
|
// users can intersect with the list, not requiring a subtract operation. It
|
|
// also allows us to define a 'universe' of all elements and makes it more
|
|
// explicit in which array elements can be used.
|
|
isl::union_set AllElts = makeEmptyUnionSet();
|
|
isl::union_set IncompatibleElts = makeEmptyUnionSet();
|
|
|
|
for (auto &Stmt : *S)
|
|
collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
|
|
|
|
NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get());
|
|
CompatibleElts = AllElts.subtract(IncompatibleElts);
|
|
NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get());
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
|
|
isl::space ResultSpace =
|
|
Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace);
|
|
return Schedule.extract_map(ResultSpace);
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
|
|
return getScatterFor(MA->getStatement());
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
|
|
return Schedule.intersect_domain(Domain);
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
|
|
auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace);
|
|
auto UDomain = isl::union_set(Domain);
|
|
auto UResult = getScatterFor(std::move(UDomain));
|
|
auto Result = singleton(std::move(UResult), std::move(ResultSpace));
|
|
assert(!Result || Result.domain().is_equal(Domain) == isl_bool_true);
|
|
return Result;
|
|
}
|
|
|
|
isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
|
|
return Stmt->getDomain().remove_redundancies();
|
|
}
|
|
|
|
isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
|
|
return getDomainFor(MA->getStatement());
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
|
|
auto Domain = getDomainFor(MA);
|
|
auto AccRel = MA->getLatestAccessRelation();
|
|
return AccRel.intersect_domain(Domain);
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
|
|
auto &Result = ScalarReachDefZone[Stmt];
|
|
if (Result)
|
|
return Result;
|
|
|
|
auto Domain = getDomainFor(Stmt);
|
|
Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
|
|
simplify(Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
|
|
auto DomId = DomainDef.get_tuple_id();
|
|
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.get()));
|
|
|
|
auto StmtResult = getScalarReachingDefinition(Stmt);
|
|
|
|
return StmtResult.intersect_range(DomainDef);
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
|
|
return ::makeUnknownForDomain(getDomainFor(Stmt));
|
|
}
|
|
|
|
isl::id ZoneAlgorithm::makeValueId(Value *V) {
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
auto &Id = ValueIds[V];
|
|
if (Id.is_null()) {
|
|
auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
|
|
std::string(), UseInstructionNames);
|
|
Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V);
|
|
}
|
|
return Id;
|
|
}
|
|
|
|
isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
|
|
auto Result = ParamSpace.set_from_params();
|
|
return Result.set_tuple_id(isl::dim::set, makeValueId(V));
|
|
}
|
|
|
|
isl::set ZoneAlgorithm::makeValueSet(Value *V) {
|
|
auto Space = makeValueSpace(V);
|
|
return isl::set::universe(Space);
|
|
}
|
|
|
|
isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
|
|
bool IsCertain) {
|
|
// If the definition/write is conditional, the value at the location could
|
|
// be either the written value or the old value. Since we cannot know which
|
|
// one, consider the value to be unknown.
|
|
if (!IsCertain)
|
|
return makeUnknownForDomain(UserStmt);
|
|
|
|
auto DomainUse = getDomainFor(UserStmt);
|
|
auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
|
|
switch (VUse.getKind()) {
|
|
case VirtualUse::Constant:
|
|
case VirtualUse::Block:
|
|
case VirtualUse::Hoisted:
|
|
case VirtualUse::ReadOnly: {
|
|
// The definition does not depend on the statement which uses it.
|
|
auto ValSet = makeValueSet(Val);
|
|
return isl::map::from_domain_and_range(DomainUse, ValSet);
|
|
}
|
|
|
|
case VirtualUse::Synthesizable: {
|
|
auto *ScevExpr = VUse.getScevExpr();
|
|
auto UseDomainSpace = DomainUse.get_space();
|
|
|
|
// Construct the SCEV space.
|
|
// TODO: Add only the induction variables referenced in SCEVAddRecExpr
|
|
// expressions, not just all of them.
|
|
auto ScevId = isl::manage(isl_id_alloc(
|
|
UseDomainSpace.get_ctx().get(), nullptr, const_cast<SCEV *>(ScevExpr)));
|
|
|
|
auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0);
|
|
ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId);
|
|
|
|
// { DomainUse[] -> ScevExpr[] }
|
|
auto ValInst =
|
|
isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace));
|
|
return ValInst;
|
|
}
|
|
|
|
case VirtualUse::Intra: {
|
|
// Definition and use is in the same statement. We do not need to compute
|
|
// a reaching definition.
|
|
|
|
// { llvm::Value }
|
|
auto ValSet = makeValueSet(Val);
|
|
|
|
// { UserDomain[] -> llvm::Value }
|
|
auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
|
|
|
|
// { UserDomain[] -> [UserDomain[] - >llvm::Value] }
|
|
auto Result = ValInstSet.domain_map().reverse();
|
|
simplify(Result);
|
|
return Result;
|
|
}
|
|
|
|
case VirtualUse::Inter: {
|
|
// The value is defined in a different statement.
|
|
|
|
auto *Inst = cast<Instruction>(Val);
|
|
auto *ValStmt = S->getStmtFor(Inst);
|
|
|
|
// If the llvm::Value is defined in a removed Stmt, we cannot derive its
|
|
// domain. We could use an arbitrary statement, but this could result in
|
|
// different ValInst[] for the same llvm::Value.
|
|
if (!ValStmt)
|
|
return ::makeUnknownForDomain(DomainUse);
|
|
|
|
// { DomainDef[] }
|
|
auto DomainDef = getDomainFor(ValStmt);
|
|
|
|
// { Scatter[] -> DomainDef[] }
|
|
auto ReachDef = getScalarReachingDefinition(DomainDef);
|
|
|
|
// { DomainUse[] -> Scatter[] }
|
|
auto UserSched = getScatterFor(DomainUse);
|
|
|
|
// { DomainUse[] -> DomainDef[] }
|
|
auto UsedInstance = UserSched.apply_range(ReachDef);
|
|
|
|
// { llvm::Value }
|
|
auto ValSet = makeValueSet(Val);
|
|
|
|
// { DomainUse[] -> llvm::Value[] }
|
|
auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
|
|
|
|
// { DomainUse[] -> [DomainDef[] -> llvm::Value] }
|
|
auto Result = UsedInstance.range_product(ValInstSet);
|
|
|
|
simplify(Result);
|
|
return Result;
|
|
}
|
|
}
|
|
llvm_unreachable("Unhandled use type");
|
|
}
|
|
|
|
/// Remove all computed PHIs out of @p Input and replace by their incoming
|
|
/// value.
|
|
///
|
|
/// @param Input { [] -> ValInst[] }
|
|
/// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
|
|
/// on the LHS of @p NormalizeMap.
|
|
/// @param NormalizeMap { ValInst[] -> ValInst[] }
|
|
static isl::union_map normalizeValInst(isl::union_map Input,
|
|
const DenseSet<PHINode *> &ComputedPHIs,
|
|
isl::union_map NormalizeMap) {
|
|
isl::union_map Result = isl::union_map::empty(Input.get_space());
|
|
Input.foreach_map(
|
|
[&Result, &ComputedPHIs, &NormalizeMap](isl::map Map) -> isl::stat {
|
|
isl::space Space = Map.get_space();
|
|
isl::space RangeSpace = Space.range();
|
|
|
|
// Instructions within the SCoP are always wrapped. Non-wrapped tuples
|
|
// are therefore invariant in the SCoP and don't need normalization.
|
|
if (!RangeSpace.is_wrapping()) {
|
|
Result = Result.add_map(Map);
|
|
return isl::stat::ok;
|
|
}
|
|
|
|
auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
|
|
RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
|
|
|
|
// If no normalization is necessary, then the ValInst stands for itself.
|
|
if (!ComputedPHIs.count(PHI)) {
|
|
Result = Result.add_map(Map);
|
|
return isl::stat::ok;
|
|
}
|
|
|
|
// Otherwise, apply the normalization.
|
|
isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
|
|
Result = Result.unite(Mapped);
|
|
NumPHINormialization++;
|
|
return isl::stat::ok;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
|
|
ScopStmt *UserStmt,
|
|
llvm::Loop *Scope,
|
|
bool IsCertain) {
|
|
isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
|
|
isl::union_map Normalized =
|
|
normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
|
|
return Normalized;
|
|
}
|
|
|
|
bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
|
|
if (!MA)
|
|
return false;
|
|
if (!MA->isLatestArrayKind())
|
|
return false;
|
|
Instruction *AccInst = MA->getAccessInstruction();
|
|
return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
|
|
}
|
|
|
|
bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
|
|
assert(MA->isRead());
|
|
|
|
// Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
|
|
// MemoryAccess.
|
|
if (!MA->isOriginalPHIKind())
|
|
return false;
|
|
|
|
// Exclude recursive PHIs, normalizing them would require a transitive
|
|
// closure.
|
|
auto *PHI = cast<PHINode>(MA->getAccessInstruction());
|
|
if (RecursivePHIs.count(PHI))
|
|
return false;
|
|
|
|
// Ensure that each incoming value can be represented by a ValInst[].
|
|
// We do represent values from statements associated to multiple incoming
|
|
// value by the PHI itself, but we do not handle this case yet (especially
|
|
// isNormalized()) when normalizing.
|
|
const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
|
|
auto Incomings = S->getPHIIncomings(SAI);
|
|
for (MemoryAccess *Incoming : Incomings) {
|
|
if (Incoming->getIncoming().size() != 1)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) {
|
|
isl::space Space = Map.get_space();
|
|
isl::space RangeSpace = Space.range();
|
|
|
|
isl::boolean IsWrapping = RangeSpace.is_wrapping();
|
|
if (!IsWrapping.is_true())
|
|
return !IsWrapping;
|
|
isl::space Unwrapped = RangeSpace.unwrap();
|
|
|
|
isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out);
|
|
if (OutTupleId.is_null())
|
|
return isl::boolean();
|
|
auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(OutTupleId.get_user()));
|
|
if (!PHI)
|
|
return true;
|
|
|
|
isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in);
|
|
if (OutTupleId.is_null())
|
|
return isl::boolean();
|
|
auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user());
|
|
MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
|
|
if (!isNormalizable(PHIRead))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) {
|
|
isl::boolean Result = true;
|
|
UMap.foreach_map([this, &Result](isl::map Map) -> isl::stat {
|
|
Result = isNormalized(Map);
|
|
if (Result.is_true())
|
|
return isl::stat::ok;
|
|
return isl::stat::error;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
void ZoneAlgorithm::computeCommon() {
|
|
AllReads = makeEmptyUnionMap();
|
|
AllMayWrites = makeEmptyUnionMap();
|
|
AllMustWrites = makeEmptyUnionMap();
|
|
AllWriteValInst = makeEmptyUnionMap();
|
|
AllReadValInst = makeEmptyUnionMap();
|
|
|
|
// Default to empty, i.e. no normalization/replacement is taking place. Call
|
|
// computeNormalizedPHIs() to initialize.
|
|
NormalizeMap = makeEmptyUnionMap();
|
|
ComputedPHIs.clear();
|
|
|
|
for (auto &Stmt : *S) {
|
|
for (auto *MA : Stmt) {
|
|
if (!MA->isLatestArrayKind())
|
|
continue;
|
|
|
|
if (MA->isRead())
|
|
addArrayReadAccess(MA);
|
|
|
|
if (MA->isWrite())
|
|
addArrayWriteAccess(MA);
|
|
}
|
|
}
|
|
|
|
// { DomainWrite[] -> Element[] }
|
|
AllWrites = AllMustWrites.unite(AllMayWrites);
|
|
|
|
// { [Element[] -> Zone[]] -> DomainWrite[] }
|
|
WriteReachDefZone =
|
|
computeReachingDefinition(Schedule, AllWrites, false, true);
|
|
simplify(WriteReachDefZone);
|
|
}
|
|
|
|
void ZoneAlgorithm::computeNormalizedPHIs() {
|
|
// Determine which PHIs can reference themselves. They are excluded from
|
|
// normalization to avoid problems with transitive closures.
|
|
for (ScopStmt &Stmt : *S) {
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (!MA->isPHIKind())
|
|
continue;
|
|
if (!MA->isRead())
|
|
continue;
|
|
|
|
// TODO: Can be more efficient since isRecursivePHI can theoretically
|
|
// determine recursiveness for multiple values and/or cache results.
|
|
auto *PHI = cast<PHINode>(MA->getAccessInstruction());
|
|
if (isRecursivePHI(PHI)) {
|
|
NumRecursivePHIs++;
|
|
RecursivePHIs.insert(PHI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// { PHIValInst[] -> IncomingValInst[] }
|
|
isl::union_map AllPHIMaps = makeEmptyUnionMap();
|
|
|
|
// Discover new PHIs and try to normalize them.
|
|
DenseSet<PHINode *> AllPHIs;
|
|
for (ScopStmt &Stmt : *S) {
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (!MA->isOriginalPHIKind())
|
|
continue;
|
|
if (!MA->isRead())
|
|
continue;
|
|
if (!isNormalizable(MA))
|
|
continue;
|
|
|
|
auto *PHI = cast<PHINode>(MA->getAccessInstruction());
|
|
const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
|
|
|
|
// { PHIDomain[] -> PHIValInst[] }
|
|
isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
|
|
|
|
// { IncomingDomain[] -> IncomingValInst[] }
|
|
isl::union_map IncomingValInsts = makeEmptyUnionMap();
|
|
|
|
// Get all incoming values.
|
|
for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
|
|
ScopStmt *IncomingStmt = MA->getStatement();
|
|
|
|
auto Incoming = MA->getIncoming();
|
|
assert(Incoming.size() == 1 && "The incoming value must be "
|
|
"representable by something else than "
|
|
"the PHI itself");
|
|
Value *IncomingVal = Incoming[0].second;
|
|
|
|
// { IncomingDomain[] -> IncomingValInst[] }
|
|
isl::map IncomingValInst = makeValInst(
|
|
IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
|
|
|
|
IncomingValInsts = IncomingValInsts.add_map(IncomingValInst);
|
|
}
|
|
|
|
// Determine which instance of the PHI statement corresponds to which
|
|
// incoming value.
|
|
// { PHIDomain[] -> IncomingDomain[] }
|
|
isl::union_map PerPHI = computePerPHI(SAI);
|
|
|
|
// { PHIValInst[] -> IncomingValInst[] }
|
|
isl::union_map PHIMap =
|
|
PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
|
|
assert(!PHIMap.is_single_valued().is_false());
|
|
|
|
// Resolve transitiveness: The incoming value of the newly discovered PHI
|
|
// may reference a previously normalized PHI. At the same time, already
|
|
// normalized PHIs might be normalized to the new PHI. At the end, none of
|
|
// the PHIs may appear on the right-hand-side of the normalization map.
|
|
PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
|
|
AllPHIs.insert(PHI);
|
|
AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
|
|
|
|
AllPHIMaps = AllPHIMaps.unite(PHIMap);
|
|
NumNormalizablePHIs++;
|
|
}
|
|
}
|
|
simplify(AllPHIMaps);
|
|
|
|
// Apply the normalization.
|
|
ComputedPHIs = AllPHIs;
|
|
NormalizeMap = AllPHIMaps;
|
|
|
|
assert(!NormalizeMap || isNormalized(NormalizeMap));
|
|
}
|
|
|
|
void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
|
|
OS.indent(Indent) << "After accesses {\n";
|
|
for (auto &Stmt : *S) {
|
|
OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
|
|
for (auto *MA : Stmt)
|
|
MA->print(OS);
|
|
}
|
|
OS.indent(Indent) << "}\n";
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
|
|
// { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
|
|
isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
|
|
|
|
// { [Element[] -> DomainWrite[]] -> ValInst[] }
|
|
isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
|
|
|
|
// { [Element[] -> Zone[]] -> ValInst[] }
|
|
return EltReachdDef.apply_range(AllKnownWriteValInst);
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
|
|
// { Element[] }
|
|
isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
|
|
|
|
// { Element[] -> Scatter[] }
|
|
isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
|
|
AllAccessedElts, isl::set::universe(ScatterSpace));
|
|
|
|
// This assumes there are no "holes" in
|
|
// isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
|
|
// before the first write or that are not written at all.
|
|
// { Element[] -> Scatter[] }
|
|
isl::union_set NonReachDef =
|
|
EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
|
|
|
|
// { [Element[] -> Zone[]] -> ReachDefId[] }
|
|
isl::union_map DefZone =
|
|
WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
|
|
|
|
// { [Element[] -> Scatter[]] -> Element[] }
|
|
isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
|
|
|
|
// { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
|
|
isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
|
|
|
|
// { Element[] -> [Zone[] -> ReachDefId[]] }
|
|
isl::union_map EltDefZone = DefZone.curry();
|
|
|
|
// { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
|
|
isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
|
|
|
|
// { [Element[] -> Scatter[]] -> DomainRead[] }
|
|
isl::union_map Reads = AllReads.range_product(Schedule).reverse();
|
|
|
|
// { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
|
|
isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
|
|
|
|
// { [Element[] -> Scatter[]] -> ValInst[] }
|
|
isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
|
|
|
|
// { [Element[] -> ReachDefId[]] -> ValInst[] }
|
|
isl::union_map DefidKnown =
|
|
DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
|
|
|
|
// { [Element[] -> Zone[]] -> ValInst[] }
|
|
return DefZoneEltDefId.apply_range(DefidKnown);
|
|
}
|
|
|
|
isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
|
|
bool FromRead) const {
|
|
isl::union_map Result = makeEmptyUnionMap();
|
|
|
|
if (FromWrite)
|
|
Result = Result.unite(computeKnownFromMustWrites());
|
|
|
|
if (FromRead)
|
|
Result = Result.unite(computeKnownFromLoad());
|
|
|
|
simplify(Result);
|
|
return Result;
|
|
}
|