llvm-project/polly/lib/Support/ISLTools.cpp

864 lines
28 KiB
C++

//===------ ISLTools.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Tools, utilities, helpers and extensions useful in conjunction with the
// Integer Set Library (isl).
//
//===----------------------------------------------------------------------===//
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/StringRef.h"
using namespace polly;
namespace {
/// Create a map that shifts one dimension by an offset.
///
/// Example:
/// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2)
/// = { [i0, i1] -> [i0, i1 - 1] }
///
/// @param Space The map space of the result. Must have equal number of in- and
/// out-dimensions.
/// @param Pos Position to shift.
/// @param Amount Value added to the shifted dimension.
///
/// @return An isl_multi_aff for the map with this shifted dimension.
isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) {
auto Identity = isl::multi_aff::identity(Space);
if (Amount == 0)
return Identity;
auto ShiftAff = Identity.get_aff(Pos);
ShiftAff = ShiftAff.set_constant_si(Amount);
return Identity.set_aff(Pos, ShiftAff);
}
/// Construct a map that swaps two nested tuples.
///
/// @param FromSpace1 { Space1[] }
/// @param FromSpace2 { Space2[] }
///
/// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] }
isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1,
isl::space FromSpace2) {
// Fast-path on out-of-quota.
if (!FromSpace1 || !FromSpace2)
return {};
assert(FromSpace1.is_set());
assert(FromSpace2.is_set());
unsigned Dims1 = FromSpace1.dim(isl::dim::set);
unsigned Dims2 = FromSpace2.dim(isl::dim::set);
isl::space FromSpace =
FromSpace1.map_from_domain_and_range(FromSpace2).wrap();
isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap();
isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace);
isl::basic_map Result = isl::basic_map::universe(MapSpace);
for (auto i = Dims1 - Dims1; i < Dims1; i += 1)
Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i);
for (auto i = Dims2 - Dims2; i < Dims2; i += 1) {
Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i);
}
return Result;
}
/// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns
/// an isl_map.
isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) {
isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2);
return isl::map(BMapResult);
}
} // anonymous namespace
isl::map polly::beforeScatter(isl::map Map, bool Strict) {
isl::space RangeSpace = Map.get_space().range();
isl::map ScatterRel =
Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace);
return Map.apply_range(ScatterRel);
}
isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) {
isl::union_map Result = isl::union_map::empty(UMap.get_space());
for (isl::map Map : UMap.get_map_list()) {
isl::map After = beforeScatter(Map, Strict);
Result = Result.add_map(After);
}
return Result;
}
isl::map polly::afterScatter(isl::map Map, bool Strict) {
isl::space RangeSpace = Map.get_space().range();
isl::map ScatterRel =
Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace);
return Map.apply_range(ScatterRel);
}
isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) {
isl::union_map Result = isl::union_map::empty(UMap.get_space());
for (isl::map Map : UMap.get_map_list()) {
isl::map After = afterScatter(Map, Strict);
Result = Result.add_map(After);
}
return Result;
}
isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom,
bool InclTo) {
isl::map AfterFrom = afterScatter(From, !InclFrom);
isl::map BeforeTo = beforeScatter(To, !InclTo);
return AfterFrom.intersect(BeforeTo);
}
isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To,
bool InclFrom, bool InclTo) {
isl::union_map AfterFrom = afterScatter(From, !InclFrom);
isl::union_map BeforeTo = beforeScatter(To, !InclTo);
return AfterFrom.intersect(BeforeTo);
}
isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) {
if (!UMap)
return nullptr;
if (isl_union_map_n_map(UMap.get()) == 0)
return isl::map::empty(ExpectedSpace);
isl::map Result = isl::map::from_union_map(UMap);
assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace));
return Result;
}
isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) {
if (!USet)
return nullptr;
if (isl_union_set_n_set(USet.get()) == 0)
return isl::set::empty(ExpectedSpace);
isl::set Result(USet);
assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace));
return Result;
}
unsigned polly::getNumScatterDims(const isl::union_map &Schedule) {
unsigned Dims = 0;
for (isl::map Map : Schedule.get_map_list())
Dims = std::max(Dims, Map.dim(isl::dim::out));
return Dims;
}
isl::space polly::getScatterSpace(const isl::union_map &Schedule) {
if (!Schedule)
return nullptr;
unsigned Dims = getNumScatterDims(Schedule);
isl::space ScatterSpace = Schedule.get_space().set_from_params();
return ScatterSpace.add_dims(isl::dim::set, Dims);
}
isl::union_map polly::makeIdentityMap(const isl::union_set &USet,
bool RestrictDomain) {
isl::union_map Result = isl::union_map::empty(USet.get_space());
for (isl::set Set : USet.get_set_list()) {
isl::map IdentityMap = isl::map::identity(Set.get_space().map_from_set());
if (RestrictDomain)
IdentityMap = IdentityMap.intersect_domain(Set);
Result = Result.add_map(IdentityMap);
}
return Result;
}
isl::map polly::reverseDomain(isl::map Map) {
isl::space DomSpace = Map.get_space().domain().unwrap();
isl::space Space1 = DomSpace.domain();
isl::space Space2 = DomSpace.range();
isl::map Swap = makeTupleSwapMap(Space1, Space2);
return Map.apply_domain(Swap);
}
isl::union_map polly::reverseDomain(const isl::union_map &UMap) {
isl::union_map Result = isl::union_map::empty(UMap.get_space());
for (isl::map Map : UMap.get_map_list()) {
auto Reversed = reverseDomain(std::move(Map));
Result = Result.add_map(Reversed);
}
return Result;
}
isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) {
int NumDims = Set.dim(isl::dim::set);
if (Pos < 0)
Pos = NumDims + Pos;
assert(Pos < NumDims && "Dimension index must be in range");
isl::space Space = Set.get_space();
Space = Space.map_from_domain_and_range(Space);
isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
return Set.apply(TranslatorMap);
}
isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) {
isl::union_set Result = isl::union_set::empty(USet.get_space());
for (isl::set Set : USet.get_set_list()) {
isl::set Shifted = shiftDim(Set, Pos, Amount);
Result = Result.add_set(Shifted);
}
return Result;
}
isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) {
int NumDims = Map.dim(Dim);
if (Pos < 0)
Pos = NumDims + Pos;
assert(Pos < NumDims && "Dimension index must be in range");
isl::space Space = Map.get_space();
switch (Dim) {
case isl::dim::in:
Space = Space.domain();
break;
case isl::dim::out:
Space = Space.range();
break;
default:
llvm_unreachable("Unsupported value for 'dim'");
}
Space = Space.map_from_domain_and_range(Space);
isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
switch (Dim) {
case isl::dim::in:
return Map.apply_domain(TranslatorMap);
case isl::dim::out:
return Map.apply_range(TranslatorMap);
default:
llvm_unreachable("Unsupported value for 'dim'");
}
}
isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos,
int Amount) {
isl::union_map Result = isl::union_map::empty(UMap.get_space());
for (isl::map Map : UMap.get_map_list()) {
isl::map Shifted = shiftDim(Map, Dim, Pos, Amount);
Result = Result.add_map(Shifted);
}
return Result;
}
void polly::simplify(isl::set &Set) {
Set = isl::manage(isl_set_compute_divs(Set.copy()));
Set = Set.detect_equalities();
Set = Set.coalesce();
}
void polly::simplify(isl::union_set &USet) {
USet = isl::manage(isl_union_set_compute_divs(USet.copy()));
USet = USet.detect_equalities();
USet = USet.coalesce();
}
void polly::simplify(isl::map &Map) {
Map = isl::manage(isl_map_compute_divs(Map.copy()));
Map = Map.detect_equalities();
Map = Map.coalesce();
}
void polly::simplify(isl::union_map &UMap) {
UMap = isl::manage(isl_union_map_compute_divs(UMap.copy()));
UMap = UMap.detect_equalities();
UMap = UMap.coalesce();
}
isl::union_map polly::computeReachingWrite(isl::union_map Schedule,
isl::union_map Writes, bool Reverse,
bool InclPrevDef, bool InclNextDef) {
// { Scatter[] }
isl::space ScatterSpace = getScatterSpace(Schedule);
// { ScatterRead[] -> ScatterWrite[] }
isl::map Relation;
if (Reverse)
Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace)
: isl::map::lex_le(ScatterSpace);
else
Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace)
: isl::map::lex_ge(ScatterSpace);
// { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] }
isl::map RelationMap = Relation.range_map().reverse();
// { Element[] -> ScatterWrite[] }
isl::union_map WriteAction = Schedule.apply_domain(Writes);
// { ScatterWrite[] -> Element[] }
isl::union_map WriteActionRev = WriteAction.reverse();
// { Element[] -> [ScatterUse[] -> ScatterWrite[]] }
isl::union_map DefSchedRelation =
isl::union_map(RelationMap).apply_domain(WriteActionRev);
// For each element, at every point in time, map to the times of previous
// definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] }
isl::union_map ReachableWrites = DefSchedRelation.uncurry();
if (Reverse)
ReachableWrites = ReachableWrites.lexmin();
else
ReachableWrites = ReachableWrites.lexmax();
// { [Element[] -> ScatterWrite[]] -> ScatterWrite[] }
isl::union_map SelfUse = WriteAction.range_map();
if (InclPrevDef && InclNextDef) {
// Add the Def itself to the solution.
ReachableWrites = ReachableWrites.unite(SelfUse).coalesce();
} else if (!InclPrevDef && !InclNextDef) {
// Remove Def itself from the solution.
ReachableWrites = ReachableWrites.subtract(SelfUse);
}
// { [Element[] -> ScatterRead[]] -> Domain[] }
return ReachableWrites.apply_range(Schedule.reverse());
}
isl::union_map
polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes,
isl::union_map Reads, bool ReadEltInSameInst,
bool IncludeLastRead, bool IncludeWrite) {
// { Element[] -> Scatter[] }
isl::union_map ReadActions = Schedule.apply_domain(Reads);
isl::union_map WriteActions = Schedule.apply_domain(Writes);
// { [Element[] -> DomainWrite[]] -> Scatter[] }
isl::union_map EltDomWrites =
Writes.reverse().range_map().apply_range(Schedule);
// { [Element[] -> Scatter[]] -> DomainWrite[] }
isl::union_map ReachingOverwrite = computeReachingWrite(
Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst);
// { [Element[] -> Scatter[]] -> DomainWrite[] }
isl::union_map ReadsOverwritten =
ReachingOverwrite.intersect_domain(ReadActions.wrap());
// { [Element[] -> DomainWrite[]] -> Scatter[] }
isl::union_map ReadsOverwrittenRotated =
reverseDomain(ReadsOverwritten).curry().reverse();
isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax();
// { [Element[] -> DomainWrite[]] -> Scatter[] }
isl::union_map BetweenLastReadOverwrite = betweenScatter(
LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite);
// { [Element[] -> Scatter[]] -> DomainWrite[] }
isl::union_map ReachingOverwriteZone = computeReachingWrite(
Schedule, Writes, true, IncludeLastRead, IncludeWrite);
// { [Element[] -> DomainWrite[]] -> Scatter[] }
isl::union_map ReachingOverwriteRotated =
reverseDomain(ReachingOverwriteZone).curry().reverse();
// { [Element[] -> DomainWrite[]] -> Scatter[] }
isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain(
ReadsOverwrittenRotated.domain());
return BetweenLastReadOverwrite.unite(WritesWithoutReads)
.domain_factor_domain();
}
isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone,
bool InclStart, bool InclEnd) {
if (!InclStart && InclEnd)
return Zone;
auto ShiftedZone = shiftDim(Zone, -1, -1);
if (InclStart && !InclEnd)
return ShiftedZone;
else if (!InclStart && !InclEnd)
return Zone.intersect(ShiftedZone);
assert(InclStart && InclEnd);
return Zone.unite(ShiftedZone);
}
isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim,
bool InclStart, bool InclEnd) {
if (!InclStart && InclEnd)
return Zone;
auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
if (InclStart && !InclEnd)
return ShiftedZone;
else if (!InclStart && !InclEnd)
return Zone.intersect(ShiftedZone);
assert(InclStart && InclEnd);
return Zone.unite(ShiftedZone);
}
isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim,
bool InclStart, bool InclEnd) {
if (!InclStart && InclEnd)
return Zone;
auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
if (InclStart && !InclEnd)
return ShiftedZone;
else if (!InclStart && !InclEnd)
return Zone.intersect(ShiftedZone);
assert(InclStart && InclEnd);
return Zone.unite(ShiftedZone);
}
isl::map polly::distributeDomain(isl::map Map) {
// Note that we cannot take Map apart into { Domain[] -> Range1[] } and {
// Domain[] -> Range2[] } and combine again. We would loose any relation
// between Range1[] and Range2[] that is not also a constraint to Domain[].
isl::space Space = Map.get_space();
isl::space DomainSpace = Space.domain();
unsigned DomainDims = DomainSpace.dim(isl::dim::set);
isl::space RangeSpace = Space.range().unwrap();
isl::space Range1Space = RangeSpace.domain();
unsigned Range1Dims = Range1Space.dim(isl::dim::set);
isl::space Range2Space = RangeSpace.range();
unsigned Range2Dims = Range2Space.dim(isl::dim::set);
isl::space OutputSpace =
DomainSpace.map_from_domain_and_range(Range1Space)
.wrap()
.map_from_domain_and_range(
DomainSpace.map_from_domain_and_range(Range2Space).wrap());
isl::basic_map Translator = isl::basic_map::universe(
Space.wrap().map_from_domain_and_range(OutputSpace.wrap()));
for (unsigned i = 0; i < DomainDims; i += 1) {
Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i);
Translator = Translator.equate(isl::dim::in, i, isl::dim::out,
DomainDims + Range1Dims + i);
}
for (unsigned i = 0; i < Range1Dims; i += 1)
Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out,
DomainDims + i);
for (unsigned i = 0; i < Range2Dims; i += 1)
Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i,
isl::dim::out,
DomainDims + Range1Dims + DomainDims + i);
return Map.wrap().apply(Translator).unwrap();
}
isl::union_map polly::distributeDomain(isl::union_map UMap) {
isl::union_map Result = isl::union_map::empty(UMap.get_space());
for (isl::map Map : UMap.get_map_list()) {
auto Distributed = distributeDomain(Map);
Result = Result.add_map(Distributed);
}
return Result;
}
isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) {
// { Factor[] -> Factor[] }
isl::union_map Factors = makeIdentityMap(Factor, true);
return Factors.product(UMap);
}
isl::union_map polly::applyDomainRange(isl::union_map UMap,
isl::union_map Func) {
// This implementation creates unnecessary cross products of the
// DomainDomain[] and Func. An alternative implementation could reverse
// domain+uncurry,apply Func to what now is the domain, then undo the
// preparing transformation. Another alternative implementation could create a
// translator map for each piece.
// { DomainDomain[] }
isl::union_set DomainDomain = UMap.domain().unwrap().domain();
// { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]]
// }
isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain);
return UMap.apply_domain(LifetedFunc);
}
isl::map polly::intersectRange(isl::map Map, isl::union_set Range) {
isl::set RangeSet = Range.extract_set(Map.get_space().range());
return Map.intersect_range(RangeSet);
}
isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) {
assert(!Max || !Min); // Cannot return min and max at the same time.
isl::val Result;
isl::stat Stat = PwAff.foreach_piece(
[=, &Result](isl::set Set, isl::aff Aff) -> isl::stat {
if (Result && Result.is_nan())
return isl::stat::ok();
// TODO: If Min/Max, we can also determine a minimum/maximum value if
// Set is constant-bounded.
if (!Aff.is_cst()) {
Result = isl::val::nan(Aff.get_ctx());
return isl::stat::error();
}
isl::val ThisVal = Aff.get_constant_val();
if (!Result) {
Result = ThisVal;
return isl::stat::ok();
}
if (Result.eq(ThisVal))
return isl::stat::ok();
if (Max && ThisVal.gt(Result)) {
Result = ThisVal;
return isl::stat::ok();
}
if (Min && ThisVal.lt(Result)) {
Result = ThisVal;
return isl::stat::ok();
}
// Not compatible
Result = isl::val::nan(Aff.get_ctx());
return isl::stat::error();
});
if (Stat.is_error())
return {};
return Result;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void foreachPoint(const isl::set &Set,
const std::function<void(isl::point P)> &F) {
Set.foreach_point([&](isl::point P) -> isl::stat {
F(P);
return isl::stat::ok();
});
}
static void foreachPoint(isl::basic_set BSet,
const std::function<void(isl::point P)> &F) {
foreachPoint(isl::set(BSet), F);
}
/// Determine the sorting order of the sets @p A and @p B without considering
/// the space structure.
///
/// Ordering is based on the lower bounds of the set's dimensions. First
/// dimensions are considered first.
static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) {
unsigned ALen = A.dim(isl::dim::set);
unsigned BLen = B.dim(isl::dim::set);
unsigned Len = std::min(ALen, BLen);
for (unsigned i = 0; i < Len; i += 1) {
isl::basic_set ADim =
A.project_out(isl::dim::param, 0, A.dim(isl::dim::param))
.project_out(isl::dim::set, i + 1, ALen - i - 1)
.project_out(isl::dim::set, 0, i);
isl::basic_set BDim =
B.project_out(isl::dim::param, 0, B.dim(isl::dim::param))
.project_out(isl::dim::set, i + 1, BLen - i - 1)
.project_out(isl::dim::set, 0, i);
isl::basic_set AHull = isl::set(ADim).convex_hull();
isl::basic_set BHull = isl::set(BDim).convex_hull();
bool ALowerBounded =
bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0));
bool BLowerBounded =
bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0));
int BoundedCompare = BLowerBounded - ALowerBounded;
if (BoundedCompare != 0)
return BoundedCompare;
if (!ALowerBounded || !BLowerBounded)
continue;
isl::pw_aff AMin = isl::set(ADim).dim_min(0);
isl::pw_aff BMin = isl::set(BDim).dim_min(0);
isl::val AMinVal = polly::getConstant(AMin, false, true);
isl::val BMinVal = polly::getConstant(BMin, false, true);
int MinCompare = AMinVal.sub(BMinVal).sgn();
if (MinCompare != 0)
return MinCompare;
}
// If all the dimensions' lower bounds are equal or incomparable, sort based
// on the number of dimensions.
return ALen - BLen;
}
/// Compare the sets @p A and @p B according to their nested space structure.
/// Returns 0 if the structure is considered equal.
/// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are
/// ignored, i.e. a tuple with the same name but different number of dimensions
/// are considered equal.
static int structureCompare(const isl::space &ASpace, const isl::space &BSpace,
bool ConsiderTupleLen) {
int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping());
if (WrappingCompare != 0)
return WrappingCompare;
if (ASpace.is_wrapping() && BSpace.is_wrapping()) {
isl::space AMap = ASpace.unwrap();
isl::space BMap = BSpace.unwrap();
int FirstResult =
structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen);
if (FirstResult != 0)
return FirstResult;
return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen);
}
std::string AName;
if (ASpace.has_tuple_name(isl::dim::set))
AName = ASpace.get_tuple_name(isl::dim::set);
std::string BName;
if (BSpace.has_tuple_name(isl::dim::set))
BName = BSpace.get_tuple_name(isl::dim::set);
int NameCompare = AName.compare(BName);
if (NameCompare != 0)
return NameCompare;
if (ConsiderTupleLen) {
int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set);
if (LenCompare != 0)
return LenCompare;
}
return 0;
}
/// Compare the sets @p A and @p B according to their nested space structure. If
/// the structure is the same, sort using the dimension lower bounds.
/// Returns an std::sort compatible bool.
static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) {
isl::space ASpace = A.get_space();
isl::space BSpace = B.get_space();
// Ignoring number of dimensions first ensures that structures with same tuple
// names, but different number of dimensions are still sorted close together.
int TupleNestingCompare = structureCompare(ASpace, BSpace, false);
if (TupleNestingCompare != 0)
return TupleNestingCompare < 0;
int TupleCompare = structureCompare(ASpace, BSpace, true);
if (TupleCompare != 0)
return TupleCompare < 0;
return flatCompare(A, B) < 0;
}
/// Print a string representation of @p USet to @p OS.
///
/// The pieces of @p USet are printed in a sorted order. Spaces with equal or
/// similar nesting structure are printed together. Compared to isl's own
/// printing function the uses the structure itself as base of the sorting, not
/// a hash of it. It ensures that e.g. maps spaces with same domain structure
/// are printed together. Set pieces with same structure are printed in order of
/// their lower bounds.
///
/// @param USet Polyhedra to print.
/// @param OS Target stream.
/// @param Simplify Whether to simplify the polyhedron before printing.
/// @param IsMap Whether @p USet is a wrapped map. If true, sets are
/// unwrapped before printing to again appear as a map.
static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS,
bool Simplify, bool IsMap) {
if (!USet) {
OS << "<null>\n";
return;
}
if (Simplify)
simplify(USet);
// Get all the polyhedra.
std::vector<isl::basic_set> BSets;
for (isl::set Set : USet.get_set_list()) {
for (isl::basic_set BSet : Set.get_basic_set_list()) {
BSets.push_back(BSet);
}
}
if (BSets.empty()) {
OS << "{\n}\n";
return;
}
// Sort the polyhedra.
llvm::sort(BSets.begin(), BSets.end(), orderComparer);
// Print the polyhedra.
bool First = true;
for (const isl::basic_set &BSet : BSets) {
std::string Str;
if (IsMap)
Str = isl::map(BSet.unwrap()).to_str();
else
Str = isl::set(BSet).to_str();
size_t OpenPos = Str.find_first_of('{');
assert(OpenPos != std::string::npos);
size_t ClosePos = Str.find_last_of('}');
assert(ClosePos != std::string::npos);
if (First)
OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n ";
else
OS << ";\n ";
OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2);
First = false;
}
assert(!First);
OS << "\n}\n";
}
static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) {
int Dims = BSet.dim(isl::dim::set);
if (Dim >= Dims) {
Expanded = Expanded.unite(BSet);
return;
}
isl::basic_set DimOnly =
BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param))
.project_out(isl::dim::set, Dim + 1, Dims - Dim - 1)
.project_out(isl::dim::set, 0, Dim);
if (!DimOnly.is_bounded()) {
recursiveExpand(BSet, Dim + 1, Expanded);
return;
}
foreachPoint(DimOnly, [&, Dim](isl::point P) {
isl::val Val = P.get_coordinate_val(isl::dim::set, 0);
isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val);
recursiveExpand(FixBSet, Dim + 1, Expanded);
});
}
/// Make each point of a set explicit.
///
/// "Expanding" makes each point a set contains explicit. That is, the result is
/// a set of singleton polyhedra. Unbounded dimensions are not expanded.
///
/// Example:
/// { [i] : 0 <= i < 2 }
/// is expanded to:
/// { [0]; [1] }
static isl::set expand(const isl::set &Set) {
isl::set Expanded = isl::set::empty(Set.get_space());
for (isl::basic_set BSet : Set.get_basic_set_list())
recursiveExpand(BSet, 0, Expanded);
return Expanded;
}
/// Expand all points of a union set explicit.
///
/// @see expand(const isl::set)
static isl::union_set expand(const isl::union_set &USet) {
isl::union_set Expanded = isl::union_set::empty(USet.get_space());
for (isl::set Set : USet.get_set_list()) {
isl::set SetExpanded = expand(Set);
Expanded = Expanded.add_set(SetExpanded);
}
return Expanded;
}
LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) {
printSortedPolyhedra(Set, llvm::errs(), true, false);
}
LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) {
printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true);
}
LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) {
printSortedPolyhedra(USet, llvm::errs(), true, false);
}
LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) {
printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true);
}
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) {
dumpPw(isl::manage_copy(Set));
}
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) {
dumpPw(isl::manage_copy(Map));
}
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) {
dumpPw(isl::manage_copy(USet));
}
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) {
dumpPw(isl::manage_copy(UMap));
}
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) {
printSortedPolyhedra(expand(Set), llvm::errs(), false, false);
}
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) {
printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true);
}
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) {
printSortedPolyhedra(expand(USet), llvm::errs(), false, false);
}
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) {
printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true);
}
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) {
dumpExpanded(isl::manage_copy(Set));
}
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) {
dumpExpanded(isl::manage_copy(Map));
}
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) {
dumpExpanded(isl::manage_copy(USet));
}
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) {
dumpExpanded(isl::manage_copy(UMap));
}
#endif