forked from OSchip/llvm-project
864 lines
28 KiB
C++
864 lines
28 KiB
C++
//===------ ISLTools.cpp ----------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Tools, utilities, helpers and extensions useful in conjunction with the
|
|
// Integer Set Library (isl).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/Support/ISLTools.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
|
|
using namespace polly;
|
|
|
|
namespace {
|
|
/// Create a map that shifts one dimension by an offset.
|
|
///
|
|
/// Example:
|
|
/// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2)
|
|
/// = { [i0, i1] -> [i0, i1 - 1] }
|
|
///
|
|
/// @param Space The map space of the result. Must have equal number of in- and
|
|
/// out-dimensions.
|
|
/// @param Pos Position to shift.
|
|
/// @param Amount Value added to the shifted dimension.
|
|
///
|
|
/// @return An isl_multi_aff for the map with this shifted dimension.
|
|
isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) {
|
|
auto Identity = isl::multi_aff::identity(Space);
|
|
if (Amount == 0)
|
|
return Identity;
|
|
auto ShiftAff = Identity.get_aff(Pos);
|
|
ShiftAff = ShiftAff.set_constant_si(Amount);
|
|
return Identity.set_aff(Pos, ShiftAff);
|
|
}
|
|
|
|
/// Construct a map that swaps two nested tuples.
|
|
///
|
|
/// @param FromSpace1 { Space1[] }
|
|
/// @param FromSpace2 { Space2[] }
|
|
///
|
|
/// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] }
|
|
isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1,
|
|
isl::space FromSpace2) {
|
|
// Fast-path on out-of-quota.
|
|
if (!FromSpace1 || !FromSpace2)
|
|
return {};
|
|
|
|
assert(FromSpace1.is_set());
|
|
assert(FromSpace2.is_set());
|
|
|
|
unsigned Dims1 = FromSpace1.dim(isl::dim::set);
|
|
unsigned Dims2 = FromSpace2.dim(isl::dim::set);
|
|
|
|
isl::space FromSpace =
|
|
FromSpace1.map_from_domain_and_range(FromSpace2).wrap();
|
|
isl::space ToSpace = FromSpace2.map_from_domain_and_range(FromSpace1).wrap();
|
|
isl::space MapSpace = FromSpace.map_from_domain_and_range(ToSpace);
|
|
|
|
isl::basic_map Result = isl::basic_map::universe(MapSpace);
|
|
for (auto i = Dims1 - Dims1; i < Dims1; i += 1)
|
|
Result = Result.equate(isl::dim::in, i, isl::dim::out, Dims2 + i);
|
|
for (auto i = Dims2 - Dims2; i < Dims2; i += 1) {
|
|
Result = Result.equate(isl::dim::in, Dims1 + i, isl::dim::out, i);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns
|
|
/// an isl_map.
|
|
isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) {
|
|
isl::basic_map BMapResult = makeTupleSwapBasicMap(FromSpace1, FromSpace2);
|
|
return isl::map(BMapResult);
|
|
}
|
|
} // anonymous namespace
|
|
|
|
isl::map polly::beforeScatter(isl::map Map, bool Strict) {
|
|
isl::space RangeSpace = Map.get_space().range();
|
|
isl::map ScatterRel =
|
|
Strict ? isl::map::lex_gt(RangeSpace) : isl::map::lex_ge(RangeSpace);
|
|
return Map.apply_range(ScatterRel);
|
|
}
|
|
|
|
isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) {
|
|
isl::union_map Result = isl::union_map::empty(UMap.get_space());
|
|
|
|
for (isl::map Map : UMap.get_map_list()) {
|
|
isl::map After = beforeScatter(Map, Strict);
|
|
Result = Result.add_map(After);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
isl::map polly::afterScatter(isl::map Map, bool Strict) {
|
|
isl::space RangeSpace = Map.get_space().range();
|
|
isl::map ScatterRel =
|
|
Strict ? isl::map::lex_lt(RangeSpace) : isl::map::lex_le(RangeSpace);
|
|
return Map.apply_range(ScatterRel);
|
|
}
|
|
|
|
isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) {
|
|
isl::union_map Result = isl::union_map::empty(UMap.get_space());
|
|
for (isl::map Map : UMap.get_map_list()) {
|
|
isl::map After = afterScatter(Map, Strict);
|
|
Result = Result.add_map(After);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom,
|
|
bool InclTo) {
|
|
isl::map AfterFrom = afterScatter(From, !InclFrom);
|
|
isl::map BeforeTo = beforeScatter(To, !InclTo);
|
|
|
|
return AfterFrom.intersect(BeforeTo);
|
|
}
|
|
|
|
isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To,
|
|
bool InclFrom, bool InclTo) {
|
|
isl::union_map AfterFrom = afterScatter(From, !InclFrom);
|
|
isl::union_map BeforeTo = beforeScatter(To, !InclTo);
|
|
|
|
return AfterFrom.intersect(BeforeTo);
|
|
}
|
|
|
|
isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) {
|
|
if (!UMap)
|
|
return nullptr;
|
|
|
|
if (isl_union_map_n_map(UMap.get()) == 0)
|
|
return isl::map::empty(ExpectedSpace);
|
|
|
|
isl::map Result = isl::map::from_union_map(UMap);
|
|
assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace));
|
|
|
|
return Result;
|
|
}
|
|
|
|
isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) {
|
|
if (!USet)
|
|
return nullptr;
|
|
|
|
if (isl_union_set_n_set(USet.get()) == 0)
|
|
return isl::set::empty(ExpectedSpace);
|
|
|
|
isl::set Result(USet);
|
|
assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace));
|
|
|
|
return Result;
|
|
}
|
|
|
|
unsigned polly::getNumScatterDims(const isl::union_map &Schedule) {
|
|
unsigned Dims = 0;
|
|
for (isl::map Map : Schedule.get_map_list())
|
|
Dims = std::max(Dims, Map.dim(isl::dim::out));
|
|
return Dims;
|
|
}
|
|
|
|
isl::space polly::getScatterSpace(const isl::union_map &Schedule) {
|
|
if (!Schedule)
|
|
return nullptr;
|
|
unsigned Dims = getNumScatterDims(Schedule);
|
|
isl::space ScatterSpace = Schedule.get_space().set_from_params();
|
|
return ScatterSpace.add_dims(isl::dim::set, Dims);
|
|
}
|
|
|
|
isl::union_map polly::makeIdentityMap(const isl::union_set &USet,
|
|
bool RestrictDomain) {
|
|
isl::union_map Result = isl::union_map::empty(USet.get_space());
|
|
for (isl::set Set : USet.get_set_list()) {
|
|
isl::map IdentityMap = isl::map::identity(Set.get_space().map_from_set());
|
|
if (RestrictDomain)
|
|
IdentityMap = IdentityMap.intersect_domain(Set);
|
|
Result = Result.add_map(IdentityMap);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
isl::map polly::reverseDomain(isl::map Map) {
|
|
isl::space DomSpace = Map.get_space().domain().unwrap();
|
|
isl::space Space1 = DomSpace.domain();
|
|
isl::space Space2 = DomSpace.range();
|
|
isl::map Swap = makeTupleSwapMap(Space1, Space2);
|
|
return Map.apply_domain(Swap);
|
|
}
|
|
|
|
isl::union_map polly::reverseDomain(const isl::union_map &UMap) {
|
|
isl::union_map Result = isl::union_map::empty(UMap.get_space());
|
|
for (isl::map Map : UMap.get_map_list()) {
|
|
auto Reversed = reverseDomain(std::move(Map));
|
|
Result = Result.add_map(Reversed);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) {
|
|
int NumDims = Set.dim(isl::dim::set);
|
|
if (Pos < 0)
|
|
Pos = NumDims + Pos;
|
|
assert(Pos < NumDims && "Dimension index must be in range");
|
|
isl::space Space = Set.get_space();
|
|
Space = Space.map_from_domain_and_range(Space);
|
|
isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
|
|
isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
|
|
return Set.apply(TranslatorMap);
|
|
}
|
|
|
|
isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) {
|
|
isl::union_set Result = isl::union_set::empty(USet.get_space());
|
|
for (isl::set Set : USet.get_set_list()) {
|
|
isl::set Shifted = shiftDim(Set, Pos, Amount);
|
|
Result = Result.add_set(Shifted);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) {
|
|
int NumDims = Map.dim(Dim);
|
|
if (Pos < 0)
|
|
Pos = NumDims + Pos;
|
|
assert(Pos < NumDims && "Dimension index must be in range");
|
|
isl::space Space = Map.get_space();
|
|
switch (Dim) {
|
|
case isl::dim::in:
|
|
Space = Space.domain();
|
|
break;
|
|
case isl::dim::out:
|
|
Space = Space.range();
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unsupported value for 'dim'");
|
|
}
|
|
Space = Space.map_from_domain_and_range(Space);
|
|
isl::multi_aff Translator = makeShiftDimAff(Space, Pos, Amount);
|
|
isl::map TranslatorMap = isl::map::from_multi_aff(Translator);
|
|
switch (Dim) {
|
|
case isl::dim::in:
|
|
return Map.apply_domain(TranslatorMap);
|
|
case isl::dim::out:
|
|
return Map.apply_range(TranslatorMap);
|
|
default:
|
|
llvm_unreachable("Unsupported value for 'dim'");
|
|
}
|
|
}
|
|
|
|
isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos,
|
|
int Amount) {
|
|
isl::union_map Result = isl::union_map::empty(UMap.get_space());
|
|
|
|
for (isl::map Map : UMap.get_map_list()) {
|
|
isl::map Shifted = shiftDim(Map, Dim, Pos, Amount);
|
|
Result = Result.add_map(Shifted);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
void polly::simplify(isl::set &Set) {
|
|
Set = isl::manage(isl_set_compute_divs(Set.copy()));
|
|
Set = Set.detect_equalities();
|
|
Set = Set.coalesce();
|
|
}
|
|
|
|
void polly::simplify(isl::union_set &USet) {
|
|
USet = isl::manage(isl_union_set_compute_divs(USet.copy()));
|
|
USet = USet.detect_equalities();
|
|
USet = USet.coalesce();
|
|
}
|
|
|
|
void polly::simplify(isl::map &Map) {
|
|
Map = isl::manage(isl_map_compute_divs(Map.copy()));
|
|
Map = Map.detect_equalities();
|
|
Map = Map.coalesce();
|
|
}
|
|
|
|
void polly::simplify(isl::union_map &UMap) {
|
|
UMap = isl::manage(isl_union_map_compute_divs(UMap.copy()));
|
|
UMap = UMap.detect_equalities();
|
|
UMap = UMap.coalesce();
|
|
}
|
|
|
|
isl::union_map polly::computeReachingWrite(isl::union_map Schedule,
|
|
isl::union_map Writes, bool Reverse,
|
|
bool InclPrevDef, bool InclNextDef) {
|
|
|
|
// { Scatter[] }
|
|
isl::space ScatterSpace = getScatterSpace(Schedule);
|
|
|
|
// { ScatterRead[] -> ScatterWrite[] }
|
|
isl::map Relation;
|
|
if (Reverse)
|
|
Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace)
|
|
: isl::map::lex_le(ScatterSpace);
|
|
else
|
|
Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace)
|
|
: isl::map::lex_ge(ScatterSpace);
|
|
|
|
// { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] }
|
|
isl::map RelationMap = Relation.range_map().reverse();
|
|
|
|
// { Element[] -> ScatterWrite[] }
|
|
isl::union_map WriteAction = Schedule.apply_domain(Writes);
|
|
|
|
// { ScatterWrite[] -> Element[] }
|
|
isl::union_map WriteActionRev = WriteAction.reverse();
|
|
|
|
// { Element[] -> [ScatterUse[] -> ScatterWrite[]] }
|
|
isl::union_map DefSchedRelation =
|
|
isl::union_map(RelationMap).apply_domain(WriteActionRev);
|
|
|
|
// For each element, at every point in time, map to the times of previous
|
|
// definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] }
|
|
isl::union_map ReachableWrites = DefSchedRelation.uncurry();
|
|
if (Reverse)
|
|
ReachableWrites = ReachableWrites.lexmin();
|
|
else
|
|
ReachableWrites = ReachableWrites.lexmax();
|
|
|
|
// { [Element[] -> ScatterWrite[]] -> ScatterWrite[] }
|
|
isl::union_map SelfUse = WriteAction.range_map();
|
|
|
|
if (InclPrevDef && InclNextDef) {
|
|
// Add the Def itself to the solution.
|
|
ReachableWrites = ReachableWrites.unite(SelfUse).coalesce();
|
|
} else if (!InclPrevDef && !InclNextDef) {
|
|
// Remove Def itself from the solution.
|
|
ReachableWrites = ReachableWrites.subtract(SelfUse);
|
|
}
|
|
|
|
// { [Element[] -> ScatterRead[]] -> Domain[] }
|
|
return ReachableWrites.apply_range(Schedule.reverse());
|
|
}
|
|
|
|
isl::union_map
|
|
polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes,
|
|
isl::union_map Reads, bool ReadEltInSameInst,
|
|
bool IncludeLastRead, bool IncludeWrite) {
|
|
// { Element[] -> Scatter[] }
|
|
isl::union_map ReadActions = Schedule.apply_domain(Reads);
|
|
isl::union_map WriteActions = Schedule.apply_domain(Writes);
|
|
|
|
// { [Element[] -> DomainWrite[]] -> Scatter[] }
|
|
isl::union_map EltDomWrites =
|
|
Writes.reverse().range_map().apply_range(Schedule);
|
|
|
|
// { [Element[] -> Scatter[]] -> DomainWrite[] }
|
|
isl::union_map ReachingOverwrite = computeReachingWrite(
|
|
Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst);
|
|
|
|
// { [Element[] -> Scatter[]] -> DomainWrite[] }
|
|
isl::union_map ReadsOverwritten =
|
|
ReachingOverwrite.intersect_domain(ReadActions.wrap());
|
|
|
|
// { [Element[] -> DomainWrite[]] -> Scatter[] }
|
|
isl::union_map ReadsOverwrittenRotated =
|
|
reverseDomain(ReadsOverwritten).curry().reverse();
|
|
isl::union_map LastOverwrittenRead = ReadsOverwrittenRotated.lexmax();
|
|
|
|
// { [Element[] -> DomainWrite[]] -> Scatter[] }
|
|
isl::union_map BetweenLastReadOverwrite = betweenScatter(
|
|
LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite);
|
|
|
|
// { [Element[] -> Scatter[]] -> DomainWrite[] }
|
|
isl::union_map ReachingOverwriteZone = computeReachingWrite(
|
|
Schedule, Writes, true, IncludeLastRead, IncludeWrite);
|
|
|
|
// { [Element[] -> DomainWrite[]] -> Scatter[] }
|
|
isl::union_map ReachingOverwriteRotated =
|
|
reverseDomain(ReachingOverwriteZone).curry().reverse();
|
|
|
|
// { [Element[] -> DomainWrite[]] -> Scatter[] }
|
|
isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain(
|
|
ReadsOverwrittenRotated.domain());
|
|
|
|
return BetweenLastReadOverwrite.unite(WritesWithoutReads)
|
|
.domain_factor_domain();
|
|
}
|
|
|
|
isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone,
|
|
bool InclStart, bool InclEnd) {
|
|
if (!InclStart && InclEnd)
|
|
return Zone;
|
|
|
|
auto ShiftedZone = shiftDim(Zone, -1, -1);
|
|
if (InclStart && !InclEnd)
|
|
return ShiftedZone;
|
|
else if (!InclStart && !InclEnd)
|
|
return Zone.intersect(ShiftedZone);
|
|
|
|
assert(InclStart && InclEnd);
|
|
return Zone.unite(ShiftedZone);
|
|
}
|
|
|
|
isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim,
|
|
bool InclStart, bool InclEnd) {
|
|
if (!InclStart && InclEnd)
|
|
return Zone;
|
|
|
|
auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
|
|
if (InclStart && !InclEnd)
|
|
return ShiftedZone;
|
|
else if (!InclStart && !InclEnd)
|
|
return Zone.intersect(ShiftedZone);
|
|
|
|
assert(InclStart && InclEnd);
|
|
return Zone.unite(ShiftedZone);
|
|
}
|
|
|
|
isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim,
|
|
bool InclStart, bool InclEnd) {
|
|
if (!InclStart && InclEnd)
|
|
return Zone;
|
|
|
|
auto ShiftedZone = shiftDim(Zone, Dim, -1, -1);
|
|
if (InclStart && !InclEnd)
|
|
return ShiftedZone;
|
|
else if (!InclStart && !InclEnd)
|
|
return Zone.intersect(ShiftedZone);
|
|
|
|
assert(InclStart && InclEnd);
|
|
return Zone.unite(ShiftedZone);
|
|
}
|
|
|
|
isl::map polly::distributeDomain(isl::map Map) {
|
|
// Note that we cannot take Map apart into { Domain[] -> Range1[] } and {
|
|
// Domain[] -> Range2[] } and combine again. We would loose any relation
|
|
// between Range1[] and Range2[] that is not also a constraint to Domain[].
|
|
|
|
isl::space Space = Map.get_space();
|
|
isl::space DomainSpace = Space.domain();
|
|
unsigned DomainDims = DomainSpace.dim(isl::dim::set);
|
|
isl::space RangeSpace = Space.range().unwrap();
|
|
isl::space Range1Space = RangeSpace.domain();
|
|
unsigned Range1Dims = Range1Space.dim(isl::dim::set);
|
|
isl::space Range2Space = RangeSpace.range();
|
|
unsigned Range2Dims = Range2Space.dim(isl::dim::set);
|
|
|
|
isl::space OutputSpace =
|
|
DomainSpace.map_from_domain_and_range(Range1Space)
|
|
.wrap()
|
|
.map_from_domain_and_range(
|
|
DomainSpace.map_from_domain_and_range(Range2Space).wrap());
|
|
|
|
isl::basic_map Translator = isl::basic_map::universe(
|
|
Space.wrap().map_from_domain_and_range(OutputSpace.wrap()));
|
|
|
|
for (unsigned i = 0; i < DomainDims; i += 1) {
|
|
Translator = Translator.equate(isl::dim::in, i, isl::dim::out, i);
|
|
Translator = Translator.equate(isl::dim::in, i, isl::dim::out,
|
|
DomainDims + Range1Dims + i);
|
|
}
|
|
for (unsigned i = 0; i < Range1Dims; i += 1)
|
|
Translator = Translator.equate(isl::dim::in, DomainDims + i, isl::dim::out,
|
|
DomainDims + i);
|
|
for (unsigned i = 0; i < Range2Dims; i += 1)
|
|
Translator = Translator.equate(isl::dim::in, DomainDims + Range1Dims + i,
|
|
isl::dim::out,
|
|
DomainDims + Range1Dims + DomainDims + i);
|
|
|
|
return Map.wrap().apply(Translator).unwrap();
|
|
}
|
|
|
|
isl::union_map polly::distributeDomain(isl::union_map UMap) {
|
|
isl::union_map Result = isl::union_map::empty(UMap.get_space());
|
|
for (isl::map Map : UMap.get_map_list()) {
|
|
auto Distributed = distributeDomain(Map);
|
|
Result = Result.add_map(Distributed);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) {
|
|
|
|
// { Factor[] -> Factor[] }
|
|
isl::union_map Factors = makeIdentityMap(Factor, true);
|
|
|
|
return Factors.product(UMap);
|
|
}
|
|
|
|
isl::union_map polly::applyDomainRange(isl::union_map UMap,
|
|
isl::union_map Func) {
|
|
// This implementation creates unnecessary cross products of the
|
|
// DomainDomain[] and Func. An alternative implementation could reverse
|
|
// domain+uncurry,apply Func to what now is the domain, then undo the
|
|
// preparing transformation. Another alternative implementation could create a
|
|
// translator map for each piece.
|
|
|
|
// { DomainDomain[] }
|
|
isl::union_set DomainDomain = UMap.domain().unwrap().domain();
|
|
|
|
// { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]]
|
|
// }
|
|
isl::union_map LifetedFunc = liftDomains(std::move(Func), DomainDomain);
|
|
|
|
return UMap.apply_domain(LifetedFunc);
|
|
}
|
|
|
|
isl::map polly::intersectRange(isl::map Map, isl::union_set Range) {
|
|
isl::set RangeSet = Range.extract_set(Map.get_space().range());
|
|
return Map.intersect_range(RangeSet);
|
|
}
|
|
|
|
isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) {
|
|
assert(!Max || !Min); // Cannot return min and max at the same time.
|
|
isl::val Result;
|
|
isl::stat Stat = PwAff.foreach_piece(
|
|
[=, &Result](isl::set Set, isl::aff Aff) -> isl::stat {
|
|
if (Result && Result.is_nan())
|
|
return isl::stat::ok();
|
|
|
|
// TODO: If Min/Max, we can also determine a minimum/maximum value if
|
|
// Set is constant-bounded.
|
|
if (!Aff.is_cst()) {
|
|
Result = isl::val::nan(Aff.get_ctx());
|
|
return isl::stat::error();
|
|
}
|
|
|
|
isl::val ThisVal = Aff.get_constant_val();
|
|
if (!Result) {
|
|
Result = ThisVal;
|
|
return isl::stat::ok();
|
|
}
|
|
|
|
if (Result.eq(ThisVal))
|
|
return isl::stat::ok();
|
|
|
|
if (Max && ThisVal.gt(Result)) {
|
|
Result = ThisVal;
|
|
return isl::stat::ok();
|
|
}
|
|
|
|
if (Min && ThisVal.lt(Result)) {
|
|
Result = ThisVal;
|
|
return isl::stat::ok();
|
|
}
|
|
|
|
// Not compatible
|
|
Result = isl::val::nan(Aff.get_ctx());
|
|
return isl::stat::error();
|
|
});
|
|
|
|
if (Stat.is_error())
|
|
return {};
|
|
|
|
return Result;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
static void foreachPoint(const isl::set &Set,
|
|
const std::function<void(isl::point P)> &F) {
|
|
Set.foreach_point([&](isl::point P) -> isl::stat {
|
|
F(P);
|
|
return isl::stat::ok();
|
|
});
|
|
}
|
|
|
|
static void foreachPoint(isl::basic_set BSet,
|
|
const std::function<void(isl::point P)> &F) {
|
|
foreachPoint(isl::set(BSet), F);
|
|
}
|
|
|
|
/// Determine the sorting order of the sets @p A and @p B without considering
|
|
/// the space structure.
|
|
///
|
|
/// Ordering is based on the lower bounds of the set's dimensions. First
|
|
/// dimensions are considered first.
|
|
static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) {
|
|
unsigned ALen = A.dim(isl::dim::set);
|
|
unsigned BLen = B.dim(isl::dim::set);
|
|
unsigned Len = std::min(ALen, BLen);
|
|
|
|
for (unsigned i = 0; i < Len; i += 1) {
|
|
isl::basic_set ADim =
|
|
A.project_out(isl::dim::param, 0, A.dim(isl::dim::param))
|
|
.project_out(isl::dim::set, i + 1, ALen - i - 1)
|
|
.project_out(isl::dim::set, 0, i);
|
|
isl::basic_set BDim =
|
|
B.project_out(isl::dim::param, 0, B.dim(isl::dim::param))
|
|
.project_out(isl::dim::set, i + 1, BLen - i - 1)
|
|
.project_out(isl::dim::set, 0, i);
|
|
|
|
isl::basic_set AHull = isl::set(ADim).convex_hull();
|
|
isl::basic_set BHull = isl::set(BDim).convex_hull();
|
|
|
|
bool ALowerBounded =
|
|
bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0));
|
|
bool BLowerBounded =
|
|
bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0));
|
|
|
|
int BoundedCompare = BLowerBounded - ALowerBounded;
|
|
if (BoundedCompare != 0)
|
|
return BoundedCompare;
|
|
|
|
if (!ALowerBounded || !BLowerBounded)
|
|
continue;
|
|
|
|
isl::pw_aff AMin = isl::set(ADim).dim_min(0);
|
|
isl::pw_aff BMin = isl::set(BDim).dim_min(0);
|
|
|
|
isl::val AMinVal = polly::getConstant(AMin, false, true);
|
|
isl::val BMinVal = polly::getConstant(BMin, false, true);
|
|
|
|
int MinCompare = AMinVal.sub(BMinVal).sgn();
|
|
if (MinCompare != 0)
|
|
return MinCompare;
|
|
}
|
|
|
|
// If all the dimensions' lower bounds are equal or incomparable, sort based
|
|
// on the number of dimensions.
|
|
return ALen - BLen;
|
|
}
|
|
|
|
/// Compare the sets @p A and @p B according to their nested space structure.
|
|
/// Returns 0 if the structure is considered equal.
|
|
/// If @p ConsiderTupleLen is false, the number of dimensions in a tuple are
|
|
/// ignored, i.e. a tuple with the same name but different number of dimensions
|
|
/// are considered equal.
|
|
static int structureCompare(const isl::space &ASpace, const isl::space &BSpace,
|
|
bool ConsiderTupleLen) {
|
|
int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping());
|
|
if (WrappingCompare != 0)
|
|
return WrappingCompare;
|
|
|
|
if (ASpace.is_wrapping() && BSpace.is_wrapping()) {
|
|
isl::space AMap = ASpace.unwrap();
|
|
isl::space BMap = BSpace.unwrap();
|
|
|
|
int FirstResult =
|
|
structureCompare(AMap.domain(), BMap.domain(), ConsiderTupleLen);
|
|
if (FirstResult != 0)
|
|
return FirstResult;
|
|
|
|
return structureCompare(AMap.range(), BMap.range(), ConsiderTupleLen);
|
|
}
|
|
|
|
std::string AName;
|
|
if (ASpace.has_tuple_name(isl::dim::set))
|
|
AName = ASpace.get_tuple_name(isl::dim::set);
|
|
|
|
std::string BName;
|
|
if (BSpace.has_tuple_name(isl::dim::set))
|
|
BName = BSpace.get_tuple_name(isl::dim::set);
|
|
|
|
int NameCompare = AName.compare(BName);
|
|
if (NameCompare != 0)
|
|
return NameCompare;
|
|
|
|
if (ConsiderTupleLen) {
|
|
int LenCompare = BSpace.dim(isl::dim::set) - ASpace.dim(isl::dim::set);
|
|
if (LenCompare != 0)
|
|
return LenCompare;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Compare the sets @p A and @p B according to their nested space structure. If
|
|
/// the structure is the same, sort using the dimension lower bounds.
|
|
/// Returns an std::sort compatible bool.
|
|
static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) {
|
|
isl::space ASpace = A.get_space();
|
|
isl::space BSpace = B.get_space();
|
|
|
|
// Ignoring number of dimensions first ensures that structures with same tuple
|
|
// names, but different number of dimensions are still sorted close together.
|
|
int TupleNestingCompare = structureCompare(ASpace, BSpace, false);
|
|
if (TupleNestingCompare != 0)
|
|
return TupleNestingCompare < 0;
|
|
|
|
int TupleCompare = structureCompare(ASpace, BSpace, true);
|
|
if (TupleCompare != 0)
|
|
return TupleCompare < 0;
|
|
|
|
return flatCompare(A, B) < 0;
|
|
}
|
|
|
|
/// Print a string representation of @p USet to @p OS.
|
|
///
|
|
/// The pieces of @p USet are printed in a sorted order. Spaces with equal or
|
|
/// similar nesting structure are printed together. Compared to isl's own
|
|
/// printing function the uses the structure itself as base of the sorting, not
|
|
/// a hash of it. It ensures that e.g. maps spaces with same domain structure
|
|
/// are printed together. Set pieces with same structure are printed in order of
|
|
/// their lower bounds.
|
|
///
|
|
/// @param USet Polyhedra to print.
|
|
/// @param OS Target stream.
|
|
/// @param Simplify Whether to simplify the polyhedron before printing.
|
|
/// @param IsMap Whether @p USet is a wrapped map. If true, sets are
|
|
/// unwrapped before printing to again appear as a map.
|
|
static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS,
|
|
bool Simplify, bool IsMap) {
|
|
if (!USet) {
|
|
OS << "<null>\n";
|
|
return;
|
|
}
|
|
|
|
if (Simplify)
|
|
simplify(USet);
|
|
|
|
// Get all the polyhedra.
|
|
std::vector<isl::basic_set> BSets;
|
|
|
|
for (isl::set Set : USet.get_set_list()) {
|
|
for (isl::basic_set BSet : Set.get_basic_set_list()) {
|
|
BSets.push_back(BSet);
|
|
}
|
|
}
|
|
|
|
if (BSets.empty()) {
|
|
OS << "{\n}\n";
|
|
return;
|
|
}
|
|
|
|
// Sort the polyhedra.
|
|
llvm::sort(BSets.begin(), BSets.end(), orderComparer);
|
|
|
|
// Print the polyhedra.
|
|
bool First = true;
|
|
for (const isl::basic_set &BSet : BSets) {
|
|
std::string Str;
|
|
if (IsMap)
|
|
Str = isl::map(BSet.unwrap()).to_str();
|
|
else
|
|
Str = isl::set(BSet).to_str();
|
|
size_t OpenPos = Str.find_first_of('{');
|
|
assert(OpenPos != std::string::npos);
|
|
size_t ClosePos = Str.find_last_of('}');
|
|
assert(ClosePos != std::string::npos);
|
|
|
|
if (First)
|
|
OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n ";
|
|
else
|
|
OS << ";\n ";
|
|
|
|
OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2);
|
|
First = false;
|
|
}
|
|
assert(!First);
|
|
OS << "\n}\n";
|
|
}
|
|
|
|
static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) {
|
|
int Dims = BSet.dim(isl::dim::set);
|
|
if (Dim >= Dims) {
|
|
Expanded = Expanded.unite(BSet);
|
|
return;
|
|
}
|
|
|
|
isl::basic_set DimOnly =
|
|
BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param))
|
|
.project_out(isl::dim::set, Dim + 1, Dims - Dim - 1)
|
|
.project_out(isl::dim::set, 0, Dim);
|
|
if (!DimOnly.is_bounded()) {
|
|
recursiveExpand(BSet, Dim + 1, Expanded);
|
|
return;
|
|
}
|
|
|
|
foreachPoint(DimOnly, [&, Dim](isl::point P) {
|
|
isl::val Val = P.get_coordinate_val(isl::dim::set, 0);
|
|
isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val);
|
|
recursiveExpand(FixBSet, Dim + 1, Expanded);
|
|
});
|
|
}
|
|
|
|
/// Make each point of a set explicit.
|
|
///
|
|
/// "Expanding" makes each point a set contains explicit. That is, the result is
|
|
/// a set of singleton polyhedra. Unbounded dimensions are not expanded.
|
|
///
|
|
/// Example:
|
|
/// { [i] : 0 <= i < 2 }
|
|
/// is expanded to:
|
|
/// { [0]; [1] }
|
|
static isl::set expand(const isl::set &Set) {
|
|
isl::set Expanded = isl::set::empty(Set.get_space());
|
|
for (isl::basic_set BSet : Set.get_basic_set_list())
|
|
recursiveExpand(BSet, 0, Expanded);
|
|
return Expanded;
|
|
}
|
|
|
|
/// Expand all points of a union set explicit.
|
|
///
|
|
/// @see expand(const isl::set)
|
|
static isl::union_set expand(const isl::union_set &USet) {
|
|
isl::union_set Expanded = isl::union_set::empty(USet.get_space());
|
|
for (isl::set Set : USet.get_set_list()) {
|
|
isl::set SetExpanded = expand(Set);
|
|
Expanded = Expanded.add_set(SetExpanded);
|
|
}
|
|
return Expanded;
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) {
|
|
printSortedPolyhedra(Set, llvm::errs(), true, false);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) {
|
|
printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) {
|
|
printSortedPolyhedra(USet, llvm::errs(), true, false);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) {
|
|
printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) {
|
|
dumpPw(isl::manage_copy(Set));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) {
|
|
dumpPw(isl::manage_copy(Map));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) {
|
|
dumpPw(isl::manage_copy(USet));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) {
|
|
dumpPw(isl::manage_copy(UMap));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) {
|
|
printSortedPolyhedra(expand(Set), llvm::errs(), false, false);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) {
|
|
printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) {
|
|
printSortedPolyhedra(expand(USet), llvm::errs(), false, false);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) {
|
|
printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) {
|
|
dumpExpanded(isl::manage_copy(Set));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) {
|
|
dumpExpanded(isl::manage_copy(Map));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) {
|
|
dumpExpanded(isl::manage_copy(USet));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) {
|
|
dumpExpanded(isl::manage_copy(UMap));
|
|
}
|
|
#endif
|