llvm-project/mlir/lib/IR/MLIRContext.cpp

786 lines
30 KiB
C++

//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "LocationDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
using namespace mlir;
using namespace mlir::detail;
using llvm::hash_combine;
using llvm::hash_combine_range;
//===----------------------------------------------------------------------===//
// MLIRContext CommandLine Options
//===----------------------------------------------------------------------===//
namespace {
/// This struct contains command line options that can be used to initialize
/// various bits of an MLIRContext. This uses a struct wrapper to avoid the need
/// for global command line options.
struct MLIRContextOptions {
llvm::cl::opt<bool> printOpOnDiagnostic{
"mlir-print-op-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
"the operation as an attached note"),
llvm::cl::init(true)};
llvm::cl::opt<bool> printStackTraceOnDiagnostic{
"mlir-print-stacktrace-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted, also print the stack trace "
"as an attached note")};
};
} // end anonymous namespace
static llvm::ManagedStatic<MLIRContextOptions> clOptions;
/// Register a set of useful command-line options that can be used to configure
/// various flags within the MLIRContext. These flags are used when constructing
/// an MLIR context for initialization.
void mlir::registerMLIRContextCLOptions() {
// Make sure that the options struct has been initialized.
*clOptions;
}
//===----------------------------------------------------------------------===//
// Builtin Dialect
//===----------------------------------------------------------------------===//
namespace {
/// A builtin dialect to define types/etc that are necessary for the validity of
/// the IR.
struct BuiltinDialect : public Dialect {
BuiltinDialect(MLIRContext *context) : Dialect(/*name=*/"", context) {
addAttributes<AffineMapAttr, ArrayAttr, BoolAttr, DenseElementsAttr,
DictionaryAttr, FloatAttr, SymbolRefAttr, IntegerAttr,
IntegerSetAttr, OpaqueAttr, OpaqueElementsAttr,
SparseElementsAttr, StringAttr, TypeAttr, UnitAttr>();
addAttributes<CallSiteLoc, FileLineColLoc, FusedLoc, NameLoc, OpaqueLoc,
UnknownLoc>();
addTypes<ComplexType, FloatType, FunctionType, IndexType, IntegerType,
MemRefType, UnrankedMemRefType, NoneType, OpaqueType,
RankedTensorType, TupleType, UnrankedTensorType, VectorType>();
// TODO: These operations should be moved to a different dialect when they
// have been fully decoupled from the core.
addOperations<FuncOp, ModuleOp, ModuleTerminatorOp>();
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// AffineMap and IntegerSet hashing
//===----------------------------------------------------------------------===//
/// A utility function to safely get or create a uniqued instance within the
/// given set container.
template <typename ValueT, typename DenseInfoT, typename KeyT,
typename ConstructorFn>
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
ConstructorFn &&constructorFn) {
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
auto it = container.find_as(key);
if (it != container.end())
return *it;
}
// Acquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto existing = container.insert_as(ValueT(), key);
if (!existing.second)
return *existing.first;
// Otherwise, construct a new instance of the value.
return *existing.first = constructorFn();
}
namespace {
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
// Affine maps are uniqued based on their dim/symbol counts and affine
// expressions.
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>>;
using DenseMapInfo<AffineMap>::isEqual;
static unsigned getHashValue(const AffineMap &key) {
return getHashValue(
KeyTy(key.getNumDims(), key.getNumSymbols(), key.getResults()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
}
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getResults());
}
};
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
// Integer sets are uniqued based on their dim/symbol counts, affine
// expressions appearing in the LHS of constraints, and eqFlags.
using KeyTy =
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
using DenseMapInfo<IntegerSet>::isEqual;
static unsigned getHashValue(const IntegerSet &key) {
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
key.getConstraints(), key.getEqFlags()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
}
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getConstraints(), rhs.getEqFlags());
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// MLIRContextImpl
//===----------------------------------------------------------------------===//
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
//===--------------------------------------------------------------------===//
// Identifier uniquing
//===--------------------------------------------------------------------===//
// Identifier allocator and mutex for thread safety.
llvm::BumpPtrAllocator identifierAllocator;
llvm::sys::SmartRWMutex<true> identifierMutex;
//===--------------------------------------------------------------------===//
// Diagnostics
//===--------------------------------------------------------------------===//
DiagnosticEngine diagEngine;
//===--------------------------------------------------------------------===//
// Options
//===--------------------------------------------------------------------===//
/// In most cases, creating operation in unregistered dialect is not desired
/// and indicate a misconfiguration of the compiler. This option enables to
/// detect such use cases
bool allowUnregisteredDialects = false;
/// If the operation should be attached to diagnostics printed via the
/// Operation::emit methods.
bool printOpOnDiagnostic = true;
/// If the current stack trace should be attached when emitting diagnostics.
bool printStackTraceOnDiagnostic = false;
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// A general purpose mutex to lock access to parts of the context that do not
/// have a more specific mutex, e.g. registry operations.
llvm::sys::SmartRWMutex<true> contextMutex;
/// This is a list of dialects that are created referring to this context.
/// The MLIRContext owns the objects.
std::vector<std::unique_ptr<Dialect>> dialects;
/// This is a mapping from operation name to AbstractOperation for registered
/// operations.
llvm::StringMap<AbstractOperation> registeredOperations;
/// This is a mapping from type id to Dialect for registered attributes and
/// types.
DenseMap<TypeID, Dialect *> registeredDialectSymbols;
/// These are identifiers uniqued into this MLIRContext.
llvm::StringSet<llvm::BumpPtrAllocator &> identifiers;
//===--------------------------------------------------------------------===//
// Affine uniquing
//===--------------------------------------------------------------------===//
// Affine allocator and mutex for thread safety.
llvm::BumpPtrAllocator affineAllocator;
llvm::sys::SmartRWMutex<true> affineMutex;
// Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
AffineMapSet affineMaps;
// Integer set uniquing.
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
IntegerSets integerSets;
// Affine expression uniquing.
StorageUniquer affineUniquer;
//===--------------------------------------------------------------------===//
// Type uniquing
//===--------------------------------------------------------------------===//
StorageUniquer typeUniquer;
/// Cached Type Instances.
FloatType bf16Ty, f16Ty, f32Ty, f64Ty;
IndexType indexTy;
IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
NoneType noneType;
//===--------------------------------------------------------------------===//
// Attribute uniquing
//===--------------------------------------------------------------------===//
StorageUniquer attributeUniquer;
/// Cached Attribute Instances.
BoolAttr falseAttr, trueAttr;
UnitAttr unitAttr;
UnknownLoc unknownLocAttr;
public:
MLIRContextImpl() : identifiers(identifierAllocator) {
// Initialize values based on the command line flags if they were provided.
if (clOptions.isConstructed()) {
printOpOnDiagnostic = clOptions->printOpOnDiagnostic;
printStackTraceOnDiagnostic = clOptions->printStackTraceOnDiagnostic;
}
}
};
} // end namespace mlir
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
new BuiltinDialect(this);
registerAllDialects(this);
// Initialize several common attributes and types to avoid the need to lock
// the context when accessing them.
//// Types.
/// Floating-point Types.
impl->bf16Ty = TypeUniquer::get<FloatType>(this, StandardTypes::BF16);
impl->f16Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F16);
impl->f32Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F32);
impl->f64Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F64);
/// Index Type.
impl->indexTy = TypeUniquer::get<IndexType>(this, StandardTypes::Index);
/// Integer Types.
impl->int1Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 1,
IntegerType::Signless);
impl->int8Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 8,
IntegerType::Signless);
impl->int16Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer,
16, IntegerType::Signless);
impl->int32Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer,
32, IntegerType::Signless);
impl->int64Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer,
64, IntegerType::Signless);
impl->int128Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer,
128, IntegerType::Signless);
/// None Type.
impl->noneType = TypeUniquer::get<NoneType>(this, StandardTypes::None);
//// Attributes.
//// Note: These must be registered after the types as they may generate one
//// of the above types internally.
/// Bool Attributes.
// Note: The context is also used within the BoolAttrStorage.
impl->falseAttr = AttributeUniquer::get<BoolAttr>(
this, StandardAttributes::Bool, this, false);
impl->trueAttr = AttributeUniquer::get<BoolAttr>(
this, StandardAttributes::Bool, this, true);
/// Unit Attribute.
impl->unitAttr =
AttributeUniquer::get<UnitAttr>(this, StandardAttributes::Unit);
/// Unknown Location Attribute.
impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(
this, StandardAttributes::UnknownLocation);
}
MLIRContext::~MLIRContext() {}
/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator. This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//
/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//
/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getRegisteredDialects() {
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
std::vector<Dialect *> result;
result.reserve(getImpl().dialects.size());
for (auto &dialect : getImpl().dialects)
result.push_back(dialect.get());
return result;
}
/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getRegisteredDialect(StringRef name) {
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
for (auto &dialect : getImpl().dialects)
if (name == dialect->getNamespace())
return dialect.get();
return nullptr;
}
/// Register this dialect object with the specified context. The context
/// takes ownership of the heap allocated dialect.
void Dialect::registerDialect(MLIRContext *context) {
auto &impl = context->getImpl();
std::unique_ptr<Dialect> dialect(this);
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
// Get the correct insertion position sorted by namespace.
auto insertPt =
llvm::lower_bound(impl.dialects, dialect,
[](const std::unique_ptr<Dialect> &lhs,
const std::unique_ptr<Dialect> &rhs) {
return lhs->getNamespace() < rhs->getNamespace();
});
// Abort if dialect with namespace has already been registered.
if (insertPt != impl.dialects.end() &&
(*insertPt)->getNamespace() == getNamespace()) {
llvm::report_fatal_error("a dialect with namespace '" + getNamespace() +
"' has already been registered");
}
impl.dialects.insert(insertPt, std::move(dialect));
}
bool MLIRContext::allowsUnregisteredDialects() {
return impl->allowUnregisteredDialects;
}
void MLIRContext::allowUnregisteredDialects(bool allowing) {
impl->allowUnregisteredDialects = allowing;
}
/// Return true if we should attach the operation to diagnostics emitted via
/// Operation::emit.
bool MLIRContext::shouldPrintOpOnDiagnostic() {
return impl->printOpOnDiagnostic;
}
/// Set the flag specifying if we should attach the operation to diagnostics
/// emitted via Operation::emit.
void MLIRContext::printOpOnDiagnostic(bool enable) {
impl->printOpOnDiagnostic = enable;
}
/// Return true if we should attach the current stacktrace to diagnostics when
/// emitted.
bool MLIRContext::shouldPrintStackTraceOnDiagnostic() {
return impl->printStackTraceOnDiagnostic;
}
/// Set the flag specifying if we should attach the current stacktrace when
/// emitting diagnostics.
void MLIRContext::printStackTraceOnDiagnostic(bool enable) {
impl->printStackTraceOnDiagnostic = enable;
}
/// Return information about all registered operations. This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
std::vector<std::pair<StringRef, AbstractOperation *>> opsToSort;
{ // Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
// We just have the operations in a non-deterministic hash table order. Dump
// into a temporary array, then sort it by operation name to get a stable
// ordering.
llvm::StringMap<AbstractOperation> &registeredOps =
getImpl().registeredOperations;
opsToSort.reserve(registeredOps.size());
for (auto &elt : registeredOps)
opsToSort.push_back({elt.first(), &elt.second});
}
llvm::array_pod_sort(opsToSort.begin(), opsToSort.end());
std::vector<AbstractOperation *> result;
result.reserve(opsToSort.size());
for (auto &elt : opsToSort)
result.push_back(elt.second);
return result;
}
void Dialect::addOperation(AbstractOperation opInfo) {
assert((getNamespace().empty() ||
opInfo.name.split('.').first == getNamespace()) &&
"op name doesn't start with dialect namespace");
assert(&opInfo.dialect == this && "Dialect object mismatch");
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
if (!impl.registeredOperations.insert({opInfo.name, opInfo}).second) {
llvm::errs() << "error: operation named '" << opInfo.name
<< "' is already registered.\n";
abort();
}
}
/// Register a dialect-specific symbol(e.g. type) with the current context.
void Dialect::addSymbol(TypeID typeID) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
if (!impl.registeredDialectSymbols.insert({typeID, this}).second) {
llvm::errs() << "error: dialect symbol already registered.\n";
abort();
}
}
/// Look up the specified operation in the operation set and return a pointer
/// to it if present. Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
MLIRContext *context) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(impl.contextMutex);
auto it = impl.registeredOperations.find(opName);
if (it != impl.registeredOperations.end())
return &it->second;
return nullptr;
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, MLIRContext *context) {
auto &impl = context->getImpl();
{ // Check for an existing identifier in read-only mode.
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.find(str);
if (it != impl.identifiers.end())
return Identifier(&*it);
}
// Check invariants after seeing if we already have something in the
// identifier table - if we already had it in the table, then it already
// passed invariant checks.
assert(!str.empty() && "Cannot create an empty identifier");
assert(str.find('\0') == StringRef::npos &&
"Cannot create an identifier with a nul character");
// Acquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.insert(str).first;
return Identifier(&*it);
}
//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//
static Dialect &lookupDialectForSymbol(MLIRContext *ctx, TypeID typeID) {
auto &impl = ctx->getImpl();
auto it = impl.registeredDialectSymbols.find(typeID);
assert(it != impl.registeredDialectSymbols.end() &&
"symbol is not registered.");
return *it->second;
}
/// Returns the storage uniquer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }
/// Get the dialect that registered the type with the provided typeid.
Dialect &TypeUniquer::lookupDialectForType(MLIRContext *ctx, TypeID typeID) {
return lookupDialectForSymbol(ctx, typeID);
}
FloatType FloatType::get(StandardTypes::Kind kind, MLIRContext *context) {
assert(kindof(kind) && "Not a FP kind.");
switch (kind) {
case StandardTypes::BF16:
return context->getImpl().bf16Ty;
case StandardTypes::F16:
return context->getImpl().f16Ty;
case StandardTypes::F32:
return context->getImpl().f32Ty;
case StandardTypes::F64:
return context->getImpl().f64Ty;
default:
llvm_unreachable("unexpected floating-point kind");
}
}
/// Get an instance of the IndexType.
IndexType IndexType::get(MLIRContext *context) {
return context->getImpl().indexTy;
}
/// Return an existing integer type instance if one is cached within the
/// context.
static IntegerType
getCachedIntegerType(unsigned width,
IntegerType::SignednessSemantics signedness,
MLIRContext *context) {
if (signedness != IntegerType::Signless)
return IntegerType();
switch (width) {
case 1:
return context->getImpl().int1Ty;
case 8:
return context->getImpl().int8Ty;
case 16:
return context->getImpl().int16Ty;
case 32:
return context->getImpl().int32Ty;
case 64:
return context->getImpl().int64Ty;
case 128:
return context->getImpl().int128Ty;
default:
return IntegerType();
}
}
IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
return get(width, IntegerType::Signless, context);
}
IntegerType IntegerType::get(unsigned width,
IntegerType::SignednessSemantics signedness,
MLIRContext *context) {
if (auto cached = getCachedIntegerType(width, signedness, context))
return cached;
return Base::get(context, StandardTypes::Integer, width, signedness);
}
IntegerType IntegerType::getChecked(unsigned width, Location location) {
return getChecked(width, IntegerType::Signless, location);
}
IntegerType IntegerType::getChecked(unsigned width,
SignednessSemantics signedness,
Location location) {
if (auto cached =
getCachedIntegerType(width, signedness, location->getContext()))
return cached;
return Base::getChecked(location, StandardTypes::Integer, width, signedness);
}
/// Get an instance of the NoneType.
NoneType NoneType::get(MLIRContext *context) {
return context->getImpl().noneType;
}
//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
return getImpl().attributeUniquer;
}
/// Initialize the given attribute storage instance.
void AttributeUniquer::initializeAttributeStorage(AttributeStorage *storage,
MLIRContext *ctx,
TypeID attrID) {
storage->initializeDialect(lookupDialectForSymbol(ctx, attrID));
// If the attribute did not provide a type, then default to NoneType.
if (!storage->getType())
storage->setType(NoneType::get(ctx));
}
BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
}
UnitAttr UnitAttr::get(MLIRContext *context) {
return context->getImpl().unitAttr;
}
Location UnknownLoc::get(MLIRContext *context) {
return context->getImpl().unknownLocAttr;
}
//===----------------------------------------------------------------------===//
// AffineMap uniquing
//===----------------------------------------------------------------------===//
StorageUniquer &MLIRContext::getAffineUniquer() {
return getImpl().affineUniquer;
}
AffineMap AffineMap::getImpl(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results,
MLIRContext *context) {
auto &impl = context->getImpl();
auto key = std::make_tuple(dimCount, symbolCount, results);
// Safely get or create an AffineMap instance.
return safeGetOrCreate(impl.affineMaps, key, impl.affineMutex, [&] {
auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();
// Copy the results into the bump pointer.
results = copyArrayRefInto(impl.affineAllocator, results);
// Initialize the memory using placement new.
new (res) detail::AffineMapStorage{dimCount, symbolCount, results, context};
return AffineMap(res);
});
}
AffineMap AffineMap::get(MLIRContext *context) {
return getImpl(/*dimCount=*/0, /*symbolCount=*/0, /*results=*/{}, context);
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
MLIRContext *context) {
return getImpl(dimCount, symbolCount, /*results=*/{}, context);
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results) {
// The number of results can't be zero.
assert(!results.empty());
return getImpl(dimCount, symbolCount, results, results[0].getContext());
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results, MLIRContext *context) {
return getImpl(dimCount, symbolCount, results, context);
}
//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> constraints,
ArrayRef<bool> eqFlags) {
// The number of constraints can't be zero.
assert(!constraints.empty());
assert(constraints.size() == eqFlags.size());
auto &impl = constraints[0].getContext()->getImpl();
// A utility function to construct a new IntegerSetStorage instance.
auto constructorFn = [&] {
auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();
// Copy the results and equality flags into the bump pointer.
constraints = copyArrayRefInto(impl.affineAllocator, constraints);
eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);
// Initialize the memory using placement new.
new (res)
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
return IntegerSet(res);
};
// If this instance is uniqued, then we handle it separately so that multiple
// threads may simultaneously access existing instances.
if (constraints.size() < IntegerSet::kUniquingThreshold) {
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
constructorFn);
}
// Otherwise, acquire a writer-lock so that we can safely create the new
// instance.
llvm::sys::SmartScopedWriter<true> affineLock(impl.affineMutex);
return constructorFn();
}
//===----------------------------------------------------------------------===//
// StorageUniquerSupport
//===----------------------------------------------------------------------===//
/// Utility method to generate a default location for use when checking the
/// construction invariants of a storage object. This is defined out-of-line to
/// avoid the need to include Location.h.
const AttributeStorage *
mlir::detail::generateUnknownStorageLocation(MLIRContext *ctx) {
return reinterpret_cast<const AttributeStorage *>(
ctx->getImpl().unknownLocAttr.getAsOpaquePointer());
}