llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp

614 lines
21 KiB
C++

//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "SystemZInstrInfo.h"
#include "SystemZInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#define GET_INSTRINFO_CTOR
#define GET_INSTRMAP_INFO
#include "SystemZGenInstrInfo.inc"
using namespace llvm;
SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
: SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
RI(tm) {
}
// MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
// each having the opcode given by NewOpcode.
void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
unsigned NewOpcode) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction &MF = *MBB->getParent();
// Get two load or store instructions. Use the original instruction for one
// of them (arbitarily the second here) and create a clone for the other.
MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
MBB->insert(MI, EarlierMI);
// Set up the two 64-bit registers.
MachineOperand &HighRegOp = EarlierMI->getOperand(0);
MachineOperand &LowRegOp = MI->getOperand(0);
HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high));
LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low));
// The address in the first (high) instruction is already correct.
// Adjust the offset in the second (low) instruction.
MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
MachineOperand &LowOffsetOp = MI->getOperand(2);
LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
// Set the opcodes.
unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
assert(HighOpcode && LowOpcode && "Both offsets should be in range");
EarlierMI->setDesc(get(HighOpcode));
MI->setDesc(get(LowOpcode));
}
// Split ADJDYNALLOC instruction MI.
void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
MachineBasicBlock *MBB = MI->getParent();
MachineFunction &MF = *MBB->getParent();
MachineFrameInfo *MFFrame = MF.getFrameInfo();
MachineOperand &OffsetMO = MI->getOperand(2);
uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
SystemZMC::CallFrameSize +
OffsetMO.getImm());
unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
assert(NewOpcode && "No support for huge argument lists yet");
MI->setDesc(get(NewOpcode));
OffsetMO.setImm(Offset);
}
// If MI is a simple load or store for a frame object, return the register
// it loads or stores and set FrameIndex to the index of the frame object.
// Return 0 otherwise.
//
// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
unsigned Flag) {
const MCInstrDesc &MCID = MI->getDesc();
if ((MCID.TSFlags & Flag) &&
MI->getOperand(1).isFI() &&
MI->getOperand(2).getImm() == 0 &&
MI->getOperand(3).getReg() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
return 0;
}
unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
}
unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
}
bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
int &DestFrameIndex,
int &SrcFrameIndex) const {
// Check for MVC 0(Length,FI1),0(FI2)
const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
if (MI->getOpcode() != SystemZ::MVC ||
!MI->getOperand(0).isFI() ||
MI->getOperand(1).getImm() != 0 ||
!MI->getOperand(3).isFI() ||
MI->getOperand(4).getImm() != 0)
return false;
// Check that Length covers the full slots.
int64_t Length = MI->getOperand(2).getImm();
unsigned FI1 = MI->getOperand(0).getIndex();
unsigned FI2 = MI->getOperand(3).getIndex();
if (MFI->getObjectSize(FI1) != Length ||
MFI->getObjectSize(FI2) != Length)
return false;
DestFrameIndex = FI1;
SrcFrameIndex = FI2;
return true;
}
bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Most of the code and comments here are boilerplate.
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator instruction, we're
// done.
if (!isUnpredicatedTerminator(I))
break;
// A terminator that isn't a branch can't easily be handled by this
// analysis.
if (!I->isBranch())
return true;
// Can't handle indirect branches.
SystemZII::Branch Branch(getBranchInfo(I));
if (!Branch.Target->isMBB())
return true;
// Punt on compound branches.
if (Branch.Type != SystemZII::BranchNormal)
return true;
if (Branch.CCMask == SystemZ::CCMASK_ANY) {
// Handle unconditional branches.
if (!AllowModify) {
TBB = Branch.Target->getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (llvm::next(I) != MBB.end())
llvm::next(I)->eraseFromParent();
Cond.clear();
FBB = 0;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
TBB = 0;
I->eraseFromParent();
I = MBB.end();
continue;
}
// TBB is used to indicate the unconditinal destination.
TBB = Branch.Target->getMBB();
continue;
}
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
// FIXME: add X86-style branch swap
FBB = TBB;
TBB = Branch.Target->getMBB();
Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
continue;
}
// Handle subsequent conditional branches.
assert(Cond.size() == 1);
assert(TBB);
// Only handle the case where all conditional branches branch to the same
// destination.
if (TBB != Branch.Target->getMBB())
return true;
// If the conditions are the same, we can leave them alone.
unsigned OldCond = Cond[0].getImm();
if (OldCond == Branch.CCMask)
continue;
// FIXME: Try combining conditions like X86 does. Should be easy on Z!
}
return false;
}
unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
// Most of the code and comments here are boilerplate.
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (!I->isBranch())
break;
if (!getBranchInfo(I).Target->isMBB())
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned
SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// In this function we output 32-bit branches, which should always
// have enough range. They can be shortened and relaxed by later code
// in the pipeline, if desired.
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"SystemZ branch conditions have one component!");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
return 1;
}
// Conditional branch.
unsigned Count = 0;
unsigned CC = Cond[0].getImm();
BuildMI(&MBB, DL, get(SystemZ::BRC)).addImm(CC).addMBB(TBB);
++Count;
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
++Count;
}
return Count;
}
void
SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
// Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too.
if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high),
RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc);
copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low),
RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc);
return;
}
// Everything else needs only one instruction.
unsigned Opcode;
if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg))
Opcode = SystemZ::LR;
else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
Opcode = SystemZ::LGR;
else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
Opcode = SystemZ::LER;
else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
Opcode = SystemZ::LDR;
else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
Opcode = SystemZ::LXR;
else
llvm_unreachable("Impossible reg-to-reg copy");
BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
void
SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned SrcReg, bool isKill,
int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
// Callers may expect a single instruction, so keep 128-bit moves
// together for now and lower them after register allocation.
unsigned LoadOpcode, StoreOpcode;
getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
.addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
}
void
SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
// Callers may expect a single instruction, so keep 128-bit moves
// together for now and lower them after register allocation.
unsigned LoadOpcode, StoreOpcode;
getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
FrameIdx);
}
// Return true if MI is a simple load or store with a 12-bit displacement
// and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
const MCInstrDesc &MCID = MI->getDesc();
return ((MCID.TSFlags & Flag) &&
isUInt<12>(MI->getOperand(2).getImm()) &&
MI->getOperand(3).getReg() == 0);
}
MachineInstr *
SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Size = MFI->getObjectSize(FrameIndex);
// Eary exit for cases we don't care about
if (Ops.size() != 1)
return 0;
unsigned OpNum = Ops[0];
assert(Size == MF.getRegInfo()
.getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
"Invalid size combination");
unsigned Opcode = MI->getOpcode();
if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
bool Op0IsGPR = (Opcode == SystemZ::LGDR);
bool Op1IsGPR = (Opcode == SystemZ::LDGR);
// If we're spilling the destination of an LDGR or LGDR, store the
// source register instead.
if (OpNum == 0) {
unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
.addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
.addImm(0).addReg(0);
}
// If we're spilling the source of an LDGR or LGDR, load the
// destination register instead.
if (OpNum == 1) {
unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
unsigned Dest = MI->getOperand(0).getReg();
return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
.addFrameIndex(FrameIndex).addImm(0).addReg(0);
}
}
// Look for cases where the source of a simple store or the destination
// of a simple load is being spilled. Try to use MVC instead.
//
// Although MVC is in practice a fast choice in these cases, it is still
// logically a bytewise copy. This means that we cannot use it if the
// load or store is volatile. It also means that the transformation is
// not valid in cases where the two memories partially overlap; however,
// that is not a problem here, because we know that one of the memories
// is a full frame index.
if (OpNum == 0 && MI->hasOneMemOperand()) {
MachineMemOperand *MMO = *MI->memoperands_begin();
if (MMO->getSize() == Size && !MMO->isVolatile()) {
// Handle conversion of loads.
if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
.addFrameIndex(FrameIndex).addImm(0).addImm(Size)
.addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
.addMemOperand(MMO);
}
// Handle conversion of stores.
if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
.addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
.addImm(Size).addFrameIndex(FrameIndex).addImm(0)
.addMemOperand(MMO);
}
}
}
// If the spilled operand is the final one, try to change <INSN>R
// into <INSN>.
int MemOpcode = SystemZ::getMemOpcode(Opcode);
if (MemOpcode >= 0) {
unsigned NumOps = MI->getNumExplicitOperands();
if (OpNum == NumOps - 1) {
const MCInstrDesc &MemDesc = get(MemOpcode);
uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
assert(AccessBytes != 0 && "Size of access should be known");
assert(AccessBytes <= Size && "Access outside the frame index");
uint64_t Offset = Size - AccessBytes;
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
for (unsigned I = 0; I < OpNum; ++I)
MIB.addOperand(MI->getOperand(I));
MIB.addFrameIndex(FrameIndex).addImm(Offset);
if (MemDesc.TSFlags & SystemZII::HasIndex)
MIB.addReg(0);
return MIB;
}
}
return 0;
}
MachineInstr *
SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr* LoadMI) const {
return 0;
}
bool
SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
switch (MI->getOpcode()) {
case SystemZ::L128:
splitMove(MI, SystemZ::LG);
return true;
case SystemZ::ST128:
splitMove(MI, SystemZ::STG);
return true;
case SystemZ::LX:
splitMove(MI, SystemZ::LD);
return true;
case SystemZ::STX:
splitMove(MI, SystemZ::STD);
return true;
case SystemZ::ADJDYNALLOC:
splitAdjDynAlloc(MI);
return true;
default:
return false;
}
}
bool SystemZInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid branch condition!");
Cond[0].setImm(Cond[0].getImm() ^ SystemZ::CCMASK_ANY);
return false;
}
uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
if (MI->getOpcode() == TargetOpcode::INLINEASM) {
const MachineFunction *MF = MI->getParent()->getParent();
const char *AsmStr = MI->getOperand(0).getSymbolName();
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
}
return MI->getDesc().getSize();
}
SystemZII::Branch
SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
switch (MI->getOpcode()) {
case SystemZ::BR:
case SystemZ::J:
case SystemZ::JG:
return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
&MI->getOperand(0));
case SystemZ::BRC:
case SystemZ::BRCL:
return SystemZII::Branch(SystemZII::BranchNormal,
MI->getOperand(0).getImm(), &MI->getOperand(1));
case SystemZ::CIJ:
case SystemZ::CRJ:
return SystemZII::Branch(SystemZII::BranchC, MI->getOperand(2).getImm(),
&MI->getOperand(3));
case SystemZ::CGIJ:
case SystemZ::CGRJ:
return SystemZII::Branch(SystemZII::BranchCG, MI->getOperand(2).getImm(),
&MI->getOperand(3));
default:
llvm_unreachable("Unrecognized branch opcode");
}
}
void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
unsigned &LoadOpcode,
unsigned &StoreOpcode) const {
if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
LoadOpcode = SystemZ::L;
StoreOpcode = SystemZ::ST32;
} else if (RC == &SystemZ::GR64BitRegClass ||
RC == &SystemZ::ADDR64BitRegClass) {
LoadOpcode = SystemZ::LG;
StoreOpcode = SystemZ::STG;
} else if (RC == &SystemZ::GR128BitRegClass ||
RC == &SystemZ::ADDR128BitRegClass) {
LoadOpcode = SystemZ::L128;
StoreOpcode = SystemZ::ST128;
} else if (RC == &SystemZ::FP32BitRegClass) {
LoadOpcode = SystemZ::LE;
StoreOpcode = SystemZ::STE;
} else if (RC == &SystemZ::FP64BitRegClass) {
LoadOpcode = SystemZ::LD;
StoreOpcode = SystemZ::STD;
} else if (RC == &SystemZ::FP128BitRegClass) {
LoadOpcode = SystemZ::LX;
StoreOpcode = SystemZ::STX;
} else
llvm_unreachable("Unsupported regclass to load or store");
}
unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
int64_t Offset) const {
const MCInstrDesc &MCID = get(Opcode);
int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
// Get the instruction to use for unsigned 12-bit displacements.
int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
if (Disp12Opcode >= 0)
return Disp12Opcode;
// All address-related instructions can use unsigned 12-bit
// displacements.
return Opcode;
}
if (isInt<20>(Offset) && isInt<20>(Offset2)) {
// Get the instruction to use for signed 20-bit displacements.
int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
if (Disp20Opcode >= 0)
return Disp20Opcode;
// Check whether Opcode allows signed 20-bit displacements.
if (MCID.TSFlags & SystemZII::Has20BitOffset)
return Opcode;
}
return 0;
}
unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
const MachineInstr *MI) const {
switch (Opcode) {
case SystemZ::CR:
return SystemZ::CRJ;
case SystemZ::CGR:
return SystemZ::CGRJ;
case SystemZ::CHI:
return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
case SystemZ::CGHI:
return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
default:
return 0;
}
}
void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned Reg, uint64_t Value) const {
DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
unsigned Opcode;
if (isInt<16>(Value))
Opcode = SystemZ::LGHI;
else if (SystemZ::isImmLL(Value))
Opcode = SystemZ::LLILL;
else if (SystemZ::isImmLH(Value)) {
Opcode = SystemZ::LLILH;
Value >>= 16;
} else {
assert(isInt<32>(Value) && "Huge values not handled yet");
Opcode = SystemZ::LGFI;
}
BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
}