forked from OSchip/llvm-project
5131 lines
208 KiB
C++
5131 lines
208 KiB
C++
//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//===----------------------------------------------------------------------===/
|
|
//
|
|
// This file implements C++ template argument deduction.
|
|
//
|
|
//===----------------------------------------------------------------------===/
|
|
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "TreeTransform.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/Sema.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include <algorithm>
|
|
|
|
namespace clang {
|
|
using namespace sema;
|
|
/// \brief Various flags that control template argument deduction.
|
|
///
|
|
/// These flags can be bitwise-OR'd together.
|
|
enum TemplateDeductionFlags {
|
|
/// \brief No template argument deduction flags, which indicates the
|
|
/// strictest results for template argument deduction (as used for, e.g.,
|
|
/// matching class template partial specializations).
|
|
TDF_None = 0,
|
|
/// \brief Within template argument deduction from a function call, we are
|
|
/// matching with a parameter type for which the original parameter was
|
|
/// a reference.
|
|
TDF_ParamWithReferenceType = 0x1,
|
|
/// \brief Within template argument deduction from a function call, we
|
|
/// are matching in a case where we ignore cv-qualifiers.
|
|
TDF_IgnoreQualifiers = 0x02,
|
|
/// \brief Within template argument deduction from a function call,
|
|
/// we are matching in a case where we can perform template argument
|
|
/// deduction from a template-id of a derived class of the argument type.
|
|
TDF_DerivedClass = 0x04,
|
|
/// \brief Allow non-dependent types to differ, e.g., when performing
|
|
/// template argument deduction from a function call where conversions
|
|
/// may apply.
|
|
TDF_SkipNonDependent = 0x08,
|
|
/// \brief Whether we are performing template argument deduction for
|
|
/// parameters and arguments in a top-level template argument
|
|
TDF_TopLevelParameterTypeList = 0x10,
|
|
/// \brief Within template argument deduction from overload resolution per
|
|
/// C++ [over.over] allow matching function types that are compatible in
|
|
/// terms of noreturn and default calling convention adjustments.
|
|
TDF_InOverloadResolution = 0x20
|
|
};
|
|
}
|
|
|
|
using namespace clang;
|
|
|
|
/// \brief Compare two APSInts, extending and switching the sign as
|
|
/// necessary to compare their values regardless of underlying type.
|
|
static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
|
|
if (Y.getBitWidth() > X.getBitWidth())
|
|
X = X.extend(Y.getBitWidth());
|
|
else if (Y.getBitWidth() < X.getBitWidth())
|
|
Y = Y.extend(X.getBitWidth());
|
|
|
|
// If there is a signedness mismatch, correct it.
|
|
if (X.isSigned() != Y.isSigned()) {
|
|
// If the signed value is negative, then the values cannot be the same.
|
|
if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
|
|
return false;
|
|
|
|
Y.setIsSigned(true);
|
|
X.setIsSigned(true);
|
|
}
|
|
|
|
return X == Y;
|
|
}
|
|
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
const TemplateArgument &Param,
|
|
TemplateArgument Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced);
|
|
|
|
/// \brief Whether template argument deduction for two reference parameters
|
|
/// resulted in the argument type, parameter type, or neither type being more
|
|
/// qualified than the other.
|
|
enum DeductionQualifierComparison {
|
|
NeitherMoreQualified = 0,
|
|
ParamMoreQualified,
|
|
ArgMoreQualified
|
|
};
|
|
|
|
/// \brief Stores the result of comparing two reference parameters while
|
|
/// performing template argument deduction for partial ordering of function
|
|
/// templates.
|
|
struct RefParamPartialOrderingComparison {
|
|
/// \brief Whether the parameter type is an rvalue reference type.
|
|
bool ParamIsRvalueRef;
|
|
/// \brief Whether the argument type is an rvalue reference type.
|
|
bool ArgIsRvalueRef;
|
|
|
|
/// \brief Whether the parameter or argument (or neither) is more qualified.
|
|
DeductionQualifierComparison Qualifiers;
|
|
};
|
|
|
|
|
|
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArgumentsByTypeMatch(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
QualType Param,
|
|
QualType Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &
|
|
Deduced,
|
|
unsigned TDF,
|
|
bool PartialOrdering = false,
|
|
SmallVectorImpl<RefParamPartialOrderingComparison> *
|
|
RefParamComparisons = 0);
|
|
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
const TemplateArgument *Params, unsigned NumParams,
|
|
const TemplateArgument *Args, unsigned NumArgs,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced);
|
|
|
|
/// \brief If the given expression is of a form that permits the deduction
|
|
/// of a non-type template parameter, return the declaration of that
|
|
/// non-type template parameter.
|
|
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
|
|
// If we are within an alias template, the expression may have undergone
|
|
// any number of parameter substitutions already.
|
|
while (1) {
|
|
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
|
|
E = IC->getSubExpr();
|
|
else if (SubstNonTypeTemplateParmExpr *Subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(E))
|
|
E = Subst->getReplacement();
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Determine whether two declaration pointers refer to the same
|
|
/// declaration.
|
|
static bool isSameDeclaration(Decl *X, Decl *Y) {
|
|
if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
|
|
X = NX->getUnderlyingDecl();
|
|
if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
|
|
Y = NY->getUnderlyingDecl();
|
|
|
|
return X->getCanonicalDecl() == Y->getCanonicalDecl();
|
|
}
|
|
|
|
/// \brief Verify that the given, deduced template arguments are compatible.
|
|
///
|
|
/// \returns The deduced template argument, or a NULL template argument if
|
|
/// the deduced template arguments were incompatible.
|
|
static DeducedTemplateArgument
|
|
checkDeducedTemplateArguments(ASTContext &Context,
|
|
const DeducedTemplateArgument &X,
|
|
const DeducedTemplateArgument &Y) {
|
|
// We have no deduction for one or both of the arguments; they're compatible.
|
|
if (X.isNull())
|
|
return Y;
|
|
if (Y.isNull())
|
|
return X;
|
|
|
|
switch (X.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Non-deduced template arguments handled above");
|
|
|
|
case TemplateArgument::Type:
|
|
// If two template type arguments have the same type, they're compatible.
|
|
if (Y.getKind() == TemplateArgument::Type &&
|
|
Context.hasSameType(X.getAsType(), Y.getAsType()))
|
|
return X;
|
|
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Integral:
|
|
// If we deduced a constant in one case and either a dependent expression or
|
|
// declaration in another case, keep the integral constant.
|
|
// If both are integral constants with the same value, keep that value.
|
|
if (Y.getKind() == TemplateArgument::Expression ||
|
|
Y.getKind() == TemplateArgument::Declaration ||
|
|
(Y.getKind() == TemplateArgument::Integral &&
|
|
hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
|
|
return DeducedTemplateArgument(X,
|
|
X.wasDeducedFromArrayBound() &&
|
|
Y.wasDeducedFromArrayBound());
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Template:
|
|
if (Y.getKind() == TemplateArgument::Template &&
|
|
Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (Y.getKind() == TemplateArgument::TemplateExpansion &&
|
|
Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
|
|
Y.getAsTemplateOrTemplatePattern()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Expression:
|
|
// If we deduced a dependent expression in one case and either an integral
|
|
// constant or a declaration in another case, keep the integral constant
|
|
// or declaration.
|
|
if (Y.getKind() == TemplateArgument::Integral ||
|
|
Y.getKind() == TemplateArgument::Declaration)
|
|
return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
|
|
Y.wasDeducedFromArrayBound());
|
|
|
|
if (Y.getKind() == TemplateArgument::Expression) {
|
|
// Compare the expressions for equality
|
|
llvm::FoldingSetNodeID ID1, ID2;
|
|
X.getAsExpr()->Profile(ID1, Context, true);
|
|
Y.getAsExpr()->Profile(ID2, Context, true);
|
|
if (ID1 == ID2)
|
|
return X;
|
|
}
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Declaration:
|
|
// If we deduced a declaration and a dependent expression, keep the
|
|
// declaration.
|
|
if (Y.getKind() == TemplateArgument::Expression)
|
|
return X;
|
|
|
|
// If we deduced a declaration and an integral constant, keep the
|
|
// integral constant.
|
|
if (Y.getKind() == TemplateArgument::Integral)
|
|
return Y;
|
|
|
|
// If we deduced two declarations, make sure they they refer to the
|
|
// same declaration.
|
|
if (Y.getKind() == TemplateArgument::Declaration &&
|
|
isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
|
|
X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::NullPtr:
|
|
// If we deduced a null pointer and a dependent expression, keep the
|
|
// null pointer.
|
|
if (Y.getKind() == TemplateArgument::Expression)
|
|
return X;
|
|
|
|
// If we deduced a null pointer and an integral constant, keep the
|
|
// integral constant.
|
|
if (Y.getKind() == TemplateArgument::Integral)
|
|
return Y;
|
|
|
|
// If we deduced two null pointers, make sure they have the same type.
|
|
if (Y.getKind() == TemplateArgument::NullPtr &&
|
|
Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
|
|
return X;
|
|
|
|
// All other combinations are incompatible.
|
|
return DeducedTemplateArgument();
|
|
|
|
case TemplateArgument::Pack:
|
|
if (Y.getKind() != TemplateArgument::Pack ||
|
|
X.pack_size() != Y.pack_size())
|
|
return DeducedTemplateArgument();
|
|
|
|
for (TemplateArgument::pack_iterator XA = X.pack_begin(),
|
|
XAEnd = X.pack_end(),
|
|
YA = Y.pack_begin();
|
|
XA != XAEnd; ++XA, ++YA) {
|
|
if (checkDeducedTemplateArguments(Context,
|
|
DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
|
|
DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
|
|
.isNull())
|
|
return DeducedTemplateArgument();
|
|
}
|
|
|
|
return X;
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
/// \brief Deduce the value of the given non-type template parameter
|
|
/// from the given constant.
|
|
static Sema::TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S,
|
|
NonTypeTemplateParmDecl *NTTP,
|
|
llvm::APSInt Value, QualType ValueType,
|
|
bool DeducedFromArrayBound,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
assert(NTTP->getDepth() == 0 &&
|
|
"Cannot deduce non-type template argument with depth > 0");
|
|
|
|
DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
|
|
DeducedFromArrayBound);
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
|
|
Deduced[NTTP->getIndex()],
|
|
NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = NTTP;
|
|
Info.FirstArg = Deduced[NTTP->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return Sema::TDK_Inconsistent;
|
|
}
|
|
|
|
Deduced[NTTP->getIndex()] = Result;
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
/// \brief Deduce the value of the given non-type template parameter
|
|
/// from the given type- or value-dependent expression.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
static Sema::TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S,
|
|
NonTypeTemplateParmDecl *NTTP,
|
|
Expr *Value,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
assert(NTTP->getDepth() == 0 &&
|
|
"Cannot deduce non-type template argument with depth > 0");
|
|
assert((Value->isTypeDependent() || Value->isValueDependent()) &&
|
|
"Expression template argument must be type- or value-dependent.");
|
|
|
|
DeducedTemplateArgument NewDeduced(Value);
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
|
|
Deduced[NTTP->getIndex()],
|
|
NewDeduced);
|
|
|
|
if (Result.isNull()) {
|
|
Info.Param = NTTP;
|
|
Info.FirstArg = Deduced[NTTP->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return Sema::TDK_Inconsistent;
|
|
}
|
|
|
|
Deduced[NTTP->getIndex()] = Result;
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
/// \brief Deduce the value of the given non-type template parameter
|
|
/// from the given declaration.
|
|
///
|
|
/// \returns true if deduction succeeded, false otherwise.
|
|
static Sema::TemplateDeductionResult
|
|
DeduceNonTypeTemplateArgument(Sema &S,
|
|
NonTypeTemplateParmDecl *NTTP,
|
|
ValueDecl *D,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
assert(NTTP->getDepth() == 0 &&
|
|
"Cannot deduce non-type template argument with depth > 0");
|
|
|
|
D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
|
|
TemplateArgument New(D, NTTP->getType()->isReferenceType());
|
|
DeducedTemplateArgument NewDeduced(New);
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
|
|
Deduced[NTTP->getIndex()],
|
|
NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = NTTP;
|
|
Info.FirstArg = Deduced[NTTP->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return Sema::TDK_Inconsistent;
|
|
}
|
|
|
|
Deduced[NTTP->getIndex()] = Result;
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
TemplateName Param,
|
|
TemplateName Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
|
|
if (!ParamDecl) {
|
|
// The parameter type is dependent and is not a template template parameter,
|
|
// so there is nothing that we can deduce.
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
if (TemplateTemplateParmDecl *TempParam
|
|
= dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
|
|
DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
|
|
Deduced[TempParam->getIndex()],
|
|
NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = TempParam;
|
|
Info.FirstArg = Deduced[TempParam->getIndex()];
|
|
Info.SecondArg = NewDeduced;
|
|
return Sema::TDK_Inconsistent;
|
|
}
|
|
|
|
Deduced[TempParam->getIndex()] = Result;
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
// Verify that the two template names are equivalent.
|
|
if (S.Context.hasSameTemplateName(Param, Arg))
|
|
return Sema::TDK_Success;
|
|
|
|
// Mismatch of non-dependent template parameter to argument.
|
|
Info.FirstArg = TemplateArgument(Param);
|
|
Info.SecondArg = TemplateArgument(Arg);
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
/// \brief Deduce the template arguments by comparing the template parameter
|
|
/// type (which is a template-id) with the template argument type.
|
|
///
|
|
/// \param S the Sema
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing
|
|
///
|
|
/// \param Param the parameter type
|
|
///
|
|
/// \param Arg the argument type
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
const TemplateSpecializationType *Param,
|
|
QualType Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
assert(Arg.isCanonical() && "Argument type must be canonical");
|
|
|
|
// Check whether the template argument is a dependent template-id.
|
|
if (const TemplateSpecializationType *SpecArg
|
|
= dyn_cast<TemplateSpecializationType>(Arg)) {
|
|
// Perform template argument deduction for the template name.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(S, TemplateParams,
|
|
Param->getTemplateName(),
|
|
SpecArg->getTemplateName(),
|
|
Info, Deduced))
|
|
return Result;
|
|
|
|
|
|
// Perform template argument deduction on each template
|
|
// argument. Ignore any missing/extra arguments, since they could be
|
|
// filled in by default arguments.
|
|
return DeduceTemplateArguments(S, TemplateParams,
|
|
Param->getArgs(), Param->getNumArgs(),
|
|
SpecArg->getArgs(), SpecArg->getNumArgs(),
|
|
Info, Deduced);
|
|
}
|
|
|
|
// If the argument type is a class template specialization, we
|
|
// perform template argument deduction using its template
|
|
// arguments.
|
|
const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
|
|
if (!RecordArg) {
|
|
Info.FirstArg = TemplateArgument(QualType(Param, 0));
|
|
Info.SecondArg = TemplateArgument(Arg);
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
ClassTemplateSpecializationDecl *SpecArg
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
|
|
if (!SpecArg) {
|
|
Info.FirstArg = TemplateArgument(QualType(Param, 0));
|
|
Info.SecondArg = TemplateArgument(Arg);
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
// Perform template argument deduction for the template name.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(S,
|
|
TemplateParams,
|
|
Param->getTemplateName(),
|
|
TemplateName(SpecArg->getSpecializedTemplate()),
|
|
Info, Deduced))
|
|
return Result;
|
|
|
|
// Perform template argument deduction for the template arguments.
|
|
return DeduceTemplateArguments(S, TemplateParams,
|
|
Param->getArgs(), Param->getNumArgs(),
|
|
SpecArg->getTemplateArgs().data(),
|
|
SpecArg->getTemplateArgs().size(),
|
|
Info, Deduced);
|
|
}
|
|
|
|
/// \brief Determines whether the given type is an opaque type that
|
|
/// might be more qualified when instantiated.
|
|
static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
|
|
switch (T->getTypeClass()) {
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::DependentName:
|
|
case Type::Decltype:
|
|
case Type::UnresolvedUsing:
|
|
case Type::TemplateTypeParm:
|
|
return true;
|
|
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::DependentSizedArray:
|
|
return IsPossiblyOpaquelyQualifiedType(
|
|
cast<ArrayType>(T)->getElementType());
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Retrieve the depth and index of a template parameter.
|
|
static std::pair<unsigned, unsigned>
|
|
getDepthAndIndex(NamedDecl *ND) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
|
|
return std::make_pair(TTP->getDepth(), TTP->getIndex());
|
|
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
|
|
return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
|
|
|
|
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
|
|
return std::make_pair(TTP->getDepth(), TTP->getIndex());
|
|
}
|
|
|
|
/// \brief Retrieve the depth and index of an unexpanded parameter pack.
|
|
static std::pair<unsigned, unsigned>
|
|
getDepthAndIndex(UnexpandedParameterPack UPP) {
|
|
if (const TemplateTypeParmType *TTP
|
|
= UPP.first.dyn_cast<const TemplateTypeParmType *>())
|
|
return std::make_pair(TTP->getDepth(), TTP->getIndex());
|
|
|
|
return getDepthAndIndex(UPP.first.get<NamedDecl *>());
|
|
}
|
|
|
|
/// \brief Helper function to build a TemplateParameter when we don't
|
|
/// know its type statically.
|
|
static TemplateParameter makeTemplateParameter(Decl *D) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
|
|
return TemplateParameter(TTP);
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
|
|
return TemplateParameter(NTTP);
|
|
|
|
return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
|
|
}
|
|
|
|
typedef SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
|
|
NewlyDeducedPacksType;
|
|
|
|
/// \brief Prepare to perform template argument deduction for all of the
|
|
/// arguments in a set of argument packs.
|
|
static void
|
|
PrepareArgumentPackDeduction(Sema &S,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
ArrayRef<unsigned> PackIndices,
|
|
SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
|
|
NewlyDeducedPacksType &NewlyDeducedPacks) {
|
|
// Save the deduced template arguments for each parameter pack expanded
|
|
// by this pack expansion, then clear out the deduction.
|
|
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
|
|
// Save the previously-deduced argument pack, then clear it out so that we
|
|
// can deduce a new argument pack.
|
|
SavedPacks[I] = Deduced[PackIndices[I]];
|
|
Deduced[PackIndices[I]] = TemplateArgument();
|
|
|
|
if (!S.CurrentInstantiationScope)
|
|
continue;
|
|
|
|
// If the template argument pack was explicitly specified, add that to
|
|
// the set of deduced arguments.
|
|
const TemplateArgument *ExplicitArgs;
|
|
unsigned NumExplicitArgs;
|
|
if (NamedDecl *PartiallySubstitutedPack
|
|
= S.CurrentInstantiationScope->getPartiallySubstitutedPack(
|
|
&ExplicitArgs,
|
|
&NumExplicitArgs)) {
|
|
if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
|
|
NewlyDeducedPacks[I].append(ExplicitArgs,
|
|
ExplicitArgs + NumExplicitArgs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Finish template argument deduction for a set of argument packs,
|
|
/// producing the argument packs and checking for consistency with prior
|
|
/// deductions.
|
|
static Sema::TemplateDeductionResult
|
|
FinishArgumentPackDeduction(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
bool HasAnyArguments,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
ArrayRef<unsigned> PackIndices,
|
|
SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
|
|
NewlyDeducedPacksType &NewlyDeducedPacks,
|
|
TemplateDeductionInfo &Info) {
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
|
|
if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
|
|
// We were not able to deduce anything for this parameter pack,
|
|
// so just restore the saved argument pack.
|
|
Deduced[PackIndices[I]] = SavedPacks[I];
|
|
continue;
|
|
}
|
|
|
|
DeducedTemplateArgument NewPack;
|
|
|
|
if (NewlyDeducedPacks[I].empty()) {
|
|
// If we deduced an empty argument pack, create it now.
|
|
NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
|
|
} else {
|
|
TemplateArgument *ArgumentPack
|
|
= new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
|
|
std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
|
|
ArgumentPack);
|
|
NewPack
|
|
= DeducedTemplateArgument(TemplateArgument(ArgumentPack,
|
|
NewlyDeducedPacks[I].size()),
|
|
NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
|
|
}
|
|
|
|
DeducedTemplateArgument Result
|
|
= checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
|
|
if (Result.isNull()) {
|
|
Info.Param
|
|
= makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
|
|
Info.FirstArg = SavedPacks[I];
|
|
Info.SecondArg = NewPack;
|
|
return Sema::TDK_Inconsistent;
|
|
}
|
|
|
|
Deduced[PackIndices[I]] = Result;
|
|
}
|
|
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
/// \brief Deduce the template arguments by comparing the list of parameter
|
|
/// types to the list of argument types, as in the parameter-type-lists of
|
|
/// function types (C++ [temp.deduct.type]p10).
|
|
///
|
|
/// \param S The semantic analysis object within which we are deducing
|
|
///
|
|
/// \param TemplateParams The template parameters that we are deducing
|
|
///
|
|
/// \param Params The list of parameter types
|
|
///
|
|
/// \param NumParams The number of types in \c Params
|
|
///
|
|
/// \param Args The list of argument types
|
|
///
|
|
/// \param NumArgs The number of types in \c Args
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
|
|
/// how template argument deduction is performed.
|
|
///
|
|
/// \param PartialOrdering If true, we are performing template argument
|
|
/// deduction for during partial ordering for a call
|
|
/// (C++0x [temp.deduct.partial]).
|
|
///
|
|
/// \param RefParamComparisons If we're performing template argument deduction
|
|
/// in the context of partial ordering, the set of qualifier comparisons.
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
const QualType *Params, unsigned NumParams,
|
|
const QualType *Args, unsigned NumArgs,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned TDF,
|
|
bool PartialOrdering = false,
|
|
SmallVectorImpl<RefParamPartialOrderingComparison> *
|
|
RefParamComparisons = 0) {
|
|
// Fast-path check to see if we have too many/too few arguments.
|
|
if (NumParams != NumArgs &&
|
|
!(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
|
|
!(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
|
|
return Sema::TDK_MiscellaneousDeductionFailure;
|
|
|
|
// C++0x [temp.deduct.type]p10:
|
|
// Similarly, if P has a form that contains (T), then each parameter type
|
|
// Pi of the respective parameter-type- list of P is compared with the
|
|
// corresponding parameter type Ai of the corresponding parameter-type-list
|
|
// of A. [...]
|
|
unsigned ArgIdx = 0, ParamIdx = 0;
|
|
for (; ParamIdx != NumParams; ++ParamIdx) {
|
|
// Check argument types.
|
|
const PackExpansionType *Expansion
|
|
= dyn_cast<PackExpansionType>(Params[ParamIdx]);
|
|
if (!Expansion) {
|
|
// Simple case: compare the parameter and argument types at this point.
|
|
|
|
// Make sure we have an argument.
|
|
if (ArgIdx >= NumArgs)
|
|
return Sema::TDK_MiscellaneousDeductionFailure;
|
|
|
|
if (isa<PackExpansionType>(Args[ArgIdx])) {
|
|
// C++0x [temp.deduct.type]p22:
|
|
// If the original function parameter associated with A is a function
|
|
// parameter pack and the function parameter associated with P is not
|
|
// a function parameter pack, then template argument deduction fails.
|
|
return Sema::TDK_MiscellaneousDeductionFailure;
|
|
}
|
|
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
Params[ParamIdx], Args[ArgIdx],
|
|
Info, Deduced, TDF,
|
|
PartialOrdering,
|
|
RefParamComparisons))
|
|
return Result;
|
|
|
|
++ArgIdx;
|
|
continue;
|
|
}
|
|
|
|
// C++0x [temp.deduct.type]p5:
|
|
// The non-deduced contexts are:
|
|
// - A function parameter pack that does not occur at the end of the
|
|
// parameter-declaration-clause.
|
|
if (ParamIdx + 1 < NumParams)
|
|
return Sema::TDK_Success;
|
|
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If the parameter-declaration corresponding to Pi is a function
|
|
// parameter pack, then the type of its declarator- id is compared with
|
|
// each remaining parameter type in the parameter-type-list of A. Each
|
|
// comparison deduces template arguments for subsequent positions in the
|
|
// template parameter packs expanded by the function parameter pack.
|
|
|
|
// Compute the set of template parameter indices that correspond to
|
|
// parameter packs expanded by the pack expansion.
|
|
SmallVector<unsigned, 2> PackIndices;
|
|
QualType Pattern = Expansion->getPattern();
|
|
{
|
|
llvm::SmallBitVector SawIndices(TemplateParams->size());
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
|
|
unsigned Depth, Index;
|
|
llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
|
|
if (Depth == 0 && !SawIndices[Index]) {
|
|
SawIndices[Index] = true;
|
|
PackIndices.push_back(Index);
|
|
}
|
|
}
|
|
}
|
|
assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
|
|
|
|
// Keep track of the deduced template arguments for each parameter pack
|
|
// expanded by this pack expansion (the outer index) and for each
|
|
// template argument (the inner SmallVectors).
|
|
NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
|
|
SmallVector<DeducedTemplateArgument, 2>
|
|
SavedPacks(PackIndices.size());
|
|
PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
|
|
NewlyDeducedPacks);
|
|
|
|
bool HasAnyArguments = false;
|
|
for (; ArgIdx < NumArgs; ++ArgIdx) {
|
|
HasAnyArguments = true;
|
|
|
|
// Deduce template arguments from the pattern.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
|
|
Args[ArgIdx], Info, Deduced,
|
|
TDF, PartialOrdering,
|
|
RefParamComparisons))
|
|
return Result;
|
|
|
|
// Capture the deduced template arguments for each parameter pack expanded
|
|
// by this pack expansion, add them to the list of arguments we've deduced
|
|
// for that pack, then clear out the deduced argument.
|
|
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
|
|
DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
|
|
if (!DeducedArg.isNull()) {
|
|
NewlyDeducedPacks[I].push_back(DeducedArg);
|
|
DeducedArg = DeducedTemplateArgument();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
|
|
Deduced, PackIndices, SavedPacks,
|
|
NewlyDeducedPacks, Info))
|
|
return Result;
|
|
}
|
|
|
|
// Make sure we don't have any extra arguments.
|
|
if (ArgIdx < NumArgs)
|
|
return Sema::TDK_MiscellaneousDeductionFailure;
|
|
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
/// \brief Determine whether the parameter has qualifiers that are either
|
|
/// inconsistent with or a superset of the argument's qualifiers.
|
|
static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
|
|
QualType ArgType) {
|
|
Qualifiers ParamQs = ParamType.getQualifiers();
|
|
Qualifiers ArgQs = ArgType.getQualifiers();
|
|
|
|
if (ParamQs == ArgQs)
|
|
return false;
|
|
|
|
// Mismatched (but not missing) Objective-C GC attributes.
|
|
if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
|
|
ParamQs.hasObjCGCAttr())
|
|
return true;
|
|
|
|
// Mismatched (but not missing) address spaces.
|
|
if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
|
|
ParamQs.hasAddressSpace())
|
|
return true;
|
|
|
|
// Mismatched (but not missing) Objective-C lifetime qualifiers.
|
|
if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
|
|
ParamQs.hasObjCLifetime())
|
|
return true;
|
|
|
|
// CVR qualifier superset.
|
|
return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
|
|
((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
|
|
== ParamQs.getCVRQualifiers());
|
|
}
|
|
|
|
/// \brief Compare types for equality with respect to possibly compatible
|
|
/// function types (noreturn adjustment, implicit calling conventions). If any
|
|
/// of parameter and argument is not a function, just perform type comparison.
|
|
///
|
|
/// \param Param the template parameter type.
|
|
///
|
|
/// \param Arg the argument type.
|
|
bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
|
|
CanQualType Arg) {
|
|
const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
|
|
*ArgFunction = Arg->getAs<FunctionType>();
|
|
|
|
// Just compare if not functions.
|
|
if (!ParamFunction || !ArgFunction)
|
|
return Param == Arg;
|
|
|
|
// Noreturn adjustment.
|
|
QualType AdjustedParam;
|
|
if (IsNoReturnConversion(Param, Arg, AdjustedParam))
|
|
return Arg == Context.getCanonicalType(AdjustedParam);
|
|
|
|
// FIXME: Compatible calling conventions.
|
|
|
|
return Param == Arg;
|
|
}
|
|
|
|
/// \brief Deduce the template arguments by comparing the parameter type and
|
|
/// the argument type (C++ [temp.deduct.type]).
|
|
///
|
|
/// \param S the semantic analysis object within which we are deducing
|
|
///
|
|
/// \param TemplateParams the template parameters that we are deducing
|
|
///
|
|
/// \param ParamIn the parameter type
|
|
///
|
|
/// \param ArgIn the argument type
|
|
///
|
|
/// \param Info information about the template argument deduction itself
|
|
///
|
|
/// \param Deduced the deduced template arguments
|
|
///
|
|
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
|
|
/// how template argument deduction is performed.
|
|
///
|
|
/// \param PartialOrdering Whether we're performing template argument deduction
|
|
/// in the context of partial ordering (C++0x [temp.deduct.partial]).
|
|
///
|
|
/// \param RefParamComparisons If we're performing template argument deduction
|
|
/// in the context of partial ordering, the set of qualifier comparisons.
|
|
///
|
|
/// \returns the result of template argument deduction so far. Note that a
|
|
/// "success" result means that template argument deduction has not yet failed,
|
|
/// but it may still fail, later, for other reasons.
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArgumentsByTypeMatch(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
QualType ParamIn, QualType ArgIn,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned TDF,
|
|
bool PartialOrdering,
|
|
SmallVectorImpl<RefParamPartialOrderingComparison> *
|
|
RefParamComparisons) {
|
|
// We only want to look at the canonical types, since typedefs and
|
|
// sugar are not part of template argument deduction.
|
|
QualType Param = S.Context.getCanonicalType(ParamIn);
|
|
QualType Arg = S.Context.getCanonicalType(ArgIn);
|
|
|
|
// If the argument type is a pack expansion, look at its pattern.
|
|
// This isn't explicitly called out
|
|
if (const PackExpansionType *ArgExpansion
|
|
= dyn_cast<PackExpansionType>(Arg))
|
|
Arg = ArgExpansion->getPattern();
|
|
|
|
if (PartialOrdering) {
|
|
// C++0x [temp.deduct.partial]p5:
|
|
// Before the partial ordering is done, certain transformations are
|
|
// performed on the types used for partial ordering:
|
|
// - If P is a reference type, P is replaced by the type referred to.
|
|
const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
|
|
if (ParamRef)
|
|
Param = ParamRef->getPointeeType();
|
|
|
|
// - If A is a reference type, A is replaced by the type referred to.
|
|
const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
|
|
if (ArgRef)
|
|
Arg = ArgRef->getPointeeType();
|
|
|
|
if (RefParamComparisons && ParamRef && ArgRef) {
|
|
// C++0x [temp.deduct.partial]p6:
|
|
// If both P and A were reference types (before being replaced with the
|
|
// type referred to above), determine which of the two types (if any) is
|
|
// more cv-qualified than the other; otherwise the types are considered
|
|
// to be equally cv-qualified for partial ordering purposes. The result
|
|
// of this determination will be used below.
|
|
//
|
|
// We save this information for later, using it only when deduction
|
|
// succeeds in both directions.
|
|
RefParamPartialOrderingComparison Comparison;
|
|
Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
|
|
Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
|
|
Comparison.Qualifiers = NeitherMoreQualified;
|
|
|
|
Qualifiers ParamQuals = Param.getQualifiers();
|
|
Qualifiers ArgQuals = Arg.getQualifiers();
|
|
if (ParamQuals.isStrictSupersetOf(ArgQuals))
|
|
Comparison.Qualifiers = ParamMoreQualified;
|
|
else if (ArgQuals.isStrictSupersetOf(ParamQuals))
|
|
Comparison.Qualifiers = ArgMoreQualified;
|
|
else if (ArgQuals.getObjCLifetime() != ParamQuals.getObjCLifetime() &&
|
|
ArgQuals.withoutObjCLifetime()
|
|
== ParamQuals.withoutObjCLifetime()) {
|
|
// Prefer binding to non-__unsafe_autoretained parameters.
|
|
if (ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
|
|
ParamQuals.getObjCLifetime())
|
|
Comparison.Qualifiers = ParamMoreQualified;
|
|
else if (ParamQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
|
|
ArgQuals.getObjCLifetime())
|
|
Comparison.Qualifiers = ArgMoreQualified;
|
|
}
|
|
RefParamComparisons->push_back(Comparison);
|
|
}
|
|
|
|
// C++0x [temp.deduct.partial]p7:
|
|
// Remove any top-level cv-qualifiers:
|
|
// - If P is a cv-qualified type, P is replaced by the cv-unqualified
|
|
// version of P.
|
|
Param = Param.getUnqualifiedType();
|
|
// - If A is a cv-qualified type, A is replaced by the cv-unqualified
|
|
// version of A.
|
|
Arg = Arg.getUnqualifiedType();
|
|
} else {
|
|
// C++0x [temp.deduct.call]p4 bullet 1:
|
|
// - If the original P is a reference type, the deduced A (i.e., the type
|
|
// referred to by the reference) can be more cv-qualified than the
|
|
// transformed A.
|
|
if (TDF & TDF_ParamWithReferenceType) {
|
|
Qualifiers Quals;
|
|
QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
|
|
Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
|
|
Arg.getCVRQualifiers());
|
|
Param = S.Context.getQualifiedType(UnqualParam, Quals);
|
|
}
|
|
|
|
if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
|
|
// C++0x [temp.deduct.type]p10:
|
|
// If P and A are function types that originated from deduction when
|
|
// taking the address of a function template (14.8.2.2) or when deducing
|
|
// template arguments from a function declaration (14.8.2.6) and Pi and
|
|
// Ai are parameters of the top-level parameter-type-list of P and A,
|
|
// respectively, Pi is adjusted if it is an rvalue reference to a
|
|
// cv-unqualified template parameter and Ai is an lvalue reference, in
|
|
// which case the type of Pi is changed to be the template parameter
|
|
// type (i.e., T&& is changed to simply T). [ Note: As a result, when
|
|
// Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
|
|
// deduced as X&. - end note ]
|
|
TDF &= ~TDF_TopLevelParameterTypeList;
|
|
|
|
if (const RValueReferenceType *ParamRef
|
|
= Param->getAs<RValueReferenceType>()) {
|
|
if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
|
|
!ParamRef->getPointeeType().getQualifiers())
|
|
if (Arg->isLValueReferenceType())
|
|
Param = ParamRef->getPointeeType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [temp.deduct.type]p9:
|
|
// A template type argument T, a template template argument TT or a
|
|
// template non-type argument i can be deduced if P and A have one of
|
|
// the following forms:
|
|
//
|
|
// T
|
|
// cv-list T
|
|
if (const TemplateTypeParmType *TemplateTypeParm
|
|
= Param->getAs<TemplateTypeParmType>()) {
|
|
// Just skip any attempts to deduce from a placeholder type.
|
|
if (Arg->isPlaceholderType())
|
|
return Sema::TDK_Success;
|
|
|
|
unsigned Index = TemplateTypeParm->getIndex();
|
|
bool RecanonicalizeArg = false;
|
|
|
|
// If the argument type is an array type, move the qualifiers up to the
|
|
// top level, so they can be matched with the qualifiers on the parameter.
|
|
if (isa<ArrayType>(Arg)) {
|
|
Qualifiers Quals;
|
|
Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
|
|
if (Quals) {
|
|
Arg = S.Context.getQualifiedType(Arg, Quals);
|
|
RecanonicalizeArg = true;
|
|
}
|
|
}
|
|
|
|
// The argument type can not be less qualified than the parameter
|
|
// type.
|
|
if (!(TDF & TDF_IgnoreQualifiers) &&
|
|
hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
|
|
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
|
Info.FirstArg = TemplateArgument(Param);
|
|
Info.SecondArg = TemplateArgument(Arg);
|
|
return Sema::TDK_Underqualified;
|
|
}
|
|
|
|
assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
|
|
assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
|
|
QualType DeducedType = Arg;
|
|
|
|
// Remove any qualifiers on the parameter from the deduced type.
|
|
// We checked the qualifiers for consistency above.
|
|
Qualifiers DeducedQs = DeducedType.getQualifiers();
|
|
Qualifiers ParamQs = Param.getQualifiers();
|
|
DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
|
|
if (ParamQs.hasObjCGCAttr())
|
|
DeducedQs.removeObjCGCAttr();
|
|
if (ParamQs.hasAddressSpace())
|
|
DeducedQs.removeAddressSpace();
|
|
if (ParamQs.hasObjCLifetime())
|
|
DeducedQs.removeObjCLifetime();
|
|
|
|
// Objective-C ARC:
|
|
// If template deduction would produce a lifetime qualifier on a type
|
|
// that is not a lifetime type, template argument deduction fails.
|
|
if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
|
|
!DeducedType->isDependentType()) {
|
|
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
|
Info.FirstArg = TemplateArgument(Param);
|
|
Info.SecondArg = TemplateArgument(Arg);
|
|
return Sema::TDK_Underqualified;
|
|
}
|
|
|
|
// Objective-C ARC:
|
|
// If template deduction would produce an argument type with lifetime type
|
|
// but no lifetime qualifier, the __strong lifetime qualifier is inferred.
|
|
if (S.getLangOpts().ObjCAutoRefCount &&
|
|
DeducedType->isObjCLifetimeType() &&
|
|
!DeducedQs.hasObjCLifetime())
|
|
DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
|
|
|
|
DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
|
|
DeducedQs);
|
|
|
|
if (RecanonicalizeArg)
|
|
DeducedType = S.Context.getCanonicalType(DeducedType);
|
|
|
|
DeducedTemplateArgument NewDeduced(DeducedType);
|
|
DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
|
|
Deduced[Index],
|
|
NewDeduced);
|
|
if (Result.isNull()) {
|
|
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
|
Info.FirstArg = Deduced[Index];
|
|
Info.SecondArg = NewDeduced;
|
|
return Sema::TDK_Inconsistent;
|
|
}
|
|
|
|
Deduced[Index] = Result;
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
// Set up the template argument deduction information for a failure.
|
|
Info.FirstArg = TemplateArgument(ParamIn);
|
|
Info.SecondArg = TemplateArgument(ArgIn);
|
|
|
|
// If the parameter is an already-substituted template parameter
|
|
// pack, do nothing: we don't know which of its arguments to look
|
|
// at, so we have to wait until all of the parameter packs in this
|
|
// expansion have arguments.
|
|
if (isa<SubstTemplateTypeParmPackType>(Param))
|
|
return Sema::TDK_Success;
|
|
|
|
// Check the cv-qualifiers on the parameter and argument types.
|
|
CanQualType CanParam = S.Context.getCanonicalType(Param);
|
|
CanQualType CanArg = S.Context.getCanonicalType(Arg);
|
|
if (!(TDF & TDF_IgnoreQualifiers)) {
|
|
if (TDF & TDF_ParamWithReferenceType) {
|
|
if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
} else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
|
|
if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
// If the parameter type is not dependent, there is nothing to deduce.
|
|
if (!Param->isDependentType()) {
|
|
if (!(TDF & TDF_SkipNonDependent)) {
|
|
bool NonDeduced = (TDF & TDF_InOverloadResolution)?
|
|
!S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
|
|
Param != Arg;
|
|
if (NonDeduced) {
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
}
|
|
return Sema::TDK_Success;
|
|
}
|
|
} else if (!Param->isDependentType()) {
|
|
CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
|
|
ArgUnqualType = CanArg.getUnqualifiedType();
|
|
bool Success = (TDF & TDF_InOverloadResolution)?
|
|
S.isSameOrCompatibleFunctionType(ParamUnqualType,
|
|
ArgUnqualType) :
|
|
ParamUnqualType == ArgUnqualType;
|
|
if (Success)
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
switch (Param->getTypeClass()) {
|
|
// Non-canonical types cannot appear here.
|
|
#define NON_CANONICAL_TYPE(Class, Base) \
|
|
case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
|
|
#define TYPE(Class, Base)
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
case Type::TemplateTypeParm:
|
|
case Type::SubstTemplateTypeParmPack:
|
|
llvm_unreachable("Type nodes handled above");
|
|
|
|
// These types cannot be dependent, so simply check whether the types are
|
|
// the same.
|
|
case Type::Builtin:
|
|
case Type::VariableArray:
|
|
case Type::Vector:
|
|
case Type::FunctionNoProto:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObjectPointer: {
|
|
if (TDF & TDF_SkipNonDependent)
|
|
return Sema::TDK_Success;
|
|
|
|
if (TDF & TDF_IgnoreQualifiers) {
|
|
Param = Param.getUnqualifiedType();
|
|
Arg = Arg.getUnqualifiedType();
|
|
}
|
|
|
|
return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
// _Complex T [placeholder extension]
|
|
case Type::Complex:
|
|
if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
cast<ComplexType>(Param)->getElementType(),
|
|
ComplexArg->getElementType(),
|
|
Info, Deduced, TDF);
|
|
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
// _Atomic T [extension]
|
|
case Type::Atomic:
|
|
if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
cast<AtomicType>(Param)->getValueType(),
|
|
AtomicArg->getValueType(),
|
|
Info, Deduced, TDF);
|
|
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
// T *
|
|
case Type::Pointer: {
|
|
QualType PointeeType;
|
|
if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
|
|
PointeeType = PointerArg->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PointerArg
|
|
= Arg->getAs<ObjCObjectPointerType>()) {
|
|
PointeeType = PointerArg->getPointeeType();
|
|
} else {
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
cast<PointerType>(Param)->getPointeeType(),
|
|
PointeeType,
|
|
Info, Deduced, SubTDF);
|
|
}
|
|
|
|
// T &
|
|
case Type::LValueReference: {
|
|
const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
|
|
if (!ReferenceArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
cast<LValueReferenceType>(Param)->getPointeeType(),
|
|
ReferenceArg->getPointeeType(), Info, Deduced, 0);
|
|
}
|
|
|
|
// T && [C++0x]
|
|
case Type::RValueReference: {
|
|
const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
|
|
if (!ReferenceArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
cast<RValueReferenceType>(Param)->getPointeeType(),
|
|
ReferenceArg->getPointeeType(),
|
|
Info, Deduced, 0);
|
|
}
|
|
|
|
// T [] (implied, but not stated explicitly)
|
|
case Type::IncompleteArray: {
|
|
const IncompleteArrayType *IncompleteArrayArg =
|
|
S.Context.getAsIncompleteArrayType(Arg);
|
|
if (!IncompleteArrayArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
S.Context.getAsIncompleteArrayType(Param)->getElementType(),
|
|
IncompleteArrayArg->getElementType(),
|
|
Info, Deduced, SubTDF);
|
|
}
|
|
|
|
// T [integer-constant]
|
|
case Type::ConstantArray: {
|
|
const ConstantArrayType *ConstantArrayArg =
|
|
S.Context.getAsConstantArrayType(Arg);
|
|
if (!ConstantArrayArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
const ConstantArrayType *ConstantArrayParm =
|
|
S.Context.getAsConstantArrayType(Param);
|
|
if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
ConstantArrayParm->getElementType(),
|
|
ConstantArrayArg->getElementType(),
|
|
Info, Deduced, SubTDF);
|
|
}
|
|
|
|
// type [i]
|
|
case Type::DependentSizedArray: {
|
|
const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
|
|
if (!ArrayArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
|
|
|
|
// Check the element type of the arrays
|
|
const DependentSizedArrayType *DependentArrayParm
|
|
= S.Context.getAsDependentSizedArrayType(Param);
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
DependentArrayParm->getElementType(),
|
|
ArrayArg->getElementType(),
|
|
Info, Deduced, SubTDF))
|
|
return Result;
|
|
|
|
// Determine the array bound is something we can deduce.
|
|
NonTypeTemplateParmDecl *NTTP
|
|
= getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
|
|
if (!NTTP)
|
|
return Sema::TDK_Success;
|
|
|
|
// We can perform template argument deduction for the given non-type
|
|
// template parameter.
|
|
assert(NTTP->getDepth() == 0 &&
|
|
"Cannot deduce non-type template argument at depth > 0");
|
|
if (const ConstantArrayType *ConstantArrayArg
|
|
= dyn_cast<ConstantArrayType>(ArrayArg)) {
|
|
llvm::APSInt Size(ConstantArrayArg->getSize());
|
|
return DeduceNonTypeTemplateArgument(S, NTTP, Size,
|
|
S.Context.getSizeType(),
|
|
/*ArrayBound=*/true,
|
|
Info, Deduced);
|
|
}
|
|
if (const DependentSizedArrayType *DependentArrayArg
|
|
= dyn_cast<DependentSizedArrayType>(ArrayArg))
|
|
if (DependentArrayArg->getSizeExpr())
|
|
return DeduceNonTypeTemplateArgument(S, NTTP,
|
|
DependentArrayArg->getSizeExpr(),
|
|
Info, Deduced);
|
|
|
|
// Incomplete type does not match a dependently-sized array type
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
// type(*)(T)
|
|
// T(*)()
|
|
// T(*)(T)
|
|
case Type::FunctionProto: {
|
|
unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
|
|
const FunctionProtoType *FunctionProtoArg =
|
|
dyn_cast<FunctionProtoType>(Arg);
|
|
if (!FunctionProtoArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
const FunctionProtoType *FunctionProtoParam =
|
|
cast<FunctionProtoType>(Param);
|
|
|
|
if (FunctionProtoParam->getTypeQuals()
|
|
!= FunctionProtoArg->getTypeQuals() ||
|
|
FunctionProtoParam->getRefQualifier()
|
|
!= FunctionProtoArg->getRefQualifier() ||
|
|
FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
// Check return types.
|
|
if (Sema::TemplateDeductionResult Result =
|
|
DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, FunctionProtoParam->getReturnType(),
|
|
FunctionProtoArg->getReturnType(), Info, Deduced, 0))
|
|
return Result;
|
|
|
|
return DeduceTemplateArguments(
|
|
S, TemplateParams, FunctionProtoParam->param_type_begin(),
|
|
FunctionProtoParam->getNumParams(),
|
|
FunctionProtoArg->param_type_begin(),
|
|
FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
|
|
}
|
|
|
|
case Type::InjectedClassName: {
|
|
// Treat a template's injected-class-name as if the template
|
|
// specialization type had been used.
|
|
Param = cast<InjectedClassNameType>(Param)
|
|
->getInjectedSpecializationType();
|
|
assert(isa<TemplateSpecializationType>(Param) &&
|
|
"injected class name is not a template specialization type");
|
|
// fall through
|
|
}
|
|
|
|
// template-name<T> (where template-name refers to a class template)
|
|
// template-name<i>
|
|
// TT<T>
|
|
// TT<i>
|
|
// TT<>
|
|
case Type::TemplateSpecialization: {
|
|
const TemplateSpecializationType *SpecParam
|
|
= cast<TemplateSpecializationType>(Param);
|
|
|
|
// Try to deduce template arguments from the template-id.
|
|
Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
|
|
Info, Deduced);
|
|
|
|
if (Result && (TDF & TDF_DerivedClass)) {
|
|
// C++ [temp.deduct.call]p3b3:
|
|
// If P is a class, and P has the form template-id, then A can be a
|
|
// derived class of the deduced A. Likewise, if P is a pointer to a
|
|
// class of the form template-id, A can be a pointer to a derived
|
|
// class pointed to by the deduced A.
|
|
//
|
|
// More importantly:
|
|
// These alternatives are considered only if type deduction would
|
|
// otherwise fail.
|
|
if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
|
|
// We cannot inspect base classes as part of deduction when the type
|
|
// is incomplete, so either instantiate any templates necessary to
|
|
// complete the type, or skip over it if it cannot be completed.
|
|
if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
|
|
return Result;
|
|
|
|
// Use data recursion to crawl through the list of base classes.
|
|
// Visited contains the set of nodes we have already visited, while
|
|
// ToVisit is our stack of records that we still need to visit.
|
|
llvm::SmallPtrSet<const RecordType *, 8> Visited;
|
|
SmallVector<const RecordType *, 8> ToVisit;
|
|
ToVisit.push_back(RecordT);
|
|
bool Successful = false;
|
|
SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
|
|
Deduced.end());
|
|
while (!ToVisit.empty()) {
|
|
// Retrieve the next class in the inheritance hierarchy.
|
|
const RecordType *NextT = ToVisit.pop_back_val();
|
|
|
|
// If we have already seen this type, skip it.
|
|
if (!Visited.insert(NextT))
|
|
continue;
|
|
|
|
// If this is a base class, try to perform template argument
|
|
// deduction from it.
|
|
if (NextT != RecordT) {
|
|
TemplateDeductionInfo BaseInfo(Info.getLocation());
|
|
Sema::TemplateDeductionResult BaseResult
|
|
= DeduceTemplateArguments(S, TemplateParams, SpecParam,
|
|
QualType(NextT, 0), BaseInfo,
|
|
Deduced);
|
|
|
|
// If template argument deduction for this base was successful,
|
|
// note that we had some success. Otherwise, ignore any deductions
|
|
// from this base class.
|
|
if (BaseResult == Sema::TDK_Success) {
|
|
Successful = true;
|
|
DeducedOrig.clear();
|
|
DeducedOrig.append(Deduced.begin(), Deduced.end());
|
|
Info.Param = BaseInfo.Param;
|
|
Info.FirstArg = BaseInfo.FirstArg;
|
|
Info.SecondArg = BaseInfo.SecondArg;
|
|
}
|
|
else
|
|
Deduced = DeducedOrig;
|
|
}
|
|
|
|
// Visit base classes
|
|
CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
|
|
for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
|
|
BaseEnd = Next->bases_end();
|
|
Base != BaseEnd; ++Base) {
|
|
assert(Base->getType()->isRecordType() &&
|
|
"Base class that isn't a record?");
|
|
ToVisit.push_back(Base->getType()->getAs<RecordType>());
|
|
}
|
|
}
|
|
|
|
if (Successful)
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// T type::*
|
|
// T T::*
|
|
// T (type::*)()
|
|
// type (T::*)()
|
|
// type (type::*)(T)
|
|
// type (T::*)(T)
|
|
// T (type::*)(T)
|
|
// T (T::*)()
|
|
// T (T::*)(T)
|
|
case Type::MemberPointer: {
|
|
const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
|
|
const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
|
|
if (!MemPtrArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
MemPtrParam->getPointeeType(),
|
|
MemPtrArg->getPointeeType(),
|
|
Info, Deduced,
|
|
TDF & TDF_IgnoreQualifiers))
|
|
return Result;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
QualType(MemPtrParam->getClass(), 0),
|
|
QualType(MemPtrArg->getClass(), 0),
|
|
Info, Deduced,
|
|
TDF & TDF_IgnoreQualifiers);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// type(^)(T)
|
|
// T(^)()
|
|
// T(^)(T)
|
|
case Type::BlockPointer: {
|
|
const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
|
|
const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
|
|
|
|
if (!BlockPtrArg)
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
BlockPtrParam->getPointeeType(),
|
|
BlockPtrArg->getPointeeType(),
|
|
Info, Deduced, 0);
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((ext_vector_type(<integral constant>))))
|
|
case Type::ExtVector: {
|
|
const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
|
|
if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
|
|
// Make sure that the vectors have the same number of elements.
|
|
if (VectorParam->getNumElements() != VectorArg->getNumElements())
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
// Perform deduction on the element types.
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
VectorParam->getElementType(),
|
|
VectorArg->getElementType(),
|
|
Info, Deduced, TDF);
|
|
}
|
|
|
|
if (const DependentSizedExtVectorType *VectorArg
|
|
= dyn_cast<DependentSizedExtVectorType>(Arg)) {
|
|
// We can't check the number of elements, since the argument has a
|
|
// dependent number of elements. This can only occur during partial
|
|
// ordering.
|
|
|
|
// Perform deduction on the element types.
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
VectorParam->getElementType(),
|
|
VectorArg->getElementType(),
|
|
Info, Deduced, TDF);
|
|
}
|
|
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
// (clang extension)
|
|
//
|
|
// T __attribute__(((ext_vector_type(N))))
|
|
case Type::DependentSizedExtVector: {
|
|
const DependentSizedExtVectorType *VectorParam
|
|
= cast<DependentSizedExtVectorType>(Param);
|
|
|
|
if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
|
|
// Perform deduction on the element types.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
VectorParam->getElementType(),
|
|
VectorArg->getElementType(),
|
|
Info, Deduced, TDF))
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
NonTypeTemplateParmDecl *NTTP
|
|
= getDeducedParameterFromExpr(VectorParam->getSizeExpr());
|
|
if (!NTTP)
|
|
return Sema::TDK_Success;
|
|
|
|
llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
|
|
ArgSize = VectorArg->getNumElements();
|
|
return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
|
|
false, Info, Deduced);
|
|
}
|
|
|
|
if (const DependentSizedExtVectorType *VectorArg
|
|
= dyn_cast<DependentSizedExtVectorType>(Arg)) {
|
|
// Perform deduction on the element types.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
VectorParam->getElementType(),
|
|
VectorArg->getElementType(),
|
|
Info, Deduced, TDF))
|
|
return Result;
|
|
|
|
// Perform deduction on the vector size, if we can.
|
|
NonTypeTemplateParmDecl *NTTP
|
|
= getDeducedParameterFromExpr(VectorParam->getSizeExpr());
|
|
if (!NTTP)
|
|
return Sema::TDK_Success;
|
|
|
|
return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
|
|
Info, Deduced);
|
|
}
|
|
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
case Type::TypeOfExpr:
|
|
case Type::TypeOf:
|
|
case Type::DependentName:
|
|
case Type::UnresolvedUsing:
|
|
case Type::Decltype:
|
|
case Type::UnaryTransform:
|
|
case Type::Auto:
|
|
case Type::DependentTemplateSpecialization:
|
|
case Type::PackExpansion:
|
|
// No template argument deduction for these types
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
llvm_unreachable("Invalid Type Class!");
|
|
}
|
|
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
const TemplateArgument &Param,
|
|
TemplateArgument Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
// If the template argument is a pack expansion, perform template argument
|
|
// deduction against the pattern of that expansion. This only occurs during
|
|
// partial ordering.
|
|
if (Arg.isPackExpansion())
|
|
Arg = Arg.getPackExpansionPattern();
|
|
|
|
switch (Param.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Null template argument in parameter list");
|
|
|
|
case TemplateArgument::Type:
|
|
if (Arg.getKind() == TemplateArgument::Type)
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
Param.getAsType(),
|
|
Arg.getAsType(),
|
|
Info, Deduced, 0);
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Template:
|
|
if (Arg.getKind() == TemplateArgument::Template)
|
|
return DeduceTemplateArguments(S, TemplateParams,
|
|
Param.getAsTemplate(),
|
|
Arg.getAsTemplate(), Info, Deduced);
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
case TemplateArgument::TemplateExpansion:
|
|
llvm_unreachable("caller should handle pack expansions");
|
|
|
|
case TemplateArgument::Declaration:
|
|
if (Arg.getKind() == TemplateArgument::Declaration &&
|
|
isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
|
|
Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
|
|
return Sema::TDK_Success;
|
|
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
case TemplateArgument::NullPtr:
|
|
if (Arg.getKind() == TemplateArgument::NullPtr &&
|
|
S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
|
|
return Sema::TDK_Success;
|
|
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Integral:
|
|
if (Arg.getKind() == TemplateArgument::Integral) {
|
|
if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
|
|
return Sema::TDK_Success;
|
|
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
if (Arg.getKind() == TemplateArgument::Expression) {
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
|
|
case TemplateArgument::Expression: {
|
|
if (NonTypeTemplateParmDecl *NTTP
|
|
= getDeducedParameterFromExpr(Param.getAsExpr())) {
|
|
if (Arg.getKind() == TemplateArgument::Integral)
|
|
return DeduceNonTypeTemplateArgument(S, NTTP,
|
|
Arg.getAsIntegral(),
|
|
Arg.getIntegralType(),
|
|
/*ArrayBound=*/false,
|
|
Info, Deduced);
|
|
if (Arg.getKind() == TemplateArgument::Expression)
|
|
return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
|
|
Info, Deduced);
|
|
if (Arg.getKind() == TemplateArgument::Declaration)
|
|
return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
|
|
Info, Deduced);
|
|
|
|
Info.FirstArg = Param;
|
|
Info.SecondArg = Arg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
|
|
// Can't deduce anything, but that's okay.
|
|
return Sema::TDK_Success;
|
|
}
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("Argument packs should be expanded by the caller!");
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
/// \brief Determine whether there is a template argument to be used for
|
|
/// deduction.
|
|
///
|
|
/// This routine "expands" argument packs in-place, overriding its input
|
|
/// parameters so that \c Args[ArgIdx] will be the available template argument.
|
|
///
|
|
/// \returns true if there is another template argument (which will be at
|
|
/// \c Args[ArgIdx]), false otherwise.
|
|
static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
|
|
unsigned &ArgIdx,
|
|
unsigned &NumArgs) {
|
|
if (ArgIdx == NumArgs)
|
|
return false;
|
|
|
|
const TemplateArgument &Arg = Args[ArgIdx];
|
|
if (Arg.getKind() != TemplateArgument::Pack)
|
|
return true;
|
|
|
|
assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
|
|
Args = Arg.pack_begin();
|
|
NumArgs = Arg.pack_size();
|
|
ArgIdx = 0;
|
|
return ArgIdx < NumArgs;
|
|
}
|
|
|
|
/// \brief Determine whether the given set of template arguments has a pack
|
|
/// expansion that is not the last template argument.
|
|
static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
|
|
unsigned NumArgs) {
|
|
unsigned ArgIdx = 0;
|
|
while (ArgIdx < NumArgs) {
|
|
const TemplateArgument &Arg = Args[ArgIdx];
|
|
|
|
// Unwrap argument packs.
|
|
if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
|
|
Args = Arg.pack_begin();
|
|
NumArgs = Arg.pack_size();
|
|
ArgIdx = 0;
|
|
continue;
|
|
}
|
|
|
|
++ArgIdx;
|
|
if (ArgIdx == NumArgs)
|
|
return false;
|
|
|
|
if (Arg.isPackExpansion())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
const TemplateArgument *Params, unsigned NumParams,
|
|
const TemplateArgument *Args, unsigned NumArgs,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (hasPackExpansionBeforeEnd(Params, NumParams))
|
|
return Sema::TDK_Success;
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If P has a form that contains <T> or <i>, then each argument Pi of the
|
|
// respective template argument list P is compared with the corresponding
|
|
// argument Ai of the corresponding template argument list of A.
|
|
unsigned ArgIdx = 0, ParamIdx = 0;
|
|
for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
|
|
++ParamIdx) {
|
|
if (!Params[ParamIdx].isPackExpansion()) {
|
|
// The simple case: deduce template arguments by matching Pi and Ai.
|
|
|
|
// Check whether we have enough arguments.
|
|
if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
|
|
return Sema::TDK_Success;
|
|
|
|
if (Args[ArgIdx].isPackExpansion()) {
|
|
// FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
|
|
// but applied to pack expansions that are template arguments.
|
|
return Sema::TDK_MiscellaneousDeductionFailure;
|
|
}
|
|
|
|
// Perform deduction for this Pi/Ai pair.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(S, TemplateParams,
|
|
Params[ParamIdx], Args[ArgIdx],
|
|
Info, Deduced))
|
|
return Result;
|
|
|
|
// Move to the next argument.
|
|
++ArgIdx;
|
|
continue;
|
|
}
|
|
|
|
// The parameter is a pack expansion.
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If Pi is a pack expansion, then the pattern of Pi is compared with
|
|
// each remaining argument in the template argument list of A. Each
|
|
// comparison deduces template arguments for subsequent positions in the
|
|
// template parameter packs expanded by Pi.
|
|
TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
|
|
|
|
// Compute the set of template parameter indices that correspond to
|
|
// parameter packs expanded by the pack expansion.
|
|
SmallVector<unsigned, 2> PackIndices;
|
|
{
|
|
llvm::SmallBitVector SawIndices(TemplateParams->size());
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
|
|
unsigned Depth, Index;
|
|
llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
|
|
if (Depth == 0 && !SawIndices[Index]) {
|
|
SawIndices[Index] = true;
|
|
PackIndices.push_back(Index);
|
|
}
|
|
}
|
|
}
|
|
assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
|
|
|
|
// FIXME: If there are no remaining arguments, we can bail out early
|
|
// and set any deduced parameter packs to an empty argument pack.
|
|
// The latter part of this is a (minor) correctness issue.
|
|
|
|
// Save the deduced template arguments for each parameter pack expanded
|
|
// by this pack expansion, then clear out the deduction.
|
|
SmallVector<DeducedTemplateArgument, 2>
|
|
SavedPacks(PackIndices.size());
|
|
NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
|
|
PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
|
|
NewlyDeducedPacks);
|
|
|
|
// Keep track of the deduced template arguments for each parameter pack
|
|
// expanded by this pack expansion (the outer index) and for each
|
|
// template argument (the inner SmallVectors).
|
|
bool HasAnyArguments = false;
|
|
while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
|
|
HasAnyArguments = true;
|
|
|
|
// Deduce template arguments from the pattern.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
|
|
Info, Deduced))
|
|
return Result;
|
|
|
|
// Capture the deduced template arguments for each parameter pack expanded
|
|
// by this pack expansion, add them to the list of arguments we've deduced
|
|
// for that pack, then clear out the deduced argument.
|
|
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
|
|
DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
|
|
if (!DeducedArg.isNull()) {
|
|
NewlyDeducedPacks[I].push_back(DeducedArg);
|
|
DeducedArg = DeducedTemplateArgument();
|
|
}
|
|
}
|
|
|
|
++ArgIdx;
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
|
|
Deduced, PackIndices, SavedPacks,
|
|
NewlyDeducedPacks, Info))
|
|
return Result;
|
|
}
|
|
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArguments(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
const TemplateArgumentList &ParamList,
|
|
const TemplateArgumentList &ArgList,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
|
|
return DeduceTemplateArguments(S, TemplateParams,
|
|
ParamList.data(), ParamList.size(),
|
|
ArgList.data(), ArgList.size(),
|
|
Info, Deduced);
|
|
}
|
|
|
|
/// \brief Determine whether two template arguments are the same.
|
|
static bool isSameTemplateArg(ASTContext &Context,
|
|
const TemplateArgument &X,
|
|
const TemplateArgument &Y) {
|
|
if (X.getKind() != Y.getKind())
|
|
return false;
|
|
|
|
switch (X.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Comparing NULL template argument");
|
|
|
|
case TemplateArgument::Type:
|
|
return Context.getCanonicalType(X.getAsType()) ==
|
|
Context.getCanonicalType(Y.getAsType());
|
|
|
|
case TemplateArgument::Declaration:
|
|
return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
|
|
X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
|
|
|
|
case TemplateArgument::NullPtr:
|
|
return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
return Context.getCanonicalTemplateName(
|
|
X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
|
|
Context.getCanonicalTemplateName(
|
|
Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
|
|
|
|
case TemplateArgument::Integral:
|
|
return X.getAsIntegral() == Y.getAsIntegral();
|
|
|
|
case TemplateArgument::Expression: {
|
|
llvm::FoldingSetNodeID XID, YID;
|
|
X.getAsExpr()->Profile(XID, Context, true);
|
|
Y.getAsExpr()->Profile(YID, Context, true);
|
|
return XID == YID;
|
|
}
|
|
|
|
case TemplateArgument::Pack:
|
|
if (X.pack_size() != Y.pack_size())
|
|
return false;
|
|
|
|
for (TemplateArgument::pack_iterator XP = X.pack_begin(),
|
|
XPEnd = X.pack_end(),
|
|
YP = Y.pack_begin();
|
|
XP != XPEnd; ++XP, ++YP)
|
|
if (!isSameTemplateArg(Context, *XP, *YP))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
/// \brief Allocate a TemplateArgumentLoc where all locations have
|
|
/// been initialized to the given location.
|
|
///
|
|
/// \param S The semantic analysis object.
|
|
///
|
|
/// \param Arg The template argument we are producing template argument
|
|
/// location information for.
|
|
///
|
|
/// \param NTTPType For a declaration template argument, the type of
|
|
/// the non-type template parameter that corresponds to this template
|
|
/// argument.
|
|
///
|
|
/// \param Loc The source location to use for the resulting template
|
|
/// argument.
|
|
static TemplateArgumentLoc
|
|
getTrivialTemplateArgumentLoc(Sema &S,
|
|
const TemplateArgument &Arg,
|
|
QualType NTTPType,
|
|
SourceLocation Loc) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Can't get a NULL template argument here");
|
|
|
|
case TemplateArgument::Type:
|
|
return TemplateArgumentLoc(Arg,
|
|
S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
|
|
|
|
case TemplateArgument::Declaration: {
|
|
Expr *E
|
|
= S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
|
|
.takeAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(E), E);
|
|
}
|
|
|
|
case TemplateArgument::NullPtr: {
|
|
Expr *E
|
|
= S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
|
|
.takeAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
|
|
E);
|
|
}
|
|
|
|
case TemplateArgument::Integral: {
|
|
Expr *E
|
|
= S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(E), E);
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion: {
|
|
NestedNameSpecifierLocBuilder Builder;
|
|
TemplateName Template = Arg.getAsTemplate();
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
|
|
Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
|
|
else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
|
|
Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
|
|
|
|
if (Arg.getKind() == TemplateArgument::Template)
|
|
return TemplateArgumentLoc(Arg,
|
|
Builder.getWithLocInContext(S.Context),
|
|
Loc);
|
|
|
|
|
|
return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
|
|
Loc, Loc);
|
|
}
|
|
|
|
case TemplateArgument::Expression:
|
|
return TemplateArgumentLoc(Arg, Arg.getAsExpr());
|
|
|
|
case TemplateArgument::Pack:
|
|
return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateArgument Kind!");
|
|
}
|
|
|
|
|
|
/// \brief Convert the given deduced template argument and add it to the set of
|
|
/// fully-converted template arguments.
|
|
static bool
|
|
ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
|
|
DeducedTemplateArgument Arg,
|
|
NamedDecl *Template,
|
|
QualType NTTPType,
|
|
unsigned ArgumentPackIndex,
|
|
TemplateDeductionInfo &Info,
|
|
bool InFunctionTemplate,
|
|
SmallVectorImpl<TemplateArgument> &Output) {
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
// This is a template argument pack, so check each of its arguments against
|
|
// the template parameter.
|
|
SmallVector<TemplateArgument, 2> PackedArgsBuilder;
|
|
for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
|
|
PAEnd = Arg.pack_end();
|
|
PA != PAEnd; ++PA) {
|
|
// When converting the deduced template argument, append it to the
|
|
// general output list. We need to do this so that the template argument
|
|
// checking logic has all of the prior template arguments available.
|
|
DeducedTemplateArgument InnerArg(*PA);
|
|
InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
|
|
if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
|
|
NTTPType, PackedArgsBuilder.size(),
|
|
Info, InFunctionTemplate, Output))
|
|
return true;
|
|
|
|
// Move the converted template argument into our argument pack.
|
|
PackedArgsBuilder.push_back(Output.pop_back_val());
|
|
}
|
|
|
|
// Create the resulting argument pack.
|
|
Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
|
|
PackedArgsBuilder.data(),
|
|
PackedArgsBuilder.size()));
|
|
return false;
|
|
}
|
|
|
|
// Convert the deduced template argument into a template
|
|
// argument that we can check, almost as if the user had written
|
|
// the template argument explicitly.
|
|
TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
|
|
Info.getLocation());
|
|
|
|
// Check the template argument, converting it as necessary.
|
|
return S.CheckTemplateArgument(Param, ArgLoc,
|
|
Template,
|
|
Template->getLocation(),
|
|
Template->getSourceRange().getEnd(),
|
|
ArgumentPackIndex,
|
|
Output,
|
|
InFunctionTemplate
|
|
? (Arg.wasDeducedFromArrayBound()
|
|
? Sema::CTAK_DeducedFromArrayBound
|
|
: Sema::CTAK_Deduced)
|
|
: Sema::CTAK_Specified);
|
|
}
|
|
|
|
/// Complete template argument deduction for a class template partial
|
|
/// specialization.
|
|
static Sema::TemplateDeductionResult
|
|
FinishTemplateArgumentDeduction(Sema &S,
|
|
ClassTemplatePartialSpecializationDecl *Partial,
|
|
const TemplateArgumentList &TemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
Sema::ContextRAII SavedContext(S, Partial);
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
SmallVector<TemplateArgument, 4> Builder;
|
|
TemplateParameterList *PartialParams = Partial->getTemplateParameters();
|
|
for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
|
|
NamedDecl *Param = PartialParams->getParam(I);
|
|
if (Deduced[I].isNull()) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
return Sema::TDK_Incomplete;
|
|
}
|
|
|
|
// We have deduced this argument, so it still needs to be
|
|
// checked and converted.
|
|
|
|
// First, for a non-type template parameter type that is
|
|
// initialized by a declaration, we need the type of the
|
|
// corresponding non-type template parameter.
|
|
QualType NTTPType;
|
|
if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
NTTPType = NTTP->getType();
|
|
if (NTTPType->isDependentType()) {
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
|
|
Builder.data(), Builder.size());
|
|
NTTPType = S.SubstType(NTTPType,
|
|
MultiLevelTemplateArgumentList(TemplateArgs),
|
|
NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
if (NTTPType.isNull()) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(TemplateArgumentList::CreateCopy(S.Context,
|
|
Builder.data(),
|
|
Builder.size()));
|
|
return Sema::TDK_SubstitutionFailure;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
|
|
Partial, NTTPType, 0, Info, false,
|
|
Builder)) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
|
|
Builder.size()));
|
|
return Sema::TDK_SubstitutionFailure;
|
|
}
|
|
}
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *DeducedArgumentList
|
|
= TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
|
|
Builder.size());
|
|
|
|
Info.reset(DeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the template
|
|
// arguments of the class template partial specialization, and
|
|
// verify that the instantiated template arguments are both valid
|
|
// and are equivalent to the template arguments originally provided
|
|
// to the class template.
|
|
LocalInstantiationScope InstScope(S);
|
|
ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
|
|
const ASTTemplateArgumentListInfo *PartialTemplArgInfo
|
|
= Partial->getTemplateArgsAsWritten();
|
|
const TemplateArgumentLoc *PartialTemplateArgs
|
|
= PartialTemplArgInfo->getTemplateArgs();
|
|
|
|
TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
|
|
PartialTemplArgInfo->RAngleLoc);
|
|
|
|
if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
|
|
InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
|
|
unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
|
|
if (ParamIdx >= Partial->getTemplateParameters()->size())
|
|
ParamIdx = Partial->getTemplateParameters()->size() - 1;
|
|
|
|
Decl *Param
|
|
= const_cast<NamedDecl *>(
|
|
Partial->getTemplateParameters()->getParam(ParamIdx));
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
|
|
return Sema::TDK_SubstitutionFailure;
|
|
}
|
|
|
|
SmallVector<TemplateArgument, 4> ConvertedInstArgs;
|
|
if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
|
|
InstArgs, false, ConvertedInstArgs))
|
|
return Sema::TDK_SubstitutionFailure;
|
|
|
|
TemplateParameterList *TemplateParams
|
|
= ClassTemplate->getTemplateParameters();
|
|
for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
|
|
TemplateArgument InstArg = ConvertedInstArgs.data()[I];
|
|
if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
|
|
Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
|
|
Info.FirstArg = TemplateArgs[I];
|
|
Info.SecondArg = InstArg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
}
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return Sema::TDK_SubstitutionFailure;
|
|
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
/// \brief Perform template argument deduction to determine whether
|
|
/// the given template arguments match the given class template
|
|
/// partial specialization per C++ [temp.class.spec.match].
|
|
Sema::TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
|
|
const TemplateArgumentList &TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
if (Partial->isInvalidDecl())
|
|
return TDK_Invalid;
|
|
|
|
// C++ [temp.class.spec.match]p2:
|
|
// A partial specialization matches a given actual template
|
|
// argument list if the template arguments of the partial
|
|
// specialization can be deduced from the actual template argument
|
|
// list (14.8.2).
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(Partial->getTemplateParameters()->size());
|
|
if (TemplateDeductionResult Result
|
|
= ::DeduceTemplateArguments(*this,
|
|
Partial->getTemplateParameters(),
|
|
Partial->getTemplateArgs(),
|
|
TemplateArgs, Info, Deduced))
|
|
return Result;
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return TDK_InstantiationDepth;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return Sema::TDK_SubstitutionFailure;
|
|
|
|
return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
|
|
Deduced, Info);
|
|
}
|
|
|
|
/// Complete template argument deduction for a variable template partial
|
|
/// specialization.
|
|
/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
|
|
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
|
|
/// VarTemplate(Partial)SpecializationDecl with a new data
|
|
/// structure Template(Partial)SpecializationDecl, and
|
|
/// using Template(Partial)SpecializationDecl as input type.
|
|
static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
Sema &S, VarTemplatePartialSpecializationDecl *Partial,
|
|
const TemplateArgumentList &TemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
TemplateDeductionInfo &Info) {
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
|
|
Sema::SFINAETrap Trap(S);
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
SmallVector<TemplateArgument, 4> Builder;
|
|
TemplateParameterList *PartialParams = Partial->getTemplateParameters();
|
|
for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
|
|
NamedDecl *Param = PartialParams->getParam(I);
|
|
if (Deduced[I].isNull()) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
return Sema::TDK_Incomplete;
|
|
}
|
|
|
|
// We have deduced this argument, so it still needs to be
|
|
// checked and converted.
|
|
|
|
// First, for a non-type template parameter type that is
|
|
// initialized by a declaration, we need the type of the
|
|
// corresponding non-type template parameter.
|
|
QualType NTTPType;
|
|
if (NonTypeTemplateParmDecl *NTTP =
|
|
dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
NTTPType = NTTP->getType();
|
|
if (NTTPType->isDependentType()) {
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
|
|
Builder.data(), Builder.size());
|
|
NTTPType =
|
|
S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
|
|
NTTP->getLocation(), NTTP->getDeclName());
|
|
if (NTTPType.isNull()) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
|
|
Builder.size()));
|
|
return Sema::TDK_SubstitutionFailure;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
|
|
0, Info, false, Builder)) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
|
|
Builder.size()));
|
|
return Sema::TDK_SubstitutionFailure;
|
|
}
|
|
}
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
|
|
S.Context, Builder.data(), Builder.size());
|
|
|
|
Info.reset(DeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the template
|
|
// arguments of the class template partial specialization, and
|
|
// verify that the instantiated template arguments are both valid
|
|
// and are equivalent to the template arguments originally provided
|
|
// to the class template.
|
|
LocalInstantiationScope InstScope(S);
|
|
VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
|
|
const ASTTemplateArgumentListInfo *PartialTemplArgInfo
|
|
= Partial->getTemplateArgsAsWritten();
|
|
const TemplateArgumentLoc *PartialTemplateArgs
|
|
= PartialTemplArgInfo->getTemplateArgs();
|
|
|
|
TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
|
|
PartialTemplArgInfo->RAngleLoc);
|
|
|
|
if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
|
|
InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
|
|
unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
|
|
if (ParamIdx >= Partial->getTemplateParameters()->size())
|
|
ParamIdx = Partial->getTemplateParameters()->size() - 1;
|
|
|
|
Decl *Param = const_cast<NamedDecl *>(
|
|
Partial->getTemplateParameters()->getParam(ParamIdx));
|
|
Info.Param = makeTemplateParameter(Param);
|
|
Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
|
|
return Sema::TDK_SubstitutionFailure;
|
|
}
|
|
SmallVector<TemplateArgument, 4> ConvertedInstArgs;
|
|
if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
|
|
false, ConvertedInstArgs))
|
|
return Sema::TDK_SubstitutionFailure;
|
|
|
|
TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
|
|
for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
|
|
TemplateArgument InstArg = ConvertedInstArgs.data()[I];
|
|
if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
|
|
Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
|
|
Info.FirstArg = TemplateArgs[I];
|
|
Info.SecondArg = InstArg;
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
}
|
|
}
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return Sema::TDK_SubstitutionFailure;
|
|
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
/// \brief Perform template argument deduction to determine whether
|
|
/// the given template arguments match the given variable template
|
|
/// partial specialization per C++ [temp.class.spec.match].
|
|
/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
|
|
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
|
|
/// VarTemplate(Partial)SpecializationDecl with a new data
|
|
/// structure Template(Partial)SpecializationDecl, and
|
|
/// using Template(Partial)SpecializationDecl as input type.
|
|
Sema::TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
|
|
const TemplateArgumentList &TemplateArgs,
|
|
TemplateDeductionInfo &Info) {
|
|
if (Partial->isInvalidDecl())
|
|
return TDK_Invalid;
|
|
|
|
// C++ [temp.class.spec.match]p2:
|
|
// A partial specialization matches a given actual template
|
|
// argument list if the template arguments of the partial
|
|
// specialization can be deduced from the actual template argument
|
|
// list (14.8.2).
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(Partial->getTemplateParameters()->size());
|
|
if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
|
|
*this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
|
|
TemplateArgs, Info, Deduced))
|
|
return Result;
|
|
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return TDK_InstantiationDepth;
|
|
|
|
if (Trap.hasErrorOccurred())
|
|
return Sema::TDK_SubstitutionFailure;
|
|
|
|
return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
|
|
Deduced, Info);
|
|
}
|
|
|
|
/// \brief Determine whether the given type T is a simple-template-id type.
|
|
static bool isSimpleTemplateIdType(QualType T) {
|
|
if (const TemplateSpecializationType *Spec
|
|
= T->getAs<TemplateSpecializationType>())
|
|
return Spec->getTemplateName().getAsTemplateDecl() != 0;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Substitute the explicitly-provided template arguments into the
|
|
/// given function template according to C++ [temp.arg.explicit].
|
|
///
|
|
/// \param FunctionTemplate the function template into which the explicit
|
|
/// template arguments will be substituted.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-specified template
|
|
/// arguments.
|
|
///
|
|
/// \param Deduced the deduced template arguments, which will be populated
|
|
/// with the converted and checked explicit template arguments.
|
|
///
|
|
/// \param ParamTypes will be populated with the instantiated function
|
|
/// parameters.
|
|
///
|
|
/// \param FunctionType if non-NULL, the result type of the function template
|
|
/// will also be instantiated and the pointed-to value will be updated with
|
|
/// the instantiated function type.
|
|
///
|
|
/// \param Info if substitution fails for any reason, this object will be
|
|
/// populated with more information about the failure.
|
|
///
|
|
/// \returns TDK_Success if substitution was successful, or some failure
|
|
/// condition.
|
|
Sema::TemplateDeductionResult
|
|
Sema::SubstituteExplicitTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo &ExplicitTemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<QualType> &ParamTypes,
|
|
QualType *FunctionType,
|
|
TemplateDeductionInfo &Info) {
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
|
|
if (ExplicitTemplateArgs.size() == 0) {
|
|
// No arguments to substitute; just copy over the parameter types and
|
|
// fill in the function type.
|
|
for (FunctionDecl::param_iterator P = Function->param_begin(),
|
|
PEnd = Function->param_end();
|
|
P != PEnd;
|
|
++P)
|
|
ParamTypes.push_back((*P)->getType());
|
|
|
|
if (FunctionType)
|
|
*FunctionType = Function->getType();
|
|
return TDK_Success;
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// C++ [temp.arg.explicit]p3:
|
|
// Template arguments that are present shall be specified in the
|
|
// declaration order of their corresponding template-parameters. The
|
|
// template argument list shall not specify more template-arguments than
|
|
// there are corresponding template-parameters.
|
|
SmallVector<TemplateArgument, 4> Builder;
|
|
|
|
// Enter a new template instantiation context where we check the
|
|
// explicitly-specified template arguments against this function template,
|
|
// and then substitute them into the function parameter types.
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
|
|
DeducedArgs,
|
|
ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return TDK_InstantiationDepth;
|
|
|
|
if (CheckTemplateArgumentList(FunctionTemplate,
|
|
SourceLocation(),
|
|
ExplicitTemplateArgs,
|
|
true,
|
|
Builder) || Trap.hasErrorOccurred()) {
|
|
unsigned Index = Builder.size();
|
|
if (Index >= TemplateParams->size())
|
|
Index = TemplateParams->size() - 1;
|
|
Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
|
|
return TDK_InvalidExplicitArguments;
|
|
}
|
|
|
|
// Form the template argument list from the explicitly-specified
|
|
// template arguments.
|
|
TemplateArgumentList *ExplicitArgumentList
|
|
= TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
|
|
Info.reset(ExplicitArgumentList);
|
|
|
|
// Template argument deduction and the final substitution should be
|
|
// done in the context of the templated declaration. Explicit
|
|
// argument substitution, on the other hand, needs to happen in the
|
|
// calling context.
|
|
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
|
|
|
|
// If we deduced template arguments for a template parameter pack,
|
|
// note that the template argument pack is partially substituted and record
|
|
// the explicit template arguments. They'll be used as part of deduction
|
|
// for this template parameter pack.
|
|
for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
|
|
const TemplateArgument &Arg = Builder[I];
|
|
if (Arg.getKind() == TemplateArgument::Pack) {
|
|
CurrentInstantiationScope->SetPartiallySubstitutedPack(
|
|
TemplateParams->getParam(I),
|
|
Arg.pack_begin(),
|
|
Arg.pack_size());
|
|
break;
|
|
}
|
|
}
|
|
|
|
const FunctionProtoType *Proto
|
|
= Function->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto && "Function template does not have a prototype?");
|
|
|
|
// Instantiate the types of each of the function parameters given the
|
|
// explicitly-specified template arguments. If the function has a trailing
|
|
// return type, substitute it after the arguments to ensure we substitute
|
|
// in lexical order.
|
|
if (Proto->hasTrailingReturn()) {
|
|
if (SubstParmTypes(Function->getLocation(),
|
|
Function->param_begin(), Function->getNumParams(),
|
|
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
|
|
ParamTypes))
|
|
return TDK_SubstitutionFailure;
|
|
}
|
|
|
|
// Instantiate the return type.
|
|
QualType ResultType;
|
|
{
|
|
// C++11 [expr.prim.general]p3:
|
|
// If a declaration declares a member function or member function
|
|
// template of a class X, the expression this is a prvalue of type
|
|
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
|
|
// and the end of the function-definition, member-declarator, or
|
|
// declarator.
|
|
unsigned ThisTypeQuals = 0;
|
|
CXXRecordDecl *ThisContext = 0;
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
|
|
ThisContext = Method->getParent();
|
|
ThisTypeQuals = Method->getTypeQualifiers();
|
|
}
|
|
|
|
CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
|
|
getLangOpts().CPlusPlus11);
|
|
|
|
ResultType =
|
|
SubstType(Proto->getReturnType(),
|
|
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
|
|
Function->getTypeSpecStartLoc(), Function->getDeclName());
|
|
if (ResultType.isNull() || Trap.hasErrorOccurred())
|
|
return TDK_SubstitutionFailure;
|
|
}
|
|
|
|
// Instantiate the types of each of the function parameters given the
|
|
// explicitly-specified template arguments if we didn't do so earlier.
|
|
if (!Proto->hasTrailingReturn() &&
|
|
SubstParmTypes(Function->getLocation(),
|
|
Function->param_begin(), Function->getNumParams(),
|
|
MultiLevelTemplateArgumentList(*ExplicitArgumentList),
|
|
ParamTypes))
|
|
return TDK_SubstitutionFailure;
|
|
|
|
if (FunctionType) {
|
|
*FunctionType = BuildFunctionType(ResultType, ParamTypes,
|
|
Function->getLocation(),
|
|
Function->getDeclName(),
|
|
Proto->getExtProtoInfo());
|
|
if (FunctionType->isNull() || Trap.hasErrorOccurred())
|
|
return TDK_SubstitutionFailure;
|
|
}
|
|
|
|
// C++ [temp.arg.explicit]p2:
|
|
// Trailing template arguments that can be deduced (14.8.2) may be
|
|
// omitted from the list of explicit template-arguments. If all of the
|
|
// template arguments can be deduced, they may all be omitted; in this
|
|
// case, the empty template argument list <> itself may also be omitted.
|
|
//
|
|
// Take all of the explicitly-specified arguments and put them into
|
|
// the set of deduced template arguments. Explicitly-specified
|
|
// parameter packs, however, will be set to NULL since the deduction
|
|
// mechanisms handle explicitly-specified argument packs directly.
|
|
Deduced.reserve(TemplateParams->size());
|
|
for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
|
|
const TemplateArgument &Arg = ExplicitArgumentList->get(I);
|
|
if (Arg.getKind() == TemplateArgument::Pack)
|
|
Deduced.push_back(DeducedTemplateArgument());
|
|
else
|
|
Deduced.push_back(Arg);
|
|
}
|
|
|
|
return TDK_Success;
|
|
}
|
|
|
|
/// \brief Check whether the deduced argument type for a call to a function
|
|
/// template matches the actual argument type per C++ [temp.deduct.call]p4.
|
|
static bool
|
|
CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
|
|
QualType DeducedA) {
|
|
ASTContext &Context = S.Context;
|
|
|
|
QualType A = OriginalArg.OriginalArgType;
|
|
QualType OriginalParamType = OriginalArg.OriginalParamType;
|
|
|
|
// Check for type equality (top-level cv-qualifiers are ignored).
|
|
if (Context.hasSameUnqualifiedType(A, DeducedA))
|
|
return false;
|
|
|
|
// Strip off references on the argument types; they aren't needed for
|
|
// the following checks.
|
|
if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
|
|
DeducedA = DeducedARef->getPointeeType();
|
|
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
|
|
A = ARef->getPointeeType();
|
|
|
|
// C++ [temp.deduct.call]p4:
|
|
// [...] However, there are three cases that allow a difference:
|
|
// - If the original P is a reference type, the deduced A (i.e., the
|
|
// type referred to by the reference) can be more cv-qualified than
|
|
// the transformed A.
|
|
if (const ReferenceType *OriginalParamRef
|
|
= OriginalParamType->getAs<ReferenceType>()) {
|
|
// We don't want to keep the reference around any more.
|
|
OriginalParamType = OriginalParamRef->getPointeeType();
|
|
|
|
Qualifiers AQuals = A.getQualifiers();
|
|
Qualifiers DeducedAQuals = DeducedA.getQualifiers();
|
|
|
|
// Under Objective-C++ ARC, the deduced type may have implicitly
|
|
// been given strong or (when dealing with a const reference)
|
|
// unsafe_unretained lifetime. If so, update the original
|
|
// qualifiers to include this lifetime.
|
|
if (S.getLangOpts().ObjCAutoRefCount &&
|
|
((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
|
|
AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
|
|
(DeducedAQuals.hasConst() &&
|
|
DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
|
|
AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
|
|
}
|
|
|
|
if (AQuals == DeducedAQuals) {
|
|
// Qualifiers match; there's nothing to do.
|
|
} else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
|
|
return true;
|
|
} else {
|
|
// Qualifiers are compatible, so have the argument type adopt the
|
|
// deduced argument type's qualifiers as if we had performed the
|
|
// qualification conversion.
|
|
A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
|
|
}
|
|
}
|
|
|
|
// - The transformed A can be another pointer or pointer to member
|
|
// type that can be converted to the deduced A via a qualification
|
|
// conversion.
|
|
//
|
|
// Also allow conversions which merely strip [[noreturn]] from function types
|
|
// (recursively) as an extension.
|
|
// FIXME: Currently, this doesn't play nicely with qualification conversions.
|
|
bool ObjCLifetimeConversion = false;
|
|
QualType ResultTy;
|
|
if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
|
|
(S.IsQualificationConversion(A, DeducedA, false,
|
|
ObjCLifetimeConversion) ||
|
|
S.IsNoReturnConversion(A, DeducedA, ResultTy)))
|
|
return false;
|
|
|
|
|
|
// - If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. [...]
|
|
// [...] Likewise, if P is a pointer to a class of the form
|
|
// simple-template-id, the transformed A can be a pointer to a
|
|
// derived class pointed to by the deduced A.
|
|
if (const PointerType *OriginalParamPtr
|
|
= OriginalParamType->getAs<PointerType>()) {
|
|
if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
|
|
if (const PointerType *APtr = A->getAs<PointerType>()) {
|
|
if (A->getPointeeType()->isRecordType()) {
|
|
OriginalParamType = OriginalParamPtr->getPointeeType();
|
|
DeducedA = DeducedAPtr->getPointeeType();
|
|
A = APtr->getPointeeType();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Context.hasSameUnqualifiedType(A, DeducedA))
|
|
return false;
|
|
|
|
if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
|
|
S.IsDerivedFrom(A, DeducedA))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Finish template argument deduction for a function template,
|
|
/// checking the deduced template arguments for completeness and forming
|
|
/// the function template specialization.
|
|
///
|
|
/// \param OriginalCallArgs If non-NULL, the original call arguments against
|
|
/// which the deduced argument types should be compared.
|
|
Sema::TemplateDeductionResult
|
|
Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned NumExplicitlySpecified,
|
|
FunctionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// Enter a new template instantiation context while we instantiate the
|
|
// actual function declaration.
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
|
|
DeducedArgs,
|
|
ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
|
|
Info);
|
|
if (Inst.isInvalid())
|
|
return TDK_InstantiationDepth;
|
|
|
|
ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
|
|
|
|
// C++ [temp.deduct.type]p2:
|
|
// [...] or if any template argument remains neither deduced nor
|
|
// explicitly specified, template argument deduction fails.
|
|
SmallVector<TemplateArgument, 4> Builder;
|
|
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
|
|
NamedDecl *Param = TemplateParams->getParam(I);
|
|
|
|
if (!Deduced[I].isNull()) {
|
|
if (I < NumExplicitlySpecified) {
|
|
// We have already fully type-checked and converted this
|
|
// argument, because it was explicitly-specified. Just record the
|
|
// presence of this argument.
|
|
Builder.push_back(Deduced[I]);
|
|
continue;
|
|
}
|
|
|
|
// We have deduced this argument, so it still needs to be
|
|
// checked and converted.
|
|
|
|
// First, for a non-type template parameter type that is
|
|
// initialized by a declaration, we need the type of the
|
|
// corresponding non-type template parameter.
|
|
QualType NTTPType;
|
|
if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
NTTPType = NTTP->getType();
|
|
if (NTTPType->isDependentType()) {
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
|
|
Builder.data(), Builder.size());
|
|
NTTPType = SubstType(NTTPType,
|
|
MultiLevelTemplateArgumentList(TemplateArgs),
|
|
NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
if (NTTPType.isNull()) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(TemplateArgumentList::CreateCopy(Context,
|
|
Builder.data(),
|
|
Builder.size()));
|
|
return TDK_SubstitutionFailure;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
|
|
FunctionTemplate, NTTPType, 0, Info,
|
|
true, Builder)) {
|
|
Info.Param = makeTemplateParameter(Param);
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
|
|
Builder.size()));
|
|
return TDK_SubstitutionFailure;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// C++0x [temp.arg.explicit]p3:
|
|
// A trailing template parameter pack (14.5.3) not otherwise deduced will
|
|
// be deduced to an empty sequence of template arguments.
|
|
// FIXME: Where did the word "trailing" come from?
|
|
if (Param->isTemplateParameterPack()) {
|
|
// We may have had explicitly-specified template arguments for this
|
|
// template parameter pack. If so, our empty deduction extends the
|
|
// explicitly-specified set (C++0x [temp.arg.explicit]p9).
|
|
const TemplateArgument *ExplicitArgs;
|
|
unsigned NumExplicitArgs;
|
|
if (CurrentInstantiationScope &&
|
|
CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
|
|
&NumExplicitArgs)
|
|
== Param) {
|
|
Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
|
|
|
|
// Forget the partially-substituted pack; it's substitution is now
|
|
// complete.
|
|
CurrentInstantiationScope->ResetPartiallySubstitutedPack();
|
|
} else {
|
|
Builder.push_back(TemplateArgument::getEmptyPack());
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Substitute into the default template argument, if available.
|
|
bool HasDefaultArg = false;
|
|
TemplateArgumentLoc DefArg
|
|
= SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
|
|
FunctionTemplate->getLocation(),
|
|
FunctionTemplate->getSourceRange().getEnd(),
|
|
Param,
|
|
Builder, HasDefaultArg);
|
|
|
|
// If there was no default argument, deduction is incomplete.
|
|
if (DefArg.getArgument().isNull()) {
|
|
Info.Param = makeTemplateParameter(
|
|
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
|
|
Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
|
|
Builder.size()));
|
|
return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
|
|
}
|
|
|
|
// Check whether we can actually use the default argument.
|
|
if (CheckTemplateArgument(Param, DefArg,
|
|
FunctionTemplate,
|
|
FunctionTemplate->getLocation(),
|
|
FunctionTemplate->getSourceRange().getEnd(),
|
|
0, Builder,
|
|
CTAK_Specified)) {
|
|
Info.Param = makeTemplateParameter(
|
|
const_cast<NamedDecl *>(TemplateParams->getParam(I)));
|
|
// FIXME: These template arguments are temporary. Free them!
|
|
Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
|
|
Builder.size()));
|
|
return TDK_SubstitutionFailure;
|
|
}
|
|
|
|
// If we get here, we successfully used the default template argument.
|
|
}
|
|
|
|
// Form the template argument list from the deduced template arguments.
|
|
TemplateArgumentList *DeducedArgumentList
|
|
= TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
|
|
Info.reset(DeducedArgumentList);
|
|
|
|
// Substitute the deduced template arguments into the function template
|
|
// declaration to produce the function template specialization.
|
|
DeclContext *Owner = FunctionTemplate->getDeclContext();
|
|
if (FunctionTemplate->getFriendObjectKind())
|
|
Owner = FunctionTemplate->getLexicalDeclContext();
|
|
Specialization = cast_or_null<FunctionDecl>(
|
|
SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
|
|
MultiLevelTemplateArgumentList(*DeducedArgumentList)));
|
|
if (!Specialization || Specialization->isInvalidDecl())
|
|
return TDK_SubstitutionFailure;
|
|
|
|
assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
|
|
FunctionTemplate->getCanonicalDecl());
|
|
|
|
// If the template argument list is owned by the function template
|
|
// specialization, release it.
|
|
if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
|
|
!Trap.hasErrorOccurred())
|
|
Info.take();
|
|
|
|
// There may have been an error that did not prevent us from constructing a
|
|
// declaration. Mark the declaration invalid and return with a substitution
|
|
// failure.
|
|
if (Trap.hasErrorOccurred()) {
|
|
Specialization->setInvalidDecl(true);
|
|
return TDK_SubstitutionFailure;
|
|
}
|
|
|
|
if (OriginalCallArgs) {
|
|
// C++ [temp.deduct.call]p4:
|
|
// In general, the deduction process attempts to find template argument
|
|
// values that will make the deduced A identical to A (after the type A
|
|
// is transformed as described above). [...]
|
|
for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
|
|
OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
|
|
unsigned ParamIdx = OriginalArg.ArgIdx;
|
|
|
|
if (ParamIdx >= Specialization->getNumParams())
|
|
continue;
|
|
|
|
QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
|
|
if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
|
|
return Sema::TDK_SubstitutionFailure;
|
|
}
|
|
}
|
|
|
|
// If we suppressed any diagnostics while performing template argument
|
|
// deduction, and if we haven't already instantiated this declaration,
|
|
// keep track of these diagnostics. They'll be emitted if this specialization
|
|
// is actually used.
|
|
if (Info.diag_begin() != Info.diag_end()) {
|
|
SuppressedDiagnosticsMap::iterator
|
|
Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
|
|
if (Pos == SuppressedDiagnostics.end())
|
|
SuppressedDiagnostics[Specialization->getCanonicalDecl()]
|
|
.append(Info.diag_begin(), Info.diag_end());
|
|
}
|
|
|
|
return TDK_Success;
|
|
}
|
|
|
|
/// Gets the type of a function for template-argument-deducton
|
|
/// purposes when it's considered as part of an overload set.
|
|
static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
|
|
FunctionDecl *Fn) {
|
|
// We may need to deduce the return type of the function now.
|
|
if (S.getLangOpts().CPlusPlus1y && Fn->getReturnType()->isUndeducedType() &&
|
|
S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
|
|
return QualType();
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
|
|
if (Method->isInstance()) {
|
|
// An instance method that's referenced in a form that doesn't
|
|
// look like a member pointer is just invalid.
|
|
if (!R.HasFormOfMemberPointer) return QualType();
|
|
|
|
return S.Context.getMemberPointerType(Fn->getType(),
|
|
S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
|
|
}
|
|
|
|
if (!R.IsAddressOfOperand) return Fn->getType();
|
|
return S.Context.getPointerType(Fn->getType());
|
|
}
|
|
|
|
/// Apply the deduction rules for overload sets.
|
|
///
|
|
/// \return the null type if this argument should be treated as an
|
|
/// undeduced context
|
|
static QualType
|
|
ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
|
|
Expr *Arg, QualType ParamType,
|
|
bool ParamWasReference) {
|
|
|
|
OverloadExpr::FindResult R = OverloadExpr::find(Arg);
|
|
|
|
OverloadExpr *Ovl = R.Expression;
|
|
|
|
// C++0x [temp.deduct.call]p4
|
|
unsigned TDF = 0;
|
|
if (ParamWasReference)
|
|
TDF |= TDF_ParamWithReferenceType;
|
|
if (R.IsAddressOfOperand)
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
|
|
// C++0x [temp.deduct.call]p6:
|
|
// When P is a function type, pointer to function type, or pointer
|
|
// to member function type:
|
|
|
|
if (!ParamType->isFunctionType() &&
|
|
!ParamType->isFunctionPointerType() &&
|
|
!ParamType->isMemberFunctionPointerType()) {
|
|
if (Ovl->hasExplicitTemplateArgs()) {
|
|
// But we can still look for an explicit specialization.
|
|
if (FunctionDecl *ExplicitSpec
|
|
= S.ResolveSingleFunctionTemplateSpecialization(Ovl))
|
|
return GetTypeOfFunction(S, R, ExplicitSpec);
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
|
|
// Gather the explicit template arguments, if any.
|
|
TemplateArgumentListInfo ExplicitTemplateArgs;
|
|
if (Ovl->hasExplicitTemplateArgs())
|
|
Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
|
|
QualType Match;
|
|
for (UnresolvedSetIterator I = Ovl->decls_begin(),
|
|
E = Ovl->decls_end(); I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
|
|
// - If the argument is an overload set containing one or more
|
|
// function templates, the parameter is treated as a
|
|
// non-deduced context.
|
|
if (!Ovl->hasExplicitTemplateArgs())
|
|
return QualType();
|
|
|
|
// Otherwise, see if we can resolve a function type
|
|
FunctionDecl *Specialization = 0;
|
|
TemplateDeductionInfo Info(Ovl->getNameLoc());
|
|
if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
|
|
Specialization, Info))
|
|
continue;
|
|
|
|
D = Specialization;
|
|
}
|
|
|
|
FunctionDecl *Fn = cast<FunctionDecl>(D);
|
|
QualType ArgType = GetTypeOfFunction(S, R, Fn);
|
|
if (ArgType.isNull()) continue;
|
|
|
|
// Function-to-pointer conversion.
|
|
if (!ParamWasReference && ParamType->isPointerType() &&
|
|
ArgType->isFunctionType())
|
|
ArgType = S.Context.getPointerType(ArgType);
|
|
|
|
// - If the argument is an overload set (not containing function
|
|
// templates), trial argument deduction is attempted using each
|
|
// of the members of the set. If deduction succeeds for only one
|
|
// of the overload set members, that member is used as the
|
|
// argument value for the deduction. If deduction succeeds for
|
|
// more than one member of the overload set the parameter is
|
|
// treated as a non-deduced context.
|
|
|
|
// We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
|
|
// Type deduction is done independently for each P/A pair, and
|
|
// the deduced template argument values are then combined.
|
|
// So we do not reject deductions which were made elsewhere.
|
|
SmallVector<DeducedTemplateArgument, 8>
|
|
Deduced(TemplateParams->size());
|
|
TemplateDeductionInfo Info(Ovl->getNameLoc());
|
|
Sema::TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
|
|
ArgType, Info, Deduced, TDF);
|
|
if (Result) continue;
|
|
if (!Match.isNull()) return QualType();
|
|
Match = ArgType;
|
|
}
|
|
|
|
return Match;
|
|
}
|
|
|
|
/// \brief Perform the adjustments to the parameter and argument types
|
|
/// described in C++ [temp.deduct.call].
|
|
///
|
|
/// \returns true if the caller should not attempt to perform any template
|
|
/// argument deduction based on this P/A pair because the argument is an
|
|
/// overloaded function set that could not be resolved.
|
|
static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
QualType &ParamType,
|
|
QualType &ArgType,
|
|
Expr *Arg,
|
|
unsigned &TDF) {
|
|
// C++0x [temp.deduct.call]p3:
|
|
// If P is a cv-qualified type, the top level cv-qualifiers of P's type
|
|
// are ignored for type deduction.
|
|
if (ParamType.hasQualifiers())
|
|
ParamType = ParamType.getUnqualifiedType();
|
|
const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
|
|
if (ParamRefType) {
|
|
QualType PointeeType = ParamRefType->getPointeeType();
|
|
|
|
// If the argument has incomplete array type, try to complete its type.
|
|
if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
|
|
ArgType = Arg->getType();
|
|
|
|
// [C++0x] If P is an rvalue reference to a cv-unqualified
|
|
// template parameter and the argument is an lvalue, the type
|
|
// "lvalue reference to A" is used in place of A for type
|
|
// deduction.
|
|
if (isa<RValueReferenceType>(ParamType)) {
|
|
if (!PointeeType.getQualifiers() &&
|
|
isa<TemplateTypeParmType>(PointeeType) &&
|
|
Arg->Classify(S.Context).isLValue() &&
|
|
Arg->getType() != S.Context.OverloadTy &&
|
|
Arg->getType() != S.Context.BoundMemberTy)
|
|
ArgType = S.Context.getLValueReferenceType(ArgType);
|
|
}
|
|
|
|
// [...] If P is a reference type, the type referred to by P is used
|
|
// for type deduction.
|
|
ParamType = PointeeType;
|
|
}
|
|
|
|
// Overload sets usually make this parameter an undeduced
|
|
// context, but there are sometimes special circumstances.
|
|
if (ArgType == S.Context.OverloadTy) {
|
|
ArgType = ResolveOverloadForDeduction(S, TemplateParams,
|
|
Arg, ParamType,
|
|
ParamRefType != 0);
|
|
if (ArgType.isNull())
|
|
return true;
|
|
}
|
|
|
|
if (ParamRefType) {
|
|
// C++0x [temp.deduct.call]p3:
|
|
// [...] If P is of the form T&&, where T is a template parameter, and
|
|
// the argument is an lvalue, the type A& is used in place of A for
|
|
// type deduction.
|
|
if (ParamRefType->isRValueReferenceType() &&
|
|
ParamRefType->getAs<TemplateTypeParmType>() &&
|
|
Arg->isLValue())
|
|
ArgType = S.Context.getLValueReferenceType(ArgType);
|
|
} else {
|
|
// C++ [temp.deduct.call]p2:
|
|
// If P is not a reference type:
|
|
// - If A is an array type, the pointer type produced by the
|
|
// array-to-pointer standard conversion (4.2) is used in place of
|
|
// A for type deduction; otherwise,
|
|
if (ArgType->isArrayType())
|
|
ArgType = S.Context.getArrayDecayedType(ArgType);
|
|
// - If A is a function type, the pointer type produced by the
|
|
// function-to-pointer standard conversion (4.3) is used in place
|
|
// of A for type deduction; otherwise,
|
|
else if (ArgType->isFunctionType())
|
|
ArgType = S.Context.getPointerType(ArgType);
|
|
else {
|
|
// - If A is a cv-qualified type, the top level cv-qualifiers of A's
|
|
// type are ignored for type deduction.
|
|
ArgType = ArgType.getUnqualifiedType();
|
|
}
|
|
}
|
|
|
|
// C++0x [temp.deduct.call]p4:
|
|
// In general, the deduction process attempts to find template argument
|
|
// values that will make the deduced A identical to A (after the type A
|
|
// is transformed as described above). [...]
|
|
TDF = TDF_SkipNonDependent;
|
|
|
|
// - If the original P is a reference type, the deduced A (i.e., the
|
|
// type referred to by the reference) can be more cv-qualified than
|
|
// the transformed A.
|
|
if (ParamRefType)
|
|
TDF |= TDF_ParamWithReferenceType;
|
|
// - The transformed A can be another pointer or pointer to member
|
|
// type that can be converted to the deduced A via a qualification
|
|
// conversion (4.4).
|
|
if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
|
|
ArgType->isObjCObjectPointerType())
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
// - If P is a class and P has the form simple-template-id, then the
|
|
// transformed A can be a derived class of the deduced A. Likewise,
|
|
// if P is a pointer to a class of the form simple-template-id, the
|
|
// transformed A can be a pointer to a derived class pointed to by
|
|
// the deduced A.
|
|
if (isSimpleTemplateIdType(ParamType) ||
|
|
(isa<PointerType>(ParamType) &&
|
|
isSimpleTemplateIdType(
|
|
ParamType->getAs<PointerType>()->getPointeeType())))
|
|
TDF |= TDF_DerivedClass;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool hasDeducibleTemplateParameters(Sema &S,
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
QualType T);
|
|
|
|
/// \brief Perform template argument deduction by matching a parameter type
|
|
/// against a single expression, where the expression is an element of
|
|
/// an initializer list that was originally matched against a parameter
|
|
/// of type \c initializer_list\<ParamType\>.
|
|
static Sema::TemplateDeductionResult
|
|
DeduceTemplateArgumentByListElement(Sema &S,
|
|
TemplateParameterList *TemplateParams,
|
|
QualType ParamType, Expr *Arg,
|
|
TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned TDF) {
|
|
// Handle the case where an init list contains another init list as the
|
|
// element.
|
|
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
|
|
QualType X;
|
|
if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
|
|
return Sema::TDK_Success; // Just ignore this expression.
|
|
|
|
// Recurse down into the init list.
|
|
for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
|
|
if (Sema::TemplateDeductionResult Result =
|
|
DeduceTemplateArgumentByListElement(S, TemplateParams, X,
|
|
ILE->getInit(i),
|
|
Info, Deduced, TDF))
|
|
return Result;
|
|
}
|
|
return Sema::TDK_Success;
|
|
}
|
|
|
|
// For all other cases, just match by type.
|
|
QualType ArgType = Arg->getType();
|
|
if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
|
|
ArgType, Arg, TDF)) {
|
|
Info.Expression = Arg;
|
|
return Sema::TDK_FailedOverloadResolution;
|
|
}
|
|
return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
|
|
ArgType, Info, Deduced, TDF);
|
|
}
|
|
|
|
/// \brief Perform template argument deduction from a function call
|
|
/// (C++ [temp.deduct.call]).
|
|
///
|
|
/// \param FunctionTemplate the function template for which we are performing
|
|
/// template argument deduction.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicit template arguments provided
|
|
/// for this call.
|
|
///
|
|
/// \param Args the function call arguments
|
|
///
|
|
/// \param Specialization if template argument deduction was successful,
|
|
/// this will be set to the function template specialization produced by
|
|
/// template argument deduction.
|
|
///
|
|
/// \param Info the argument will be updated to provide additional information
|
|
/// about template argument deduction.
|
|
///
|
|
/// \returns the result of template argument deduction.
|
|
Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
FunctionDecl *&Specialization, TemplateDeductionInfo &Info) {
|
|
if (FunctionTemplate->isInvalidDecl())
|
|
return TDK_Invalid;
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
|
|
// C++ [temp.deduct.call]p1:
|
|
// Template argument deduction is done by comparing each function template
|
|
// parameter type (call it P) with the type of the corresponding argument
|
|
// of the call (call it A) as described below.
|
|
unsigned CheckArgs = Args.size();
|
|
if (Args.size() < Function->getMinRequiredArguments())
|
|
return TDK_TooFewArguments;
|
|
else if (Args.size() > Function->getNumParams()) {
|
|
const FunctionProtoType *Proto
|
|
= Function->getType()->getAs<FunctionProtoType>();
|
|
if (Proto->isTemplateVariadic())
|
|
/* Do nothing */;
|
|
else if (Proto->isVariadic())
|
|
CheckArgs = Function->getNumParams();
|
|
else
|
|
return TDK_TooManyArguments;
|
|
}
|
|
|
|
// The types of the parameters from which we will perform template argument
|
|
// deduction.
|
|
LocalInstantiationScope InstScope(*this);
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
SmallVector<QualType, 4> ParamTypes;
|
|
unsigned NumExplicitlySpecified = 0;
|
|
if (ExplicitTemplateArgs) {
|
|
TemplateDeductionResult Result =
|
|
SubstituteExplicitTemplateArguments(FunctionTemplate,
|
|
*ExplicitTemplateArgs,
|
|
Deduced,
|
|
ParamTypes,
|
|
0,
|
|
Info);
|
|
if (Result)
|
|
return Result;
|
|
|
|
NumExplicitlySpecified = Deduced.size();
|
|
} else {
|
|
// Just fill in the parameter types from the function declaration.
|
|
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
|
|
ParamTypes.push_back(Function->getParamDecl(I)->getType());
|
|
}
|
|
|
|
// Deduce template arguments from the function parameters.
|
|
Deduced.resize(TemplateParams->size());
|
|
unsigned ArgIdx = 0;
|
|
SmallVector<OriginalCallArg, 4> OriginalCallArgs;
|
|
for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
|
|
ParamIdx != NumParams; ++ParamIdx) {
|
|
QualType OrigParamType = ParamTypes[ParamIdx];
|
|
QualType ParamType = OrigParamType;
|
|
|
|
const PackExpansionType *ParamExpansion
|
|
= dyn_cast<PackExpansionType>(ParamType);
|
|
if (!ParamExpansion) {
|
|
// Simple case: matching a function parameter to a function argument.
|
|
if (ArgIdx >= CheckArgs)
|
|
break;
|
|
|
|
Expr *Arg = Args[ArgIdx++];
|
|
QualType ArgType = Arg->getType();
|
|
|
|
unsigned TDF = 0;
|
|
if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
|
|
ParamType, ArgType, Arg,
|
|
TDF))
|
|
continue;
|
|
|
|
// If we have nothing to deduce, we're done.
|
|
if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
|
|
continue;
|
|
|
|
// If the argument is an initializer list ...
|
|
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
|
|
// ... then the parameter is an undeduced context, unless the parameter
|
|
// type is (reference to cv) std::initializer_list<P'>, in which case
|
|
// deduction is done for each element of the initializer list, and the
|
|
// result is the deduced type if it's the same for all elements.
|
|
QualType X;
|
|
// Removing references was already done.
|
|
if (!isStdInitializerList(ParamType, &X))
|
|
continue;
|
|
|
|
for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
|
|
if (TemplateDeductionResult Result =
|
|
DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
|
|
ILE->getInit(i),
|
|
Info, Deduced, TDF))
|
|
return Result;
|
|
}
|
|
// Don't track the argument type, since an initializer list has none.
|
|
continue;
|
|
}
|
|
|
|
// Keep track of the argument type and corresponding parameter index,
|
|
// so we can check for compatibility between the deduced A and A.
|
|
OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
|
|
ArgType));
|
|
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
|
|
ParamType, ArgType,
|
|
Info, Deduced, TDF))
|
|
return Result;
|
|
|
|
continue;
|
|
}
|
|
|
|
// C++0x [temp.deduct.call]p1:
|
|
// For a function parameter pack that occurs at the end of the
|
|
// parameter-declaration-list, the type A of each remaining argument of
|
|
// the call is compared with the type P of the declarator-id of the
|
|
// function parameter pack. Each comparison deduces template arguments
|
|
// for subsequent positions in the template parameter packs expanded by
|
|
// the function parameter pack. For a function parameter pack that does
|
|
// not occur at the end of the parameter-declaration-list, the type of
|
|
// the parameter pack is a non-deduced context.
|
|
if (ParamIdx + 1 < NumParams)
|
|
break;
|
|
|
|
QualType ParamPattern = ParamExpansion->getPattern();
|
|
SmallVector<unsigned, 2> PackIndices;
|
|
{
|
|
llvm::SmallBitVector SawIndices(TemplateParams->size());
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
|
|
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
|
|
unsigned Depth, Index;
|
|
llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
|
|
if (Depth == 0 && !SawIndices[Index]) {
|
|
SawIndices[Index] = true;
|
|
PackIndices.push_back(Index);
|
|
}
|
|
}
|
|
}
|
|
assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
|
|
|
|
// Keep track of the deduced template arguments for each parameter pack
|
|
// expanded by this pack expansion (the outer index) and for each
|
|
// template argument (the inner SmallVectors).
|
|
NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
|
|
SmallVector<DeducedTemplateArgument, 2>
|
|
SavedPacks(PackIndices.size());
|
|
PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
|
|
NewlyDeducedPacks);
|
|
bool HasAnyArguments = false;
|
|
for (; ArgIdx < Args.size(); ++ArgIdx) {
|
|
HasAnyArguments = true;
|
|
|
|
QualType OrigParamType = ParamPattern;
|
|
ParamType = OrigParamType;
|
|
Expr *Arg = Args[ArgIdx];
|
|
QualType ArgType = Arg->getType();
|
|
|
|
unsigned TDF = 0;
|
|
if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
|
|
ParamType, ArgType, Arg,
|
|
TDF)) {
|
|
// We can't actually perform any deduction for this argument, so stop
|
|
// deduction at this point.
|
|
++ArgIdx;
|
|
break;
|
|
}
|
|
|
|
// As above, initializer lists need special handling.
|
|
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
|
|
QualType X;
|
|
if (!isStdInitializerList(ParamType, &X)) {
|
|
++ArgIdx;
|
|
break;
|
|
}
|
|
|
|
for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
|
|
if (TemplateDeductionResult Result =
|
|
DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
|
|
ILE->getInit(i)->getType(),
|
|
Info, Deduced, TDF))
|
|
return Result;
|
|
}
|
|
} else {
|
|
|
|
// Keep track of the argument type and corresponding argument index,
|
|
// so we can check for compatibility between the deduced A and A.
|
|
if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
|
|
OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
|
|
ArgType));
|
|
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
|
|
ParamType, ArgType, Info,
|
|
Deduced, TDF))
|
|
return Result;
|
|
}
|
|
|
|
// Capture the deduced template arguments for each parameter pack expanded
|
|
// by this pack expansion, add them to the list of arguments we've deduced
|
|
// for that pack, then clear out the deduced argument.
|
|
for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
|
|
DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
|
|
if (!DeducedArg.isNull()) {
|
|
NewlyDeducedPacks[I].push_back(DeducedArg);
|
|
DeducedArg = DeducedTemplateArgument();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build argument packs for each of the parameter packs expanded by this
|
|
// pack expansion.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
|
|
Deduced, PackIndices, SavedPacks,
|
|
NewlyDeducedPacks, Info))
|
|
return Result;
|
|
|
|
// After we've matching against a parameter pack, we're done.
|
|
break;
|
|
}
|
|
|
|
return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
|
|
NumExplicitlySpecified,
|
|
Specialization, Info, &OriginalCallArgs);
|
|
}
|
|
|
|
QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
|
|
QualType FunctionType) {
|
|
if (ArgFunctionType.isNull())
|
|
return ArgFunctionType;
|
|
|
|
const FunctionProtoType *FunctionTypeP =
|
|
FunctionType->castAs<FunctionProtoType>();
|
|
CallingConv CC = FunctionTypeP->getCallConv();
|
|
bool NoReturn = FunctionTypeP->getNoReturnAttr();
|
|
const FunctionProtoType *ArgFunctionTypeP =
|
|
ArgFunctionType->getAs<FunctionProtoType>();
|
|
if (ArgFunctionTypeP->getCallConv() == CC &&
|
|
ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
|
|
return ArgFunctionType;
|
|
|
|
FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
|
|
EI = EI.withNoReturn(NoReturn);
|
|
ArgFunctionTypeP =
|
|
cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
|
|
return QualType(ArgFunctionTypeP, 0);
|
|
}
|
|
|
|
/// \brief Deduce template arguments when taking the address of a function
|
|
/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
|
|
/// a template.
|
|
///
|
|
/// \param FunctionTemplate the function template for which we are performing
|
|
/// template argument deduction.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-specified template
|
|
/// arguments.
|
|
///
|
|
/// \param ArgFunctionType the function type that will be used as the
|
|
/// "argument" type (A) when performing template argument deduction from the
|
|
/// function template's function type. This type may be NULL, if there is no
|
|
/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
|
|
///
|
|
/// \param Specialization if template argument deduction was successful,
|
|
/// this will be set to the function template specialization produced by
|
|
/// template argument deduction.
|
|
///
|
|
/// \param Info the argument will be updated to provide additional information
|
|
/// about template argument deduction.
|
|
///
|
|
/// \returns the result of template argument deduction.
|
|
Sema::TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
QualType ArgFunctionType,
|
|
FunctionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info,
|
|
bool InOverloadResolution) {
|
|
if (FunctionTemplate->isInvalidDecl())
|
|
return TDK_Invalid;
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
QualType FunctionType = Function->getType();
|
|
if (!InOverloadResolution)
|
|
ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
|
|
|
|
// Substitute any explicit template arguments.
|
|
LocalInstantiationScope InstScope(*this);
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
unsigned NumExplicitlySpecified = 0;
|
|
SmallVector<QualType, 4> ParamTypes;
|
|
if (ExplicitTemplateArgs) {
|
|
if (TemplateDeductionResult Result
|
|
= SubstituteExplicitTemplateArguments(FunctionTemplate,
|
|
*ExplicitTemplateArgs,
|
|
Deduced, ParamTypes,
|
|
&FunctionType, Info))
|
|
return Result;
|
|
|
|
NumExplicitlySpecified = Deduced.size();
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
// If the function has a deduced return type, substitute it for a dependent
|
|
// type so that we treat it as a non-deduced context in what follows.
|
|
bool HasDeducedReturnType = false;
|
|
if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
|
|
Function->getReturnType()->getContainedAutoType()) {
|
|
FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
|
|
HasDeducedReturnType = true;
|
|
}
|
|
|
|
if (!ArgFunctionType.isNull()) {
|
|
unsigned TDF = TDF_TopLevelParameterTypeList;
|
|
if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
|
|
// Deduce template arguments from the function type.
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
|
|
FunctionType, ArgFunctionType,
|
|
Info, Deduced, TDF))
|
|
return Result;
|
|
}
|
|
|
|
if (TemplateDeductionResult Result
|
|
= FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
|
|
NumExplicitlySpecified,
|
|
Specialization, Info))
|
|
return Result;
|
|
|
|
// If the function has a deduced return type, deduce it now, so we can check
|
|
// that the deduced function type matches the requested type.
|
|
if (HasDeducedReturnType &&
|
|
Specialization->getReturnType()->isUndeducedType() &&
|
|
DeduceReturnType(Specialization, Info.getLocation(), false))
|
|
return TDK_MiscellaneousDeductionFailure;
|
|
|
|
// If the requested function type does not match the actual type of the
|
|
// specialization with respect to arguments of compatible pointer to function
|
|
// types, template argument deduction fails.
|
|
if (!ArgFunctionType.isNull()) {
|
|
if (InOverloadResolution && !isSameOrCompatibleFunctionType(
|
|
Context.getCanonicalType(Specialization->getType()),
|
|
Context.getCanonicalType(ArgFunctionType)))
|
|
return TDK_MiscellaneousDeductionFailure;
|
|
else if(!InOverloadResolution &&
|
|
!Context.hasSameType(Specialization->getType(), ArgFunctionType))
|
|
return TDK_MiscellaneousDeductionFailure;
|
|
}
|
|
|
|
return TDK_Success;
|
|
}
|
|
|
|
/// \brief Given a function declaration (e.g. a generic lambda conversion
|
|
/// function) that contains an 'auto' in its result type, substitute it
|
|
/// with TypeToReplaceAutoWith. Be careful to pass in the type you want
|
|
/// to replace 'auto' with and not the actual result type you want
|
|
/// to set the function to.
|
|
static inline void
|
|
SubstAutoWithinFunctionReturnType(FunctionDecl *F,
|
|
QualType TypeToReplaceAutoWith, Sema &S) {
|
|
assert(!TypeToReplaceAutoWith->getContainedAutoType());
|
|
QualType AutoResultType = F->getReturnType();
|
|
assert(AutoResultType->getContainedAutoType());
|
|
QualType DeducedResultType = S.SubstAutoType(AutoResultType,
|
|
TypeToReplaceAutoWith);
|
|
S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
|
|
}
|
|
|
|
/// \brief Given a specialized conversion operator of a generic lambda
|
|
/// create the corresponding specializations of the call operator and
|
|
/// the static-invoker. If the return type of the call operator is auto,
|
|
/// deduce its return type and check if that matches the
|
|
/// return type of the destination function ptr.
|
|
|
|
static inline Sema::TemplateDeductionResult
|
|
SpecializeCorrespondingLambdaCallOperatorAndInvoker(
|
|
CXXConversionDecl *ConversionSpecialized,
|
|
SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
|
|
QualType ReturnTypeOfDestFunctionPtr,
|
|
TemplateDeductionInfo &TDInfo,
|
|
Sema &S) {
|
|
|
|
CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
|
|
assert(LambdaClass && LambdaClass->isGenericLambda());
|
|
|
|
CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
|
|
QualType CallOpResultType = CallOpGeneric->getReturnType();
|
|
const bool GenericLambdaCallOperatorHasDeducedReturnType =
|
|
CallOpResultType->getContainedAutoType();
|
|
|
|
FunctionTemplateDecl *CallOpTemplate =
|
|
CallOpGeneric->getDescribedFunctionTemplate();
|
|
|
|
FunctionDecl *CallOpSpecialized = 0;
|
|
// Use the deduced arguments of the conversion function, to specialize our
|
|
// generic lambda's call operator.
|
|
if (Sema::TemplateDeductionResult Result
|
|
= S.FinishTemplateArgumentDeduction(CallOpTemplate,
|
|
DeducedArguments,
|
|
0, CallOpSpecialized, TDInfo))
|
|
return Result;
|
|
|
|
// If we need to deduce the return type, do so (instantiates the callop).
|
|
if (GenericLambdaCallOperatorHasDeducedReturnType &&
|
|
CallOpSpecialized->getReturnType()->isUndeducedType())
|
|
S.DeduceReturnType(CallOpSpecialized,
|
|
CallOpSpecialized->getPointOfInstantiation(),
|
|
/*Diagnose*/ true);
|
|
|
|
// Check to see if the return type of the destination ptr-to-function
|
|
// matches the return type of the call operator.
|
|
if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
|
|
ReturnTypeOfDestFunctionPtr))
|
|
return Sema::TDK_NonDeducedMismatch;
|
|
// Since we have succeeded in matching the source and destination
|
|
// ptr-to-functions (now including return type), and have successfully
|
|
// specialized our corresponding call operator, we are ready to
|
|
// specialize the static invoker with the deduced arguments of our
|
|
// ptr-to-function.
|
|
FunctionDecl *InvokerSpecialized = 0;
|
|
FunctionTemplateDecl *InvokerTemplate = LambdaClass->
|
|
getLambdaStaticInvoker()->getDescribedFunctionTemplate();
|
|
|
|
Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result
|
|
= S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
|
|
InvokerSpecialized, TDInfo);
|
|
assert(Result == Sema::TDK_Success &&
|
|
"If the call operator succeeded so should the invoker!");
|
|
// Set the result type to match the corresponding call operator
|
|
// specialization's result type.
|
|
if (GenericLambdaCallOperatorHasDeducedReturnType &&
|
|
InvokerSpecialized->getReturnType()->isUndeducedType()) {
|
|
// Be sure to get the type to replace 'auto' with and not
|
|
// the full result type of the call op specialization
|
|
// to substitute into the 'auto' of the invoker and conversion
|
|
// function.
|
|
// For e.g.
|
|
// int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
|
|
// We don't want to subst 'int*' into 'auto' to get int**.
|
|
|
|
QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
|
|
->getContainedAutoType()
|
|
->getDeducedType();
|
|
SubstAutoWithinFunctionReturnType(InvokerSpecialized,
|
|
TypeToReplaceAutoWith, S);
|
|
SubstAutoWithinFunctionReturnType(ConversionSpecialized,
|
|
TypeToReplaceAutoWith, S);
|
|
}
|
|
|
|
// Ensure that static invoker doesn't have a const qualifier.
|
|
// FIXME: When creating the InvokerTemplate in SemaLambda.cpp
|
|
// do not use the CallOperator's TypeSourceInfo which allows
|
|
// the const qualifier to leak through.
|
|
const FunctionProtoType *InvokerFPT = InvokerSpecialized->
|
|
getType().getTypePtr()->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
|
|
EPI.TypeQuals = 0;
|
|
InvokerSpecialized->setType(S.Context.getFunctionType(
|
|
InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
|
|
return Sema::TDK_Success;
|
|
}
|
|
/// \brief Deduce template arguments for a templated conversion
|
|
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
|
|
/// conversion function template specialization.
|
|
Sema::TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
|
|
QualType ToType,
|
|
CXXConversionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info) {
|
|
if (ConversionTemplate->isInvalidDecl())
|
|
return TDK_Invalid;
|
|
|
|
CXXConversionDecl *ConversionGeneric
|
|
= cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
|
|
|
|
QualType FromType = ConversionGeneric->getConversionType();
|
|
|
|
// Canonicalize the types for deduction.
|
|
QualType P = Context.getCanonicalType(FromType);
|
|
QualType A = Context.getCanonicalType(ToType);
|
|
|
|
// C++0x [temp.deduct.conv]p2:
|
|
// If P is a reference type, the type referred to by P is used for
|
|
// type deduction.
|
|
if (const ReferenceType *PRef = P->getAs<ReferenceType>())
|
|
P = PRef->getPointeeType();
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// [...] If A is a reference type, the type referred to by A is used
|
|
// for type deduction.
|
|
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
|
|
A = ARef->getPointeeType().getUnqualifiedType();
|
|
// C++ [temp.deduct.conv]p3:
|
|
//
|
|
// If A is not a reference type:
|
|
else {
|
|
assert(!A->isReferenceType() && "Reference types were handled above");
|
|
|
|
// - If P is an array type, the pointer type produced by the
|
|
// array-to-pointer standard conversion (4.2) is used in place
|
|
// of P for type deduction; otherwise,
|
|
if (P->isArrayType())
|
|
P = Context.getArrayDecayedType(P);
|
|
// - If P is a function type, the pointer type produced by the
|
|
// function-to-pointer standard conversion (4.3) is used in
|
|
// place of P for type deduction; otherwise,
|
|
else if (P->isFunctionType())
|
|
P = Context.getPointerType(P);
|
|
// - If P is a cv-qualified type, the top level cv-qualifiers of
|
|
// P's type are ignored for type deduction.
|
|
else
|
|
P = P.getUnqualifiedType();
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// If A is a cv-qualified type, the top level cv-qualifiers of A's
|
|
// type are ignored for type deduction. If A is a reference type, the type
|
|
// referred to by A is used for type deduction.
|
|
A = A.getUnqualifiedType();
|
|
}
|
|
|
|
// Unevaluated SFINAE context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
SFINAETrap Trap(*this);
|
|
|
|
// C++ [temp.deduct.conv]p1:
|
|
// Template argument deduction is done by comparing the return
|
|
// type of the template conversion function (call it P) with the
|
|
// type that is required as the result of the conversion (call it
|
|
// A) as described in 14.8.2.4.
|
|
TemplateParameterList *TemplateParams
|
|
= ConversionTemplate->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
// C++0x [temp.deduct.conv]p4:
|
|
// In general, the deduction process attempts to find template
|
|
// argument values that will make the deduced A identical to
|
|
// A. However, there are two cases that allow a difference:
|
|
unsigned TDF = 0;
|
|
// - If the original A is a reference type, A can be more
|
|
// cv-qualified than the deduced A (i.e., the type referred to
|
|
// by the reference)
|
|
if (ToType->isReferenceType())
|
|
TDF |= TDF_ParamWithReferenceType;
|
|
// - The deduced A can be another pointer or pointer to member
|
|
// type that can be converted to A via a qualification
|
|
// conversion.
|
|
//
|
|
// (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
|
|
// both P and A are pointers or member pointers. In this case, we
|
|
// just ignore cv-qualifiers completely).
|
|
if ((P->isPointerType() && A->isPointerType()) ||
|
|
(P->isMemberPointerType() && A->isMemberPointerType()))
|
|
TDF |= TDF_IgnoreQualifiers;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
|
|
P, A, Info, Deduced, TDF))
|
|
return Result;
|
|
|
|
// Create an Instantiation Scope for finalizing the operator.
|
|
LocalInstantiationScope InstScope(*this);
|
|
// Finish template argument deduction.
|
|
FunctionDecl *ConversionSpecialized = 0;
|
|
TemplateDeductionResult Result
|
|
= FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
|
|
ConversionSpecialized, Info);
|
|
Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
|
|
|
|
// If the conversion operator is being invoked on a lambda closure to convert
|
|
// to a ptr-to-function, use the deduced arguments from the conversion function
|
|
// to specialize the corresponding call operator.
|
|
// e.g., int (*fp)(int) = [](auto a) { return a; };
|
|
if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
|
|
|
|
// Get the return type of the destination ptr-to-function we are converting
|
|
// to. This is necessary for matching the lambda call operator's return
|
|
// type to that of the destination ptr-to-function's return type.
|
|
assert(A->isPointerType() &&
|
|
"Can only convert from lambda to ptr-to-function");
|
|
const FunctionType *ToFunType =
|
|
A->getPointeeType().getTypePtr()->getAs<FunctionType>();
|
|
const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
|
|
|
|
// Create the corresponding specializations of the call operator and
|
|
// the static-invoker; and if the return type is auto,
|
|
// deduce the return type and check if it matches the
|
|
// DestFunctionPtrReturnType.
|
|
// For instance:
|
|
// auto L = [](auto a) { return f(a); };
|
|
// int (*fp)(int) = L;
|
|
// char (*fp2)(int) = L; <-- Not OK.
|
|
|
|
Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
|
|
Specialization, Deduced, DestFunctionPtrReturnType,
|
|
Info, *this);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Deduce template arguments for a function template when there is
|
|
/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
|
|
///
|
|
/// \param FunctionTemplate the function template for which we are performing
|
|
/// template argument deduction.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-specified template
|
|
/// arguments.
|
|
///
|
|
/// \param Specialization if template argument deduction was successful,
|
|
/// this will be set to the function template specialization produced by
|
|
/// template argument deduction.
|
|
///
|
|
/// \param Info the argument will be updated to provide additional information
|
|
/// about template argument deduction.
|
|
///
|
|
/// \returns the result of template argument deduction.
|
|
Sema::TemplateDeductionResult
|
|
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
FunctionDecl *&Specialization,
|
|
TemplateDeductionInfo &Info,
|
|
bool InOverloadResolution) {
|
|
return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
|
|
QualType(), Specialization, Info,
|
|
InOverloadResolution);
|
|
}
|
|
|
|
namespace {
|
|
/// Substitute the 'auto' type specifier within a type for a given replacement
|
|
/// type.
|
|
class SubstituteAutoTransform :
|
|
public TreeTransform<SubstituteAutoTransform> {
|
|
QualType Replacement;
|
|
public:
|
|
SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
|
|
TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
|
|
}
|
|
QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
|
|
// If we're building the type pattern to deduce against, don't wrap the
|
|
// substituted type in an AutoType. Certain template deduction rules
|
|
// apply only when a template type parameter appears directly (and not if
|
|
// the parameter is found through desugaring). For instance:
|
|
// auto &&lref = lvalue;
|
|
// must transform into "rvalue reference to T" not "rvalue reference to
|
|
// auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
|
|
if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
|
|
QualType Result = Replacement;
|
|
TemplateTypeParmTypeLoc NewTL =
|
|
TLB.push<TemplateTypeParmTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
return Result;
|
|
} else {
|
|
bool Dependent =
|
|
!Replacement.isNull() && Replacement->isDependentType();
|
|
QualType Result =
|
|
SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
|
|
TL.getTypePtr()->isDecltypeAuto(),
|
|
Dependent);
|
|
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
|
|
NewTL.setNameLoc(TL.getNameLoc());
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
ExprResult TransformLambdaExpr(LambdaExpr *E) {
|
|
// Lambdas never need to be transformed.
|
|
return E;
|
|
}
|
|
|
|
QualType Apply(TypeLoc TL) {
|
|
// Create some scratch storage for the transformed type locations.
|
|
// FIXME: We're just going to throw this information away. Don't build it.
|
|
TypeLocBuilder TLB;
|
|
TLB.reserve(TL.getFullDataSize());
|
|
return TransformType(TLB, TL);
|
|
}
|
|
};
|
|
}
|
|
|
|
Sema::DeduceAutoResult
|
|
Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
|
|
return DeduceAutoType(Type->getTypeLoc(), Init, Result);
|
|
}
|
|
|
|
/// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
|
|
///
|
|
/// \param Type the type pattern using the auto type-specifier.
|
|
/// \param Init the initializer for the variable whose type is to be deduced.
|
|
/// \param Result if type deduction was successful, this will be set to the
|
|
/// deduced type.
|
|
Sema::DeduceAutoResult
|
|
Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
|
|
if (Init->getType()->isNonOverloadPlaceholderType()) {
|
|
ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
|
|
if (NonPlaceholder.isInvalid())
|
|
return DAR_FailedAlreadyDiagnosed;
|
|
Init = NonPlaceholder.take();
|
|
}
|
|
|
|
if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
|
|
Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
|
|
assert(!Result.isNull() && "substituting DependentTy can't fail");
|
|
return DAR_Succeeded;
|
|
}
|
|
|
|
// If this is a 'decltype(auto)' specifier, do the decltype dance.
|
|
// Since 'decltype(auto)' can only occur at the top of the type, we
|
|
// don't need to go digging for it.
|
|
if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
|
|
if (AT->isDecltypeAuto()) {
|
|
if (isa<InitListExpr>(Init)) {
|
|
Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
|
|
return DAR_FailedAlreadyDiagnosed;
|
|
}
|
|
|
|
QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
|
|
// FIXME: Support a non-canonical deduced type for 'auto'.
|
|
Deduced = Context.getCanonicalType(Deduced);
|
|
Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
|
|
if (Result.isNull())
|
|
return DAR_FailedAlreadyDiagnosed;
|
|
return DAR_Succeeded;
|
|
}
|
|
}
|
|
|
|
SourceLocation Loc = Init->getExprLoc();
|
|
|
|
LocalInstantiationScope InstScope(*this);
|
|
|
|
// Build template<class TemplParam> void Func(FuncParam);
|
|
TemplateTypeParmDecl *TemplParam =
|
|
TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
|
|
false, false);
|
|
QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
|
|
NamedDecl *TemplParamPtr = TemplParam;
|
|
FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
|
|
Loc);
|
|
|
|
QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
|
|
assert(!FuncParam.isNull() &&
|
|
"substituting template parameter for 'auto' failed");
|
|
|
|
// Deduce type of TemplParam in Func(Init)
|
|
SmallVector<DeducedTemplateArgument, 1> Deduced;
|
|
Deduced.resize(1);
|
|
QualType InitType = Init->getType();
|
|
unsigned TDF = 0;
|
|
|
|
TemplateDeductionInfo Info(Loc);
|
|
|
|
InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
|
|
if (InitList) {
|
|
for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
|
|
if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
|
|
TemplArg,
|
|
InitList->getInit(i),
|
|
Info, Deduced, TDF))
|
|
return DAR_Failed;
|
|
}
|
|
} else {
|
|
if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
|
|
FuncParam, InitType, Init,
|
|
TDF))
|
|
return DAR_Failed;
|
|
|
|
if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
|
|
InitType, Info, Deduced, TDF))
|
|
return DAR_Failed;
|
|
}
|
|
|
|
if (Deduced[0].getKind() != TemplateArgument::Type)
|
|
return DAR_Failed;
|
|
|
|
QualType DeducedType = Deduced[0].getAsType();
|
|
|
|
if (InitList) {
|
|
DeducedType = BuildStdInitializerList(DeducedType, Loc);
|
|
if (DeducedType.isNull())
|
|
return DAR_FailedAlreadyDiagnosed;
|
|
}
|
|
|
|
Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
|
|
if (Result.isNull())
|
|
return DAR_FailedAlreadyDiagnosed;
|
|
|
|
// Check that the deduced argument type is compatible with the original
|
|
// argument type per C++ [temp.deduct.call]p4.
|
|
if (!InitList && !Result.isNull() &&
|
|
CheckOriginalCallArgDeduction(*this,
|
|
Sema::OriginalCallArg(FuncParam,0,InitType),
|
|
Result)) {
|
|
Result = QualType();
|
|
return DAR_Failed;
|
|
}
|
|
|
|
return DAR_Succeeded;
|
|
}
|
|
|
|
QualType Sema::SubstAutoType(QualType TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
return SubstituteAutoTransform(*this, TypeToReplaceAuto).
|
|
TransformType(TypeWithAuto);
|
|
}
|
|
|
|
TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType TypeToReplaceAuto) {
|
|
return SubstituteAutoTransform(*this, TypeToReplaceAuto).
|
|
TransformType(TypeWithAuto);
|
|
}
|
|
|
|
void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
|
|
if (isa<InitListExpr>(Init))
|
|
Diag(VDecl->getLocation(),
|
|
VDecl->isInitCapture()
|
|
? diag::err_init_capture_deduction_failure_from_init_list
|
|
: diag::err_auto_var_deduction_failure_from_init_list)
|
|
<< VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
|
|
else
|
|
Diag(VDecl->getLocation(),
|
|
VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
|
|
: diag::err_auto_var_deduction_failure)
|
|
<< VDecl->getDeclName() << VDecl->getType() << Init->getType()
|
|
<< Init->getSourceRange();
|
|
}
|
|
|
|
bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
|
|
bool Diagnose) {
|
|
assert(FD->getReturnType()->isUndeducedType());
|
|
|
|
if (FD->getTemplateInstantiationPattern())
|
|
InstantiateFunctionDefinition(Loc, FD);
|
|
|
|
bool StillUndeduced = FD->getReturnType()->isUndeducedType();
|
|
if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
|
|
Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
|
|
Diag(FD->getLocation(), diag::note_callee_decl) << FD;
|
|
}
|
|
|
|
return StillUndeduced;
|
|
}
|
|
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
|
|
bool OnlyDeduced,
|
|
unsigned Level,
|
|
llvm::SmallBitVector &Deduced);
|
|
|
|
/// \brief If this is a non-static member function,
|
|
static void
|
|
AddImplicitObjectParameterType(ASTContext &Context,
|
|
CXXMethodDecl *Method,
|
|
SmallVectorImpl<QualType> &ArgTypes) {
|
|
// C++11 [temp.func.order]p3:
|
|
// [...] The new parameter is of type "reference to cv A," where cv are
|
|
// the cv-qualifiers of the function template (if any) and A is
|
|
// the class of which the function template is a member.
|
|
//
|
|
// The standard doesn't say explicitly, but we pick the appropriate kind of
|
|
// reference type based on [over.match.funcs]p4.
|
|
QualType ArgTy = Context.getTypeDeclType(Method->getParent());
|
|
ArgTy = Context.getQualifiedType(ArgTy,
|
|
Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
|
|
if (Method->getRefQualifier() == RQ_RValue)
|
|
ArgTy = Context.getRValueReferenceType(ArgTy);
|
|
else
|
|
ArgTy = Context.getLValueReferenceType(ArgTy);
|
|
ArgTypes.push_back(ArgTy);
|
|
}
|
|
|
|
/// \brief Determine whether the function template \p FT1 is at least as
|
|
/// specialized as \p FT2.
|
|
static bool isAtLeastAsSpecializedAs(Sema &S,
|
|
SourceLocation Loc,
|
|
FunctionTemplateDecl *FT1,
|
|
FunctionTemplateDecl *FT2,
|
|
TemplatePartialOrderingContext TPOC,
|
|
unsigned NumCallArguments1,
|
|
SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
|
|
FunctionDecl *FD1 = FT1->getTemplatedDecl();
|
|
FunctionDecl *FD2 = FT2->getTemplatedDecl();
|
|
const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
|
|
|
|
assert(Proto1 && Proto2 && "Function templates must have prototypes");
|
|
TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
// C++0x [temp.deduct.partial]p3:
|
|
// The types used to determine the ordering depend on the context in which
|
|
// the partial ordering is done:
|
|
TemplateDeductionInfo Info(Loc);
|
|
SmallVector<QualType, 4> Args2;
|
|
switch (TPOC) {
|
|
case TPOC_Call: {
|
|
// - In the context of a function call, the function parameter types are
|
|
// used.
|
|
CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
|
|
CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
|
|
|
|
// C++11 [temp.func.order]p3:
|
|
// [...] If only one of the function templates is a non-static
|
|
// member, that function template is considered to have a new
|
|
// first parameter inserted in its function parameter list. The
|
|
// new parameter is of type "reference to cv A," where cv are
|
|
// the cv-qualifiers of the function template (if any) and A is
|
|
// the class of which the function template is a member.
|
|
//
|
|
// Note that we interpret this to mean "if one of the function
|
|
// templates is a non-static member and the other is a non-member";
|
|
// otherwise, the ordering rules for static functions against non-static
|
|
// functions don't make any sense.
|
|
//
|
|
// C++98/03 doesn't have this provision, so instead we drop the
|
|
// first argument of the free function, which seems to match
|
|
// existing practice.
|
|
SmallVector<QualType, 4> Args1;
|
|
|
|
unsigned Skip1 = 0, Skip2 = 0;
|
|
unsigned NumComparedArguments = NumCallArguments1;
|
|
|
|
if (!Method2 && Method1 && !Method1->isStatic()) {
|
|
if (S.getLangOpts().CPlusPlus11) {
|
|
// Compare 'this' from Method1 against first parameter from Method2.
|
|
AddImplicitObjectParameterType(S.Context, Method1, Args1);
|
|
++NumComparedArguments;
|
|
} else
|
|
// Ignore first parameter from Method2.
|
|
++Skip2;
|
|
} else if (!Method1 && Method2 && !Method2->isStatic()) {
|
|
if (S.getLangOpts().CPlusPlus11)
|
|
// Compare 'this' from Method2 against first parameter from Method1.
|
|
AddImplicitObjectParameterType(S.Context, Method2, Args2);
|
|
else
|
|
// Ignore first parameter from Method1.
|
|
++Skip1;
|
|
}
|
|
|
|
Args1.insert(Args1.end(), Proto1->param_type_begin() + Skip1,
|
|
Proto1->param_type_end());
|
|
Args2.insert(Args2.end(), Proto2->param_type_begin() + Skip2,
|
|
Proto2->param_type_end());
|
|
|
|
// C++ [temp.func.order]p5:
|
|
// The presence of unused ellipsis and default arguments has no effect on
|
|
// the partial ordering of function templates.
|
|
if (Args1.size() > NumComparedArguments)
|
|
Args1.resize(NumComparedArguments);
|
|
if (Args2.size() > NumComparedArguments)
|
|
Args2.resize(NumComparedArguments);
|
|
if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
|
|
Args1.data(), Args1.size(), Info, Deduced,
|
|
TDF_None, /*PartialOrdering=*/true,
|
|
RefParamComparisons))
|
|
return false;
|
|
|
|
break;
|
|
}
|
|
|
|
case TPOC_Conversion:
|
|
// - In the context of a call to a conversion operator, the return types
|
|
// of the conversion function templates are used.
|
|
if (DeduceTemplateArgumentsByTypeMatch(
|
|
S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
|
|
Info, Deduced, TDF_None,
|
|
/*PartialOrdering=*/true, RefParamComparisons))
|
|
return false;
|
|
break;
|
|
|
|
case TPOC_Other:
|
|
// - In other contexts (14.6.6.2) the function template's function type
|
|
// is used.
|
|
if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
|
|
FD2->getType(), FD1->getType(),
|
|
Info, Deduced, TDF_None,
|
|
/*PartialOrdering=*/true,
|
|
RefParamComparisons))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
// C++0x [temp.deduct.partial]p11:
|
|
// In most cases, all template parameters must have values in order for
|
|
// deduction to succeed, but for partial ordering purposes a template
|
|
// parameter may remain without a value provided it is not used in the
|
|
// types being used for partial ordering. [ Note: a template parameter used
|
|
// in a non-deduced context is considered used. -end note]
|
|
unsigned ArgIdx = 0, NumArgs = Deduced.size();
|
|
for (; ArgIdx != NumArgs; ++ArgIdx)
|
|
if (Deduced[ArgIdx].isNull())
|
|
break;
|
|
|
|
if (ArgIdx == NumArgs) {
|
|
// All template arguments were deduced. FT1 is at least as specialized
|
|
// as FT2.
|
|
return true;
|
|
}
|
|
|
|
// Figure out which template parameters were used.
|
|
llvm::SmallBitVector UsedParameters(TemplateParams->size());
|
|
switch (TPOC) {
|
|
case TPOC_Call:
|
|
for (unsigned I = 0, N = Args2.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(S.Context, Args2[I], false,
|
|
TemplateParams->getDepth(),
|
|
UsedParameters);
|
|
break;
|
|
|
|
case TPOC_Conversion:
|
|
::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
|
|
TemplateParams->getDepth(), UsedParameters);
|
|
break;
|
|
|
|
case TPOC_Other:
|
|
::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
|
|
TemplateParams->getDepth(),
|
|
UsedParameters);
|
|
break;
|
|
}
|
|
|
|
for (; ArgIdx != NumArgs; ++ArgIdx)
|
|
// If this argument had no value deduced but was used in one of the types
|
|
// used for partial ordering, then deduction fails.
|
|
if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Determine whether this a function template whose parameter-type-list
|
|
/// ends with a function parameter pack.
|
|
static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
|
|
FunctionDecl *Function = FunTmpl->getTemplatedDecl();
|
|
unsigned NumParams = Function->getNumParams();
|
|
if (NumParams == 0)
|
|
return false;
|
|
|
|
ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
|
|
if (!Last->isParameterPack())
|
|
return false;
|
|
|
|
// Make sure that no previous parameter is a parameter pack.
|
|
while (--NumParams > 0) {
|
|
if (Function->getParamDecl(NumParams - 1)->isParameterPack())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Returns the more specialized function template according
|
|
/// to the rules of function template partial ordering (C++ [temp.func.order]).
|
|
///
|
|
/// \param FT1 the first function template
|
|
///
|
|
/// \param FT2 the second function template
|
|
///
|
|
/// \param TPOC the context in which we are performing partial ordering of
|
|
/// function templates.
|
|
///
|
|
/// \param NumCallArguments1 The number of arguments in the call to FT1, used
|
|
/// only when \c TPOC is \c TPOC_Call.
|
|
///
|
|
/// \param NumCallArguments2 The number of arguments in the call to FT2, used
|
|
/// only when \c TPOC is \c TPOC_Call.
|
|
///
|
|
/// \returns the more specialized function template. If neither
|
|
/// template is more specialized, returns NULL.
|
|
FunctionTemplateDecl *
|
|
Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
|
|
FunctionTemplateDecl *FT2,
|
|
SourceLocation Loc,
|
|
TemplatePartialOrderingContext TPOC,
|
|
unsigned NumCallArguments1,
|
|
unsigned NumCallArguments2) {
|
|
SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
|
|
bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
|
|
NumCallArguments1, 0);
|
|
bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
|
|
NumCallArguments2,
|
|
&RefParamComparisons);
|
|
|
|
if (Better1 != Better2) // We have a clear winner
|
|
return Better1? FT1 : FT2;
|
|
|
|
if (!Better1 && !Better2) // Neither is better than the other
|
|
return 0;
|
|
|
|
// C++0x [temp.deduct.partial]p10:
|
|
// If for each type being considered a given template is at least as
|
|
// specialized for all types and more specialized for some set of types and
|
|
// the other template is not more specialized for any types or is not at
|
|
// least as specialized for any types, then the given template is more
|
|
// specialized than the other template. Otherwise, neither template is more
|
|
// specialized than the other.
|
|
Better1 = false;
|
|
Better2 = false;
|
|
for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
|
|
// C++0x [temp.deduct.partial]p9:
|
|
// If, for a given type, deduction succeeds in both directions (i.e., the
|
|
// types are identical after the transformations above) and both P and A
|
|
// were reference types (before being replaced with the type referred to
|
|
// above):
|
|
|
|
// -- if the type from the argument template was an lvalue reference
|
|
// and the type from the parameter template was not, the argument
|
|
// type is considered to be more specialized than the other;
|
|
// otherwise,
|
|
if (!RefParamComparisons[I].ArgIsRvalueRef &&
|
|
RefParamComparisons[I].ParamIsRvalueRef) {
|
|
Better2 = true;
|
|
if (Better1)
|
|
return 0;
|
|
continue;
|
|
} else if (!RefParamComparisons[I].ParamIsRvalueRef &&
|
|
RefParamComparisons[I].ArgIsRvalueRef) {
|
|
Better1 = true;
|
|
if (Better2)
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
// -- if the type from the argument template is more cv-qualified than
|
|
// the type from the parameter template (as described above), the
|
|
// argument type is considered to be more specialized than the
|
|
// other; otherwise,
|
|
switch (RefParamComparisons[I].Qualifiers) {
|
|
case NeitherMoreQualified:
|
|
break;
|
|
|
|
case ParamMoreQualified:
|
|
Better1 = true;
|
|
if (Better2)
|
|
return 0;
|
|
continue;
|
|
|
|
case ArgMoreQualified:
|
|
Better2 = true;
|
|
if (Better1)
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
// -- neither type is more specialized than the other.
|
|
}
|
|
|
|
assert(!(Better1 && Better2) && "Should have broken out in the loop above");
|
|
if (Better1)
|
|
return FT1;
|
|
else if (Better2)
|
|
return FT2;
|
|
|
|
// FIXME: This mimics what GCC implements, but doesn't match up with the
|
|
// proposed resolution for core issue 692. This area needs to be sorted out,
|
|
// but for now we attempt to maintain compatibility.
|
|
bool Variadic1 = isVariadicFunctionTemplate(FT1);
|
|
bool Variadic2 = isVariadicFunctionTemplate(FT2);
|
|
if (Variadic1 != Variadic2)
|
|
return Variadic1? FT2 : FT1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Determine if the two templates are equivalent.
|
|
static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
|
|
if (T1 == T2)
|
|
return true;
|
|
|
|
if (!T1 || !T2)
|
|
return false;
|
|
|
|
return T1->getCanonicalDecl() == T2->getCanonicalDecl();
|
|
}
|
|
|
|
/// \brief Retrieve the most specialized of the given function template
|
|
/// specializations.
|
|
///
|
|
/// \param SpecBegin the start iterator of the function template
|
|
/// specializations that we will be comparing.
|
|
///
|
|
/// \param SpecEnd the end iterator of the function template
|
|
/// specializations, paired with \p SpecBegin.
|
|
///
|
|
/// \param Loc the location where the ambiguity or no-specializations
|
|
/// diagnostic should occur.
|
|
///
|
|
/// \param NoneDiag partial diagnostic used to diagnose cases where there are
|
|
/// no matching candidates.
|
|
///
|
|
/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
|
|
/// occurs.
|
|
///
|
|
/// \param CandidateDiag partial diagnostic used for each function template
|
|
/// specialization that is a candidate in the ambiguous ordering. One parameter
|
|
/// in this diagnostic should be unbound, which will correspond to the string
|
|
/// describing the template arguments for the function template specialization.
|
|
///
|
|
/// \returns the most specialized function template specialization, if
|
|
/// found. Otherwise, returns SpecEnd.
|
|
UnresolvedSetIterator Sema::getMostSpecialized(
|
|
UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
|
|
TemplateSpecCandidateSet &FailedCandidates,
|
|
SourceLocation Loc, const PartialDiagnostic &NoneDiag,
|
|
const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
|
|
bool Complain, QualType TargetType) {
|
|
if (SpecBegin == SpecEnd) {
|
|
if (Complain) {
|
|
Diag(Loc, NoneDiag);
|
|
FailedCandidates.NoteCandidates(*this, Loc);
|
|
}
|
|
return SpecEnd;
|
|
}
|
|
|
|
if (SpecBegin + 1 == SpecEnd)
|
|
return SpecBegin;
|
|
|
|
// Find the function template that is better than all of the templates it
|
|
// has been compared to.
|
|
UnresolvedSetIterator Best = SpecBegin;
|
|
FunctionTemplateDecl *BestTemplate
|
|
= cast<FunctionDecl>(*Best)->getPrimaryTemplate();
|
|
assert(BestTemplate && "Not a function template specialization?");
|
|
for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
|
|
FunctionTemplateDecl *Challenger
|
|
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
|
|
assert(Challenger && "Not a function template specialization?");
|
|
if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
|
|
Loc, TPOC_Other, 0, 0),
|
|
Challenger)) {
|
|
Best = I;
|
|
BestTemplate = Challenger;
|
|
}
|
|
}
|
|
|
|
// Make sure that the "best" function template is more specialized than all
|
|
// of the others.
|
|
bool Ambiguous = false;
|
|
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
|
|
FunctionTemplateDecl *Challenger
|
|
= cast<FunctionDecl>(*I)->getPrimaryTemplate();
|
|
if (I != Best &&
|
|
!isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
|
|
Loc, TPOC_Other, 0, 0),
|
|
BestTemplate)) {
|
|
Ambiguous = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Ambiguous) {
|
|
// We found an answer. Return it.
|
|
return Best;
|
|
}
|
|
|
|
// Diagnose the ambiguity.
|
|
if (Complain) {
|
|
Diag(Loc, AmbigDiag);
|
|
|
|
// FIXME: Can we order the candidates in some sane way?
|
|
for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
|
|
PartialDiagnostic PD = CandidateDiag;
|
|
PD << getTemplateArgumentBindingsText(
|
|
cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
|
|
*cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
|
|
if (!TargetType.isNull())
|
|
HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
|
|
TargetType);
|
|
Diag((*I)->getLocation(), PD);
|
|
}
|
|
}
|
|
|
|
return SpecEnd;
|
|
}
|
|
|
|
/// \brief Returns the more specialized class template partial specialization
|
|
/// according to the rules of partial ordering of class template partial
|
|
/// specializations (C++ [temp.class.order]).
|
|
///
|
|
/// \param PS1 the first class template partial specialization
|
|
///
|
|
/// \param PS2 the second class template partial specialization
|
|
///
|
|
/// \returns the more specialized class template partial specialization. If
|
|
/// neither partial specialization is more specialized, returns NULL.
|
|
ClassTemplatePartialSpecializationDecl *
|
|
Sema::getMoreSpecializedPartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *PS1,
|
|
ClassTemplatePartialSpecializationDecl *PS2,
|
|
SourceLocation Loc) {
|
|
// C++ [temp.class.order]p1:
|
|
// For two class template partial specializations, the first is at least as
|
|
// specialized as the second if, given the following rewrite to two
|
|
// function templates, the first function template is at least as
|
|
// specialized as the second according to the ordering rules for function
|
|
// templates (14.6.6.2):
|
|
// - the first function template has the same template parameters as the
|
|
// first partial specialization and has a single function parameter
|
|
// whose type is a class template specialization with the template
|
|
// arguments of the first partial specialization, and
|
|
// - the second function template has the same template parameters as the
|
|
// second partial specialization and has a single function parameter
|
|
// whose type is a class template specialization with the template
|
|
// arguments of the second partial specialization.
|
|
//
|
|
// Rather than synthesize function templates, we merely perform the
|
|
// equivalent partial ordering by performing deduction directly on
|
|
// the template arguments of the class template partial
|
|
// specializations. This computation is slightly simpler than the
|
|
// general problem of function template partial ordering, because
|
|
// class template partial specializations are more constrained. We
|
|
// know that every template parameter is deducible from the class
|
|
// template partial specialization's template arguments, for
|
|
// example.
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
TemplateDeductionInfo Info(Loc);
|
|
|
|
QualType PT1 = PS1->getInjectedSpecializationType();
|
|
QualType PT2 = PS2->getInjectedSpecializationType();
|
|
|
|
// Determine whether PS1 is at least as specialized as PS2
|
|
Deduced.resize(PS2->getTemplateParameters()->size());
|
|
bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
|
|
PS2->getTemplateParameters(),
|
|
PT2, PT1, Info, Deduced, TDF_None,
|
|
/*PartialOrdering=*/true,
|
|
/*RefParamComparisons=*/0);
|
|
if (Better1) {
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
|
|
Better1 = !::FinishTemplateArgumentDeduction(
|
|
*this, PS2, PS1->getTemplateArgs(), Deduced, Info);
|
|
}
|
|
|
|
// Determine whether PS2 is at least as specialized as PS1
|
|
Deduced.clear();
|
|
Deduced.resize(PS1->getTemplateParameters()->size());
|
|
bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
|
|
*this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
|
|
/*PartialOrdering=*/true,
|
|
/*RefParamComparisons=*/0);
|
|
if (Better2) {
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
|
|
Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
|
|
Better2 = !::FinishTemplateArgumentDeduction(
|
|
*this, PS1, PS2->getTemplateArgs(), Deduced, Info);
|
|
}
|
|
|
|
if (Better1 == Better2)
|
|
return 0;
|
|
|
|
return Better1 ? PS1 : PS2;
|
|
}
|
|
|
|
/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
|
|
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
|
|
/// VarTemplate(Partial)SpecializationDecl with a new data
|
|
/// structure Template(Partial)SpecializationDecl, and
|
|
/// using Template(Partial)SpecializationDecl as input type.
|
|
VarTemplatePartialSpecializationDecl *
|
|
Sema::getMoreSpecializedPartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *PS1,
|
|
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
|
|
SmallVector<DeducedTemplateArgument, 4> Deduced;
|
|
TemplateDeductionInfo Info(Loc);
|
|
|
|
assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
|
|
"the partial specializations being compared should specialize"
|
|
" the same template.");
|
|
TemplateName Name(PS1->getSpecializedTemplate());
|
|
TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
|
|
QualType PT1 = Context.getTemplateSpecializationType(
|
|
CanonTemplate, PS1->getTemplateArgs().data(),
|
|
PS1->getTemplateArgs().size());
|
|
QualType PT2 = Context.getTemplateSpecializationType(
|
|
CanonTemplate, PS2->getTemplateArgs().data(),
|
|
PS2->getTemplateArgs().size());
|
|
|
|
// Determine whether PS1 is at least as specialized as PS2
|
|
Deduced.resize(PS2->getTemplateParameters()->size());
|
|
bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
|
|
*this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
|
|
/*PartialOrdering=*/true,
|
|
/*RefParamComparisons=*/0);
|
|
if (Better1) {
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
|
|
Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
|
|
Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
|
|
PS1->getTemplateArgs(),
|
|
Deduced, Info);
|
|
}
|
|
|
|
// Determine whether PS2 is at least as specialized as PS1
|
|
Deduced.clear();
|
|
Deduced.resize(PS1->getTemplateParameters()->size());
|
|
bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
|
|
PS1->getTemplateParameters(),
|
|
PT1, PT2, Info, Deduced, TDF_None,
|
|
/*PartialOrdering=*/true,
|
|
/*RefParamComparisons=*/0);
|
|
if (Better2) {
|
|
SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
|
|
InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
|
|
Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
|
|
PS2->getTemplateArgs(),
|
|
Deduced, Info);
|
|
}
|
|
|
|
if (Better1 == Better2)
|
|
return 0;
|
|
|
|
return Better1? PS1 : PS2;
|
|
}
|
|
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const TemplateArgument &TemplateArg,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used);
|
|
|
|
/// \brief Mark the template parameters that are used by the given
|
|
/// expression.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const Expr *E,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
// We can deduce from a pack expansion.
|
|
if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
|
|
E = Expansion->getPattern();
|
|
|
|
// Skip through any implicit casts we added while type-checking, and any
|
|
// substitutions performed by template alias expansion.
|
|
while (1) {
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
|
|
E = ICE->getSubExpr();
|
|
else if (const SubstNonTypeTemplateParmExpr *Subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(E))
|
|
E = Subst->getReplacement();
|
|
else
|
|
break;
|
|
}
|
|
|
|
// FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
|
|
// find other occurrences of template parameters.
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
|
|
if (!DRE)
|
|
return;
|
|
|
|
const NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
|
|
if (!NTTP)
|
|
return;
|
|
|
|
if (NTTP->getDepth() == Depth)
|
|
Used[NTTP->getIndex()] = true;
|
|
}
|
|
|
|
/// \brief Mark the template parameters that are used by the given
|
|
/// nested name specifier.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
NestedNameSpecifier *NNS,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (!NNS)
|
|
return;
|
|
|
|
MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
|
|
Used);
|
|
MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
|
|
OnlyDeduced, Depth, Used);
|
|
}
|
|
|
|
/// \brief Mark the template parameters that are used by the given
|
|
/// template name.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
TemplateName Name,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Template)) {
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
|
|
MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
|
|
Depth, Used);
|
|
if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
|
|
MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
|
|
Depth, Used);
|
|
}
|
|
|
|
/// \brief Mark the template parameters that are used by the given
|
|
/// type.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
if (T.isNull())
|
|
return;
|
|
|
|
// Non-dependent types have nothing deducible
|
|
if (!T->isDependentType())
|
|
return;
|
|
|
|
T = Ctx.getCanonicalType(T);
|
|
switch (T->getTypeClass()) {
|
|
case Type::Pointer:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<PointerType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::BlockPointer:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<BlockPointerType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ReferenceType>(T)->getPointeeType(),
|
|
OnlyDeduced,
|
|
Depth,
|
|
Used);
|
|
break;
|
|
|
|
case Type::MemberPointer: {
|
|
const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
|
|
MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::DependentSizedArray:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentSizedArrayType>(T)->getSizeExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
// Fall through to check the element type
|
|
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ArrayType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<VectorType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentSizedExtVector: {
|
|
const DependentSizedExtVectorType *VecType
|
|
= cast<DependentSizedExtVectorType>(T);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
|
|
Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::FunctionProto: {
|
|
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
|
MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
|
|
Used);
|
|
for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
|
|
MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::TemplateTypeParm: {
|
|
const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
|
|
if (TTP->getDepth() == Depth)
|
|
Used[TTP->getIndex()] = true;
|
|
break;
|
|
}
|
|
|
|
case Type::SubstTemplateTypeParmPack: {
|
|
const SubstTemplateTypeParmPackType *Subst
|
|
= cast<SubstTemplateTypeParmPackType>(T);
|
|
MarkUsedTemplateParameters(Ctx,
|
|
QualType(Subst->getReplacedParameter(), 0),
|
|
OnlyDeduced, Depth, Used);
|
|
MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
|
|
case Type::InjectedClassName:
|
|
T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
|
|
// fall through
|
|
|
|
case Type::TemplateSpecialization: {
|
|
const TemplateSpecializationType *Spec
|
|
= cast<TemplateSpecializationType>(T);
|
|
MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
|
|
Depth, Used);
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (OnlyDeduced &&
|
|
hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
|
|
break;
|
|
|
|
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
|
|
MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
|
|
Used);
|
|
break;
|
|
}
|
|
|
|
case Type::Complex:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<ComplexType>(T)->getElementType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Atomic:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<AtomicType>(T)->getValueType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentName:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DependentNameType>(T)->getQualifier(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::DependentTemplateSpecialization: {
|
|
const DependentTemplateSpecializationType *Spec
|
|
= cast<DependentTemplateSpecializationType>(T);
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
|
|
OnlyDeduced, Depth, Used);
|
|
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (OnlyDeduced &&
|
|
hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
|
|
break;
|
|
|
|
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
|
|
MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
|
|
Used);
|
|
break;
|
|
}
|
|
|
|
case Type::TypeOf:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<TypeOfType>(T)->getUnderlyingType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::TypeOfExpr:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<TypeOfExprType>(T)->getUnderlyingExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Decltype:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<DecltypeType>(T)->getUnderlyingExpr(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::UnaryTransform:
|
|
if (!OnlyDeduced)
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<UnaryTransformType>(T)->getUnderlyingType(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::PackExpansion:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<PackExpansionType>(T)->getPattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case Type::Auto:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
cast<AutoType>(T)->getDeducedType(),
|
|
OnlyDeduced, Depth, Used);
|
|
|
|
// None of these types have any template parameters in them.
|
|
case Type::Builtin:
|
|
case Type::VariableArray:
|
|
case Type::FunctionNoProto:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::UnresolvedUsing:
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define DEPENDENT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
|
#include "clang/AST/TypeNodes.def"
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// \brief Mark the template parameters that are used by this
|
|
/// template argument.
|
|
static void
|
|
MarkUsedTemplateParameters(ASTContext &Ctx,
|
|
const TemplateArgument &TemplateArg,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
switch (TemplateArg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Declaration:
|
|
break;
|
|
|
|
case TemplateArgument::NullPtr:
|
|
MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Type:
|
|
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
MarkUsedTemplateParameters(Ctx,
|
|
TemplateArg.getAsTemplateOrTemplatePattern(),
|
|
OnlyDeduced, Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
|
|
Depth, Used);
|
|
break;
|
|
|
|
case TemplateArgument::Pack:
|
|
for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
|
|
PEnd = TemplateArg.pack_end();
|
|
P != PEnd; ++P)
|
|
MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// \brief Mark which template parameters can be deduced from a given
|
|
/// template argument list.
|
|
///
|
|
/// \param TemplateArgs the template argument list from which template
|
|
/// parameters will be deduced.
|
|
///
|
|
/// \param Used a bit vector whose elements will be set to \c true
|
|
/// to indicate when the corresponding template parameter will be
|
|
/// deduced.
|
|
void
|
|
Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
|
|
bool OnlyDeduced, unsigned Depth,
|
|
llvm::SmallBitVector &Used) {
|
|
// C++0x [temp.deduct.type]p9:
|
|
// If the template argument list of P contains a pack expansion that is not
|
|
// the last template argument, the entire template argument list is a
|
|
// non-deduced context.
|
|
if (OnlyDeduced &&
|
|
hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
|
|
return;
|
|
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
|
|
Depth, Used);
|
|
}
|
|
|
|
/// \brief Marks all of the template parameters that will be deduced by a
|
|
/// call to the given function template.
|
|
void
|
|
Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
|
|
const FunctionTemplateDecl *FunctionTemplate,
|
|
llvm::SmallBitVector &Deduced) {
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
Deduced.clear();
|
|
Deduced.resize(TemplateParams->size());
|
|
|
|
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
|
for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
|
|
::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
|
|
true, TemplateParams->getDepth(), Deduced);
|
|
}
|
|
|
|
bool hasDeducibleTemplateParameters(Sema &S,
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
QualType T) {
|
|
if (!T->isDependentType())
|
|
return false;
|
|
|
|
TemplateParameterList *TemplateParams
|
|
= FunctionTemplate->getTemplateParameters();
|
|
llvm::SmallBitVector Deduced(TemplateParams->size());
|
|
::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
|
|
Deduced);
|
|
|
|
return Deduced.any();
|
|
}
|