llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp

1636 lines
57 KiB
C++

//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// The AMDGPU target machine contains all of the hardware specific
/// information needed to emit code for R600 and SI GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetMachine.h"
#include "AMDGPU.h"
#include "AMDGPUAliasAnalysis.h"
#include "AMDGPUExportClustering.h"
#include "AMDGPUMacroFusion.h"
#include "AMDGPUTargetObjectFile.h"
#include "AMDGPUTargetTransformInfo.h"
#include "GCNIterativeScheduler.h"
#include "GCNSchedStrategy.h"
#include "R600MachineScheduler.h"
#include "SIMachineFunctionInfo.h"
#include "SIMachineScheduler.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/InferAddressSpaces.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
namespace {
class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
public:
SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
: RegisterRegAllocBase(N, D, C) {}
};
class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
public:
VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
: RegisterRegAllocBase(N, D, C) {}
};
static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
const TargetRegisterClass &RC) {
return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
}
static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
const TargetRegisterClass &RC) {
return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
}
/// -{sgpr|vgpr}-regalloc=... command line option.
static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
/// A dummy default pass factory indicates whether the register allocator is
/// overridden on the command line.
static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
static SGPRRegisterRegAlloc
defaultSGPRRegAlloc("default",
"pick SGPR register allocator based on -O option",
useDefaultRegisterAllocator);
static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
RegisterPassParser<SGPRRegisterRegAlloc>>
SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
cl::desc("Register allocator to use for SGPRs"));
static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
RegisterPassParser<VGPRRegisterRegAlloc>>
VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
cl::desc("Register allocator to use for VGPRs"));
static void initializeDefaultSGPRRegisterAllocatorOnce() {
RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
if (!Ctor) {
Ctor = SGPRRegAlloc;
SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
}
}
static void initializeDefaultVGPRRegisterAllocatorOnce() {
RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
if (!Ctor) {
Ctor = VGPRRegAlloc;
VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
}
}
static FunctionPass *createBasicSGPRRegisterAllocator() {
return createBasicRegisterAllocator(onlyAllocateSGPRs);
}
static FunctionPass *createGreedySGPRRegisterAllocator() {
return createGreedyRegisterAllocator(onlyAllocateSGPRs);
}
static FunctionPass *createFastSGPRRegisterAllocator() {
return createFastRegisterAllocator(onlyAllocateSGPRs, false);
}
static FunctionPass *createBasicVGPRRegisterAllocator() {
return createBasicRegisterAllocator(onlyAllocateVGPRs);
}
static FunctionPass *createGreedyVGPRRegisterAllocator() {
return createGreedyRegisterAllocator(onlyAllocateVGPRs);
}
static FunctionPass *createFastVGPRRegisterAllocator() {
return createFastRegisterAllocator(onlyAllocateVGPRs, true);
}
static SGPRRegisterRegAlloc basicRegAllocSGPR(
"basic", "basic register allocator", createBasicSGPRRegisterAllocator);
static SGPRRegisterRegAlloc greedyRegAllocSGPR(
"greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
static SGPRRegisterRegAlloc fastRegAllocSGPR(
"fast", "fast register allocator", createFastSGPRRegisterAllocator);
static VGPRRegisterRegAlloc basicRegAllocVGPR(
"basic", "basic register allocator", createBasicVGPRRegisterAllocator);
static VGPRRegisterRegAlloc greedyRegAllocVGPR(
"greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
static VGPRRegisterRegAlloc fastRegAllocVGPR(
"fast", "fast register allocator", createFastVGPRRegisterAllocator);
}
static cl::opt<bool> EnableR600StructurizeCFG(
"r600-ir-structurize",
cl::desc("Use StructurizeCFG IR pass"),
cl::init(true));
static cl::opt<bool> EnableSROA(
"amdgpu-sroa",
cl::desc("Run SROA after promote alloca pass"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool>
EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
cl::desc("Run early if-conversion"),
cl::init(false));
static cl::opt<bool>
OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
cl::desc("Run pre-RA exec mask optimizations"),
cl::init(true));
static cl::opt<bool> EnableR600IfConvert(
"r600-if-convert",
cl::desc("Use if conversion pass"),
cl::ReallyHidden,
cl::init(true));
// Option to disable vectorizer for tests.
static cl::opt<bool> EnableLoadStoreVectorizer(
"amdgpu-load-store-vectorizer",
cl::desc("Enable load store vectorizer"),
cl::init(true),
cl::Hidden);
// Option to control global loads scalarization
static cl::opt<bool> ScalarizeGlobal(
"amdgpu-scalarize-global-loads",
cl::desc("Enable global load scalarization"),
cl::init(true),
cl::Hidden);
// Option to run internalize pass.
static cl::opt<bool> InternalizeSymbols(
"amdgpu-internalize-symbols",
cl::desc("Enable elimination of non-kernel functions and unused globals"),
cl::init(false),
cl::Hidden);
// Option to inline all early.
static cl::opt<bool> EarlyInlineAll(
"amdgpu-early-inline-all",
cl::desc("Inline all functions early"),
cl::init(false),
cl::Hidden);
static cl::opt<bool> EnableSDWAPeephole(
"amdgpu-sdwa-peephole",
cl::desc("Enable SDWA peepholer"),
cl::init(true));
static cl::opt<bool> EnableDPPCombine(
"amdgpu-dpp-combine",
cl::desc("Enable DPP combiner"),
cl::init(true));
// Enable address space based alias analysis
static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
cl::desc("Enable AMDGPU Alias Analysis"),
cl::init(true));
// Option to run late CFG structurizer
static cl::opt<bool, true> LateCFGStructurize(
"amdgpu-late-structurize",
cl::desc("Enable late CFG structurization"),
cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
cl::Hidden);
static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
"amdgpu-function-calls",
cl::desc("Enable AMDGPU function call support"),
cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
cl::init(true),
cl::Hidden);
static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
"amdgpu-fixed-function-abi",
cl::desc("Enable all implicit function arguments"),
cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
cl::init(false),
cl::Hidden);
// Enable lib calls simplifications
static cl::opt<bool> EnableLibCallSimplify(
"amdgpu-simplify-libcall",
cl::desc("Enable amdgpu library simplifications"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableLowerKernelArguments(
"amdgpu-ir-lower-kernel-arguments",
cl::desc("Lower kernel argument loads in IR pass"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableRegReassign(
"amdgpu-reassign-regs",
cl::desc("Enable register reassign optimizations on gfx10+"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> OptVGPRLiveRange(
"amdgpu-opt-vgpr-liverange",
cl::desc("Enable VGPR liverange optimizations for if-else structure"),
cl::init(true), cl::Hidden);
// Enable atomic optimization
static cl::opt<bool> EnableAtomicOptimizations(
"amdgpu-atomic-optimizations",
cl::desc("Enable atomic optimizations"),
cl::init(false),
cl::Hidden);
// Enable Mode register optimization
static cl::opt<bool> EnableSIModeRegisterPass(
"amdgpu-mode-register",
cl::desc("Enable mode register pass"),
cl::init(true),
cl::Hidden);
// Option is used in lit tests to prevent deadcoding of patterns inspected.
static cl::opt<bool>
EnableDCEInRA("amdgpu-dce-in-ra",
cl::init(true), cl::Hidden,
cl::desc("Enable machine DCE inside regalloc"));
static cl::opt<bool> EnableScalarIRPasses(
"amdgpu-scalar-ir-passes",
cl::desc("Enable scalar IR passes"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableStructurizerWorkarounds(
"amdgpu-enable-structurizer-workarounds",
cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableLDSReplaceWithPointer(
"amdgpu-enable-lds-replace-with-pointer",
cl::desc("Enable LDS replace with pointer pass"), cl::init(false),
cl::Hidden);
static cl::opt<bool, true> EnableLowerModuleLDS(
"amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
cl::Hidden);
static cl::opt<bool> EnablePreRAOptimizations(
"amdgpu-enable-pre-ra-optimizations",
cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
// Register the target
RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
PassRegistry *PR = PassRegistry::getPassRegistry();
initializeR600ClauseMergePassPass(*PR);
initializeR600ControlFlowFinalizerPass(*PR);
initializeR600PacketizerPass(*PR);
initializeR600ExpandSpecialInstrsPassPass(*PR);
initializeR600VectorRegMergerPass(*PR);
initializeGlobalISel(*PR);
initializeAMDGPUDAGToDAGISelPass(*PR);
initializeGCNDPPCombinePass(*PR);
initializeSILowerI1CopiesPass(*PR);
initializeSILowerSGPRSpillsPass(*PR);
initializeSIFixSGPRCopiesPass(*PR);
initializeSIFixVGPRCopiesPass(*PR);
initializeSIFoldOperandsPass(*PR);
initializeSIPeepholeSDWAPass(*PR);
initializeSIShrinkInstructionsPass(*PR);
initializeSIOptimizeExecMaskingPreRAPass(*PR);
initializeSIOptimizeVGPRLiveRangePass(*PR);
initializeSILoadStoreOptimizerPass(*PR);
initializeAMDGPUFixFunctionBitcastsPass(*PR);
initializeAMDGPUAlwaysInlinePass(*PR);
initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
initializeAMDGPUAnnotateUniformValuesPass(*PR);
initializeAMDGPUArgumentUsageInfoPass(*PR);
initializeAMDGPUAtomicOptimizerPass(*PR);
initializeAMDGPULowerKernelArgumentsPass(*PR);
initializeAMDGPULowerKernelAttributesPass(*PR);
initializeAMDGPULowerIntrinsicsPass(*PR);
initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
initializeAMDGPUPostLegalizerCombinerPass(*PR);
initializeAMDGPUPreLegalizerCombinerPass(*PR);
initializeAMDGPURegBankCombinerPass(*PR);
initializeAMDGPUPromoteAllocaPass(*PR);
initializeAMDGPUPromoteAllocaToVectorPass(*PR);
initializeAMDGPUCodeGenPreparePass(*PR);
initializeAMDGPULateCodeGenPreparePass(*PR);
initializeAMDGPUPropagateAttributesEarlyPass(*PR);
initializeAMDGPUPropagateAttributesLatePass(*PR);
initializeAMDGPUReplaceLDSUseWithPointerPass(*PR);
initializeAMDGPULowerModuleLDSPass(*PR);
initializeAMDGPURewriteOutArgumentsPass(*PR);
initializeAMDGPUUnifyMetadataPass(*PR);
initializeSIAnnotateControlFlowPass(*PR);
initializeSIInsertHardClausesPass(*PR);
initializeSIInsertWaitcntsPass(*PR);
initializeSIModeRegisterPass(*PR);
initializeSIWholeQuadModePass(*PR);
initializeSILowerControlFlowPass(*PR);
initializeSIPreEmitPeepholePass(*PR);
initializeSILateBranchLoweringPass(*PR);
initializeSIMemoryLegalizerPass(*PR);
initializeSIOptimizeExecMaskingPass(*PR);
initializeSIPreAllocateWWMRegsPass(*PR);
initializeSIFormMemoryClausesPass(*PR);
initializeSIPostRABundlerPass(*PR);
initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
initializeAMDGPUAAWrapperPassPass(*PR);
initializeAMDGPUExternalAAWrapperPass(*PR);
initializeAMDGPUUseNativeCallsPass(*PR);
initializeAMDGPUSimplifyLibCallsPass(*PR);
initializeAMDGPUPrintfRuntimeBindingPass(*PR);
initializeGCNNSAReassignPass(*PR);
initializeGCNPreRAOptimizationsPass(*PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
return std::make_unique<AMDGPUTargetObjectFile>();
}
static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
}
static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
return new SIScheduleDAGMI(C);
}
static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
ScheduleDAGMILive *DAG =
new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
return DAG;
}
static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
auto DAG = new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
return new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
}
static ScheduleDAGInstrs *
createIterativeILPMachineScheduler(MachineSchedContext *C) {
auto DAG = new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_ILP);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
return DAG;
}
static MachineSchedRegistry
R600SchedRegistry("r600", "Run R600's custom scheduler",
createR600MachineScheduler);
static MachineSchedRegistry
SISchedRegistry("si", "Run SI's custom scheduler",
createSIMachineScheduler);
static MachineSchedRegistry
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
"Run GCN scheduler to maximize occupancy",
createGCNMaxOccupancyMachineScheduler);
static MachineSchedRegistry
IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
"Run GCN scheduler to maximize occupancy (experimental)",
createIterativeGCNMaxOccupancyMachineScheduler);
static MachineSchedRegistry
GCNMinRegSchedRegistry("gcn-minreg",
"Run GCN iterative scheduler for minimal register usage (experimental)",
createMinRegScheduler);
static MachineSchedRegistry
GCNILPSchedRegistry("gcn-ilp",
"Run GCN iterative scheduler for ILP scheduling (experimental)",
createIterativeILPMachineScheduler);
static StringRef computeDataLayout(const Triple &TT) {
if (TT.getArch() == Triple::r600) {
// 32-bit pointers.
return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
}
// 32-bit private, local, and region pointers. 64-bit global, constant and
// flat, non-integral buffer fat pointers.
return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
"-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
"-ni:7";
}
LLVM_READNONE
static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
if (!GPU.empty())
return GPU;
// Need to default to a target with flat support for HSA.
if (TT.getArch() == Triple::amdgcn)
return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
return "r600";
}
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
// The AMDGPU toolchain only supports generating shared objects, so we
// must always use PIC.
return Reloc::PIC_;
}
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OptLevel)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
FS, Options, getEffectiveRelocModel(RM),
getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
TLOF(createTLOF(getTargetTriple())) {
initAsmInfo();
if (TT.getArch() == Triple::amdgcn) {
if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
}
}
bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
bool AMDGPUTargetMachine::EnableFunctionCalls = false;
bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;
bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
Attribute GPUAttr = F.getFnAttribute("target-cpu");
return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
}
StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
Attribute FSAttr = F.getFnAttribute("target-features");
return FSAttr.isValid() ? FSAttr.getValueAsString()
: getTargetFeatureString();
}
/// Predicate for Internalize pass.
static bool mustPreserveGV(const GlobalValue &GV) {
if (const Function *F = dyn_cast<Function>(&GV))
return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
GV.removeDeadConstantUsers();
return !GV.use_empty();
}
void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
Builder.DivergentTarget = true;
bool EnableOpt = getOptLevel() > CodeGenOpt::None;
bool Internalize = InternalizeSymbols;
bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
if (EnableFunctionCalls) {
delete Builder.Inliner;
Builder.Inliner = createFunctionInliningPass();
}
Builder.addExtension(
PassManagerBuilder::EP_ModuleOptimizerEarly,
[Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
if (AMDGPUAA) {
PM.add(createAMDGPUAAWrapperPass());
PM.add(createAMDGPUExternalAAWrapperPass());
}
PM.add(createAMDGPUUnifyMetadataPass());
PM.add(createAMDGPUPrintfRuntimeBinding());
if (Internalize)
PM.add(createInternalizePass(mustPreserveGV));
PM.add(createAMDGPUPropagateAttributesLatePass(this));
if (Internalize)
PM.add(createGlobalDCEPass());
if (EarlyInline)
PM.add(createAMDGPUAlwaysInlinePass(false));
});
Builder.addExtension(
PassManagerBuilder::EP_EarlyAsPossible,
[AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
if (AMDGPUAA) {
PM.add(createAMDGPUAAWrapperPass());
PM.add(createAMDGPUExternalAAWrapperPass());
}
PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
PM.add(llvm::createAMDGPUUseNativeCallsPass());
if (LibCallSimplify)
PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
});
Builder.addExtension(
PassManagerBuilder::EP_CGSCCOptimizerLate,
[EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
// Add infer address spaces pass to the opt pipeline after inlining
// but before SROA to increase SROA opportunities.
PM.add(createInferAddressSpacesPass());
// This should run after inlining to have any chance of doing anything,
// and before other cleanup optimizations.
PM.add(createAMDGPULowerKernelAttributesPass());
// Promote alloca to vector before SROA and loop unroll. If we manage
// to eliminate allocas before unroll we may choose to unroll less.
if (EnableOpt)
PM.add(createAMDGPUPromoteAllocaToVector());
});
}
void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
AAM.registerFunctionAnalysis<AMDGPUAA>();
}
void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
PB.registerPipelineParsingCallback(
[this](StringRef PassName, ModulePassManager &PM,
ArrayRef<PassBuilder::PipelineElement>) {
if (PassName == "amdgpu-propagate-attributes-late") {
PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
return true;
}
if (PassName == "amdgpu-unify-metadata") {
PM.addPass(AMDGPUUnifyMetadataPass());
return true;
}
if (PassName == "amdgpu-printf-runtime-binding") {
PM.addPass(AMDGPUPrintfRuntimeBindingPass());
return true;
}
if (PassName == "amdgpu-always-inline") {
PM.addPass(AMDGPUAlwaysInlinePass());
return true;
}
if (PassName == "amdgpu-replace-lds-use-with-pointer") {
PM.addPass(AMDGPUReplaceLDSUseWithPointerPass());
return true;
}
if (PassName == "amdgpu-lower-module-lds") {
PM.addPass(AMDGPULowerModuleLDSPass());
return true;
}
return false;
});
PB.registerPipelineParsingCallback(
[this](StringRef PassName, FunctionPassManager &PM,
ArrayRef<PassBuilder::PipelineElement>) {
if (PassName == "amdgpu-simplifylib") {
PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
return true;
}
if (PassName == "amdgpu-usenative") {
PM.addPass(AMDGPUUseNativeCallsPass());
return true;
}
if (PassName == "amdgpu-promote-alloca") {
PM.addPass(AMDGPUPromoteAllocaPass(*this));
return true;
}
if (PassName == "amdgpu-promote-alloca-to-vector") {
PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
return true;
}
if (PassName == "amdgpu-lower-kernel-attributes") {
PM.addPass(AMDGPULowerKernelAttributesPass());
return true;
}
if (PassName == "amdgpu-propagate-attributes-early") {
PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
return true;
}
return false;
});
PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
FAM.registerPass([&] { return AMDGPUAA(); });
});
PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
if (AAName == "amdgpu-aa") {
AAM.registerFunctionAnalysis<AMDGPUAA>();
return true;
}
return false;
});
PB.registerPipelineStartEPCallback(
[this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
FunctionPassManager FPM;
FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
FPM.addPass(AMDGPUUseNativeCallsPass());
if (EnableLibCallSimplify &&
Level != PassBuilder::OptimizationLevel::O0)
FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
});
PB.registerPipelineEarlySimplificationEPCallback(
[this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
if (Level == PassBuilder::OptimizationLevel::O0)
return;
PM.addPass(AMDGPUUnifyMetadataPass());
PM.addPass(AMDGPUPrintfRuntimeBindingPass());
if (InternalizeSymbols) {
PM.addPass(InternalizePass(mustPreserveGV));
}
PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
if (InternalizeSymbols) {
PM.addPass(GlobalDCEPass());
}
if (EarlyInlineAll && !EnableFunctionCalls)
PM.addPass(AMDGPUAlwaysInlinePass());
});
PB.registerCGSCCOptimizerLateEPCallback(
[this](CGSCCPassManager &PM, PassBuilder::OptimizationLevel Level) {
if (Level == PassBuilder::OptimizationLevel::O0)
return;
FunctionPassManager FPM;
// Add infer address spaces pass to the opt pipeline after inlining
// but before SROA to increase SROA opportunities.
FPM.addPass(InferAddressSpacesPass());
// This should run after inlining to have any chance of doing
// anything, and before other cleanup optimizations.
FPM.addPass(AMDGPULowerKernelAttributesPass());
if (Level != PassBuilder::OptimizationLevel::O0) {
// Promote alloca to vector before SROA and loop unroll. If we
// manage to eliminate allocas before unroll we may choose to unroll
// less.
FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
}
PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
});
}
//===----------------------------------------------------------------------===//
// R600 Target Machine (R600 -> Cayman)
//===----------------------------------------------------------------------===//
R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
setRequiresStructuredCFG(true);
// Override the default since calls aren't supported for r600.
if (EnableFunctionCalls &&
EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
EnableFunctionCalls = false;
}
const R600Subtarget *R600TargetMachine::getSubtargetImpl(
const Function &F) const {
StringRef GPU = getGPUName(F);
StringRef FS = getFeatureString(F);
SmallString<128> SubtargetKey(GPU);
SubtargetKey.append(FS);
auto &I = SubtargetMap[SubtargetKey];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
}
return I.get();
}
int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
AddrSpace == AMDGPUAS::REGION_ADDRESS)
? -1
: 0;
}
bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
AMDGPU::isFlatGlobalAddrSpace(DestAS);
}
unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
const auto *LD = dyn_cast<LoadInst>(V);
if (!LD)
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
// It must be a generic pointer loaded.
assert(V->getType()->isPointerTy() &&
V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
const auto *Ptr = LD->getPointerOperand();
if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
// For a generic pointer loaded from the constant memory, it could be assumed
// as a global pointer since the constant memory is only populated on the
// host side. As implied by the offload programming model, only global
// pointers could be referenced on the host side.
return AMDGPUAS::GLOBAL_ADDRESS;
}
TargetTransformInfo
R600TargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(R600TTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// GCN Target Machine (SI+)
//===----------------------------------------------------------------------===//
GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
StringRef GPU = getGPUName(F);
StringRef FS = getFeatureString(F);
SmallString<128> SubtargetKey(GPU);
SubtargetKey.append(FS);
auto &I = SubtargetMap[SubtargetKey];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
}
I->setScalarizeGlobalBehavior(ScalarizeGlobal);
return I.get();
}
TargetTransformInfo
GCNTargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(GCNTTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// AMDGPU Pass Setup
//===----------------------------------------------------------------------===//
namespace {
class AMDGPUPassConfig : public TargetPassConfig {
public:
AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {
// Exceptions and StackMaps are not supported, so these passes will never do
// anything.
disablePass(&StackMapLivenessID);
disablePass(&FuncletLayoutID);
// Garbage collection is not supported.
disablePass(&GCLoweringID);
disablePass(&ShadowStackGCLoweringID);
}
AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
return getTM<AMDGPUTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
void addEarlyCSEOrGVNPass();
void addStraightLineScalarOptimizationPasses();
void addIRPasses() override;
void addCodeGenPrepare() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addGCPasses() override;
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
/// Check if a pass is enabled given \p Opt option. The option always
/// overrides defaults if explicitely used. Otherwise its default will
/// be used given that a pass shall work at an optimization \p Level
/// minimum.
bool isPassEnabled(const cl::opt<bool> &Opt,
CodeGenOpt::Level Level = CodeGenOpt::Default) const {
if (Opt.getNumOccurrences())
return Opt;
if (TM->getOptLevel() < Level)
return false;
return Opt;
}
};
std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
return getStandardCSEConfigForOpt(TM->getOptLevel());
}
class R600PassConfig final : public AMDGPUPassConfig {
public:
R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) {}
ScheduleDAGInstrs *createMachineScheduler(
MachineSchedContext *C) const override {
return createR600MachineScheduler(C);
}
bool addPreISel() override;
bool addInstSelector() override;
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
class GCNPassConfig final : public AMDGPUPassConfig {
public:
GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) {
// It is necessary to know the register usage of the entire call graph. We
// allow calls without EnableAMDGPUFunctionCalls if they are marked
// noinline, so this is always required.
setRequiresCodeGenSCCOrder(true);
}
GCNTargetMachine &getGCNTargetMachine() const {
return getTM<GCNTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override;
bool addPreISel() override;
void addMachineSSAOptimization() override;
bool addILPOpts() override;
bool addInstSelector() override;
bool addIRTranslator() override;
void addPreLegalizeMachineIR() override;
bool addLegalizeMachineIR() override;
void addPreRegBankSelect() override;
bool addRegBankSelect() override;
void addPreGlobalInstructionSelect() override;
bool addGlobalInstructionSelect() override;
void addFastRegAlloc() override;
void addOptimizedRegAlloc() override;
FunctionPass *createSGPRAllocPass(bool Optimized);
FunctionPass *createVGPRAllocPass(bool Optimized);
FunctionPass *createRegAllocPass(bool Optimized) override;
bool addRegAssignAndRewriteFast() override;
bool addRegAssignAndRewriteOptimized() override;
void addPreRegAlloc() override;
bool addPreRewrite() override;
void addPostRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // end anonymous namespace
void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
if (getOptLevel() == CodeGenOpt::Aggressive)
addPass(createGVNPass());
else
addPass(createEarlyCSEPass());
}
void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
addPass(createLICMPass());
addPass(createSeparateConstOffsetFromGEPPass());
addPass(createSpeculativeExecutionPass());
// ReassociateGEPs exposes more opportunites for SLSR. See
// the example in reassociate-geps-and-slsr.ll.
addPass(createStraightLineStrengthReducePass());
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
// EarlyCSE can reuse.
addEarlyCSEOrGVNPass();
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
addPass(createNaryReassociatePass());
// NaryReassociate on GEPs creates redundant common expressions, so run
// EarlyCSE after it.
addPass(createEarlyCSEPass());
}
void AMDGPUPassConfig::addIRPasses() {
const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
// There is no reason to run these.
disablePass(&StackMapLivenessID);
disablePass(&FuncletLayoutID);
disablePass(&PatchableFunctionID);
addPass(createAMDGPUPrintfRuntimeBinding());
// This must occur before inlining, as the inliner will not look through
// bitcast calls.
addPass(createAMDGPUFixFunctionBitcastsPass());
// A call to propagate attributes pass in the backend in case opt was not run.
addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
addPass(createAMDGPULowerIntrinsicsPass());
// Function calls are not supported, so make sure we inline everything.
addPass(createAMDGPUAlwaysInlinePass());
addPass(createAlwaysInlinerLegacyPass());
// We need to add the barrier noop pass, otherwise adding the function
// inlining pass will cause all of the PassConfigs passes to be run
// one function at a time, which means if we have a nodule with two
// functions, then we will generate code for the first function
// without ever running any passes on the second.
addPass(createBarrierNoopPass());
// Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
if (TM.getTargetTriple().getArch() == Triple::r600)
addPass(createR600OpenCLImageTypeLoweringPass());
// Replace OpenCL enqueued block function pointers with global variables.
addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
// Can increase LDS used by kernel so runs before PromoteAlloca
if (EnableLowerModuleLDS) {
// The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the
// pass "amdgpu-lower-module-lds", and also it required to be run only if
// "amdgpu-lower-module-lds" pass is enabled.
if (EnableLDSReplaceWithPointer)
addPass(createAMDGPUReplaceLDSUseWithPointerPass());
addPass(createAMDGPULowerModuleLDSPass());
}
if (TM.getOptLevel() > CodeGenOpt::None)
addPass(createInferAddressSpacesPass());
addPass(createAtomicExpandPass());
if (TM.getOptLevel() > CodeGenOpt::None) {
addPass(createAMDGPUPromoteAlloca());
if (EnableSROA)
addPass(createSROAPass());
if (isPassEnabled(EnableScalarIRPasses))
addStraightLineScalarOptimizationPasses();
if (EnableAMDGPUAliasAnalysis) {
addPass(createAMDGPUAAWrapperPass());
addPass(createExternalAAWrapperPass([](Pass &P, Function &,
AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
}
if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
// TODO: May want to move later or split into an early and late one.
addPass(createAMDGPUCodeGenPreparePass());
}
}
TargetPassConfig::addIRPasses();
// EarlyCSE is not always strong enough to clean up what LSR produces. For
// example, GVN can combine
//
// %0 = add %a, %b
// %1 = add %b, %a
//
// and
//
// %0 = shl nsw %a, 2
// %1 = shl %a, 2
//
// but EarlyCSE can do neither of them.
if (isPassEnabled(EnableScalarIRPasses))
addEarlyCSEOrGVNPass();
}
void AMDGPUPassConfig::addCodeGenPrepare() {
if (TM->getTargetTriple().getArch() == Triple::amdgcn)
addPass(createAMDGPUAnnotateKernelFeaturesPass());
if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
EnableLowerKernelArguments)
addPass(createAMDGPULowerKernelArgumentsPass());
if (TM->getOptLevel() > CodeGenOpt::Less)
addPass(&AMDGPUPerfHintAnalysisID);
TargetPassConfig::addCodeGenPrepare();
if (isPassEnabled(EnableLoadStoreVectorizer))
addPass(createLoadStoreVectorizerPass());
// LowerSwitch pass may introduce unreachable blocks that can
// cause unexpected behavior for subsequent passes. Placing it
// here seems better that these blocks would get cleaned up by
// UnreachableBlockElim inserted next in the pass flow.
addPass(createLowerSwitchPass());
}
bool AMDGPUPassConfig::addPreISel() {
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createFlattenCFGPass());
return false;
}
bool AMDGPUPassConfig::addInstSelector() {
// Defer the verifier until FinalizeISel.
addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
return false;
}
bool AMDGPUPassConfig::addGCPasses() {
// Do nothing. GC is not supported.
return false;
}
//===----------------------------------------------------------------------===//
// R600 Pass Setup
//===----------------------------------------------------------------------===//
bool R600PassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
if (EnableR600StructurizeCFG)
addPass(createStructurizeCFGPass());
return false;
}
bool R600PassConfig::addInstSelector() {
addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
return false;
}
void R600PassConfig::addPreRegAlloc() {
addPass(createR600VectorRegMerger());
}
void R600PassConfig::addPreSched2() {
addPass(createR600EmitClauseMarkers(), false);
if (EnableR600IfConvert)
addPass(&IfConverterID, false);
addPass(createR600ClauseMergePass(), false);
}
void R600PassConfig::addPreEmitPass() {
addPass(createAMDGPUCFGStructurizerPass(), false);
addPass(createR600ExpandSpecialInstrsPass(), false);
addPass(&FinalizeMachineBundlesID, false);
addPass(createR600Packetizer(), false);
addPass(createR600ControlFlowFinalizer(), false);
}
TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
return new R600PassConfig(*this, PM);
}
//===----------------------------------------------------------------------===//
// GCN Pass Setup
//===----------------------------------------------------------------------===//
ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
MachineSchedContext *C) const {
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
if (ST.enableSIScheduler())
return createSIMachineScheduler(C);
return createGCNMaxOccupancyMachineScheduler(C);
}
bool GCNPassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createAMDGPULateCodeGenPreparePass());
if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) {
addPass(createAMDGPUAtomicOptimizerPass());
}
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createSinkingPass());
// Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
// regions formed by them.
addPass(&AMDGPUUnifyDivergentExitNodesID);
if (!LateCFGStructurize) {
if (EnableStructurizerWorkarounds) {
addPass(createFixIrreduciblePass());
addPass(createUnifyLoopExitsPass());
}
addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
}
addPass(createAMDGPUAnnotateUniformValues());
if (!LateCFGStructurize) {
addPass(createSIAnnotateControlFlowPass());
}
addPass(createLCSSAPass());
return false;
}
void GCNPassConfig::addMachineSSAOptimization() {
TargetPassConfig::addMachineSSAOptimization();
// We want to fold operands after PeepholeOptimizer has run (or as part of
// it), because it will eliminate extra copies making it easier to fold the
// real source operand. We want to eliminate dead instructions after, so that
// we see fewer uses of the copies. We then need to clean up the dead
// instructions leftover after the operands are folded as well.
//
// XXX - Can we get away without running DeadMachineInstructionElim again?
addPass(&SIFoldOperandsID);
if (EnableDPPCombine)
addPass(&GCNDPPCombineID);
addPass(&SILoadStoreOptimizerID);
if (isPassEnabled(EnableSDWAPeephole)) {
addPass(&SIPeepholeSDWAID);
addPass(&EarlyMachineLICMID);
addPass(&MachineCSEID);
addPass(&SIFoldOperandsID);
}
addPass(&DeadMachineInstructionElimID);
addPass(createSIShrinkInstructionsPass());
}
bool GCNPassConfig::addILPOpts() {
if (EnableEarlyIfConversion)
addPass(&EarlyIfConverterID);
TargetPassConfig::addILPOpts();
return false;
}
bool GCNPassConfig::addInstSelector() {
AMDGPUPassConfig::addInstSelector();
addPass(&SIFixSGPRCopiesID);
addPass(createSILowerI1CopiesPass());
return false;
}
bool GCNPassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
void GCNPassConfig::addPreLegalizeMachineIR() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
addPass(new Localizer());
}
bool GCNPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
void GCNPassConfig::addPreRegBankSelect() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
}
bool GCNPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
void GCNPassConfig::addPreGlobalInstructionSelect() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
addPass(createAMDGPURegBankCombiner(IsOptNone));
}
bool GCNPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
return false;
}
void GCNPassConfig::addPreRegAlloc() {
if (LateCFGStructurize) {
addPass(createAMDGPUMachineCFGStructurizerPass());
}
}
void GCNPassConfig::addFastRegAlloc() {
// FIXME: We have to disable the verifier here because of PHIElimination +
// TwoAddressInstructions disabling it.
// This must be run immediately after phi elimination and before
// TwoAddressInstructions, otherwise the processing of the tied operand of
// SI_ELSE will introduce a copy of the tied operand source after the else.
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
TargetPassConfig::addFastRegAlloc();
}
void GCNPassConfig::addOptimizedRegAlloc() {
// Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
// instructions that cause scheduling barriers.
insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
if (OptExecMaskPreRA)
insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
if (isPassEnabled(EnablePreRAOptimizations))
insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
// This is not an essential optimization and it has a noticeable impact on
// compilation time, so we only enable it from O2.
if (TM->getOptLevel() > CodeGenOpt::Less)
insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
// FIXME: when an instruction has a Killed operand, and the instruction is
// inside a bundle, seems only the BUNDLE instruction appears as the Kills of
// the register in LiveVariables, this would trigger a failure in verifier,
// we should fix it and enable the verifier.
if (OptVGPRLiveRange)
insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID, false);
// This must be run immediately after phi elimination and before
// TwoAddressInstructions, otherwise the processing of the tied operand of
// SI_ELSE will introduce a copy of the tied operand source after the else.
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
if (EnableDCEInRA)
insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
TargetPassConfig::addOptimizedRegAlloc();
}
bool GCNPassConfig::addPreRewrite() {
if (EnableRegReassign)
addPass(&GCNNSAReassignID);
return true;
}
FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
// Initialize the global default.
llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
initializeDefaultSGPRRegisterAllocatorOnce);
RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
if (Ctor != useDefaultRegisterAllocator)
return Ctor();
if (Optimized)
return createGreedyRegisterAllocator(onlyAllocateSGPRs);
return createFastRegisterAllocator(onlyAllocateSGPRs, false);
}
FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
// Initialize the global default.
llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
initializeDefaultVGPRRegisterAllocatorOnce);
RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
if (Ctor != useDefaultRegisterAllocator)
return Ctor();
if (Optimized)
return createGreedyVGPRRegisterAllocator();
return createFastVGPRRegisterAllocator();
}
FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
llvm_unreachable("should not be used");
}
static const char RegAllocOptNotSupportedMessage[] =
"-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
bool GCNPassConfig::addRegAssignAndRewriteFast() {
if (!usingDefaultRegAlloc())
report_fatal_error(RegAllocOptNotSupportedMessage);
addPass(createSGPRAllocPass(false));
// Equivalent of PEI for SGPRs.
addPass(&SILowerSGPRSpillsID);
addPass(createVGPRAllocPass(false));
return true;
}
bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
if (!usingDefaultRegAlloc())
report_fatal_error(RegAllocOptNotSupportedMessage);
addPass(createSGPRAllocPass(true));
// Commit allocated register changes. This is mostly necessary because too
// many things rely on the use lists of the physical registers, such as the
// verifier. This is only necessary with allocators which use LiveIntervals,
// since FastRegAlloc does the replacments itself.
addPass(createVirtRegRewriter(false));
// Equivalent of PEI for SGPRs.
addPass(&SILowerSGPRSpillsID);
addPass(createVGPRAllocPass(true));
addPreRewrite();
addPass(&VirtRegRewriterID);
return true;
}
void GCNPassConfig::addPostRegAlloc() {
addPass(&SIFixVGPRCopiesID);
if (getOptLevel() > CodeGenOpt::None)
addPass(&SIOptimizeExecMaskingID);
TargetPassConfig::addPostRegAlloc();
}
void GCNPassConfig::addPreSched2() {
addPass(&SIPostRABundlerID);
}
void GCNPassConfig::addPreEmitPass() {
addPass(createSIMemoryLegalizerPass());
addPass(createSIInsertWaitcntsPass());
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createSIShrinkInstructionsPass());
addPass(createSIModeRegisterPass());
if (getOptLevel() > CodeGenOpt::None)
addPass(&SIInsertHardClausesID);
addPass(&SILateBranchLoweringPassID);
if (getOptLevel() > CodeGenOpt::None)
addPass(&SIPreEmitPeepholeID);
// The hazard recognizer that runs as part of the post-ra scheduler does not
// guarantee to be able handle all hazards correctly. This is because if there
// are multiple scheduling regions in a basic block, the regions are scheduled
// bottom up, so when we begin to schedule a region we don't know what
// instructions were emitted directly before it.
//
// Here we add a stand-alone hazard recognizer pass which can handle all
// cases.
addPass(&PostRAHazardRecognizerID);
addPass(&BranchRelaxationPassID);
}
TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
return new GCNPassConfig(*this, PM);
}
yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::SIMachineFunctionInfo();
}
yaml::MachineFunctionInfo *
GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return new yaml::SIMachineFunctionInfo(
*MFI, *MF.getSubtarget().getRegisterInfo(), MF);
}
bool GCNTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const yaml::SIMachineFunctionInfo &YamlMFI =
reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
MachineFunction &MF = PFS.MF;
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
return true;
if (MFI->Occupancy == 0) {
// Fixup the subtarget dependent default value.
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
}
auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
Register TempReg;
if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
SourceRange = RegName.SourceRange;
return true;
}
RegVal = TempReg;
return false;
};
auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
// Create a diagnostic for a the register string literal.
const MemoryBuffer &Buffer =
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
RegName.Value.size(), SourceMgr::DK_Error,
"incorrect register class for field", RegName.Value,
None, None);
SourceRange = RegName.SourceRange;
return true;
};
if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
return true;
if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
!AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
}
if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
!AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
}
if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
!AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
}
auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
const TargetRegisterClass &RC,
ArgDescriptor &Arg, unsigned UserSGPRs,
unsigned SystemSGPRs) {
// Skip parsing if it's not present.
if (!A)
return false;
if (A->IsRegister) {
Register Reg;
if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
SourceRange = A->RegisterName.SourceRange;
return true;
}
if (!RC.contains(Reg))
return diagnoseRegisterClass(A->RegisterName);
Arg = ArgDescriptor::createRegister(Reg);
} else
Arg = ArgDescriptor::createStack(A->StackOffset);
// Check and apply the optional mask.
if (A->Mask)
Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
MFI->NumUserSGPRs += UserSGPRs;
MFI->NumSystemSGPRs += SystemSGPRs;
return false;
};
if (YamlMFI.ArgInfo &&
(parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
AMDGPU::SGPR_128RegClass,
MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
MFI->ArgInfo.QueuePtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.FlatScratchInit, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDX, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDY, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDZ, 0, 0)))
return true;
MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
return false;
}