forked from OSchip/llvm-project
1433 lines
52 KiB
C++
1433 lines
52 KiB
C++
//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the code-completion semantic actions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "Sema.h"
|
|
#include "clang/Sema/CodeCompleteConsumer.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <list>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
using namespace clang;
|
|
|
|
/// \brief Set the code-completion consumer for semantic analysis.
|
|
void Sema::setCodeCompleteConsumer(CodeCompleteConsumer *CCC) {
|
|
assert(((CodeCompleter != 0) != (CCC != 0)) &&
|
|
"Already set or cleared a code-completion consumer?");
|
|
CodeCompleter = CCC;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief A container of code-completion results.
|
|
class ResultBuilder {
|
|
public:
|
|
/// \brief The type of a name-lookup filter, which can be provided to the
|
|
/// name-lookup routines to specify which declarations should be included in
|
|
/// the result set (when it returns true) and which declarations should be
|
|
/// filtered out (returns false).
|
|
typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const;
|
|
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
|
|
private:
|
|
/// \brief The actual results we have found.
|
|
std::vector<Result> Results;
|
|
|
|
/// \brief A record of all of the declarations we have found and placed
|
|
/// into the result set, used to ensure that no declaration ever gets into
|
|
/// the result set twice.
|
|
llvm::SmallPtrSet<Decl*, 16> AllDeclsFound;
|
|
|
|
/// \brief A mapping from declaration names to the declarations that have
|
|
/// this name within a particular scope and their index within the list of
|
|
/// results.
|
|
typedef std::multimap<DeclarationName,
|
|
std::pair<NamedDecl *, unsigned> > ShadowMap;
|
|
|
|
/// \brief The semantic analysis object for which results are being
|
|
/// produced.
|
|
Sema &SemaRef;
|
|
|
|
/// \brief If non-NULL, a filter function used to remove any code-completion
|
|
/// results that are not desirable.
|
|
LookupFilter Filter;
|
|
|
|
/// \brief A list of shadow maps, which is used to model name hiding at
|
|
/// different levels of, e.g., the inheritance hierarchy.
|
|
std::list<ShadowMap> ShadowMaps;
|
|
|
|
public:
|
|
explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0)
|
|
: SemaRef(SemaRef), Filter(Filter) { }
|
|
|
|
/// \brief Set the filter used for code-completion results.
|
|
void setFilter(LookupFilter Filter) {
|
|
this->Filter = Filter;
|
|
}
|
|
|
|
typedef std::vector<Result>::iterator iterator;
|
|
iterator begin() { return Results.begin(); }
|
|
iterator end() { return Results.end(); }
|
|
|
|
Result *data() { return Results.empty()? 0 : &Results.front(); }
|
|
unsigned size() const { return Results.size(); }
|
|
bool empty() const { return Results.empty(); }
|
|
|
|
/// \brief Add a new result to this result set (if it isn't already in one
|
|
/// of the shadow maps), or replace an existing result (for, e.g., a
|
|
/// redeclaration).
|
|
///
|
|
/// \param R the result to add (if it is unique).
|
|
///
|
|
/// \param R the context in which this result will be named.
|
|
void MaybeAddResult(Result R, DeclContext *CurContext = 0);
|
|
|
|
/// \brief Enter into a new scope.
|
|
void EnterNewScope();
|
|
|
|
/// \brief Exit from the current scope.
|
|
void ExitScope();
|
|
|
|
/// \name Name lookup predicates
|
|
///
|
|
/// These predicates can be passed to the name lookup functions to filter the
|
|
/// results of name lookup. All of the predicates have the same type, so that
|
|
///
|
|
//@{
|
|
bool IsOrdinaryName(NamedDecl *ND) const;
|
|
bool IsNestedNameSpecifier(NamedDecl *ND) const;
|
|
bool IsEnum(NamedDecl *ND) const;
|
|
bool IsClassOrStruct(NamedDecl *ND) const;
|
|
bool IsUnion(NamedDecl *ND) const;
|
|
bool IsNamespace(NamedDecl *ND) const;
|
|
bool IsNamespaceOrAlias(NamedDecl *ND) const;
|
|
bool IsType(NamedDecl *ND) const;
|
|
bool IsMember(NamedDecl *ND) const;
|
|
//@}
|
|
};
|
|
}
|
|
|
|
/// \brief Determines whether the given hidden result could be found with
|
|
/// some extra work, e.g., by qualifying the name.
|
|
///
|
|
/// \param Hidden the declaration that is hidden by the currenly \p Visible
|
|
/// declaration.
|
|
///
|
|
/// \param Visible the declaration with the same name that is already visible.
|
|
///
|
|
/// \returns true if the hidden result can be found by some mechanism,
|
|
/// false otherwise.
|
|
static bool canHiddenResultBeFound(const LangOptions &LangOpts,
|
|
NamedDecl *Hidden, NamedDecl *Visible) {
|
|
// In C, there is no way to refer to a hidden name.
|
|
if (!LangOpts.CPlusPlus)
|
|
return false;
|
|
|
|
DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
|
|
|
|
// There is no way to qualify a name declared in a function or method.
|
|
if (HiddenCtx->isFunctionOrMethod())
|
|
return false;
|
|
|
|
return HiddenCtx != Visible->getDeclContext()->getLookupContext();
|
|
}
|
|
|
|
/// \brief Compute the qualification required to get from the current context
|
|
/// (\p CurContext) to the target context (\p TargetContext).
|
|
///
|
|
/// \param Context the AST context in which the qualification will be used.
|
|
///
|
|
/// \param CurContext the context where an entity is being named, which is
|
|
/// typically based on the current scope.
|
|
///
|
|
/// \param TargetContext the context in which the named entity actually
|
|
/// resides.
|
|
///
|
|
/// \returns a nested name specifier that refers into the target context, or
|
|
/// NULL if no qualification is needed.
|
|
static NestedNameSpecifier *
|
|
getRequiredQualification(ASTContext &Context,
|
|
DeclContext *CurContext,
|
|
DeclContext *TargetContext) {
|
|
llvm::SmallVector<DeclContext *, 4> TargetParents;
|
|
|
|
for (DeclContext *CommonAncestor = TargetContext;
|
|
CommonAncestor && !CommonAncestor->Encloses(CurContext);
|
|
CommonAncestor = CommonAncestor->getLookupParent()) {
|
|
if (CommonAncestor->isTransparentContext() ||
|
|
CommonAncestor->isFunctionOrMethod())
|
|
continue;
|
|
|
|
TargetParents.push_back(CommonAncestor);
|
|
}
|
|
|
|
NestedNameSpecifier *Result = 0;
|
|
while (!TargetParents.empty()) {
|
|
DeclContext *Parent = TargetParents.back();
|
|
TargetParents.pop_back();
|
|
|
|
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent))
|
|
Result = NestedNameSpecifier::Create(Context, Result, Namespace);
|
|
else if (TagDecl *TD = dyn_cast<TagDecl>(Parent))
|
|
Result = NestedNameSpecifier::Create(Context, Result,
|
|
false,
|
|
Context.getTypeDeclType(TD).getTypePtr());
|
|
else
|
|
assert(Parent->isTranslationUnit());
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) {
|
|
assert(!ShadowMaps.empty() && "Must enter into a results scope");
|
|
|
|
if (R.Kind != Result::RK_Declaration) {
|
|
// For non-declaration results, just add the result.
|
|
Results.push_back(R);
|
|
return;
|
|
}
|
|
|
|
// Skip unnamed entities.
|
|
if (!R.Declaration->getDeclName())
|
|
return;
|
|
|
|
// Look through using declarations.
|
|
if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration))
|
|
MaybeAddResult(Result(Using->getTargetDecl(), R.Rank, R.Qualifier),
|
|
CurContext);
|
|
|
|
// Handle each declaration in an overload set separately.
|
|
if (OverloadedFunctionDecl *Ovl
|
|
= dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
|
|
for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
|
|
FEnd = Ovl->function_end();
|
|
F != FEnd; ++F)
|
|
MaybeAddResult(Result(*F, R.Rank, R.Qualifier), CurContext);
|
|
|
|
return;
|
|
}
|
|
|
|
Decl *CanonDecl = R.Declaration->getCanonicalDecl();
|
|
unsigned IDNS = CanonDecl->getIdentifierNamespace();
|
|
|
|
// Friend declarations and declarations introduced due to friends are never
|
|
// added as results.
|
|
if (isa<FriendDecl>(CanonDecl) ||
|
|
(IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
|
|
return;
|
|
|
|
if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
|
|
// __va_list_tag is a freak of nature. Find it and skip it.
|
|
if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list"))
|
|
return;
|
|
|
|
// Filter out names reserved for the implementation (C99 7.1.3,
|
|
// C++ [lib.global.names]). Users don't need to see those.
|
|
if (Id->getLength() >= 2) {
|
|
const char *Name = Id->getName();
|
|
if (Name[0] == '_' &&
|
|
(Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z')))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// C++ constructors are never found by name lookup.
|
|
if (isa<CXXConstructorDecl>(CanonDecl))
|
|
return;
|
|
|
|
// Filter out any unwanted results.
|
|
if (Filter && !(this->*Filter)(R.Declaration))
|
|
return;
|
|
|
|
ShadowMap &SMap = ShadowMaps.back();
|
|
ShadowMap::iterator I, IEnd;
|
|
for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
|
|
I != IEnd; ++I) {
|
|
NamedDecl *ND = I->second.first;
|
|
unsigned Index = I->second.second;
|
|
if (ND->getCanonicalDecl() == CanonDecl) {
|
|
// This is a redeclaration. Always pick the newer declaration.
|
|
I->second.first = R.Declaration;
|
|
Results[Index].Declaration = R.Declaration;
|
|
|
|
// Pick the best rank of the two.
|
|
Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
|
|
|
|
// We're done.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// This is a new declaration in this scope. However, check whether this
|
|
// declaration name is hidden by a similarly-named declaration in an outer
|
|
// scope.
|
|
std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
|
|
--SMEnd;
|
|
for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
|
|
for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
|
|
I != IEnd; ++I) {
|
|
// A tag declaration does not hide a non-tag declaration.
|
|
if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
|
|
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
|
|
Decl::IDNS_ObjCProtocol)))
|
|
continue;
|
|
|
|
// Protocols are in distinct namespaces from everything else.
|
|
if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|
|
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
|
|
I->second.first->getIdentifierNamespace() != IDNS)
|
|
continue;
|
|
|
|
// The newly-added result is hidden by an entry in the shadow map.
|
|
if (canHiddenResultBeFound(SemaRef.getLangOptions(), R.Declaration,
|
|
I->second.first)) {
|
|
// Note that this result was hidden.
|
|
R.Hidden = true;
|
|
R.QualifierIsInformative = false;
|
|
|
|
if (!R.Qualifier)
|
|
R.Qualifier = getRequiredQualification(SemaRef.Context,
|
|
CurContext,
|
|
R.Declaration->getDeclContext());
|
|
} else {
|
|
// This result was hidden and cannot be found; don't bother adding
|
|
// it.
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Make sure that any given declaration only shows up in the result set once.
|
|
if (!AllDeclsFound.insert(CanonDecl))
|
|
return;
|
|
|
|
// If the filter is for nested-name-specifiers, then this result starts a
|
|
// nested-name-specifier.
|
|
if ((Filter == &ResultBuilder::IsNestedNameSpecifier) ||
|
|
(Filter == &ResultBuilder::IsMember &&
|
|
isa<CXXRecordDecl>(R.Declaration) &&
|
|
cast<CXXRecordDecl>(R.Declaration)->isInjectedClassName()))
|
|
R.StartsNestedNameSpecifier = true;
|
|
|
|
// If this result is supposed to have an informative qualifier, add one.
|
|
if (R.QualifierIsInformative && !R.Qualifier &&
|
|
!R.StartsNestedNameSpecifier) {
|
|
DeclContext *Ctx = R.Declaration->getDeclContext();
|
|
if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
|
|
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace);
|
|
else if (TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
|
|
R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false,
|
|
SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
|
|
else
|
|
R.QualifierIsInformative = false;
|
|
}
|
|
|
|
// Insert this result into the set of results and into the current shadow
|
|
// map.
|
|
SMap.insert(std::make_pair(R.Declaration->getDeclName(),
|
|
std::make_pair(R.Declaration, Results.size())));
|
|
Results.push_back(R);
|
|
}
|
|
|
|
/// \brief Enter into a new scope.
|
|
void ResultBuilder::EnterNewScope() {
|
|
ShadowMaps.push_back(ShadowMap());
|
|
}
|
|
|
|
/// \brief Exit from the current scope.
|
|
void ResultBuilder::ExitScope() {
|
|
ShadowMaps.pop_back();
|
|
}
|
|
|
|
/// \brief Determines whether this given declaration will be found by
|
|
/// ordinary name lookup.
|
|
bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const {
|
|
unsigned IDNS = Decl::IDNS_Ordinary;
|
|
if (SemaRef.getLangOptions().CPlusPlus)
|
|
IDNS |= Decl::IDNS_Tag;
|
|
|
|
return ND->getIdentifierNamespace() & IDNS;
|
|
}
|
|
|
|
/// \brief Determines whether the given declaration is suitable as the
|
|
/// start of a C++ nested-name-specifier, e.g., a class or namespace.
|
|
bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const {
|
|
// Allow us to find class templates, too.
|
|
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
|
|
ND = ClassTemplate->getTemplatedDecl();
|
|
|
|
return SemaRef.isAcceptableNestedNameSpecifier(ND);
|
|
}
|
|
|
|
/// \brief Determines whether the given declaration is an enumeration.
|
|
bool ResultBuilder::IsEnum(NamedDecl *ND) const {
|
|
return isa<EnumDecl>(ND);
|
|
}
|
|
|
|
/// \brief Determines whether the given declaration is a class or struct.
|
|
bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const {
|
|
// Allow us to find class templates, too.
|
|
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
|
|
ND = ClassTemplate->getTemplatedDecl();
|
|
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
|
|
return RD->getTagKind() == TagDecl::TK_class ||
|
|
RD->getTagKind() == TagDecl::TK_struct;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determines whether the given declaration is a union.
|
|
bool ResultBuilder::IsUnion(NamedDecl *ND) const {
|
|
// Allow us to find class templates, too.
|
|
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
|
|
ND = ClassTemplate->getTemplatedDecl();
|
|
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
|
|
return RD->getTagKind() == TagDecl::TK_union;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determines whether the given declaration is a namespace.
|
|
bool ResultBuilder::IsNamespace(NamedDecl *ND) const {
|
|
return isa<NamespaceDecl>(ND);
|
|
}
|
|
|
|
/// \brief Determines whether the given declaration is a namespace or
|
|
/// namespace alias.
|
|
bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const {
|
|
return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
|
|
}
|
|
|
|
/// \brief Brief determines whether the given declaration is a namespace or
|
|
/// namespace alias.
|
|
bool ResultBuilder::IsType(NamedDecl *ND) const {
|
|
return isa<TypeDecl>(ND);
|
|
}
|
|
|
|
/// \brief Since every declaration found within a class is a member that we
|
|
/// care about, always returns true. This predicate exists mostly to
|
|
/// communicate to the result builder that we are performing a lookup for
|
|
/// member access.
|
|
bool ResultBuilder::IsMember(NamedDecl *ND) const {
|
|
return true;
|
|
}
|
|
|
|
// Find the next outer declaration context corresponding to this scope.
|
|
static DeclContext *findOuterContext(Scope *S) {
|
|
for (S = S->getParent(); S; S = S->getParent())
|
|
if (S->getEntity())
|
|
return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// \brief Collect the results of searching for members within the given
|
|
/// declaration context.
|
|
///
|
|
/// \param Ctx the declaration context from which we will gather results.
|
|
///
|
|
/// \param Rank the rank given to results in this declaration context.
|
|
///
|
|
/// \param Visited the set of declaration contexts that have already been
|
|
/// visited. Declaration contexts will only be visited once.
|
|
///
|
|
/// \param Results the result set that will be extended with any results
|
|
/// found within this declaration context (and, for a C++ class, its bases).
|
|
///
|
|
/// \param InBaseClass whether we are in a base class.
|
|
///
|
|
/// \returns the next higher rank value, after considering all of the
|
|
/// names within this declaration context.
|
|
static unsigned CollectMemberLookupResults(DeclContext *Ctx,
|
|
unsigned Rank,
|
|
DeclContext *CurContext,
|
|
llvm::SmallPtrSet<DeclContext *, 16> &Visited,
|
|
ResultBuilder &Results,
|
|
bool InBaseClass = false) {
|
|
// Make sure we don't visit the same context twice.
|
|
if (!Visited.insert(Ctx->getPrimaryContext()))
|
|
return Rank;
|
|
|
|
// Enumerate all of the results in this context.
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
Results.EnterNewScope();
|
|
for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
|
|
CurCtx = CurCtx->getNextContext()) {
|
|
for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
|
|
DEnd = CurCtx->decls_end();
|
|
D != DEnd; ++D) {
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
|
|
Results.MaybeAddResult(Result(ND, Rank, 0, InBaseClass), CurContext);
|
|
}
|
|
}
|
|
|
|
// Traverse the contexts of inherited classes.
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
|
|
for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
|
|
BEnd = Record->bases_end();
|
|
B != BEnd; ++B) {
|
|
QualType BaseType = B->getType();
|
|
|
|
// Don't look into dependent bases, because name lookup can't look
|
|
// there anyway.
|
|
if (BaseType->isDependentType())
|
|
continue;
|
|
|
|
const RecordType *Record = BaseType->getAs<RecordType>();
|
|
if (!Record)
|
|
continue;
|
|
|
|
// FIXME: It would be nice to be able to determine whether referencing
|
|
// a particular member would be ambiguous. For example, given
|
|
//
|
|
// struct A { int member; };
|
|
// struct B { int member; };
|
|
// struct C : A, B { };
|
|
//
|
|
// void f(C *c) { c->### }
|
|
// accessing 'member' would result in an ambiguity. However, code
|
|
// completion could be smart enough to qualify the member with the
|
|
// base class, e.g.,
|
|
//
|
|
// c->B::member
|
|
//
|
|
// or
|
|
//
|
|
// c->A::member
|
|
|
|
// Collect results from this base class (and its bases).
|
|
CollectMemberLookupResults(Record->getDecl(), Rank, CurContext, Visited,
|
|
Results, /*InBaseClass=*/true);
|
|
}
|
|
}
|
|
|
|
// FIXME: Look into base classes in Objective-C!
|
|
|
|
Results.ExitScope();
|
|
return Rank + 1;
|
|
}
|
|
|
|
/// \brief Collect the results of searching for members within the given
|
|
/// declaration context.
|
|
///
|
|
/// \param Ctx the declaration context from which we will gather results.
|
|
///
|
|
/// \param InitialRank the initial rank given to results in this declaration
|
|
/// context. Larger rank values will be used for, e.g., members found in
|
|
/// base classes.
|
|
///
|
|
/// \param Results the result set that will be extended with any results
|
|
/// found within this declaration context (and, for a C++ class, its bases).
|
|
///
|
|
/// \returns the next higher rank value, after considering all of the
|
|
/// names within this declaration context.
|
|
static unsigned CollectMemberLookupResults(DeclContext *Ctx,
|
|
unsigned InitialRank,
|
|
DeclContext *CurContext,
|
|
ResultBuilder &Results) {
|
|
llvm::SmallPtrSet<DeclContext *, 16> Visited;
|
|
return CollectMemberLookupResults(Ctx, InitialRank, CurContext, Visited,
|
|
Results);
|
|
}
|
|
|
|
/// \brief Collect the results of searching for declarations within the given
|
|
/// scope and its parent scopes.
|
|
///
|
|
/// \param S the scope in which we will start looking for declarations.
|
|
///
|
|
/// \param InitialRank the initial rank given to results in this scope.
|
|
/// Larger rank values will be used for results found in parent scopes.
|
|
///
|
|
/// \param CurContext the context from which lookup results will be found.
|
|
///
|
|
/// \param Results the builder object that will receive each result.
|
|
static unsigned CollectLookupResults(Scope *S,
|
|
TranslationUnitDecl *TranslationUnit,
|
|
unsigned InitialRank,
|
|
DeclContext *CurContext,
|
|
ResultBuilder &Results) {
|
|
if (!S)
|
|
return InitialRank;
|
|
|
|
// FIXME: Using directives!
|
|
|
|
unsigned NextRank = InitialRank;
|
|
Results.EnterNewScope();
|
|
if (S->getEntity() &&
|
|
!((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
|
|
// Look into this scope's declaration context, along with any of its
|
|
// parent lookup contexts (e.g., enclosing classes), up to the point
|
|
// where we hit the context stored in the next outer scope.
|
|
DeclContext *Ctx = (DeclContext *)S->getEntity();
|
|
DeclContext *OuterCtx = findOuterContext(S);
|
|
|
|
for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
|
|
Ctx = Ctx->getLookupParent()) {
|
|
if (Ctx->isFunctionOrMethod())
|
|
continue;
|
|
|
|
NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, CurContext,
|
|
Results);
|
|
}
|
|
} else if (!S->getParent()) {
|
|
// Look into the translation unit scope. We walk through the translation
|
|
// unit's declaration context, because the Scope itself won't have all of
|
|
// the declarations if we loaded a precompiled header.
|
|
// FIXME: We would like the translation unit's Scope object to point to the
|
|
// translation unit, so we don't need this special "if" branch. However,
|
|
// doing so would force the normal C++ name-lookup code to look into the
|
|
// translation unit decl when the IdentifierInfo chains would suffice.
|
|
// Once we fix that problem (which is part of a more general "don't look
|
|
// in DeclContexts unless we have to" optimization), we can eliminate the
|
|
// TranslationUnit parameter entirely.
|
|
NextRank = CollectMemberLookupResults(TranslationUnit, NextRank + 1,
|
|
CurContext, Results);
|
|
} else {
|
|
// Walk through the declarations in this Scope.
|
|
for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
|
|
D != DEnd; ++D) {
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, NextRank),
|
|
CurContext);
|
|
}
|
|
|
|
NextRank = NextRank + 1;
|
|
}
|
|
|
|
// Lookup names in the parent scope.
|
|
NextRank = CollectLookupResults(S->getParent(), TranslationUnit, NextRank,
|
|
CurContext, Results);
|
|
Results.ExitScope();
|
|
|
|
return NextRank;
|
|
}
|
|
|
|
/// \brief Add type specifiers for the current language as keyword results.
|
|
static void AddTypeSpecifierResults(const LangOptions &LangOpts, unsigned Rank,
|
|
ResultBuilder &Results) {
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
Results.MaybeAddResult(Result("short", Rank));
|
|
Results.MaybeAddResult(Result("long", Rank));
|
|
Results.MaybeAddResult(Result("signed", Rank));
|
|
Results.MaybeAddResult(Result("unsigned", Rank));
|
|
Results.MaybeAddResult(Result("void", Rank));
|
|
Results.MaybeAddResult(Result("char", Rank));
|
|
Results.MaybeAddResult(Result("int", Rank));
|
|
Results.MaybeAddResult(Result("float", Rank));
|
|
Results.MaybeAddResult(Result("double", Rank));
|
|
Results.MaybeAddResult(Result("enum", Rank));
|
|
Results.MaybeAddResult(Result("struct", Rank));
|
|
Results.MaybeAddResult(Result("union", Rank));
|
|
|
|
if (LangOpts.C99) {
|
|
// C99-specific
|
|
Results.MaybeAddResult(Result("_Complex", Rank));
|
|
Results.MaybeAddResult(Result("_Imaginary", Rank));
|
|
Results.MaybeAddResult(Result("_Bool", Rank));
|
|
}
|
|
|
|
if (LangOpts.CPlusPlus) {
|
|
// C++-specific
|
|
Results.MaybeAddResult(Result("bool", Rank));
|
|
Results.MaybeAddResult(Result("class", Rank));
|
|
Results.MaybeAddResult(Result("typename", Rank));
|
|
Results.MaybeAddResult(Result("wchar_t", Rank));
|
|
|
|
if (LangOpts.CPlusPlus0x) {
|
|
Results.MaybeAddResult(Result("char16_t", Rank));
|
|
Results.MaybeAddResult(Result("char32_t", Rank));
|
|
Results.MaybeAddResult(Result("decltype", Rank));
|
|
}
|
|
}
|
|
|
|
// GNU extensions
|
|
if (LangOpts.GNUMode) {
|
|
// FIXME: Enable when we actually support decimal floating point.
|
|
// Results.MaybeAddResult(Result("_Decimal32", Rank));
|
|
// Results.MaybeAddResult(Result("_Decimal64", Rank));
|
|
// Results.MaybeAddResult(Result("_Decimal128", Rank));
|
|
Results.MaybeAddResult(Result("typeof", Rank));
|
|
}
|
|
}
|
|
|
|
/// \brief Add function parameter chunks to the given code completion string.
|
|
static void AddFunctionParameterChunks(ASTContext &Context,
|
|
FunctionDecl *Function,
|
|
CodeCompletionString *Result) {
|
|
CodeCompletionString *CCStr = Result;
|
|
|
|
for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) {
|
|
ParmVarDecl *Param = Function->getParamDecl(P);
|
|
|
|
if (Param->hasDefaultArg()) {
|
|
// When we see an optional default argument, put that argument and
|
|
// the remaining default arguments into a new, optional string.
|
|
CodeCompletionString *Opt = new CodeCompletionString;
|
|
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
|
|
CCStr = Opt;
|
|
}
|
|
|
|
if (P != 0)
|
|
CCStr->AddTextChunk(", ");
|
|
|
|
// Format the placeholder string.
|
|
std::string PlaceholderStr;
|
|
if (Param->getIdentifier())
|
|
PlaceholderStr = Param->getIdentifier()->getName();
|
|
|
|
Param->getType().getAsStringInternal(PlaceholderStr,
|
|
Context.PrintingPolicy);
|
|
|
|
// Add the placeholder string.
|
|
CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
|
|
}
|
|
|
|
if (const FunctionProtoType *Proto
|
|
= Function->getType()->getAs<FunctionProtoType>())
|
|
if (Proto->isVariadic())
|
|
CCStr->AddPlaceholderChunk(", ...");
|
|
}
|
|
|
|
/// \brief Add template parameter chunks to the given code completion string.
|
|
static void AddTemplateParameterChunks(ASTContext &Context,
|
|
TemplateDecl *Template,
|
|
CodeCompletionString *Result,
|
|
unsigned MaxParameters = 0) {
|
|
CodeCompletionString *CCStr = Result;
|
|
bool FirstParameter = true;
|
|
|
|
TemplateParameterList *Params = Template->getTemplateParameters();
|
|
TemplateParameterList::iterator PEnd = Params->end();
|
|
if (MaxParameters)
|
|
PEnd = Params->begin() + MaxParameters;
|
|
for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) {
|
|
bool HasDefaultArg = false;
|
|
std::string PlaceholderStr;
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
|
|
if (TTP->wasDeclaredWithTypename())
|
|
PlaceholderStr = "typename";
|
|
else
|
|
PlaceholderStr = "class";
|
|
|
|
if (TTP->getIdentifier()) {
|
|
PlaceholderStr += ' ';
|
|
PlaceholderStr += TTP->getIdentifier()->getName();
|
|
}
|
|
|
|
HasDefaultArg = TTP->hasDefaultArgument();
|
|
} else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*P)) {
|
|
if (NTTP->getIdentifier())
|
|
PlaceholderStr = NTTP->getIdentifier()->getName();
|
|
NTTP->getType().getAsStringInternal(PlaceholderStr,
|
|
Context.PrintingPolicy);
|
|
HasDefaultArg = NTTP->hasDefaultArgument();
|
|
} else {
|
|
assert(isa<TemplateTemplateParmDecl>(*P));
|
|
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
|
|
|
|
// Since putting the template argument list into the placeholder would
|
|
// be very, very long, we just use an abbreviation.
|
|
PlaceholderStr = "template<...> class";
|
|
if (TTP->getIdentifier()) {
|
|
PlaceholderStr += ' ';
|
|
PlaceholderStr += TTP->getIdentifier()->getName();
|
|
}
|
|
|
|
HasDefaultArg = TTP->hasDefaultArgument();
|
|
}
|
|
|
|
if (HasDefaultArg) {
|
|
// When we see an optional default argument, put that argument and
|
|
// the remaining default arguments into a new, optional string.
|
|
CodeCompletionString *Opt = new CodeCompletionString;
|
|
CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
|
|
CCStr = Opt;
|
|
}
|
|
|
|
if (FirstParameter)
|
|
FirstParameter = false;
|
|
else
|
|
CCStr->AddTextChunk(", ");
|
|
|
|
// Add the placeholder string.
|
|
CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
|
|
}
|
|
}
|
|
|
|
/// \brief Add a qualifier to the given code-completion string, if the
|
|
/// provided nested-name-specifier is non-NULL.
|
|
void AddQualifierToCompletionString(CodeCompletionString *Result,
|
|
NestedNameSpecifier *Qualifier,
|
|
bool QualifierIsInformative,
|
|
ASTContext &Context) {
|
|
if (!Qualifier)
|
|
return;
|
|
|
|
std::string PrintedNNS;
|
|
{
|
|
llvm::raw_string_ostream OS(PrintedNNS);
|
|
Qualifier->print(OS, Context.PrintingPolicy);
|
|
}
|
|
if (QualifierIsInformative)
|
|
Result->AddInformativeChunk(PrintedNNS.c_str());
|
|
else
|
|
Result->AddTextChunk(PrintedNNS.c_str());
|
|
}
|
|
|
|
/// \brief If possible, create a new code completion string for the given
|
|
/// result.
|
|
///
|
|
/// \returns Either a new, heap-allocated code completion string describing
|
|
/// how to use this result, or NULL to indicate that the string or name of the
|
|
/// result is all that is needed.
|
|
CodeCompletionString *
|
|
CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) {
|
|
if (Kind != RK_Declaration)
|
|
return 0;
|
|
|
|
NamedDecl *ND = Declaration;
|
|
|
|
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
|
|
CodeCompletionString *Result = new CodeCompletionString;
|
|
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
|
|
S.Context);
|
|
Result->AddTextChunk(Function->getNameAsString().c_str());
|
|
Result->AddTextChunk("(");
|
|
AddFunctionParameterChunks(S.Context, Function, Result);
|
|
Result->AddTextChunk(")");
|
|
return Result;
|
|
}
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
|
|
CodeCompletionString *Result = new CodeCompletionString;
|
|
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
|
|
S.Context);
|
|
FunctionDecl *Function = FunTmpl->getTemplatedDecl();
|
|
Result->AddTextChunk(Function->getNameAsString().c_str());
|
|
|
|
// Figure out which template parameters are deduced (or have default
|
|
// arguments).
|
|
llvm::SmallVector<bool, 16> Deduced;
|
|
S.MarkDeducedTemplateParameters(FunTmpl, Deduced);
|
|
unsigned LastDeducibleArgument;
|
|
for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
|
|
--LastDeducibleArgument) {
|
|
if (!Deduced[LastDeducibleArgument - 1]) {
|
|
// C++0x: Figure out if the template argument has a default. If so,
|
|
// the user doesn't need to type this argument.
|
|
// FIXME: We need to abstract template parameters better!
|
|
bool HasDefaultArg = false;
|
|
NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
|
|
LastDeducibleArgument - 1);
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
|
|
HasDefaultArg = TTP->hasDefaultArgument();
|
|
else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param))
|
|
HasDefaultArg = NTTP->hasDefaultArgument();
|
|
else {
|
|
assert(isa<TemplateTemplateParmDecl>(Param));
|
|
HasDefaultArg
|
|
= cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
|
|
}
|
|
|
|
if (!HasDefaultArg)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (LastDeducibleArgument) {
|
|
// Some of the function template arguments cannot be deduced from a
|
|
// function call, so we introduce an explicit template argument list
|
|
// containing all of the arguments up to the first deducible argument.
|
|
Result->AddTextChunk("<");
|
|
AddTemplateParameterChunks(S.Context, FunTmpl, Result,
|
|
LastDeducibleArgument);
|
|
Result->AddTextChunk(">");
|
|
}
|
|
|
|
// Add the function parameters
|
|
Result->AddTextChunk("(");
|
|
AddFunctionParameterChunks(S.Context, Function, Result);
|
|
Result->AddTextChunk(")");
|
|
return Result;
|
|
}
|
|
|
|
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
|
|
CodeCompletionString *Result = new CodeCompletionString;
|
|
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
|
|
S.Context);
|
|
Result->AddTextChunk(Template->getNameAsString().c_str());
|
|
Result->AddTextChunk("<");
|
|
AddTemplateParameterChunks(S.Context, Template, Result);
|
|
Result->AddTextChunk(">");
|
|
return Result;
|
|
}
|
|
|
|
if (Qualifier || StartsNestedNameSpecifier) {
|
|
CodeCompletionString *Result = new CodeCompletionString;
|
|
AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
|
|
S.Context);
|
|
Result->AddTextChunk(ND->getNameAsString().c_str());
|
|
if (StartsNestedNameSpecifier)
|
|
Result->AddTextChunk("::");
|
|
return Result;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
CodeCompletionString *
|
|
CodeCompleteConsumer::OverloadCandidate::CreateSignatureString(
|
|
unsigned CurrentArg,
|
|
Sema &S) const {
|
|
CodeCompletionString *Result = new CodeCompletionString;
|
|
FunctionDecl *FDecl = getFunction();
|
|
const FunctionProtoType *Proto
|
|
= dyn_cast<FunctionProtoType>(getFunctionType());
|
|
if (!FDecl && !Proto) {
|
|
// Function without a prototype. Just give the return type and a
|
|
// highlighted ellipsis.
|
|
const FunctionType *FT = getFunctionType();
|
|
Result->AddTextChunk(
|
|
FT->getResultType().getAsString(S.Context.PrintingPolicy).c_str());
|
|
Result->AddTextChunk("(");
|
|
Result->AddPlaceholderChunk("...");
|
|
Result->AddTextChunk("(");
|
|
return Result;
|
|
}
|
|
|
|
if (FDecl)
|
|
Result->AddTextChunk(FDecl->getNameAsString().c_str());
|
|
else
|
|
Result->AddTextChunk(
|
|
Proto->getResultType().getAsString(S.Context.PrintingPolicy).c_str());
|
|
|
|
Result->AddTextChunk("(");
|
|
unsigned NumParams = FDecl? FDecl->getNumParams() : Proto->getNumArgs();
|
|
for (unsigned I = 0; I != NumParams; ++I) {
|
|
if (I)
|
|
Result->AddTextChunk(", ");
|
|
|
|
std::string ArgString;
|
|
QualType ArgType;
|
|
|
|
if (FDecl) {
|
|
ArgString = FDecl->getParamDecl(I)->getNameAsString();
|
|
ArgType = FDecl->getParamDecl(I)->getOriginalType();
|
|
} else {
|
|
ArgType = Proto->getArgType(I);
|
|
}
|
|
|
|
ArgType.getAsStringInternal(ArgString, S.Context.PrintingPolicy);
|
|
|
|
if (I == CurrentArg)
|
|
Result->AddPlaceholderChunk(ArgString.c_str());
|
|
else
|
|
Result->AddTextChunk(ArgString.c_str());
|
|
}
|
|
|
|
if (Proto && Proto->isVariadic()) {
|
|
Result->AddTextChunk(", ");
|
|
if (CurrentArg < NumParams)
|
|
Result->AddTextChunk("...");
|
|
else
|
|
Result->AddPlaceholderChunk("...");
|
|
}
|
|
Result->AddTextChunk(")");
|
|
|
|
return Result;
|
|
}
|
|
|
|
namespace {
|
|
struct SortCodeCompleteResult {
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
|
|
bool isEarlierDeclarationName(DeclarationName X, DeclarationName Y) const {
|
|
if (X.getNameKind() != Y.getNameKind())
|
|
return X.getNameKind() < Y.getNameKind();
|
|
|
|
return llvm::LowercaseString(X.getAsString())
|
|
< llvm::LowercaseString(Y.getAsString());
|
|
}
|
|
|
|
bool operator()(const Result &X, const Result &Y) const {
|
|
// Sort first by rank.
|
|
if (X.Rank < Y.Rank)
|
|
return true;
|
|
else if (X.Rank > Y.Rank)
|
|
return false;
|
|
|
|
// Result kinds are ordered by decreasing importance.
|
|
if (X.Kind < Y.Kind)
|
|
return true;
|
|
else if (X.Kind > Y.Kind)
|
|
return false;
|
|
|
|
// Non-hidden names precede hidden names.
|
|
if (X.Hidden != Y.Hidden)
|
|
return !X.Hidden;
|
|
|
|
// Non-nested-name-specifiers precede nested-name-specifiers.
|
|
if (X.StartsNestedNameSpecifier != Y.StartsNestedNameSpecifier)
|
|
return !X.StartsNestedNameSpecifier;
|
|
|
|
// Ordering depends on the kind of result.
|
|
switch (X.Kind) {
|
|
case Result::RK_Declaration:
|
|
// Order based on the declaration names.
|
|
return isEarlierDeclarationName(X.Declaration->getDeclName(),
|
|
Y.Declaration->getDeclName());
|
|
|
|
case Result::RK_Keyword:
|
|
return strcmp(X.Keyword, Y.Keyword) < 0;
|
|
}
|
|
|
|
// Silence GCC warning.
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void HandleCodeCompleteResults(CodeCompleteConsumer *CodeCompleter,
|
|
CodeCompleteConsumer::Result *Results,
|
|
unsigned NumResults) {
|
|
// Sort the results by rank/kind/etc.
|
|
std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
|
|
|
|
if (CodeCompleter)
|
|
CodeCompleter->ProcessCodeCompleteResults(Results, NumResults);
|
|
}
|
|
|
|
void Sema::CodeCompleteOrdinaryName(Scope *S) {
|
|
ResultBuilder Results(*this, &ResultBuilder::IsOrdinaryName);
|
|
CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
|
|
Results);
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE,
|
|
SourceLocation OpLoc,
|
|
bool IsArrow) {
|
|
if (!BaseE || !CodeCompleter)
|
|
return;
|
|
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
|
|
Expr *Base = static_cast<Expr *>(BaseE);
|
|
QualType BaseType = Base->getType();
|
|
|
|
if (IsArrow) {
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
|
|
BaseType = Ptr->getPointeeType();
|
|
else if (BaseType->isObjCObjectPointerType())
|
|
/*Do nothing*/ ;
|
|
else
|
|
return;
|
|
}
|
|
|
|
ResultBuilder Results(*this, &ResultBuilder::IsMember);
|
|
unsigned NextRank = 0;
|
|
|
|
if (const RecordType *Record = BaseType->getAs<RecordType>()) {
|
|
NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank,
|
|
Record->getDecl(), Results);
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (!Results.empty()) {
|
|
// The "template" keyword can follow "->" or "." in the grammar.
|
|
// However, we only want to suggest the template keyword if something
|
|
// is dependent.
|
|
bool IsDependent = BaseType->isDependentType();
|
|
if (!IsDependent) {
|
|
for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent())
|
|
if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) {
|
|
IsDependent = Ctx->isDependentContext();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IsDependent)
|
|
Results.MaybeAddResult(Result("template", NextRank++));
|
|
}
|
|
|
|
// We could have the start of a nested-name-specifier. Add those
|
|
// results as well.
|
|
Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
|
|
CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
|
|
CurContext, Results);
|
|
}
|
|
|
|
// Hand off the results found for code completion.
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
|
|
// We're done!
|
|
return;
|
|
}
|
|
}
|
|
|
|
void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
ResultBuilder::LookupFilter Filter = 0;
|
|
switch ((DeclSpec::TST)TagSpec) {
|
|
case DeclSpec::TST_enum:
|
|
Filter = &ResultBuilder::IsEnum;
|
|
break;
|
|
|
|
case DeclSpec::TST_union:
|
|
Filter = &ResultBuilder::IsUnion;
|
|
break;
|
|
|
|
case DeclSpec::TST_struct:
|
|
case DeclSpec::TST_class:
|
|
Filter = &ResultBuilder::IsClassOrStruct;
|
|
break;
|
|
|
|
default:
|
|
assert(false && "Unknown type specifier kind in CodeCompleteTag");
|
|
return;
|
|
}
|
|
|
|
ResultBuilder Results(*this, Filter);
|
|
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
|
|
0, CurContext, Results);
|
|
|
|
if (getLangOptions().CPlusPlus) {
|
|
// We could have the start of a nested-name-specifier. Add those
|
|
// results as well.
|
|
Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
|
|
CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
|
|
CurContext, Results);
|
|
}
|
|
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteCase(Scope *S) {
|
|
if (getSwitchStack().empty() || !CodeCompleter)
|
|
return;
|
|
|
|
SwitchStmt *Switch = getSwitchStack().back();
|
|
if (!Switch->getCond()->getType()->isEnumeralType())
|
|
return;
|
|
|
|
// Code-complete the cases of a switch statement over an enumeration type
|
|
// by providing the list of
|
|
EnumDecl *Enum = Switch->getCond()->getType()->getAs<EnumType>()->getDecl();
|
|
|
|
// Determine which enumerators we have already seen in the switch statement.
|
|
// FIXME: Ideally, we would also be able to look *past* the code-completion
|
|
// token, in case we are code-completing in the middle of the switch and not
|
|
// at the end. However, we aren't able to do so at the moment.
|
|
llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen;
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
for (SwitchCase *SC = Switch->getSwitchCaseList(); SC;
|
|
SC = SC->getNextSwitchCase()) {
|
|
CaseStmt *Case = dyn_cast<CaseStmt>(SC);
|
|
if (!Case)
|
|
continue;
|
|
|
|
Expr *CaseVal = Case->getLHS()->IgnoreParenCasts();
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal))
|
|
if (EnumConstantDecl *Enumerator
|
|
= dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
|
|
// We look into the AST of the case statement to determine which
|
|
// enumerator was named. Alternatively, we could compute the value of
|
|
// the integral constant expression, then compare it against the
|
|
// values of each enumerator. However, value-based approach would not
|
|
// work as well with C++ templates where enumerators declared within a
|
|
// template are type- and value-dependent.
|
|
EnumeratorsSeen.insert(Enumerator);
|
|
|
|
// If this is a qualified-id, keep track of the nested-name-specifier
|
|
// so that we can reproduce it as part of code completion, e.g.,
|
|
//
|
|
// switch (TagD.getKind()) {
|
|
// case TagDecl::TK_enum:
|
|
// break;
|
|
// case XXX
|
|
//
|
|
// At the XXX, our completions are TagDecl::TK_union,
|
|
// TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union,
|
|
// TK_struct, and TK_class.
|
|
if (QualifiedDeclRefExpr *QDRE = dyn_cast<QualifiedDeclRefExpr>(DRE))
|
|
Qualifier = QDRE->getQualifier();
|
|
}
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) {
|
|
// If there are no prior enumerators in C++, check whether we have to
|
|
// qualify the names of the enumerators that we suggest, because they
|
|
// may not be visible in this scope.
|
|
Qualifier = getRequiredQualification(Context, CurContext,
|
|
Enum->getDeclContext());
|
|
|
|
// FIXME: Scoped enums need to start with "EnumDecl" as the context!
|
|
}
|
|
|
|
// Add any enumerators that have not yet been mentioned.
|
|
ResultBuilder Results(*this);
|
|
Results.EnterNewScope();
|
|
for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(),
|
|
EEnd = Enum->enumerator_end();
|
|
E != EEnd; ++E) {
|
|
if (EnumeratorsSeen.count(*E))
|
|
continue;
|
|
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result(*E, 0, Qualifier));
|
|
}
|
|
Results.ExitScope();
|
|
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
namespace {
|
|
struct IsBetterOverloadCandidate {
|
|
Sema &S;
|
|
|
|
public:
|
|
explicit IsBetterOverloadCandidate(Sema &S) : S(S) { }
|
|
|
|
bool
|
|
operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const {
|
|
return S.isBetterOverloadCandidate(X, Y);
|
|
}
|
|
};
|
|
}
|
|
|
|
void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn,
|
|
ExprTy **ArgsIn, unsigned NumArgs) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
|
|
Expr *Fn = (Expr *)FnIn;
|
|
Expr **Args = (Expr **)ArgsIn;
|
|
|
|
// Ignore type-dependent call expressions entirely.
|
|
if (Fn->isTypeDependent() ||
|
|
Expr::hasAnyTypeDependentArguments(Args, NumArgs))
|
|
return;
|
|
|
|
NamedDecl *Function;
|
|
DeclarationName UnqualifiedName;
|
|
NestedNameSpecifier *Qualifier;
|
|
SourceRange QualifierRange;
|
|
bool ArgumentDependentLookup;
|
|
bool HasExplicitTemplateArgs;
|
|
const TemplateArgument *ExplicitTemplateArgs;
|
|
unsigned NumExplicitTemplateArgs;
|
|
|
|
DeconstructCallFunction(Fn,
|
|
Function, UnqualifiedName, Qualifier, QualifierRange,
|
|
ArgumentDependentLookup, HasExplicitTemplateArgs,
|
|
ExplicitTemplateArgs, NumExplicitTemplateArgs);
|
|
|
|
|
|
// FIXME: What if we're calling something that isn't a function declaration?
|
|
// FIXME: What if we're calling a pseudo-destructor?
|
|
// FIXME: What if we're calling a member function?
|
|
|
|
// Build an overload candidate set based on the functions we find.
|
|
OverloadCandidateSet CandidateSet;
|
|
AddOverloadedCallCandidates(Function, UnqualifiedName,
|
|
ArgumentDependentLookup, HasExplicitTemplateArgs,
|
|
ExplicitTemplateArgs, NumExplicitTemplateArgs,
|
|
Args, NumArgs,
|
|
CandidateSet,
|
|
/*PartialOverloading=*/true);
|
|
|
|
// Sort the overload candidate set by placing the best overloads first.
|
|
std::stable_sort(CandidateSet.begin(), CandidateSet.end(),
|
|
IsBetterOverloadCandidate(*this));
|
|
|
|
// Add the remaining viable overload candidates as code-completion reslults.
|
|
typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate;
|
|
llvm::SmallVector<ResultCandidate, 8> Results;
|
|
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
|
|
CandEnd = CandidateSet.end();
|
|
Cand != CandEnd; ++Cand) {
|
|
if (Cand->Viable)
|
|
Results.push_back(ResultCandidate(Cand->Function));
|
|
}
|
|
CodeCompleter->ProcessOverloadCandidates(NumArgs, Results.data(),
|
|
Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS,
|
|
bool EnteringContext) {
|
|
if (!SS.getScopeRep() || !CodeCompleter)
|
|
return;
|
|
|
|
DeclContext *Ctx = computeDeclContext(SS, EnteringContext);
|
|
if (!Ctx)
|
|
return;
|
|
|
|
ResultBuilder Results(*this);
|
|
unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Ctx, Results);
|
|
|
|
// The "template" keyword can follow "::" in the grammar, but only
|
|
// put it into the grammar if the nested-name-specifier is dependent.
|
|
NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
|
|
if (!Results.empty() && NNS->isDependent())
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("template", NextRank));
|
|
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteUsing(Scope *S) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
|
|
ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier);
|
|
Results.EnterNewScope();
|
|
|
|
// If we aren't in class scope, we could see the "namespace" keyword.
|
|
if (!S->isClassScope())
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("namespace", 0));
|
|
|
|
// After "using", we can see anything that would start a
|
|
// nested-name-specifier.
|
|
CollectLookupResults(S, Context.getTranslationUnitDecl(), 0,
|
|
CurContext, Results);
|
|
Results.ExitScope();
|
|
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteUsingDirective(Scope *S) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
|
|
// After "using namespace", we expect to see a namespace name or namespace
|
|
// alias.
|
|
ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
|
|
Results.EnterNewScope();
|
|
CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
|
|
Results);
|
|
Results.ExitScope();
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteNamespaceDecl(Scope *S) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
|
|
ResultBuilder Results(*this, &ResultBuilder::IsNamespace);
|
|
DeclContext *Ctx = (DeclContext *)S->getEntity();
|
|
if (!S->getParent())
|
|
Ctx = Context.getTranslationUnitDecl();
|
|
|
|
if (Ctx && Ctx->isFileContext()) {
|
|
// We only want to see those namespaces that have already been defined
|
|
// within this scope, because its likely that the user is creating an
|
|
// extended namespace declaration. Keep track of the most recent
|
|
// definition of each namespace.
|
|
std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
|
|
for (DeclContext::specific_decl_iterator<NamespaceDecl>
|
|
NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
|
|
NS != NSEnd; ++NS)
|
|
OrigToLatest[NS->getOriginalNamespace()] = *NS;
|
|
|
|
// Add the most recent definition (or extended definition) of each
|
|
// namespace to the list of results.
|
|
Results.EnterNewScope();
|
|
for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
|
|
NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end();
|
|
NS != NSEnd; ++NS)
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result(NS->second, 0),
|
|
CurContext);
|
|
Results.ExitScope();
|
|
}
|
|
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
|
|
// After "namespace", we expect to see a namespace or alias.
|
|
ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
|
|
CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
|
|
Results);
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteOperatorName(Scope *S) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
ResultBuilder Results(*this, &ResultBuilder::IsType);
|
|
Results.EnterNewScope();
|
|
|
|
// Add the names of overloadable operators.
|
|
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
|
if (std::strcmp(Spelling, "?")) \
|
|
Results.MaybeAddResult(Result(Spelling, 0));
|
|
#include "clang/Basic/OperatorKinds.def"
|
|
|
|
// Add any type names visible from the current scope
|
|
unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
|
|
0, CurContext, Results);
|
|
|
|
// Add any type specifiers
|
|
AddTypeSpecifierResults(getLangOptions(), 0, Results);
|
|
|
|
// Add any nested-name-specifiers
|
|
Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
|
|
CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank + 1,
|
|
CurContext, Results);
|
|
Results.ExitScope();
|
|
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|
|
|
|
void Sema::CodeCompleteObjCProperty(Scope *S, ObjCDeclSpec &ODS) {
|
|
if (!CodeCompleter)
|
|
return;
|
|
unsigned Attributes = ODS.getPropertyAttributes();
|
|
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
ResultBuilder Results(*this);
|
|
Results.EnterNewScope();
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_readonly))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("readonly", 0));
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_assign))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("assign", 0));
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_readwrite))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("readwrite", 0));
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_retain))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("retain", 0));
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_copy))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("copy", 0));
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_nonatomic))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("nonatomic", 0));
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_setter))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("setter", 0));
|
|
if (!(Attributes & ObjCDeclSpec::DQ_PR_getter))
|
|
Results.MaybeAddResult(CodeCompleteConsumer::Result("getter", 0));
|
|
Results.ExitScope();
|
|
HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
|
|
}
|