llvm-project/llvm/lib/Target/X86/X86InstrAVX512.td

12421 lines
631 KiB
TableGen

//===-- X86InstrAVX512.td - AVX512 Instruction Set ---------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 AVX512 instruction set, defining the
// instructions, and properties of the instructions which are needed for code
// generation, machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
// Group template arguments that can be derived from the vector type (EltNum x
// EltVT). These are things like the register class for the writemask, etc.
// The idea is to pass one of these as the template argument rather than the
// individual arguments.
// The template is also used for scalar types, in this case numelts is 1.
class X86VectorVTInfo<int numelts, ValueType eltvt, RegisterClass rc,
string suffix = ""> {
RegisterClass RC = rc;
ValueType EltVT = eltvt;
int NumElts = numelts;
// Corresponding mask register class.
RegisterClass KRC = !cast<RegisterClass>("VK" # NumElts);
// Corresponding write-mask register class.
RegisterClass KRCWM = !cast<RegisterClass>("VK" # NumElts # "WM");
// The mask VT.
ValueType KVT = !cast<ValueType>("v" # NumElts # "i1");
// Suffix used in the instruction mnemonic.
string Suffix = suffix;
// VTName is a string name for vector VT. For vector types it will be
// v # NumElts # EltVT, so for vector of 8 elements of i32 it will be v8i32
// It is a little bit complex for scalar types, where NumElts = 1.
// In this case we build v4f32 or v2f64
string VTName = "v" # !if (!eq (NumElts, 1),
!if (!eq (EltVT.Size, 32), 4,
!if (!eq (EltVT.Size, 64), 2, NumElts)), NumElts) # EltVT;
// The vector VT.
ValueType VT = !cast<ValueType>(VTName);
string EltTypeName = !cast<string>(EltVT);
// Size of the element type in bits, e.g. 32 for v16i32.
string EltSizeName = !subst("i", "", !subst("f", "", EltTypeName));
int EltSize = EltVT.Size;
// "i" for integer types and "f" for floating-point types
string TypeVariantName = !subst(EltSizeName, "", EltTypeName);
// Size of RC in bits, e.g. 512 for VR512.
int Size = VT.Size;
// The corresponding memory operand, e.g. i512mem for VR512.
X86MemOperand MemOp = !cast<X86MemOperand>(TypeVariantName # Size # "mem");
X86MemOperand ScalarMemOp = !cast<X86MemOperand>(EltVT # "mem");
// FP scalar memory operand for intrinsics - ssmem/sdmem.
Operand IntScalarMemOp = !if (!eq (EltTypeName, "f32"), !cast<Operand>("ssmem"),
!if (!eq (EltTypeName, "f64"), !cast<Operand>("sdmem"), ?));
// Load patterns
PatFrag LdFrag = !cast<PatFrag>("load" # VTName);
PatFrag AlignedLdFrag = !cast<PatFrag>("alignedload" # VTName);
PatFrag ScalarLdFrag = !cast<PatFrag>("load" # EltVT);
ComplexPattern ScalarIntMemCPat = !if (!eq (EltTypeName, "f32"),
!cast<ComplexPattern>("sse_load_f32"),
!if (!eq (EltTypeName, "f64"),
!cast<ComplexPattern>("sse_load_f64"),
?));
// The string to specify embedded broadcast in assembly.
string BroadcastStr = "{1to" # NumElts # "}";
// 8-bit compressed displacement tuple/subvector format. This is only
// defined for NumElts <= 8.
CD8VForm CD8TupleForm = !if (!eq (!srl(NumElts, 4), 0),
!cast<CD8VForm>("CD8VT" # NumElts), ?);
SubRegIndex SubRegIdx = !if (!eq (Size, 128), sub_xmm,
!if (!eq (Size, 256), sub_ymm, ?));
Domain ExeDomain = !if (!eq (EltTypeName, "f32"), SSEPackedSingle,
!if (!eq (EltTypeName, "f64"), SSEPackedDouble,
SSEPackedInt));
RegisterClass FRC = !if (!eq (EltTypeName, "f32"), FR32X, FR64X);
// A vector type of the same width with element type i32. This is used to
// create the canonical constant zero node ImmAllZerosV.
ValueType i32VT = !cast<ValueType>("v" # !srl(Size, 5) # "i32");
dag ImmAllZerosV = (VT (bitconvert (i32VT immAllZerosV)));
string ZSuffix = !if (!eq (Size, 128), "Z128",
!if (!eq (Size, 256), "Z256", "Z"));
}
def v64i8_info : X86VectorVTInfo<64, i8, VR512, "b">;
def v32i16_info : X86VectorVTInfo<32, i16, VR512, "w">;
def v16i32_info : X86VectorVTInfo<16, i32, VR512, "d">;
def v8i64_info : X86VectorVTInfo<8, i64, VR512, "q">;
def v16f32_info : X86VectorVTInfo<16, f32, VR512, "ps">;
def v8f64_info : X86VectorVTInfo<8, f64, VR512, "pd">;
// "x" in v32i8x_info means RC = VR256X
def v32i8x_info : X86VectorVTInfo<32, i8, VR256X, "b">;
def v16i16x_info : X86VectorVTInfo<16, i16, VR256X, "w">;
def v8i32x_info : X86VectorVTInfo<8, i32, VR256X, "d">;
def v4i64x_info : X86VectorVTInfo<4, i64, VR256X, "q">;
def v8f32x_info : X86VectorVTInfo<8, f32, VR256X, "ps">;
def v4f64x_info : X86VectorVTInfo<4, f64, VR256X, "pd">;
def v16i8x_info : X86VectorVTInfo<16, i8, VR128X, "b">;
def v8i16x_info : X86VectorVTInfo<8, i16, VR128X, "w">;
def v4i32x_info : X86VectorVTInfo<4, i32, VR128X, "d">;
def v2i64x_info : X86VectorVTInfo<2, i64, VR128X, "q">;
def v4f32x_info : X86VectorVTInfo<4, f32, VR128X, "ps">;
def v2f64x_info : X86VectorVTInfo<2, f64, VR128X, "pd">;
// We map scalar types to the smallest (128-bit) vector type
// with the appropriate element type. This allows to use the same masking logic.
def i32x_info : X86VectorVTInfo<1, i32, GR32, "si">;
def i64x_info : X86VectorVTInfo<1, i64, GR64, "sq">;
def f32x_info : X86VectorVTInfo<1, f32, VR128X, "ss">;
def f64x_info : X86VectorVTInfo<1, f64, VR128X, "sd">;
class AVX512VLVectorVTInfo<X86VectorVTInfo i512, X86VectorVTInfo i256,
X86VectorVTInfo i128> {
X86VectorVTInfo info512 = i512;
X86VectorVTInfo info256 = i256;
X86VectorVTInfo info128 = i128;
}
def avx512vl_i8_info : AVX512VLVectorVTInfo<v64i8_info, v32i8x_info,
v16i8x_info>;
def avx512vl_i16_info : AVX512VLVectorVTInfo<v32i16_info, v16i16x_info,
v8i16x_info>;
def avx512vl_i32_info : AVX512VLVectorVTInfo<v16i32_info, v8i32x_info,
v4i32x_info>;
def avx512vl_i64_info : AVX512VLVectorVTInfo<v8i64_info, v4i64x_info,
v2i64x_info>;
def avx512vl_f32_info : AVX512VLVectorVTInfo<v16f32_info, v8f32x_info,
v4f32x_info>;
def avx512vl_f64_info : AVX512VLVectorVTInfo<v8f64_info, v4f64x_info,
v2f64x_info>;
class X86KVectorVTInfo<RegisterClass _krc, RegisterClass _krcwm,
ValueType _vt> {
RegisterClass KRC = _krc;
RegisterClass KRCWM = _krcwm;
ValueType KVT = _vt;
}
def v1i1_info : X86KVectorVTInfo<VK1, VK1WM, v1i1>;
def v2i1_info : X86KVectorVTInfo<VK2, VK2WM, v2i1>;
def v4i1_info : X86KVectorVTInfo<VK4, VK4WM, v4i1>;
def v8i1_info : X86KVectorVTInfo<VK8, VK8WM, v8i1>;
def v16i1_info : X86KVectorVTInfo<VK16, VK16WM, v16i1>;
def v32i1_info : X86KVectorVTInfo<VK32, VK32WM, v32i1>;
def v64i1_info : X86KVectorVTInfo<VK64, VK64WM, v64i1>;
// This multiclass generates the masking variants from the non-masking
// variant. It only provides the assembly pieces for the masking variants.
// It assumes custom ISel patterns for masking which can be provided as
// template arguments.
multiclass AVX512_maskable_custom<bits<8> O, Format F,
dag Outs,
dag Ins, dag MaskingIns, dag ZeroMaskingIns,
string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
list<dag> Pattern,
list<dag> MaskingPattern,
list<dag> ZeroMaskingPattern,
string MaskingConstraint = "",
bit IsCommutable = 0,
bit IsKCommutable = 0,
bit IsKZCommutable = IsCommutable> {
let isCommutable = IsCommutable in
def NAME: AVX512<O, F, Outs, Ins,
OpcodeStr#"\t{"#AttSrcAsm#", $dst|"#
"$dst, "#IntelSrcAsm#"}",
Pattern>;
// Prefer over VMOV*rrk Pat<>
let isCommutable = IsKCommutable in
def NAME#k: AVX512<O, F, Outs, MaskingIns,
OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}}|"#
"$dst {${mask}}, "#IntelSrcAsm#"}",
MaskingPattern>,
EVEX_K {
// In case of the 3src subclass this is overridden with a let.
string Constraints = MaskingConstraint;
}
// Zero mask does not add any restrictions to commute operands transformation.
// So, it is Ok to use IsCommutable instead of IsKCommutable.
let isCommutable = IsKZCommutable in // Prefer over VMOV*rrkz Pat<>
def NAME#kz: AVX512<O, F, Outs, ZeroMaskingIns,
OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}} {z}|"#
"$dst {${mask}} {z}, "#IntelSrcAsm#"}",
ZeroMaskingPattern>,
EVEX_KZ;
}
// Common base class of AVX512_maskable and AVX512_maskable_3src.
multiclass AVX512_maskable_common<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs,
dag Ins, dag MaskingIns, dag ZeroMaskingIns,
string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS, dag MaskingRHS,
SDNode Select = vselect,
string MaskingConstraint = "",
bit IsCommutable = 0,
bit IsKCommutable = 0,
bit IsKZCommutable = IsCommutable> :
AVX512_maskable_custom<O, F, Outs, Ins, MaskingIns, ZeroMaskingIns, OpcodeStr,
AttSrcAsm, IntelSrcAsm,
[(set _.RC:$dst, RHS)],
[(set _.RC:$dst, MaskingRHS)],
[(set _.RC:$dst,
(Select _.KRCWM:$mask, RHS, _.ImmAllZerosV))],
MaskingConstraint, IsCommutable,
IsKCommutable, IsKZCommutable>;
// This multiclass generates the unconditional/non-masking, the masking and
// the zero-masking variant of the vector instruction. In the masking case, the
// perserved vector elements come from a new dummy input operand tied to $dst.
// This version uses a separate dag for non-masking and masking.
multiclass AVX512_maskable_split<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag Ins, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS, dag MaskRHS,
bit IsCommutable = 0, bit IsKCommutable = 0,
SDNode Select = vselect> :
AVX512_maskable_custom<O, F, Outs, Ins,
!con((ins _.RC:$src0, _.KRCWM:$mask), Ins),
!con((ins _.KRCWM:$mask), Ins),
OpcodeStr, AttSrcAsm, IntelSrcAsm,
[(set _.RC:$dst, RHS)],
[(set _.RC:$dst,
(Select _.KRCWM:$mask, MaskRHS, _.RC:$src0))],
[(set _.RC:$dst,
(Select _.KRCWM:$mask, MaskRHS, _.ImmAllZerosV))],
"$src0 = $dst", IsCommutable, IsKCommutable>;
// This multiclass generates the unconditional/non-masking, the masking and
// the zero-masking variant of the vector instruction. In the masking case, the
// perserved vector elements come from a new dummy input operand tied to $dst.
multiclass AVX512_maskable<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag Ins, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS,
bit IsCommutable = 0, bit IsKCommutable = 0,
bit IsKZCommutable = IsCommutable,
SDNode Select = vselect> :
AVX512_maskable_common<O, F, _, Outs, Ins,
!con((ins _.RC:$src0, _.KRCWM:$mask), Ins),
!con((ins _.KRCWM:$mask), Ins),
OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS,
(Select _.KRCWM:$mask, RHS, _.RC:$src0),
Select, "$src0 = $dst", IsCommutable, IsKCommutable,
IsKZCommutable>;
// This multiclass generates the unconditional/non-masking, the masking and
// the zero-masking variant of the scalar instruction.
multiclass AVX512_maskable_scalar<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag Ins, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS,
bit IsCommutable = 0> :
AVX512_maskable<O, F, _, Outs, Ins, OpcodeStr, AttSrcAsm, IntelSrcAsm,
RHS, IsCommutable, 0, IsCommutable, X86selects>;
// Similar to AVX512_maskable but in this case one of the source operands
// ($src1) is already tied to $dst so we just use that for the preserved
// vector elements. NOTE that the NonTiedIns (the ins dag) should exclude
// $src1.
multiclass AVX512_maskable_3src<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag NonTiedIns, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS,
bit IsCommutable = 0,
bit IsKCommutable = 0,
SDNode Select = vselect,
bit MaskOnly = 0> :
AVX512_maskable_common<O, F, _, Outs,
!con((ins _.RC:$src1), NonTiedIns),
!con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns),
!con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns),
OpcodeStr, AttSrcAsm, IntelSrcAsm,
!if(MaskOnly, (null_frag), RHS),
(Select _.KRCWM:$mask, RHS, _.RC:$src1),
Select, "", IsCommutable, IsKCommutable>;
// Similar to AVX512_maskable_3src but in this case the input VT for the tied
// operand differs from the output VT. This requires a bitconvert on
// the preserved vector going into the vselect.
// NOTE: The unmasked pattern is disabled.
multiclass AVX512_maskable_3src_cast<bits<8> O, Format F, X86VectorVTInfo OutVT,
X86VectorVTInfo InVT,
dag Outs, dag NonTiedIns, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS, bit IsCommutable = 0> :
AVX512_maskable_common<O, F, OutVT, Outs,
!con((ins InVT.RC:$src1), NonTiedIns),
!con((ins InVT.RC:$src1, InVT.KRCWM:$mask), NonTiedIns),
!con((ins InVT.RC:$src1, InVT.KRCWM:$mask), NonTiedIns),
OpcodeStr, AttSrcAsm, IntelSrcAsm, (null_frag),
(vselect InVT.KRCWM:$mask, RHS,
(bitconvert InVT.RC:$src1)),
vselect, "", IsCommutable>;
multiclass AVX512_maskable_3src_scalar<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag NonTiedIns, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS,
bit IsCommutable = 0,
bit IsKCommutable = 0,
bit MaskOnly = 0> :
AVX512_maskable_3src<O, F, _, Outs, NonTiedIns, OpcodeStr, AttSrcAsm,
IntelSrcAsm, RHS, IsCommutable, IsKCommutable,
X86selects, MaskOnly>;
multiclass AVX512_maskable_in_asm<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag Ins,
string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
list<dag> Pattern> :
AVX512_maskable_custom<O, F, Outs, Ins,
!con((ins _.RC:$src0, _.KRCWM:$mask), Ins),
!con((ins _.KRCWM:$mask), Ins),
OpcodeStr, AttSrcAsm, IntelSrcAsm, Pattern, [], [],
"$src0 = $dst">;
multiclass AVX512_maskable_3src_in_asm<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag NonTiedIns,
string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
list<dag> Pattern> :
AVX512_maskable_custom<O, F, Outs,
!con((ins _.RC:$src1), NonTiedIns),
!con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns),
!con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns),
OpcodeStr, AttSrcAsm, IntelSrcAsm, Pattern, [], [],
"">;
// Instruction with mask that puts result in mask register,
// like "compare" and "vptest"
multiclass AVX512_maskable_custom_cmp<bits<8> O, Format F,
dag Outs,
dag Ins, dag MaskingIns,
string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
list<dag> Pattern,
list<dag> MaskingPattern,
bit IsCommutable = 0> {
let isCommutable = IsCommutable in
def NAME: AVX512<O, F, Outs, Ins,
OpcodeStr#"\t{"#AttSrcAsm#", $dst|"#
"$dst, "#IntelSrcAsm#"}",
Pattern>;
def NAME#k: AVX512<O, F, Outs, MaskingIns,
OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}}|"#
"$dst {${mask}}, "#IntelSrcAsm#"}",
MaskingPattern>, EVEX_K;
}
multiclass AVX512_maskable_common_cmp<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs,
dag Ins, dag MaskingIns,
string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS, dag MaskingRHS,
bit IsCommutable = 0> :
AVX512_maskable_custom_cmp<O, F, Outs, Ins, MaskingIns, OpcodeStr,
AttSrcAsm, IntelSrcAsm,
[(set _.KRC:$dst, RHS)],
[(set _.KRC:$dst, MaskingRHS)], IsCommutable>;
multiclass AVX512_maskable_cmp<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag Ins, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS, bit IsCommutable = 0> :
AVX512_maskable_common_cmp<O, F, _, Outs, Ins,
!con((ins _.KRCWM:$mask), Ins),
OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS,
(and _.KRCWM:$mask, RHS), IsCommutable>;
multiclass AVX512_maskable_cmp_alt<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag Ins, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm> :
AVX512_maskable_custom_cmp<O, F, Outs,
Ins, !con((ins _.KRCWM:$mask),Ins), OpcodeStr,
AttSrcAsm, IntelSrcAsm, [], []>;
// This multiclass generates the unconditional/non-masking, the masking and
// the zero-masking variant of the vector instruction. In the masking case, the
// perserved vector elements come from a new dummy input operand tied to $dst.
multiclass AVX512_maskable_logic<bits<8> O, Format F, X86VectorVTInfo _,
dag Outs, dag Ins, string OpcodeStr,
string AttSrcAsm, string IntelSrcAsm,
dag RHS, dag MaskedRHS,
bit IsCommutable = 0, SDNode Select = vselect> :
AVX512_maskable_custom<O, F, Outs, Ins,
!con((ins _.RC:$src0, _.KRCWM:$mask), Ins),
!con((ins _.KRCWM:$mask), Ins),
OpcodeStr, AttSrcAsm, IntelSrcAsm,
[(set _.RC:$dst, RHS)],
[(set _.RC:$dst,
(Select _.KRCWM:$mask, MaskedRHS, _.RC:$src0))],
[(set _.RC:$dst,
(Select _.KRCWM:$mask, MaskedRHS,
_.ImmAllZerosV))],
"$src0 = $dst", IsCommutable>;
// Alias instruction that maps zero vector to pxor / xorp* for AVX-512.
// This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then
// swizzled by ExecutionDomainFix to pxor.
// We set canFoldAsLoad because this can be converted to a constant-pool
// load of an all-zeros value if folding it would be beneficial.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteZero] in {
def AVX512_512_SET0 : I<0, Pseudo, (outs VR512:$dst), (ins), "",
[(set VR512:$dst, (v16i32 immAllZerosV))]>;
def AVX512_512_SETALLONES : I<0, Pseudo, (outs VR512:$dst), (ins), "",
[(set VR512:$dst, (v16i32 immAllOnesV))]>;
}
// Alias instructions that allow VPTERNLOG to be used with a mask to create
// a mix of all ones and all zeros elements. This is done this way to force
// the same register to be used as input for all three sources.
let isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteVecALU] in {
def AVX512_512_SEXT_MASK_32 : I<0, Pseudo, (outs VR512:$dst),
(ins VK16WM:$mask), "",
[(set VR512:$dst, (vselect (v16i1 VK16WM:$mask),
(v16i32 immAllOnesV),
(v16i32 immAllZerosV)))]>;
def AVX512_512_SEXT_MASK_64 : I<0, Pseudo, (outs VR512:$dst),
(ins VK8WM:$mask), "",
[(set VR512:$dst, (vselect (v8i1 VK8WM:$mask),
(bc_v8i64 (v16i32 immAllOnesV)),
(bc_v8i64 (v16i32 immAllZerosV))))]>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteZero] in {
def AVX512_128_SET0 : I<0, Pseudo, (outs VR128X:$dst), (ins), "",
[(set VR128X:$dst, (v4i32 immAllZerosV))]>;
def AVX512_256_SET0 : I<0, Pseudo, (outs VR256X:$dst), (ins), "",
[(set VR256X:$dst, (v8i32 immAllZerosV))]>;
}
// Alias instructions that map fld0 to xorps for sse or vxorps for avx.
// This is expanded by ExpandPostRAPseudos.
let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
isPseudo = 1, SchedRW = [WriteZero], Predicates = [HasAVX512] in {
def AVX512_FsFLD0SS : I<0, Pseudo, (outs FR32X:$dst), (ins), "",
[(set FR32X:$dst, fp32imm0)]>;
def AVX512_FsFLD0SD : I<0, Pseudo, (outs FR64X:$dst), (ins), "",
[(set FR64X:$dst, fpimm0)]>;
}
//===----------------------------------------------------------------------===//
// AVX-512 - VECTOR INSERT
//
// Supports two different pattern operators for mask and unmasked ops. Allows
// null_frag to be passed for one.
multiclass vinsert_for_size_split<int Opcode, X86VectorVTInfo From,
X86VectorVTInfo To,
SDPatternOperator vinsert_insert,
SDPatternOperator vinsert_for_mask,
X86FoldableSchedWrite sched> {
let hasSideEffects = 0, ExeDomain = To.ExeDomain in {
defm rr : AVX512_maskable_split<Opcode, MRMSrcReg, To, (outs To.RC:$dst),
(ins To.RC:$src1, From.RC:$src2, u8imm:$src3),
"vinsert" # From.EltTypeName # "x" # From.NumElts,
"$src3, $src2, $src1", "$src1, $src2, $src3",
(vinsert_insert:$src3 (To.VT To.RC:$src1),
(From.VT From.RC:$src2),
(iPTR imm)),
(vinsert_for_mask:$src3 (To.VT To.RC:$src1),
(From.VT From.RC:$src2),
(iPTR imm))>,
AVX512AIi8Base, EVEX_4V, Sched<[sched]>;
let mayLoad = 1 in
defm rm : AVX512_maskable_split<Opcode, MRMSrcMem, To, (outs To.RC:$dst),
(ins To.RC:$src1, From.MemOp:$src2, u8imm:$src3),
"vinsert" # From.EltTypeName # "x" # From.NumElts,
"$src3, $src2, $src1", "$src1, $src2, $src3",
(vinsert_insert:$src3 (To.VT To.RC:$src1),
(From.VT (From.LdFrag addr:$src2)),
(iPTR imm)),
(vinsert_for_mask:$src3 (To.VT To.RC:$src1),
(From.VT (From.LdFrag addr:$src2)),
(iPTR imm))>, AVX512AIi8Base, EVEX_4V,
EVEX_CD8<From.EltSize, From.CD8TupleForm>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
// Passes the same pattern operator for masked and unmasked ops.
multiclass vinsert_for_size<int Opcode, X86VectorVTInfo From,
X86VectorVTInfo To,
SDPatternOperator vinsert_insert,
X86FoldableSchedWrite sched> :
vinsert_for_size_split<Opcode, From, To, vinsert_insert, vinsert_insert, sched>;
multiclass vinsert_for_size_lowering<string InstrStr, X86VectorVTInfo From,
X86VectorVTInfo To, PatFrag vinsert_insert,
SDNodeXForm INSERT_get_vinsert_imm , list<Predicate> p> {
let Predicates = p in {
def : Pat<(vinsert_insert:$ins
(To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm)),
(To.VT (!cast<Instruction>(InstrStr#"rr")
To.RC:$src1, From.RC:$src2,
(INSERT_get_vinsert_imm To.RC:$ins)))>;
def : Pat<(vinsert_insert:$ins
(To.VT To.RC:$src1),
(From.VT (From.LdFrag addr:$src2)),
(iPTR imm)),
(To.VT (!cast<Instruction>(InstrStr#"rm")
To.RC:$src1, addr:$src2,
(INSERT_get_vinsert_imm To.RC:$ins)))>;
}
}
multiclass vinsert_for_type<ValueType EltVT32, int Opcode128,
ValueType EltVT64, int Opcode256,
X86FoldableSchedWrite sched> {
let Predicates = [HasVLX] in
defm NAME # "32x4Z256" : vinsert_for_size<Opcode128,
X86VectorVTInfo< 4, EltVT32, VR128X>,
X86VectorVTInfo< 8, EltVT32, VR256X>,
vinsert128_insert, sched>, EVEX_V256;
defm NAME # "32x4Z" : vinsert_for_size<Opcode128,
X86VectorVTInfo< 4, EltVT32, VR128X>,
X86VectorVTInfo<16, EltVT32, VR512>,
vinsert128_insert, sched>, EVEX_V512;
defm NAME # "64x4Z" : vinsert_for_size<Opcode256,
X86VectorVTInfo< 4, EltVT64, VR256X>,
X86VectorVTInfo< 8, EltVT64, VR512>,
vinsert256_insert, sched>, VEX_W, EVEX_V512;
// Even with DQI we'd like to only use these instructions for masking.
let Predicates = [HasVLX, HasDQI] in
defm NAME # "64x2Z256" : vinsert_for_size_split<Opcode128,
X86VectorVTInfo< 2, EltVT64, VR128X>,
X86VectorVTInfo< 4, EltVT64, VR256X>,
null_frag, vinsert128_insert, sched>,
VEX_W1X, EVEX_V256;
// Even with DQI we'd like to only use these instructions for masking.
let Predicates = [HasDQI] in {
defm NAME # "64x2Z" : vinsert_for_size_split<Opcode128,
X86VectorVTInfo< 2, EltVT64, VR128X>,
X86VectorVTInfo< 8, EltVT64, VR512>,
null_frag, vinsert128_insert, sched>,
VEX_W, EVEX_V512;
defm NAME # "32x8Z" : vinsert_for_size_split<Opcode256,
X86VectorVTInfo< 8, EltVT32, VR256X>,
X86VectorVTInfo<16, EltVT32, VR512>,
null_frag, vinsert256_insert, sched>,
EVEX_V512;
}
}
// FIXME: Is there a better scheduler class for VINSERTF/VINSERTI?
defm VINSERTF : vinsert_for_type<f32, 0x18, f64, 0x1a, WriteFShuffle256>;
defm VINSERTI : vinsert_for_type<i32, 0x38, i64, 0x3a, WriteShuffle256>;
// Codegen pattern with the alternative types,
// Even with AVX512DQ we'll still use these for unmasked operations.
defm : vinsert_for_size_lowering<"VINSERTF32x4Z256", v2f64x_info, v4f64x_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>;
defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v2i64x_info, v4i64x_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>;
defm : vinsert_for_size_lowering<"VINSERTF32x4Z", v2f64x_info, v8f64_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>;
defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v2i64x_info, v8i64_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>;
defm : vinsert_for_size_lowering<"VINSERTF64x4Z", v8f32x_info, v16f32_info,
vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>;
defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v8i32x_info, v16i32_info,
vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>;
// Codegen pattern with the alternative types insert VEC128 into VEC256
defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v8i16x_info, v16i16x_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>;
defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v16i8x_info, v32i8x_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>;
// Codegen pattern with the alternative types insert VEC128 into VEC512
defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v8i16x_info, v32i16_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>;
defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v16i8x_info, v64i8_info,
vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>;
// Codegen pattern with the alternative types insert VEC256 into VEC512
defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v16i16x_info, v32i16_info,
vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>;
defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v32i8x_info, v64i8_info,
vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>;
multiclass vinsert_for_mask_cast<string InstrStr, X86VectorVTInfo From,
X86VectorVTInfo To, X86VectorVTInfo Cast,
PatFrag vinsert_insert,
SDNodeXForm INSERT_get_vinsert_imm,
list<Predicate> p> {
let Predicates = p in {
def : Pat<(Cast.VT
(vselect Cast.KRCWM:$mask,
(bitconvert
(vinsert_insert:$ins (To.VT To.RC:$src1),
(From.VT From.RC:$src2),
(iPTR imm))),
Cast.RC:$src0)),
(!cast<Instruction>(InstrStr#"rrk")
Cast.RC:$src0, Cast.KRCWM:$mask, To.RC:$src1, From.RC:$src2,
(INSERT_get_vinsert_imm To.RC:$ins))>;
def : Pat<(Cast.VT
(vselect Cast.KRCWM:$mask,
(bitconvert
(vinsert_insert:$ins (To.VT To.RC:$src1),
(From.VT
(bitconvert
(From.LdFrag addr:$src2))),
(iPTR imm))),
Cast.RC:$src0)),
(!cast<Instruction>(InstrStr#"rmk")
Cast.RC:$src0, Cast.KRCWM:$mask, To.RC:$src1, addr:$src2,
(INSERT_get_vinsert_imm To.RC:$ins))>;
def : Pat<(Cast.VT
(vselect Cast.KRCWM:$mask,
(bitconvert
(vinsert_insert:$ins (To.VT To.RC:$src1),
(From.VT From.RC:$src2),
(iPTR imm))),
Cast.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#"rrkz")
Cast.KRCWM:$mask, To.RC:$src1, From.RC:$src2,
(INSERT_get_vinsert_imm To.RC:$ins))>;
def : Pat<(Cast.VT
(vselect Cast.KRCWM:$mask,
(bitconvert
(vinsert_insert:$ins (To.VT To.RC:$src1),
(From.VT (From.LdFrag addr:$src2)),
(iPTR imm))),
Cast.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#"rmkz")
Cast.KRCWM:$mask, To.RC:$src1, addr:$src2,
(INSERT_get_vinsert_imm To.RC:$ins))>;
}
}
defm : vinsert_for_mask_cast<"VINSERTF32x4Z256", v2f64x_info, v4f64x_info,
v8f32x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v4f32x_info, v8f32x_info,
v4f64x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v2i64x_info, v4i64x_info,
v8i32x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v8i16x_info, v16i16x_info,
v8i32x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v16i8x_info, v32i8x_info,
v8i32x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v4i32x_info, v8i32x_info,
v4i64x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v8i16x_info, v16i16x_info,
v4i64x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v16i8x_info, v32i8x_info,
v4i64x_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>;
defm : vinsert_for_mask_cast<"VINSERTF32x4Z", v2f64x_info, v8f64_info,
v16f32_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasAVX512]>;
defm : vinsert_for_mask_cast<"VINSERTF64x2Z", v4f32x_info, v16f32_info,
v8f64_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v2i64x_info, v8i64_info,
v16i32_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasAVX512]>;
defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v8i16x_info, v32i16_info,
v16i32_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasAVX512]>;
defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v16i8x_info, v64i8_info,
v16i32_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasAVX512]>;
defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v4i32x_info, v16i32_info,
v8i64_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v8i16x_info, v32i16_info,
v8i64_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v16i8x_info, v64i8_info,
v8i64_info, vinsert128_insert,
INSERT_get_vinsert128_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTF32x8Z", v4f64x_info, v8f64_info,
v16f32_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTF64x4Z", v8f32x_info, v16f32_info,
v8f64_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasAVX512]>;
defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v4i64x_info, v8i64_info,
v16i32_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v16i16x_info, v32i16_info,
v16i32_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v32i8x_info, v64i8_info,
v16i32_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasDQI]>;
defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v8i32x_info, v16i32_info,
v8i64_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasAVX512]>;
defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v16i16x_info, v32i16_info,
v8i64_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasAVX512]>;
defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v32i8x_info, v64i8_info,
v8i64_info, vinsert256_insert,
INSERT_get_vinsert256_imm, [HasAVX512]>;
// vinsertps - insert f32 to XMM
let ExeDomain = SSEPackedSingle in {
def VINSERTPSZrr : AVX512AIi8<0x21, MRMSrcReg, (outs VR128X:$dst),
(ins VR128X:$src1, VR128X:$src2, u8imm:$src3),
"vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR128X:$dst, (X86insertps VR128X:$src1, VR128X:$src2, imm:$src3))]>,
EVEX_4V, Sched<[SchedWriteFShuffle.XMM]>;
def VINSERTPSZrm: AVX512AIi8<0x21, MRMSrcMem, (outs VR128X:$dst),
(ins VR128X:$src1, f32mem:$src2, u8imm:$src3),
"vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set VR128X:$dst, (X86insertps VR128X:$src1,
(v4f32 (scalar_to_vector (loadf32 addr:$src2))),
imm:$src3))]>,
EVEX_4V, EVEX_CD8<32, CD8VT1>,
Sched<[SchedWriteFShuffle.XMM.Folded, SchedWriteFShuffle.XMM.ReadAfterFold]>;
}
//===----------------------------------------------------------------------===//
// AVX-512 VECTOR EXTRACT
//---
// Supports two different pattern operators for mask and unmasked ops. Allows
// null_frag to be passed for one.
multiclass vextract_for_size_split<int Opcode,
X86VectorVTInfo From, X86VectorVTInfo To,
SDPatternOperator vextract_extract,
SDPatternOperator vextract_for_mask,
SchedWrite SchedRR, SchedWrite SchedMR> {
let hasSideEffects = 0, ExeDomain = To.ExeDomain in {
defm rr : AVX512_maskable_split<Opcode, MRMDestReg, To, (outs To.RC:$dst),
(ins From.RC:$src1, u8imm:$idx),
"vextract" # To.EltTypeName # "x" # To.NumElts,
"$idx, $src1", "$src1, $idx",
(vextract_extract:$idx (From.VT From.RC:$src1), (iPTR imm)),
(vextract_for_mask:$idx (From.VT From.RC:$src1), (iPTR imm))>,
AVX512AIi8Base, EVEX, Sched<[SchedRR]>;
def mr : AVX512AIi8<Opcode, MRMDestMem, (outs),
(ins To.MemOp:$dst, From.RC:$src1, u8imm:$idx),
"vextract" # To.EltTypeName # "x" # To.NumElts #
"\t{$idx, $src1, $dst|$dst, $src1, $idx}",
[(store (To.VT (vextract_extract:$idx
(From.VT From.RC:$src1), (iPTR imm))),
addr:$dst)]>, EVEX,
Sched<[SchedMR]>;
let mayStore = 1, hasSideEffects = 0 in
def mrk : AVX512AIi8<Opcode, MRMDestMem, (outs),
(ins To.MemOp:$dst, To.KRCWM:$mask,
From.RC:$src1, u8imm:$idx),
"vextract" # To.EltTypeName # "x" # To.NumElts #
"\t{$idx, $src1, $dst {${mask}}|"
"$dst {${mask}}, $src1, $idx}", []>,
EVEX_K, EVEX, Sched<[SchedMR]>, NotMemoryFoldable;
}
}
// Passes the same pattern operator for masked and unmasked ops.
multiclass vextract_for_size<int Opcode, X86VectorVTInfo From,
X86VectorVTInfo To,
SDPatternOperator vextract_extract,
SchedWrite SchedRR, SchedWrite SchedMR> :
vextract_for_size_split<Opcode, From, To, vextract_extract, vextract_extract, SchedRR, SchedMR>;
// Codegen pattern for the alternative types
multiclass vextract_for_size_lowering<string InstrStr, X86VectorVTInfo From,
X86VectorVTInfo To, PatFrag vextract_extract,
SDNodeXForm EXTRACT_get_vextract_imm, list<Predicate> p> {
let Predicates = p in {
def : Pat<(vextract_extract:$ext (From.VT From.RC:$src1), (iPTR imm)),
(To.VT (!cast<Instruction>(InstrStr#"rr")
From.RC:$src1,
(EXTRACT_get_vextract_imm To.RC:$ext)))>;
def : Pat<(store (To.VT (vextract_extract:$ext (From.VT From.RC:$src1),
(iPTR imm))), addr:$dst),
(!cast<Instruction>(InstrStr#"mr") addr:$dst, From.RC:$src1,
(EXTRACT_get_vextract_imm To.RC:$ext))>;
}
}
multiclass vextract_for_type<ValueType EltVT32, int Opcode128,
ValueType EltVT64, int Opcode256,
SchedWrite SchedRR, SchedWrite SchedMR> {
let Predicates = [HasAVX512] in {
defm NAME # "32x4Z" : vextract_for_size<Opcode128,
X86VectorVTInfo<16, EltVT32, VR512>,
X86VectorVTInfo< 4, EltVT32, VR128X>,
vextract128_extract, SchedRR, SchedMR>,
EVEX_V512, EVEX_CD8<32, CD8VT4>;
defm NAME # "64x4Z" : vextract_for_size<Opcode256,
X86VectorVTInfo< 8, EltVT64, VR512>,
X86VectorVTInfo< 4, EltVT64, VR256X>,
vextract256_extract, SchedRR, SchedMR>,
VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT4>;
}
let Predicates = [HasVLX] in
defm NAME # "32x4Z256" : vextract_for_size<Opcode128,
X86VectorVTInfo< 8, EltVT32, VR256X>,
X86VectorVTInfo< 4, EltVT32, VR128X>,
vextract128_extract, SchedRR, SchedMR>,
EVEX_V256, EVEX_CD8<32, CD8VT4>;
// Even with DQI we'd like to only use these instructions for masking.
let Predicates = [HasVLX, HasDQI] in
defm NAME # "64x2Z256" : vextract_for_size_split<Opcode128,
X86VectorVTInfo< 4, EltVT64, VR256X>,
X86VectorVTInfo< 2, EltVT64, VR128X>,
null_frag, vextract128_extract, SchedRR, SchedMR>,
VEX_W1X, EVEX_V256, EVEX_CD8<64, CD8VT2>;
// Even with DQI we'd like to only use these instructions for masking.
let Predicates = [HasDQI] in {
defm NAME # "64x2Z" : vextract_for_size_split<Opcode128,
X86VectorVTInfo< 8, EltVT64, VR512>,
X86VectorVTInfo< 2, EltVT64, VR128X>,
null_frag, vextract128_extract, SchedRR, SchedMR>,
VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT2>;
defm NAME # "32x8Z" : vextract_for_size_split<Opcode256,
X86VectorVTInfo<16, EltVT32, VR512>,
X86VectorVTInfo< 8, EltVT32, VR256X>,
null_frag, vextract256_extract, SchedRR, SchedMR>,
EVEX_V512, EVEX_CD8<32, CD8VT8>;
}
}
// TODO - replace WriteFStore/WriteVecStore with X86SchedWriteMoveLSWidths types.
defm VEXTRACTF : vextract_for_type<f32, 0x19, f64, 0x1b, WriteFShuffle256, WriteFStore>;
defm VEXTRACTI : vextract_for_type<i32, 0x39, i64, 0x3b, WriteShuffle256, WriteVecStore>;
// extract_subvector codegen patterns with the alternative types.
// Even with AVX512DQ we'll still use these for unmasked operations.
defm : vextract_for_size_lowering<"VEXTRACTF32x4Z", v8f64_info, v2f64x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>;
defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v8i64_info, v2i64x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>;
defm : vextract_for_size_lowering<"VEXTRACTF64x4Z", v16f32_info, v8f32x_info,
vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>;
defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v16i32_info, v8i32x_info,
vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>;
defm : vextract_for_size_lowering<"VEXTRACTF32x4Z256", v4f64x_info, v2f64x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>;
defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v4i64x_info, v2i64x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>;
// Codegen pattern with the alternative types extract VEC128 from VEC256
defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v16i16x_info, v8i16x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>;
defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v32i8x_info, v16i8x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>;
// Codegen pattern with the alternative types extract VEC128 from VEC512
defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v32i16_info, v8i16x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>;
defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v64i8_info, v16i8x_info,
vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>;
// Codegen pattern with the alternative types extract VEC256 from VEC512
defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v32i16_info, v16i16x_info,
vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>;
defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v64i8_info, v32i8x_info,
vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>;
// A 128-bit extract from bits [255:128] of a 512-bit vector should use a
// smaller extract to enable EVEX->VEX.
let Predicates = [NoVLX] in {
def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 2))),
(v2i64 (VEXTRACTI128rr
(v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 2))),
(v2f64 (VEXTRACTF128rr
(v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 4))),
(v4i32 (VEXTRACTI128rr
(v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 4))),
(v4f32 (VEXTRACTF128rr
(v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v8i16 (extract_subvector (v32i16 VR512:$src), (iPTR 8))),
(v8i16 (VEXTRACTI128rr
(v16i16 (EXTRACT_SUBREG (v32i16 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v16i8 (extract_subvector (v64i8 VR512:$src), (iPTR 16))),
(v16i8 (VEXTRACTI128rr
(v32i8 (EXTRACT_SUBREG (v64i8 VR512:$src), sub_ymm)),
(iPTR 1)))>;
}
// A 128-bit extract from bits [255:128] of a 512-bit vector should use a
// smaller extract to enable EVEX->VEX.
let Predicates = [HasVLX] in {
def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 2))),
(v2i64 (VEXTRACTI32x4Z256rr
(v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 2))),
(v2f64 (VEXTRACTF32x4Z256rr
(v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 4))),
(v4i32 (VEXTRACTI32x4Z256rr
(v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 4))),
(v4f32 (VEXTRACTF32x4Z256rr
(v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v8i16 (extract_subvector (v32i16 VR512:$src), (iPTR 8))),
(v8i16 (VEXTRACTI32x4Z256rr
(v16i16 (EXTRACT_SUBREG (v32i16 VR512:$src), sub_ymm)),
(iPTR 1)))>;
def : Pat<(v16i8 (extract_subvector (v64i8 VR512:$src), (iPTR 16))),
(v16i8 (VEXTRACTI32x4Z256rr
(v32i8 (EXTRACT_SUBREG (v64i8 VR512:$src), sub_ymm)),
(iPTR 1)))>;
}
// Additional patterns for handling a bitcast between the vselect and the
// extract_subvector.
multiclass vextract_for_mask_cast<string InstrStr, X86VectorVTInfo From,
X86VectorVTInfo To, X86VectorVTInfo Cast,
PatFrag vextract_extract,
SDNodeXForm EXTRACT_get_vextract_imm,
list<Predicate> p> {
let Predicates = p in {
def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask,
(bitconvert
(To.VT (vextract_extract:$ext
(From.VT From.RC:$src), (iPTR imm)))),
To.RC:$src0)),
(Cast.VT (!cast<Instruction>(InstrStr#"rrk")
Cast.RC:$src0, Cast.KRCWM:$mask, From.RC:$src,
(EXTRACT_get_vextract_imm To.RC:$ext)))>;
def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask,
(bitconvert
(To.VT (vextract_extract:$ext
(From.VT From.RC:$src), (iPTR imm)))),
Cast.ImmAllZerosV)),
(Cast.VT (!cast<Instruction>(InstrStr#"rrkz")
Cast.KRCWM:$mask, From.RC:$src,
(EXTRACT_get_vextract_imm To.RC:$ext)))>;
}
}
defm : vextract_for_mask_cast<"VEXTRACTF32x4Z256", v4f64x_info, v2f64x_info,
v4f32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTF64x2Z256", v8f32x_info, v4f32x_info,
v2f64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v4i64x_info, v2i64x_info,
v4i32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v16i16x_info, v8i16x_info,
v4i32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v32i8x_info, v16i8x_info,
v4i32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v8i32x_info, v4i32x_info,
v2i64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v16i16x_info, v8i16x_info,
v2i64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v32i8x_info, v16i8x_info,
v2i64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>;
defm : vextract_for_mask_cast<"VEXTRACTF32x4Z", v8f64_info, v2f64x_info,
v4f32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasAVX512]>;
defm : vextract_for_mask_cast<"VEXTRACTF64x2Z", v16f32_info, v4f32x_info,
v2f64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v8i64_info, v2i64x_info,
v4i32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasAVX512]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v32i16_info, v8i16x_info,
v4i32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasAVX512]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v64i8_info, v16i8x_info,
v4i32x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasAVX512]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v16i32_info, v4i32x_info,
v2i64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v32i16_info, v8i16x_info,
v2i64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v64i8_info, v16i8x_info,
v2i64x_info, vextract128_extract,
EXTRACT_get_vextract128_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTF32x8Z", v8f64_info, v4f64x_info,
v8f32x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTF64x4Z", v16f32_info, v8f32x_info,
v4f64x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasAVX512]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v8i64_info, v4i64x_info,
v8i32x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v32i16_info, v16i16x_info,
v8i32x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v64i8_info, v32i8x_info,
v8i32x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasDQI]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v16i32_info, v8i32x_info,
v4i64x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasAVX512]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v32i16_info, v16i16x_info,
v4i64x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasAVX512]>;
defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v64i8_info, v32i8x_info,
v4i64x_info, vextract256_extract,
EXTRACT_get_vextract256_imm, [HasAVX512]>;
// vextractps - extract 32 bits from XMM
def VEXTRACTPSZrr : AVX512AIi8<0x17, MRMDestReg, (outs GR32:$dst),
(ins VR128X:$src1, u8imm:$src2),
"vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2))]>,
EVEX, VEX_WIG, Sched<[WriteVecExtract]>;
def VEXTRACTPSZmr : AVX512AIi8<0x17, MRMDestMem, (outs),
(ins f32mem:$dst, VR128X:$src1, u8imm:$src2),
"vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(store (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2),
addr:$dst)]>,
EVEX, VEX_WIG, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecExtractSt]>;
//===---------------------------------------------------------------------===//
// AVX-512 BROADCAST
//---
// broadcast with a scalar argument.
multiclass avx512_broadcast_scalar<bits<8> opc, string OpcodeStr,
string Name,
X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo> {
def : Pat<(DestInfo.VT (X86VBroadcast SrcInfo.FRC:$src)),
(!cast<Instruction>(Name#DestInfo.ZSuffix#r)
(SrcInfo.VT (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC)))>;
def : Pat<(DestInfo.VT (vselect DestInfo.KRCWM:$mask,
(X86VBroadcast SrcInfo.FRC:$src),
DestInfo.RC:$src0)),
(!cast<Instruction>(Name#DestInfo.ZSuffix#rk)
DestInfo.RC:$src0, DestInfo.KRCWM:$mask,
(SrcInfo.VT (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC)))>;
def : Pat<(DestInfo.VT (vselect DestInfo.KRCWM:$mask,
(X86VBroadcast SrcInfo.FRC:$src),
DestInfo.ImmAllZerosV)),
(!cast<Instruction>(Name#DestInfo.ZSuffix#rkz)
DestInfo.KRCWM:$mask, (SrcInfo.VT (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC)))>;
}
// Split version to allow mask and broadcast node to be different types. This
// helps support the 32x2 broadcasts.
multiclass avx512_broadcast_rm_split<bits<8> opc, string OpcodeStr,
string Name,
SchedWrite SchedRR, SchedWrite SchedRM,
X86VectorVTInfo MaskInfo,
X86VectorVTInfo DestInfo,
X86VectorVTInfo SrcInfo,
SDPatternOperator UnmaskedOp = X86VBroadcast> {
let ExeDomain = DestInfo.ExeDomain, hasSideEffects = 0 in {
defm r : AVX512_maskable_split<opc, MRMSrcReg, MaskInfo,
(outs MaskInfo.RC:$dst),
(ins SrcInfo.RC:$src), OpcodeStr, "$src", "$src",
(MaskInfo.VT
(bitconvert
(DestInfo.VT
(UnmaskedOp (SrcInfo.VT SrcInfo.RC:$src))))),
(MaskInfo.VT
(bitconvert
(DestInfo.VT
(X86VBroadcast (SrcInfo.VT SrcInfo.RC:$src)))))>,
T8PD, EVEX, Sched<[SchedRR]>;
let mayLoad = 1 in
defm m : AVX512_maskable_split<opc, MRMSrcMem, MaskInfo,
(outs MaskInfo.RC:$dst),
(ins SrcInfo.ScalarMemOp:$src), OpcodeStr, "$src", "$src",
(MaskInfo.VT
(bitconvert
(DestInfo.VT (UnmaskedOp
(SrcInfo.ScalarLdFrag addr:$src))))),
(MaskInfo.VT
(bitconvert
(DestInfo.VT (X86VBroadcast
(SrcInfo.ScalarLdFrag addr:$src)))))>,
T8PD, EVEX, EVEX_CD8<SrcInfo.EltSize, CD8VT1>,
Sched<[SchedRM]>;
}
def : Pat<(MaskInfo.VT
(bitconvert
(DestInfo.VT (UnmaskedOp
(SrcInfo.VT (scalar_to_vector
(SrcInfo.ScalarLdFrag addr:$src))))))),
(!cast<Instruction>(Name#MaskInfo.ZSuffix#m) addr:$src)>;
def : Pat<(MaskInfo.VT (vselect MaskInfo.KRCWM:$mask,
(bitconvert
(DestInfo.VT
(X86VBroadcast
(SrcInfo.VT (scalar_to_vector
(SrcInfo.ScalarLdFrag addr:$src)))))),
MaskInfo.RC:$src0)),
(!cast<Instruction>(Name#DestInfo.ZSuffix#mk)
MaskInfo.RC:$src0, MaskInfo.KRCWM:$mask, addr:$src)>;
def : Pat<(MaskInfo.VT (vselect MaskInfo.KRCWM:$mask,
(bitconvert
(DestInfo.VT
(X86VBroadcast
(SrcInfo.VT (scalar_to_vector
(SrcInfo.ScalarLdFrag addr:$src)))))),
MaskInfo.ImmAllZerosV)),
(!cast<Instruction>(Name#MaskInfo.ZSuffix#mkz)
MaskInfo.KRCWM:$mask, addr:$src)>;
}
// Helper class to force mask and broadcast result to same type.
multiclass avx512_broadcast_rm<bits<8> opc, string OpcodeStr, string Name,
SchedWrite SchedRR, SchedWrite SchedRM,
X86VectorVTInfo DestInfo,
X86VectorVTInfo SrcInfo> :
avx512_broadcast_rm_split<opc, OpcodeStr, Name, SchedRR, SchedRM,
DestInfo, DestInfo, SrcInfo>;
multiclass avx512_fp_broadcast_sd<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in {
defm Z : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256,
WriteFShuffle256Ld, _.info512, _.info128>,
avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info512,
_.info128>,
EVEX_V512;
}
let Predicates = [HasVLX] in {
defm Z256 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256,
WriteFShuffle256Ld, _.info256, _.info128>,
avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info256,
_.info128>,
EVEX_V256;
}
}
multiclass avx512_fp_broadcast_ss<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in {
defm Z : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256,
WriteFShuffle256Ld, _.info512, _.info128>,
avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info512,
_.info128>,
EVEX_V512;
}
let Predicates = [HasVLX] in {
defm Z256 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256,
WriteFShuffle256Ld, _.info256, _.info128>,
avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info256,
_.info128>,
EVEX_V256;
defm Z128 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256,
WriteFShuffle256Ld, _.info128, _.info128>,
avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info128,
_.info128>,
EVEX_V128;
}
}
defm VBROADCASTSS : avx512_fp_broadcast_ss<0x18, "vbroadcastss",
avx512vl_f32_info>;
defm VBROADCASTSD : avx512_fp_broadcast_sd<0x19, "vbroadcastsd",
avx512vl_f64_info>, VEX_W1X;
multiclass avx512_int_broadcast_reg<bits<8> opc, SchedWrite SchedRR,
X86VectorVTInfo _, SDPatternOperator OpNode,
RegisterClass SrcRC> {
let ExeDomain = _.ExeDomain in
defm r : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins SrcRC:$src),
"vpbroadcast"##_.Suffix, "$src", "$src",
(_.VT (OpNode SrcRC:$src))>, T8PD, EVEX,
Sched<[SchedRR]>;
}
multiclass avx512_int_broadcastbw_reg<bits<8> opc, string Name, SchedWrite SchedRR,
X86VectorVTInfo _, SDPatternOperator OpNode,
RegisterClass SrcRC, SubRegIndex Subreg> {
let hasSideEffects = 0, ExeDomain = _.ExeDomain in
defm r : AVX512_maskable_custom<opc, MRMSrcReg,
(outs _.RC:$dst), (ins GR32:$src),
!con((ins _.RC:$src0, _.KRCWM:$mask), (ins GR32:$src)),
!con((ins _.KRCWM:$mask), (ins GR32:$src)),
"vpbroadcast"##_.Suffix, "$src", "$src", [], [], [],
"$src0 = $dst">, T8PD, EVEX, Sched<[SchedRR]>;
def : Pat <(_.VT (OpNode SrcRC:$src)),
(!cast<Instruction>(Name#r)
(i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>;
def : Pat <(vselect _.KRCWM:$mask, (_.VT (OpNode SrcRC:$src)), _.RC:$src0),
(!cast<Instruction>(Name#rk) _.RC:$src0, _.KRCWM:$mask,
(i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>;
def : Pat <(vselect _.KRCWM:$mask, (_.VT (OpNode SrcRC:$src)), _.ImmAllZerosV),
(!cast<Instruction>(Name#rkz) _.KRCWM:$mask,
(i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>;
}
multiclass avx512_int_broadcastbw_reg_vl<bits<8> opc, string Name,
AVX512VLVectorVTInfo _, SDPatternOperator OpNode,
RegisterClass SrcRC, SubRegIndex Subreg, Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_int_broadcastbw_reg<opc, Name#Z, WriteShuffle256, _.info512,
OpNode, SrcRC, Subreg>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_int_broadcastbw_reg<opc, Name#Z256, WriteShuffle256,
_.info256, OpNode, SrcRC, Subreg>, EVEX_V256;
defm Z128 : avx512_int_broadcastbw_reg<opc, Name#Z128, WriteShuffle,
_.info128, OpNode, SrcRC, Subreg>, EVEX_V128;
}
}
multiclass avx512_int_broadcast_reg_vl<bits<8> opc, AVX512VLVectorVTInfo _,
SDPatternOperator OpNode,
RegisterClass SrcRC, Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_int_broadcast_reg<opc, WriteShuffle256, _.info512, OpNode,
SrcRC>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_int_broadcast_reg<opc, WriteShuffle256, _.info256, OpNode,
SrcRC>, EVEX_V256;
defm Z128 : avx512_int_broadcast_reg<opc, WriteShuffle, _.info128, OpNode,
SrcRC>, EVEX_V128;
}
}
defm VPBROADCASTBr : avx512_int_broadcastbw_reg_vl<0x7A, "VPBROADCASTBr",
avx512vl_i8_info, X86VBroadcast, GR8, sub_8bit, HasBWI>;
defm VPBROADCASTWr : avx512_int_broadcastbw_reg_vl<0x7B, "VPBROADCASTWr",
avx512vl_i16_info, X86VBroadcast, GR16, sub_16bit,
HasBWI>;
defm VPBROADCASTDr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i32_info,
X86VBroadcast, GR32, HasAVX512>;
defm VPBROADCASTQr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i64_info,
X86VBroadcast, GR64, HasAVX512>, VEX_W;
// Provide aliases for broadcast from the same register class that
// automatically does the extract.
multiclass avx512_int_broadcast_rm_lowering<string Name,
X86VectorVTInfo DestInfo,
X86VectorVTInfo SrcInfo,
X86VectorVTInfo ExtInfo> {
def : Pat<(DestInfo.VT (X86VBroadcast (SrcInfo.VT SrcInfo.RC:$src))),
(!cast<Instruction>(Name#DestInfo.ZSuffix#"r")
(ExtInfo.VT (EXTRACT_SUBREG (SrcInfo.VT SrcInfo.RC:$src), sub_xmm)))>;
}
multiclass avx512_int_broadcast_rm_vl<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _, Predicate prd> {
let Predicates = [prd] in {
defm Z : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteShuffle256,
WriteShuffle256Ld, _.info512, _.info128>,
avx512_int_broadcast_rm_lowering<NAME, _.info512, _.info256, _.info128>,
EVEX_V512;
// Defined separately to avoid redefinition.
defm Z_Alt : avx512_int_broadcast_rm_lowering<NAME, _.info512, _.info512, _.info128>;
}
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteShuffle256,
WriteShuffle256Ld, _.info256, _.info128>,
avx512_int_broadcast_rm_lowering<NAME, _.info256, _.info256, _.info128>,
EVEX_V256;
defm Z128 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteShuffle,
WriteShuffleXLd, _.info128, _.info128>,
EVEX_V128;
}
}
defm VPBROADCASTB : avx512_int_broadcast_rm_vl<0x78, "vpbroadcastb",
avx512vl_i8_info, HasBWI>;
defm VPBROADCASTW : avx512_int_broadcast_rm_vl<0x79, "vpbroadcastw",
avx512vl_i16_info, HasBWI>;
defm VPBROADCASTD : avx512_int_broadcast_rm_vl<0x58, "vpbroadcastd",
avx512vl_i32_info, HasAVX512>;
defm VPBROADCASTQ : avx512_int_broadcast_rm_vl<0x59, "vpbroadcastq",
avx512vl_i64_info, HasAVX512>, VEX_W1X;
multiclass avx512_subvec_broadcast_rm<bits<8> opc, string OpcodeStr,
X86VectorVTInfo _Dst, X86VectorVTInfo _Src> {
defm rm : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst),
(ins _Src.MemOp:$src), OpcodeStr, "$src", "$src",
(_Dst.VT (X86SubVBroadcast
(_Src.VT (_Src.LdFrag addr:$src))))>,
Sched<[SchedWriteShuffle.YMM.Folded]>,
AVX5128IBase, EVEX;
}
// This should be used for the AVX512DQ broadcast instructions. It disables
// the unmasked patterns so that we only use the DQ instructions when masking
// is requested.
multiclass avx512_subvec_broadcast_rm_dq<bits<8> opc, string OpcodeStr,
X86VectorVTInfo _Dst, X86VectorVTInfo _Src> {
let hasSideEffects = 0, mayLoad = 1 in
defm rm : AVX512_maskable_split<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst),
(ins _Src.MemOp:$src), OpcodeStr, "$src", "$src",
(null_frag),
(_Dst.VT (X86SubVBroadcast
(_Src.VT (_Src.LdFrag addr:$src))))>,
Sched<[SchedWriteShuffle.YMM.Folded]>,
AVX5128IBase, EVEX;
}
let Predicates = [HasAVX512] in {
// 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD.
def : Pat<(v8i64 (X86VBroadcast (v8i64 (X86vzload addr:$src)))),
(VPBROADCASTQZm addr:$src)>;
}
let Predicates = [HasVLX] in {
// 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD.
def : Pat<(v2i64 (X86VBroadcast (v2i64 (X86vzload addr:$src)))),
(VPBROADCASTQZ128m addr:$src)>;
def : Pat<(v4i64 (X86VBroadcast (v4i64 (X86vzload addr:$src)))),
(VPBROADCASTQZ256m addr:$src)>;
}
let Predicates = [HasVLX, HasBWI] in {
// loadi16 is tricky to fold, because !isTypeDesirableForOp, justifiably.
// This means we'll encounter truncated i32 loads; match that here.
def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))),
(VPBROADCASTWZ128m addr:$src)>;
def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))),
(VPBROADCASTWZ256m addr:$src)>;
def : Pat<(v8i16 (X86VBroadcast
(i16 (trunc (i32 (zextloadi16 addr:$src)))))),
(VPBROADCASTWZ128m addr:$src)>;
def : Pat<(v16i16 (X86VBroadcast
(i16 (trunc (i32 (zextloadi16 addr:$src)))))),
(VPBROADCASTWZ256m addr:$src)>;
}
//===----------------------------------------------------------------------===//
// AVX-512 BROADCAST SUBVECTORS
//
defm VBROADCASTI32X4 : avx512_subvec_broadcast_rm<0x5a, "vbroadcasti32x4",
v16i32_info, v4i32x_info>,
EVEX_V512, EVEX_CD8<32, CD8VT4>;
defm VBROADCASTF32X4 : avx512_subvec_broadcast_rm<0x1a, "vbroadcastf32x4",
v16f32_info, v4f32x_info>,
EVEX_V512, EVEX_CD8<32, CD8VT4>;
defm VBROADCASTI64X4 : avx512_subvec_broadcast_rm<0x5b, "vbroadcasti64x4",
v8i64_info, v4i64x_info>, VEX_W,
EVEX_V512, EVEX_CD8<64, CD8VT4>;
defm VBROADCASTF64X4 : avx512_subvec_broadcast_rm<0x1b, "vbroadcastf64x4",
v8f64_info, v4f64x_info>, VEX_W,
EVEX_V512, EVEX_CD8<64, CD8VT4>;
let Predicates = [HasAVX512] in {
def : Pat<(v16f32 (X86SubVBroadcast (loadv8f32 addr:$src))),
(VBROADCASTF64X4rm addr:$src)>;
def : Pat<(v16i32 (X86SubVBroadcast (loadv8i32 addr:$src))),
(VBROADCASTI64X4rm addr:$src)>;
def : Pat<(v32i16 (X86SubVBroadcast (loadv16i16 addr:$src))),
(VBROADCASTI64X4rm addr:$src)>;
def : Pat<(v64i8 (X86SubVBroadcast (loadv32i8 addr:$src))),
(VBROADCASTI64X4rm addr:$src)>;
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
def : Pat<(v8f64 (X86SubVBroadcast (v4f64 VR256X:$src))),
(VINSERTF64x4Zrr (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(v4f64 VR256X:$src), 1)>;
def : Pat<(v16f32 (X86SubVBroadcast (v8f32 VR256X:$src))),
(VINSERTF64x4Zrr (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(v8f32 VR256X:$src), 1)>;
def : Pat<(v8i64 (X86SubVBroadcast (v4i64 VR256X:$src))),
(VINSERTI64x4Zrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(v4i64 VR256X:$src), 1)>;
def : Pat<(v16i32 (X86SubVBroadcast (v8i32 VR256X:$src))),
(VINSERTI64x4Zrr (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(v8i32 VR256X:$src), 1)>;
def : Pat<(v32i16 (X86SubVBroadcast (v16i16 VR256X:$src))),
(VINSERTI64x4Zrr (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(v16i16 VR256X:$src), 1)>;
def : Pat<(v64i8 (X86SubVBroadcast (v32i8 VR256X:$src))),
(VINSERTI64x4Zrr (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(v32i8 VR256X:$src), 1)>;
def : Pat<(v8f64 (X86SubVBroadcast (loadv2f64 addr:$src))),
(VBROADCASTF32X4rm addr:$src)>;
def : Pat<(v8i64 (X86SubVBroadcast (loadv2i64 addr:$src))),
(VBROADCASTI32X4rm addr:$src)>;
def : Pat<(v32i16 (X86SubVBroadcast (loadv8i16 addr:$src))),
(VBROADCASTI32X4rm addr:$src)>;
def : Pat<(v64i8 (X86SubVBroadcast (loadv16i8 addr:$src))),
(VBROADCASTI32X4rm addr:$src)>;
// Patterns for selects of bitcasted operations.
def : Pat<(vselect VK16WM:$mask,
(bc_v16f32 (v8f64 (X86SubVBroadcast (loadv2f64 addr:$src)))),
(bc_v16f32 (v16i32 immAllZerosV))),
(VBROADCASTF32X4rmkz VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK16WM:$mask,
(bc_v16f32 (v8f64 (X86SubVBroadcast (loadv2f64 addr:$src)))),
VR512:$src0),
(VBROADCASTF32X4rmk VR512:$src0, VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK16WM:$mask,
(bc_v16i32 (v8i64 (X86SubVBroadcast (loadv2i64 addr:$src)))),
(v16i32 immAllZerosV)),
(VBROADCASTI32X4rmkz VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK16WM:$mask,
(bc_v16i32 (v8i64 (X86SubVBroadcast (loadv2i64 addr:$src)))),
VR512:$src0),
(VBROADCASTI32X4rmk VR512:$src0, VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8f64 (v16f32 (X86SubVBroadcast (loadv8f32 addr:$src)))),
(bc_v8f64 (v16i32 immAllZerosV))),
(VBROADCASTF64X4rmkz VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8f64 (v16f32 (X86SubVBroadcast (loadv8f32 addr:$src)))),
VR512:$src0),
(VBROADCASTF64X4rmk VR512:$src0, VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8i64 (v16i32 (X86SubVBroadcast (loadv8i32 addr:$src)))),
(bc_v8i64 (v16i32 immAllZerosV))),
(VBROADCASTI64X4rmkz VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8i64 (v16i32 (X86SubVBroadcast (loadv8i32 addr:$src)))),
VR512:$src0),
(VBROADCASTI64X4rmk VR512:$src0, VK8WM:$mask, addr:$src)>;
}
let Predicates = [HasVLX] in {
defm VBROADCASTI32X4Z256 : avx512_subvec_broadcast_rm<0x5a, "vbroadcasti32x4",
v8i32x_info, v4i32x_info>,
EVEX_V256, EVEX_CD8<32, CD8VT4>;
defm VBROADCASTF32X4Z256 : avx512_subvec_broadcast_rm<0x1a, "vbroadcastf32x4",
v8f32x_info, v4f32x_info>,
EVEX_V256, EVEX_CD8<32, CD8VT4>;
def : Pat<(v4f64 (X86SubVBroadcast (loadv2f64 addr:$src))),
(VBROADCASTF32X4Z256rm addr:$src)>;
def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))),
(VBROADCASTI32X4Z256rm addr:$src)>;
def : Pat<(v16i16 (X86SubVBroadcast (loadv8i16 addr:$src))),
(VBROADCASTI32X4Z256rm addr:$src)>;
def : Pat<(v32i8 (X86SubVBroadcast (loadv16i8 addr:$src))),
(VBROADCASTI32X4Z256rm addr:$src)>;
// Patterns for selects of bitcasted operations.
def : Pat<(vselect VK8WM:$mask,
(bc_v8f32 (v4f64 (X86SubVBroadcast (loadv2f64 addr:$src)))),
(bc_v8f32 (v8i32 immAllZerosV))),
(VBROADCASTF32X4Z256rmkz VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8f32 (v4f64 (X86SubVBroadcast (loadv2f64 addr:$src)))),
VR256X:$src0),
(VBROADCASTF32X4Z256rmk VR256X:$src0, VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8i32 (v4i64 (X86SubVBroadcast (loadv2i64 addr:$src)))),
(v8i32 immAllZerosV)),
(VBROADCASTI32X4Z256rmkz VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8i32 (v4i64 (X86SubVBroadcast (loadv2i64 addr:$src)))),
VR256X:$src0),
(VBROADCASTI32X4Z256rmk VR256X:$src0, VK8WM:$mask, addr:$src)>;
// Provide fallback in case the load node that is used in the patterns above
// is used by additional users, which prevents the pattern selection.
def : Pat<(v4f64 (X86SubVBroadcast (v2f64 VR128X:$src))),
(VINSERTF32x4Z256rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(v2f64 VR128X:$src), 1)>;
def : Pat<(v8f32 (X86SubVBroadcast (v4f32 VR128X:$src))),
(VINSERTF32x4Z256rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(v4f32 VR128X:$src), 1)>;
def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128X:$src))),
(VINSERTI32x4Z256rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(v2i64 VR128X:$src), 1)>;
def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128X:$src))),
(VINSERTI32x4Z256rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(v4i32 VR128X:$src), 1)>;
def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128X:$src))),
(VINSERTI32x4Z256rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(v8i16 VR128X:$src), 1)>;
def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128X:$src))),
(VINSERTI32x4Z256rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(v16i8 VR128X:$src), 1)>;
}
let Predicates = [HasVLX, HasDQI] in {
defm VBROADCASTI64X2Z128 : avx512_subvec_broadcast_rm_dq<0x5a, "vbroadcasti64x2",
v4i64x_info, v2i64x_info>, VEX_W1X,
EVEX_V256, EVEX_CD8<64, CD8VT2>;
defm VBROADCASTF64X2Z128 : avx512_subvec_broadcast_rm_dq<0x1a, "vbroadcastf64x2",
v4f64x_info, v2f64x_info>, VEX_W1X,
EVEX_V256, EVEX_CD8<64, CD8VT2>;
// Patterns for selects of bitcasted operations.
def : Pat<(vselect VK4WM:$mask,
(bc_v4f64 (v8f32 (X86SubVBroadcast (loadv4f32 addr:$src)))),
(bc_v4f64 (v8i32 immAllZerosV))),
(VBROADCASTF64X2Z128rmkz VK4WM:$mask, addr:$src)>;
def : Pat<(vselect VK4WM:$mask,
(bc_v4f64 (v8f32 (X86SubVBroadcast (loadv4f32 addr:$src)))),
VR256X:$src0),
(VBROADCASTF64X2Z128rmk VR256X:$src0, VK4WM:$mask, addr:$src)>;
def : Pat<(vselect VK4WM:$mask,
(bc_v4i64 (v8i32 (X86SubVBroadcast (loadv4i32 addr:$src)))),
(bc_v4i64 (v8i32 immAllZerosV))),
(VBROADCASTI64X2Z128rmkz VK4WM:$mask, addr:$src)>;
def : Pat<(vselect VK4WM:$mask,
(bc_v4i64 (v8i32 (X86SubVBroadcast (loadv4i32 addr:$src)))),
VR256X:$src0),
(VBROADCASTI64X2Z128rmk VR256X:$src0, VK4WM:$mask, addr:$src)>;
}
let Predicates = [HasDQI] in {
defm VBROADCASTI64X2 : avx512_subvec_broadcast_rm_dq<0x5a, "vbroadcasti64x2",
v8i64_info, v2i64x_info>, VEX_W,
EVEX_V512, EVEX_CD8<64, CD8VT2>;
defm VBROADCASTI32X8 : avx512_subvec_broadcast_rm_dq<0x5b, "vbroadcasti32x8",
v16i32_info, v8i32x_info>,
EVEX_V512, EVEX_CD8<32, CD8VT8>;
defm VBROADCASTF64X2 : avx512_subvec_broadcast_rm_dq<0x1a, "vbroadcastf64x2",
v8f64_info, v2f64x_info>, VEX_W,
EVEX_V512, EVEX_CD8<64, CD8VT2>;
defm VBROADCASTF32X8 : avx512_subvec_broadcast_rm_dq<0x1b, "vbroadcastf32x8",
v16f32_info, v8f32x_info>,
EVEX_V512, EVEX_CD8<32, CD8VT8>;
// Patterns for selects of bitcasted operations.
def : Pat<(vselect VK16WM:$mask,
(bc_v16f32 (v8f64 (X86SubVBroadcast (loadv4f64 addr:$src)))),
(bc_v16f32 (v16i32 immAllZerosV))),
(VBROADCASTF32X8rmkz VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK16WM:$mask,
(bc_v16f32 (v8f64 (X86SubVBroadcast (loadv4f64 addr:$src)))),
VR512:$src0),
(VBROADCASTF32X8rmk VR512:$src0, VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK16WM:$mask,
(bc_v16i32 (v8i64 (X86SubVBroadcast (loadv4i64 addr:$src)))),
(v16i32 immAllZerosV)),
(VBROADCASTI32X8rmkz VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK16WM:$mask,
(bc_v16i32 (v8i64 (X86SubVBroadcast (loadv4i64 addr:$src)))),
VR512:$src0),
(VBROADCASTI32X8rmk VR512:$src0, VK16WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8f64 (v16f32 (X86SubVBroadcast (loadv4f32 addr:$src)))),
(bc_v8f64 (v16i32 immAllZerosV))),
(VBROADCASTF64X2rmkz VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8f64 (v16f32 (X86SubVBroadcast (loadv4f32 addr:$src)))),
VR512:$src0),
(VBROADCASTF64X2rmk VR512:$src0, VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8i64 (v16i32 (X86SubVBroadcast (loadv4i32 addr:$src)))),
(bc_v8i64 (v16i32 immAllZerosV))),
(VBROADCASTI64X2rmkz VK8WM:$mask, addr:$src)>;
def : Pat<(vselect VK8WM:$mask,
(bc_v8i64 (v16i32 (X86SubVBroadcast (loadv4i32 addr:$src)))),
VR512:$src0),
(VBROADCASTI64X2rmk VR512:$src0, VK8WM:$mask, addr:$src)>;
}
multiclass avx512_common_broadcast_32x2<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _Dst, AVX512VLVectorVTInfo _Src> {
let Predicates = [HasDQI] in
defm Z : avx512_broadcast_rm_split<opc, OpcodeStr, NAME, WriteShuffle256,
WriteShuffle256Ld, _Dst.info512,
_Src.info512, _Src.info128, null_frag>,
EVEX_V512;
let Predicates = [HasDQI, HasVLX] in
defm Z256 : avx512_broadcast_rm_split<opc, OpcodeStr, NAME, WriteShuffle256,
WriteShuffle256Ld, _Dst.info256,
_Src.info256, _Src.info128, null_frag>,
EVEX_V256;
}
multiclass avx512_common_broadcast_i32x2<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _Dst, AVX512VLVectorVTInfo _Src> :
avx512_common_broadcast_32x2<opc, OpcodeStr, _Dst, _Src> {
let Predicates = [HasDQI, HasVLX] in
defm Z128 : avx512_broadcast_rm_split<opc, OpcodeStr, NAME, WriteShuffle,
WriteShuffleXLd, _Dst.info128,
_Src.info128, _Src.info128, null_frag>,
EVEX_V128;
}
defm VBROADCASTI32X2 : avx512_common_broadcast_i32x2<0x59, "vbroadcasti32x2",
avx512vl_i32_info, avx512vl_i64_info>;
defm VBROADCASTF32X2 : avx512_common_broadcast_32x2<0x19, "vbroadcastf32x2",
avx512vl_f32_info, avx512vl_f64_info>;
let Predicates = [HasVLX] in {
def : Pat<(v8f32 (X86VBroadcast (v8f32 VR256X:$src))),
(VBROADCASTSSZ256r (v4f32 (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)))>;
def : Pat<(v4f64 (X86VBroadcast (v4f64 VR256X:$src))),
(VBROADCASTSDZ256r (v2f64 (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)))>;
}
def : Pat<(v16f32 (X86VBroadcast (v16f32 VR512:$src))),
(VBROADCASTSSZr (v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm)))>;
def : Pat<(v16f32 (X86VBroadcast (v8f32 VR256X:$src))),
(VBROADCASTSSZr (v4f32 (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)))>;
def : Pat<(v8f64 (X86VBroadcast (v8f64 VR512:$src))),
(VBROADCASTSDZr (v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm)))>;
def : Pat<(v8f64 (X86VBroadcast (v4f64 VR256X:$src))),
(VBROADCASTSDZr (v2f64 (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)))>;
//===----------------------------------------------------------------------===//
// AVX-512 BROADCAST MASK TO VECTOR REGISTER
//---
multiclass avx512_mask_broadcastm<bits<8> opc, string OpcodeStr,
X86VectorVTInfo _, RegisterClass KRC> {
def rr : AVX512XS8I<opc, MRMSrcReg, (outs _.RC:$dst), (ins KRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set _.RC:$dst, (_.VT (X86VBroadcastm KRC:$src)))]>,
EVEX, Sched<[WriteShuffle]>;
}
multiclass avx512_mask_broadcast<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo VTInfo, RegisterClass KRC> {
let Predicates = [HasCDI] in
defm Z : avx512_mask_broadcastm<opc, OpcodeStr, VTInfo.info512, KRC>, EVEX_V512;
let Predicates = [HasCDI, HasVLX] in {
defm Z256 : avx512_mask_broadcastm<opc, OpcodeStr, VTInfo.info256, KRC>, EVEX_V256;
defm Z128 : avx512_mask_broadcastm<opc, OpcodeStr, VTInfo.info128, KRC>, EVEX_V128;
}
}
defm VPBROADCASTMW2D : avx512_mask_broadcast<0x3A, "vpbroadcastmw2d",
avx512vl_i32_info, VK16>;
defm VPBROADCASTMB2Q : avx512_mask_broadcast<0x2A, "vpbroadcastmb2q",
avx512vl_i64_info, VK8>, VEX_W;
//===----------------------------------------------------------------------===//
// -- VPERMI2 - 3 source operands form --
multiclass avx512_perm_i<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, X86VectorVTInfo IdxVT> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain,
hasSideEffects = 0 in {
defm rr: AVX512_maskable_3src_cast<opc, MRMSrcReg, _, IdxVT, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (X86VPermt2 _.RC:$src2, IdxVT.RC:$src1, _.RC:$src3)), 1>,
EVEX_4V, AVX5128IBase, Sched<[sched]>;
let mayLoad = 1 in
defm rm: AVX512_maskable_3src_cast<opc, MRMSrcMem, _, IdxVT, (outs _.RC:$dst),
(ins _.RC:$src2, _.MemOp:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (X86VPermt2 _.RC:$src2, IdxVT.RC:$src1,
(_.VT (_.LdFrag addr:$src3)))), 1>,
EVEX_4V, AVX5128IBase, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_perm_i_mb<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, X86VectorVTInfo IdxVT> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain,
hasSideEffects = 0, mayLoad = 1 in
defm rmb: AVX512_maskable_3src_cast<opc, MRMSrcMem, _, IdxVT, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3),
OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"),
!strconcat("$src2, ${src3}", _.BroadcastStr ),
(_.VT (X86VPermt2 _.RC:$src2,
IdxVT.RC:$src1,(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3))))), 1>,
AVX5128IBase, EVEX_4V, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_perm_i_sizes<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo VTInfo,
AVX512VLVectorVTInfo ShuffleMask> {
defm NAME: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info512,
ShuffleMask.info512>,
avx512_perm_i_mb<opc, OpcodeStr, sched, VTInfo.info512,
ShuffleMask.info512>, EVEX_V512;
let Predicates = [HasVLX] in {
defm NAME#128: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info128,
ShuffleMask.info128>,
avx512_perm_i_mb<opc, OpcodeStr, sched, VTInfo.info128,
ShuffleMask.info128>, EVEX_V128;
defm NAME#256: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info256,
ShuffleMask.info256>,
avx512_perm_i_mb<opc, OpcodeStr, sched, VTInfo.info256,
ShuffleMask.info256>, EVEX_V256;
}
}
multiclass avx512_perm_i_sizes_bw<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo VTInfo,
AVX512VLVectorVTInfo Idx,
Predicate Prd> {
let Predicates = [Prd] in
defm NAME: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info512,
Idx.info512>, EVEX_V512;
let Predicates = [Prd, HasVLX] in {
defm NAME#128: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info128,
Idx.info128>, EVEX_V128;
defm NAME#256: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info256,
Idx.info256>, EVEX_V256;
}
}
defm VPERMI2D : avx512_perm_i_sizes<0x76, "vpermi2d", WriteVarShuffle256,
avx512vl_i32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
defm VPERMI2Q : avx512_perm_i_sizes<0x76, "vpermi2q", WriteVarShuffle256,
avx512vl_i64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>;
defm VPERMI2W : avx512_perm_i_sizes_bw<0x75, "vpermi2w", WriteVarShuffle256,
avx512vl_i16_info, avx512vl_i16_info, HasBWI>,
VEX_W, EVEX_CD8<16, CD8VF>;
defm VPERMI2B : avx512_perm_i_sizes_bw<0x75, "vpermi2b", WriteVarShuffle256,
avx512vl_i8_info, avx512vl_i8_info, HasVBMI>,
EVEX_CD8<8, CD8VF>;
defm VPERMI2PS : avx512_perm_i_sizes<0x77, "vpermi2ps", WriteFVarShuffle256,
avx512vl_f32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
defm VPERMI2PD : avx512_perm_i_sizes<0x77, "vpermi2pd", WriteFVarShuffle256,
avx512vl_f64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>;
// Extra patterns to deal with extra bitcasts due to passthru and index being
// different types on the fp versions.
multiclass avx512_perm_i_lowering<string InstrStr, X86VectorVTInfo _,
X86VectorVTInfo IdxVT,
X86VectorVTInfo CastVT> {
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86VPermt2 (_.VT _.RC:$src2),
(IdxVT.VT (bitconvert (CastVT.VT _.RC:$src1))), _.RC:$src3),
(_.VT (bitconvert (CastVT.VT _.RC:$src1))))),
(!cast<Instruction>(InstrStr#"rrk") _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, _.RC:$src3)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86VPermt2 _.RC:$src2,
(IdxVT.VT (bitconvert (CastVT.VT _.RC:$src1))),
(_.LdFrag addr:$src3)),
(_.VT (bitconvert (CastVT.VT _.RC:$src1))))),
(!cast<Instruction>(InstrStr#"rmk") _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86VPermt2 _.RC:$src2,
(IdxVT.VT (bitconvert (CastVT.VT _.RC:$src1))),
(X86VBroadcast (_.ScalarLdFrag addr:$src3))),
(_.VT (bitconvert (CastVT.VT _.RC:$src1))))),
(!cast<Instruction>(InstrStr#"rmbk") _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3)>;
}
// TODO: Should we add more casts? The vXi64 case is common due to ABI.
defm : avx512_perm_i_lowering<"VPERMI2PS", v16f32_info, v16i32_info, v8i64_info>;
defm : avx512_perm_i_lowering<"VPERMI2PS256", v8f32x_info, v8i32x_info, v4i64x_info>;
defm : avx512_perm_i_lowering<"VPERMI2PS128", v4f32x_info, v4i32x_info, v2i64x_info>;
// VPERMT2
multiclass avx512_perm_t<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, X86VectorVTInfo IdxVT> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in {
defm rr: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins IdxVT.RC:$src2, _.RC:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (X86VPermt2 _.RC:$src1, IdxVT.RC:$src2, _.RC:$src3)), 1>,
EVEX_4V, AVX5128IBase, Sched<[sched]>;
defm rm: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins IdxVT.RC:$src2, _.MemOp:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (X86VPermt2 _.RC:$src1, IdxVT.RC:$src2,
(_.LdFrag addr:$src3))), 1>,
EVEX_4V, AVX5128IBase, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_perm_t_mb<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, X86VectorVTInfo IdxVT> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in
defm rmb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins IdxVT.RC:$src2, _.ScalarMemOp:$src3),
OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"),
!strconcat("$src2, ${src3}", _.BroadcastStr ),
(_.VT (X86VPermt2 _.RC:$src1,
IdxVT.RC:$src2,(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3))))), 1>,
AVX5128IBase, EVEX_4V, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_perm_t_sizes<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo VTInfo,
AVX512VLVectorVTInfo ShuffleMask> {
defm NAME: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info512,
ShuffleMask.info512>,
avx512_perm_t_mb<opc, OpcodeStr, sched, VTInfo.info512,
ShuffleMask.info512>, EVEX_V512;
let Predicates = [HasVLX] in {
defm NAME#128: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info128,
ShuffleMask.info128>,
avx512_perm_t_mb<opc, OpcodeStr, sched, VTInfo.info128,
ShuffleMask.info128>, EVEX_V128;
defm NAME#256: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info256,
ShuffleMask.info256>,
avx512_perm_t_mb<opc, OpcodeStr, sched, VTInfo.info256,
ShuffleMask.info256>, EVEX_V256;
}
}
multiclass avx512_perm_t_sizes_bw<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo VTInfo,
AVX512VLVectorVTInfo Idx, Predicate Prd> {
let Predicates = [Prd] in
defm NAME: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info512,
Idx.info512>, EVEX_V512;
let Predicates = [Prd, HasVLX] in {
defm NAME#128: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info128,
Idx.info128>, EVEX_V128;
defm NAME#256: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info256,
Idx.info256>, EVEX_V256;
}
}
defm VPERMT2D : avx512_perm_t_sizes<0x7E, "vpermt2d", WriteVarShuffle256,
avx512vl_i32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
defm VPERMT2Q : avx512_perm_t_sizes<0x7E, "vpermt2q", WriteVarShuffle256,
avx512vl_i64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>;
defm VPERMT2W : avx512_perm_t_sizes_bw<0x7D, "vpermt2w", WriteVarShuffle256,
avx512vl_i16_info, avx512vl_i16_info, HasBWI>,
VEX_W, EVEX_CD8<16, CD8VF>;
defm VPERMT2B : avx512_perm_t_sizes_bw<0x7D, "vpermt2b", WriteVarShuffle256,
avx512vl_i8_info, avx512vl_i8_info, HasVBMI>,
EVEX_CD8<8, CD8VF>;
defm VPERMT2PS : avx512_perm_t_sizes<0x7F, "vpermt2ps", WriteFVarShuffle256,
avx512vl_f32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
defm VPERMT2PD : avx512_perm_t_sizes<0x7F, "vpermt2pd", WriteFVarShuffle256,
avx512vl_f64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>;
//===----------------------------------------------------------------------===//
// AVX-512 - BLEND using mask
//
multiclass WriteFVarBlendask<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain, hasSideEffects = 0 in {
def rr : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, ${dst}|${dst}, $src1, $src2}"), []>,
EVEX_4V, Sched<[sched]>;
def rrk : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
[]>, EVEX_4V, EVEX_K, Sched<[sched]>;
def rrkz : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src1, $src2}"),
[]>, EVEX_4V, EVEX_KZ, Sched<[sched]>, NotMemoryFoldable;
let mayLoad = 1 in {
def rm : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, ${dst}|${dst}, $src1, $src2}"),
[]>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmk : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"),
[]>, EVEX_4V, EVEX_K, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmkz : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src1, $src2}"),
[]>, EVEX_4V, EVEX_KZ, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>, NotMemoryFoldable;
}
}
}
multiclass WriteFVarBlendask_rmb<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let mayLoad = 1, hasSideEffects = 0 in {
def rmbk : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2),
!strconcat(OpcodeStr,
"\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"), []>,
EVEX_4V, EVEX_K, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmbkz : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2),
!strconcat(OpcodeStr,
"\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}} {z}|",
"$dst {${mask}} {z}, $src1, ${src2}", _.BroadcastStr, "}"), []>,
EVEX_4V, EVEX_KZ, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>, NotMemoryFoldable;
def rmb : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2),
!strconcat(OpcodeStr,
"\t{${src2}", _.BroadcastStr, ", $src1, $dst|",
"$dst, $src1, ${src2}", _.BroadcastStr, "}"), []>,
EVEX_4V, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass blendmask_dq<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo> {
defm Z : WriteFVarBlendask<opc, OpcodeStr, sched.ZMM, VTInfo.info512>,
WriteFVarBlendask_rmb<opc, OpcodeStr, sched.ZMM, VTInfo.info512>,
EVEX_V512;
let Predicates = [HasVLX] in {
defm Z256 : WriteFVarBlendask<opc, OpcodeStr, sched.YMM, VTInfo.info256>,
WriteFVarBlendask_rmb<opc, OpcodeStr, sched.YMM, VTInfo.info256>,
EVEX_V256;
defm Z128 : WriteFVarBlendask<opc, OpcodeStr, sched.XMM, VTInfo.info128>,
WriteFVarBlendask_rmb<opc, OpcodeStr, sched.XMM, VTInfo.info128>,
EVEX_V128;
}
}
multiclass blendmask_bw<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo> {
let Predicates = [HasBWI] in
defm Z : WriteFVarBlendask<opc, OpcodeStr, sched.ZMM, VTInfo.info512>,
EVEX_V512;
let Predicates = [HasBWI, HasVLX] in {
defm Z256 : WriteFVarBlendask<opc, OpcodeStr, sched.YMM, VTInfo.info256>,
EVEX_V256;
defm Z128 : WriteFVarBlendask<opc, OpcodeStr, sched.XMM, VTInfo.info128>,
EVEX_V128;
}
}
defm VBLENDMPS : blendmask_dq<0x65, "vblendmps", SchedWriteFVarBlend,
avx512vl_f32_info>;
defm VBLENDMPD : blendmask_dq<0x65, "vblendmpd", SchedWriteFVarBlend,
avx512vl_f64_info>, VEX_W;
defm VPBLENDMD : blendmask_dq<0x64, "vpblendmd", SchedWriteVarBlend,
avx512vl_i32_info>;
defm VPBLENDMQ : blendmask_dq<0x64, "vpblendmq", SchedWriteVarBlend,
avx512vl_i64_info>, VEX_W;
defm VPBLENDMB : blendmask_bw<0x66, "vpblendmb", SchedWriteVarBlend,
avx512vl_i8_info>;
defm VPBLENDMW : blendmask_bw<0x66, "vpblendmw", SchedWriteVarBlend,
avx512vl_i16_info>, VEX_W;
//===----------------------------------------------------------------------===//
// Compare Instructions
//===----------------------------------------------------------------------===//
// avx512_cmp_scalar - AVX512 CMPSS and CMPSD
multiclass avx512_cmp_scalar<X86VectorVTInfo _, SDNode OpNode, SDNode OpNodeRnd,
X86FoldableSchedWrite sched> {
defm rr_Int : AVX512_maskable_cmp<0xC2, MRMSrcReg, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.RC:$src2, AVXCC:$cc),
"vcmp${cc}"#_.Suffix,
"$src2, $src1", "$src1, $src2",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
imm:$cc)>, EVEX_4V, Sched<[sched]>;
let mayLoad = 1 in
defm rm_Int : AVX512_maskable_cmp<0xC2, MRMSrcMem, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2, AVXCC:$cc),
"vcmp${cc}"#_.Suffix,
"$src2, $src1", "$src1, $src2",
(OpNode (_.VT _.RC:$src1), _.ScalarIntMemCPat:$src2,
imm:$cc)>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rrb_Int : AVX512_maskable_cmp<0xC2, MRMSrcReg, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.RC:$src2, AVXCC:$cc),
"vcmp${cc}"#_.Suffix,
"{sae}, $src2, $src1", "$src1, $src2, {sae}",
(OpNodeRnd (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
imm:$cc,
(i32 FROUND_NO_EXC))>,
EVEX_4V, EVEX_B, Sched<[sched]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
defm rri_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _,
(outs VK1:$dst),
(ins _.RC:$src1, _.RC:$src2, u8imm:$cc),
"vcmp"#_.Suffix,
"$cc, $src2, $src1", "$src1, $src2, $cc">, EVEX_4V,
Sched<[sched]>, NotMemoryFoldable;
let mayLoad = 1 in
defm rmi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc),
"vcmp"#_.Suffix,
"$cc, $src2, $src1", "$src1, $src2, $cc">,
EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>,
Sched<[sched.Folded, sched.ReadAfterFold]>, NotMemoryFoldable;
defm rrb_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.RC:$src2, u8imm:$cc),
"vcmp"#_.Suffix,
"$cc, {sae}, $src2, $src1","$src1, $src2, {sae}, $cc">,
EVEX_4V, EVEX_B, Sched<[sched]>, NotMemoryFoldable;
}// let isAsmParserOnly = 1, hasSideEffects = 0
let isCodeGenOnly = 1 in {
let isCommutable = 1 in
def rr : AVX512Ii8<0xC2, MRMSrcReg,
(outs _.KRC:$dst), (ins _.FRC:$src1, _.FRC:$src2, AVXCC:$cc),
!strconcat("vcmp${cc}", _.Suffix,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.KRC:$dst, (OpNode _.FRC:$src1,
_.FRC:$src2,
imm:$cc))]>,
EVEX_4V, Sched<[sched]>;
def rm : AVX512Ii8<0xC2, MRMSrcMem,
(outs _.KRC:$dst),
(ins _.FRC:$src1, _.ScalarMemOp:$src2, AVXCC:$cc),
!strconcat("vcmp${cc}", _.Suffix,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.KRC:$dst, (OpNode _.FRC:$src1,
(_.ScalarLdFrag addr:$src2),
imm:$cc))]>,
EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
let Predicates = [HasAVX512] in {
let ExeDomain = SSEPackedSingle in
defm VCMPSSZ : avx512_cmp_scalar<f32x_info, X86cmpms, X86cmpmsRnd,
SchedWriteFCmp.Scl>, AVX512XSIi8Base;
let ExeDomain = SSEPackedDouble in
defm VCMPSDZ : avx512_cmp_scalar<f64x_info, X86cmpms, X86cmpmsRnd,
SchedWriteFCmp.Scl>, AVX512XDIi8Base, VEX_W;
}
multiclass avx512_icmp_packed<bits<8> opc, string OpcodeStr, PatFrag OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
bit IsCommutable> {
let isCommutable = IsCommutable in
def rr : AVX512BI<opc, MRMSrcReg,
(outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2)))]>,
EVEX_4V, Sched<[sched]>;
def rm : AVX512BI<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1),
(_.VT (_.LdFrag addr:$src2))))]>,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>;
let isCommutable = IsCommutable in
def rrk : AVX512BI<opc, MRMSrcReg,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, $src2}"),
[(set _.KRC:$dst, (and _.KRCWM:$mask,
(OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2))))]>,
EVEX_4V, EVEX_K, Sched<[sched]>;
def rmk : AVX512BI<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, $src2}"),
[(set _.KRC:$dst, (and _.KRCWM:$mask,
(OpNode (_.VT _.RC:$src1),
(_.VT (_.LdFrag addr:$src2)))))]>,
EVEX_4V, EVEX_K, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_icmp_packed_rmb<bits<8> opc, string OpcodeStr, PatFrag OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
bit IsCommutable> :
avx512_icmp_packed<opc, OpcodeStr, OpNode, sched, _, IsCommutable> {
def rmb : AVX512BI<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2),
!strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr, ", $src1, $dst",
"|$dst, $src1, ${src2}", _.BroadcastStr, "}"),
[(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1),
(X86VBroadcast (_.ScalarLdFrag addr:$src2))))]>,
EVEX_4V, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmbk : AVX512BI<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1,
_.ScalarMemOp:$src2),
!strconcat(OpcodeStr,
"\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"),
[(set _.KRC:$dst, (and _.KRCWM:$mask,
(OpNode (_.VT _.RC:$src1),
(X86VBroadcast
(_.ScalarLdFrag addr:$src2)))))]>,
EVEX_4V, EVEX_K, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_icmp_packed_vl<bits<8> opc, string OpcodeStr, PatFrag OpNode,
X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo, Predicate prd,
bit IsCommutable = 0> {
let Predicates = [prd] in
defm Z : avx512_icmp_packed<opc, OpcodeStr, OpNode, sched.ZMM,
VTInfo.info512, IsCommutable>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_icmp_packed<opc, OpcodeStr, OpNode, sched.YMM,
VTInfo.info256, IsCommutable>, EVEX_V256;
defm Z128 : avx512_icmp_packed<opc, OpcodeStr, OpNode, sched.XMM,
VTInfo.info128, IsCommutable>, EVEX_V128;
}
}
multiclass avx512_icmp_packed_rmb_vl<bits<8> opc, string OpcodeStr,
PatFrag OpNode, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo,
Predicate prd, bit IsCommutable = 0> {
let Predicates = [prd] in
defm Z : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, sched.ZMM,
VTInfo.info512, IsCommutable>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, sched.YMM,
VTInfo.info256, IsCommutable>, EVEX_V256;
defm Z128 : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, sched.XMM,
VTInfo.info128, IsCommutable>, EVEX_V128;
}
}
// This fragment treats X86cmpm as commutable to help match loads in both
// operands for PCMPEQ.
def X86setcc_commute : SDNode<"ISD::SETCC", SDTSetCC, [SDNPCommutative]>;
def X86pcmpeqm_c : PatFrag<(ops node:$src1, node:$src2),
(X86setcc_commute node:$src1, node:$src2, SETEQ)>;
def X86pcmpgtm : PatFrag<(ops node:$src1, node:$src2),
(setcc node:$src1, node:$src2, SETGT)>;
// AddedComplexity is needed because the explicit SETEQ/SETGT CondCode doesn't
// increase the pattern complexity the way an immediate would.
let AddedComplexity = 2 in {
// FIXME: Is there a better scheduler class for VPCMP?
defm VPCMPEQB : avx512_icmp_packed_vl<0x74, "vpcmpeqb", X86pcmpeqm_c,
SchedWriteVecALU, avx512vl_i8_info, HasBWI, 1>,
EVEX_CD8<8, CD8VF>, VEX_WIG;
defm VPCMPEQW : avx512_icmp_packed_vl<0x75, "vpcmpeqw", X86pcmpeqm_c,
SchedWriteVecALU, avx512vl_i16_info, HasBWI, 1>,
EVEX_CD8<16, CD8VF>, VEX_WIG;
defm VPCMPEQD : avx512_icmp_packed_rmb_vl<0x76, "vpcmpeqd", X86pcmpeqm_c,
SchedWriteVecALU, avx512vl_i32_info, HasAVX512, 1>,
EVEX_CD8<32, CD8VF>;
defm VPCMPEQQ : avx512_icmp_packed_rmb_vl<0x29, "vpcmpeqq", X86pcmpeqm_c,
SchedWriteVecALU, avx512vl_i64_info, HasAVX512, 1>,
T8PD, VEX_W, EVEX_CD8<64, CD8VF>;
defm VPCMPGTB : avx512_icmp_packed_vl<0x64, "vpcmpgtb", X86pcmpgtm,
SchedWriteVecALU, avx512vl_i8_info, HasBWI>,
EVEX_CD8<8, CD8VF>, VEX_WIG;
defm VPCMPGTW : avx512_icmp_packed_vl<0x65, "vpcmpgtw", X86pcmpgtm,
SchedWriteVecALU, avx512vl_i16_info, HasBWI>,
EVEX_CD8<16, CD8VF>, VEX_WIG;
defm VPCMPGTD : avx512_icmp_packed_rmb_vl<0x66, "vpcmpgtd", X86pcmpgtm,
SchedWriteVecALU, avx512vl_i32_info, HasAVX512>,
EVEX_CD8<32, CD8VF>;
defm VPCMPGTQ : avx512_icmp_packed_rmb_vl<0x37, "vpcmpgtq", X86pcmpgtm,
SchedWriteVecALU, avx512vl_i64_info, HasAVX512>,
T8PD, VEX_W, EVEX_CD8<64, CD8VF>;
}
multiclass avx512_icmp_cc<bits<8> opc, string Suffix, PatFrag Frag,
PatFrag CommFrag, X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Name> {
let isCommutable = 1 in
def rri : AVX512AIi8<opc, MRMSrcReg,
(outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, AVX512ICC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.KRC:$dst, (_.KVT (Frag:$cc (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
cond)))]>,
EVEX_4V, Sched<[sched]>;
def rmi : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, AVX512ICC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.KRC:$dst, (_.KVT
(Frag:$cc
(_.VT _.RC:$src1),
(_.VT (_.LdFrag addr:$src2)),
cond)))]>,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>;
let isCommutable = 1 in
def rrik : AVX512AIi8<opc, MRMSrcReg,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2,
AVX512ICC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{$src2, $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, $src2}"),
[(set _.KRC:$dst, (and _.KRCWM:$mask,
(_.KVT (Frag:$cc (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
cond))))]>,
EVEX_4V, EVEX_K, Sched<[sched]>;
def rmik : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2,
AVX512ICC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{$src2, $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, $src2}"),
[(set _.KRC:$dst, (and _.KRCWM:$mask,
(_.KVT
(Frag:$cc
(_.VT _.RC:$src1),
(_.VT (_.LdFrag addr:$src2)),
cond))))]>,
EVEX_4V, EVEX_K, Sched<[sched.Folded, sched.ReadAfterFold]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
def rri_alt : AVX512AIi8<opc, MRMSrcReg,
(outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc),
!strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst|",
"$dst, $src1, $src2, $cc}"), []>,
EVEX_4V, Sched<[sched]>, NotMemoryFoldable;
let mayLoad = 1 in
def rmi_alt : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, u8imm:$cc),
!strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst|",
"$dst, $src1, $src2, $cc}"), []>,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>, NotMemoryFoldable;
def rrik_alt : AVX512AIi8<opc, MRMSrcReg,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2,
u8imm:$cc),
!strconcat("vpcmp", Suffix,
"\t{$cc, $src2, $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, $src2, $cc}"), []>,
EVEX_4V, EVEX_K, Sched<[sched]>, NotMemoryFoldable;
let mayLoad = 1 in
def rmik_alt : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2,
u8imm:$cc),
!strconcat("vpcmp", Suffix,
"\t{$cc, $src2, $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, $src2, $cc}"), []>,
EVEX_4V, EVEX_K, Sched<[sched.Folded, sched.ReadAfterFold]>,
NotMemoryFoldable;
}
def : Pat<(_.KVT (CommFrag:$cc (_.LdFrag addr:$src2),
(_.VT _.RC:$src1), cond)),
(!cast<Instruction>(Name#_.ZSuffix#"rmi")
_.RC:$src1, addr:$src2, (CommFrag.OperandTransform $cc))>;
def : Pat<(and _.KRCWM:$mask,
(_.KVT (CommFrag:$cc (_.LdFrag addr:$src2),
(_.VT _.RC:$src1), cond))),
(!cast<Instruction>(Name#_.ZSuffix#"rmik")
_.KRCWM:$mask, _.RC:$src1, addr:$src2,
(CommFrag.OperandTransform $cc))>;
}
multiclass avx512_icmp_cc_rmb<bits<8> opc, string Suffix, PatFrag Frag,
PatFrag CommFrag, X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Name> :
avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched, _, Name> {
def rmib : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2,
AVX512ICC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{${src2}", _.BroadcastStr, ", $src1, $dst|",
"$dst, $src1, ${src2}", _.BroadcastStr, "}"),
[(set _.KRC:$dst, (_.KVT (Frag:$cc
(_.VT _.RC:$src1),
(X86VBroadcast
(_.ScalarLdFrag addr:$src2)),
cond)))]>,
EVEX_4V, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmibk : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1,
_.ScalarMemOp:$src2, AVX512ICC:$cc),
!strconcat("vpcmp${cc}", Suffix,
"\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"),
[(set _.KRC:$dst, (and _.KRCWM:$mask,
(_.KVT (Frag:$cc
(_.VT _.RC:$src1),
(X86VBroadcast
(_.ScalarLdFrag addr:$src2)),
cond))))]>,
EVEX_4V, EVEX_K, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 1 in {
def rmib_alt : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2,
u8imm:$cc),
!strconcat("vpcmp", Suffix,
"\t{$cc, ${src2}", _.BroadcastStr, ", $src1, $dst|",
"$dst, $src1, ${src2}", _.BroadcastStr, ", $cc}"), []>,
EVEX_4V, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>,
NotMemoryFoldable;
def rmibk_alt : AVX512AIi8<opc, MRMSrcMem,
(outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1,
_.ScalarMemOp:$src2, u8imm:$cc),
!strconcat("vpcmp", Suffix,
"\t{$cc, ${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, ", $cc}"), []>,
EVEX_4V, EVEX_K, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>,
NotMemoryFoldable;
}
def : Pat<(_.KVT (CommFrag:$cc (X86VBroadcast (_.ScalarLdFrag addr:$src2)),
(_.VT _.RC:$src1), cond)),
(!cast<Instruction>(Name#_.ZSuffix#"rmib")
_.RC:$src1, addr:$src2, (CommFrag.OperandTransform $cc))>;
def : Pat<(and _.KRCWM:$mask,
(_.KVT (CommFrag:$cc (X86VBroadcast
(_.ScalarLdFrag addr:$src2)),
(_.VT _.RC:$src1), cond))),
(!cast<Instruction>(Name#_.ZSuffix#"rmibk")
_.KRCWM:$mask, _.RC:$src1, addr:$src2,
(CommFrag.OperandTransform $cc))>;
}
multiclass avx512_icmp_cc_vl<bits<8> opc, string Suffix, PatFrag Frag,
PatFrag CommFrag, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo, Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched.ZMM,
VTInfo.info512, NAME>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched.YMM,
VTInfo.info256, NAME>, EVEX_V256;
defm Z128 : avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched.XMM,
VTInfo.info128, NAME>, EVEX_V128;
}
}
multiclass avx512_icmp_cc_rmb_vl<bits<8> opc, string Suffix, PatFrag Frag,
PatFrag CommFrag, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo, Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_icmp_cc_rmb<opc, Suffix, Frag, CommFrag, sched.ZMM,
VTInfo.info512, NAME>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_icmp_cc_rmb<opc, Suffix, Frag, CommFrag, sched.YMM,
VTInfo.info256, NAME>, EVEX_V256;
defm Z128 : avx512_icmp_cc_rmb<opc, Suffix, Frag, CommFrag, sched.XMM,
VTInfo.info128, NAME>, EVEX_V128;
}
}
def X86pcmpm_imm : SDNodeXForm<setcc, [{
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
uint8_t SSECC = X86::getVPCMPImmForCond(CC);
return getI8Imm(SSECC, SDLoc(N));
}]>;
// Swapped operand version of the above.
def X86pcmpm_imm_commute : SDNodeXForm<setcc, [{
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
uint8_t SSECC = X86::getVPCMPImmForCond(CC);
SSECC = X86::getSwappedVPCMPImm(SSECC);
return getI8Imm(SSECC, SDLoc(N));
}]>;
def X86pcmpm : PatFrag<(ops node:$src1, node:$src2, node:$cc),
(setcc node:$src1, node:$src2, node:$cc), [{
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
return !ISD::isUnsignedIntSetCC(CC);
}], X86pcmpm_imm>;
// Same as above, but commutes immediate. Use for load folding.
def X86pcmpm_commute : PatFrag<(ops node:$src1, node:$src2, node:$cc),
(setcc node:$src1, node:$src2, node:$cc), [{
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
return !ISD::isUnsignedIntSetCC(CC);
}], X86pcmpm_imm_commute>;
def X86pcmpum : PatFrag<(ops node:$src1, node:$src2, node:$cc),
(setcc node:$src1, node:$src2, node:$cc), [{
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
return ISD::isUnsignedIntSetCC(CC);
}], X86pcmpm_imm>;
// Same as above, but commutes immediate. Use for load folding.
def X86pcmpum_commute : PatFrag<(ops node:$src1, node:$src2, node:$cc),
(setcc node:$src1, node:$src2, node:$cc), [{
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
return ISD::isUnsignedIntSetCC(CC);
}], X86pcmpm_imm_commute>;
// FIXME: Is there a better scheduler class for VPCMP/VPCMPU?
defm VPCMPB : avx512_icmp_cc_vl<0x3F, "b", X86pcmpm, X86pcmpm_commute,
SchedWriteVecALU, avx512vl_i8_info, HasBWI>,
EVEX_CD8<8, CD8VF>;
defm VPCMPUB : avx512_icmp_cc_vl<0x3E, "ub", X86pcmpum, X86pcmpum_commute,
SchedWriteVecALU, avx512vl_i8_info, HasBWI>,
EVEX_CD8<8, CD8VF>;
defm VPCMPW : avx512_icmp_cc_vl<0x3F, "w", X86pcmpm, X86pcmpm_commute,
SchedWriteVecALU, avx512vl_i16_info, HasBWI>,
VEX_W, EVEX_CD8<16, CD8VF>;
defm VPCMPUW : avx512_icmp_cc_vl<0x3E, "uw", X86pcmpum, X86pcmpum_commute,
SchedWriteVecALU, avx512vl_i16_info, HasBWI>,
VEX_W, EVEX_CD8<16, CD8VF>;
defm VPCMPD : avx512_icmp_cc_rmb_vl<0x1F, "d", X86pcmpm, X86pcmpm_commute,
SchedWriteVecALU, avx512vl_i32_info,
HasAVX512>, EVEX_CD8<32, CD8VF>;
defm VPCMPUD : avx512_icmp_cc_rmb_vl<0x1E, "ud", X86pcmpum, X86pcmpum_commute,
SchedWriteVecALU, avx512vl_i32_info,
HasAVX512>, EVEX_CD8<32, CD8VF>;
defm VPCMPQ : avx512_icmp_cc_rmb_vl<0x1F, "q", X86pcmpm, X86pcmpm_commute,
SchedWriteVecALU, avx512vl_i64_info,
HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>;
defm VPCMPUQ : avx512_icmp_cc_rmb_vl<0x1E, "uq", X86pcmpum, X86pcmpum_commute,
SchedWriteVecALU, avx512vl_i64_info,
HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>;
multiclass avx512_vcmp_common<X86FoldableSchedWrite sched, X86VectorVTInfo _,
string Name> {
defm rri : AVX512_maskable_cmp<0xC2, MRMSrcReg, _,
(outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2,AVXCC:$cc),
"vcmp${cc}"#_.Suffix,
"$src2, $src1", "$src1, $src2",
(X86cmpm (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
imm:$cc), 1>,
Sched<[sched]>;
defm rmi : AVX512_maskable_cmp<0xC2, MRMSrcMem, _,
(outs _.KRC:$dst),(ins _.RC:$src1, _.MemOp:$src2, AVXCC:$cc),
"vcmp${cc}"#_.Suffix,
"$src2, $src1", "$src1, $src2",
(X86cmpm (_.VT _.RC:$src1),
(_.VT (_.LdFrag addr:$src2)),
imm:$cc)>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmbi : AVX512_maskable_cmp<0xC2, MRMSrcMem, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, AVXCC:$cc),
"vcmp${cc}"#_.Suffix,
"${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr,
(X86cmpm (_.VT _.RC:$src1),
(_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))),
imm:$cc)>,
EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
// Accept explicit immediate argument form instead of comparison code.
let isAsmParserOnly = 1, hasSideEffects = 0 in {
defm rri_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.RC:$src2, u8imm:$cc),
"vcmp"#_.Suffix,
"$cc, $src2, $src1", "$src1, $src2, $cc">,
Sched<[sched]>, NotMemoryFoldable;
let mayLoad = 1 in {
defm rmi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.MemOp:$src2, u8imm:$cc),
"vcmp"#_.Suffix,
"$cc, $src2, $src1", "$src1, $src2, $cc">,
Sched<[sched.Folded, sched.ReadAfterFold]>,
NotMemoryFoldable;
defm rmbi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc),
"vcmp"#_.Suffix,
"$cc, ${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr##", $cc">,
EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>,
NotMemoryFoldable;
}
}
// Patterns for selecting with loads in other operand.
def : Pat<(X86cmpm (_.LdFrag addr:$src2), (_.VT _.RC:$src1),
CommutableCMPCC:$cc),
(!cast<Instruction>(Name#_.ZSuffix#"rmi") _.RC:$src1, addr:$src2,
imm:$cc)>;
def : Pat<(and _.KRCWM:$mask, (X86cmpm (_.LdFrag addr:$src2),
(_.VT _.RC:$src1),
CommutableCMPCC:$cc)),
(!cast<Instruction>(Name#_.ZSuffix#"rmik") _.KRCWM:$mask,
_.RC:$src1, addr:$src2,
imm:$cc)>;
def : Pat<(X86cmpm (X86VBroadcast (_.ScalarLdFrag addr:$src2)),
(_.VT _.RC:$src1), CommutableCMPCC:$cc),
(!cast<Instruction>(Name#_.ZSuffix#"rmbi") _.RC:$src1, addr:$src2,
imm:$cc)>;
def : Pat<(and _.KRCWM:$mask, (X86cmpm (X86VBroadcast
(_.ScalarLdFrag addr:$src2)),
(_.VT _.RC:$src1),
CommutableCMPCC:$cc)),
(!cast<Instruction>(Name#_.ZSuffix#"rmbik") _.KRCWM:$mask,
_.RC:$src1, addr:$src2,
imm:$cc)>;
}
multiclass avx512_vcmp_sae<X86FoldableSchedWrite sched, X86VectorVTInfo _> {
// comparison code form (VCMP[EQ/LT/LE/...]
defm rrib : AVX512_maskable_cmp<0xC2, MRMSrcReg, _,
(outs _.KRC:$dst),(ins _.RC:$src1, _.RC:$src2, AVXCC:$cc),
"vcmp${cc}"#_.Suffix,
"{sae}, $src2, $src1", "$src1, $src2, {sae}",
(X86cmpmRnd (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
imm:$cc,
(i32 FROUND_NO_EXC))>,
EVEX_B, Sched<[sched]>;
let isAsmParserOnly = 1, hasSideEffects = 0 in {
defm rrib_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _,
(outs _.KRC:$dst),
(ins _.RC:$src1, _.RC:$src2, u8imm:$cc),
"vcmp"#_.Suffix,
"$cc, {sae}, $src2, $src1",
"$src1, $src2, {sae}, $cc">,
EVEX_B, Sched<[sched]>, NotMemoryFoldable;
}
}
multiclass avx512_vcmp<X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in {
defm Z : avx512_vcmp_common<sched.ZMM, _.info512, NAME>,
avx512_vcmp_sae<sched.ZMM, _.info512>, EVEX_V512;
}
let Predicates = [HasAVX512,HasVLX] in {
defm Z128 : avx512_vcmp_common<sched.XMM, _.info128, NAME>, EVEX_V128;
defm Z256 : avx512_vcmp_common<sched.YMM, _.info256, NAME>, EVEX_V256;
}
}
defm VCMPPD : avx512_vcmp<SchedWriteFCmp, avx512vl_f64_info>,
AVX512PDIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W;
defm VCMPPS : avx512_vcmp<SchedWriteFCmp, avx512vl_f32_info>,
AVX512PSIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>;
// Patterns to select fp compares with load as first operand.
let Predicates = [HasAVX512] in {
def : Pat<(v1i1 (X86cmpms (loadf64 addr:$src2), FR64X:$src1,
CommutableCMPCC:$cc)),
(VCMPSDZrm FR64X:$src1, addr:$src2, imm:$cc)>;
def : Pat<(v1i1 (X86cmpms (loadf32 addr:$src2), FR32X:$src1,
CommutableCMPCC:$cc)),
(VCMPSSZrm FR32X:$src1, addr:$src2, imm:$cc)>;
}
// ----------------------------------------------------------------
// FPClass
//handle fpclass instruction mask = op(reg_scalar,imm)
// op(mem_scalar,imm)
multiclass avx512_scalar_fpclass<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
Predicate prd> {
let Predicates = [prd], ExeDomain = _.ExeDomain in {
def rr : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst),
(ins _.RC:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.KRC:$dst,(OpNode (_.VT _.RC:$src1),
(i32 imm:$src2)))]>,
Sched<[sched]>;
def rrk : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix#
"\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}",
[(set _.KRC:$dst,(and _.KRCWM:$mask,
(OpNode (_.VT _.RC:$src1),
(i32 imm:$src2))))]>,
EVEX_K, Sched<[sched]>;
def rm : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst),
(ins _.IntScalarMemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix##
"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.KRC:$dst,
(OpNode _.ScalarIntMemCPat:$src1,
(i32 imm:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmk : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst),
(ins _.KRCWM:$mask, _.IntScalarMemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix##
"\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}",
[(set _.KRC:$dst,(and _.KRCWM:$mask,
(OpNode _.ScalarIntMemCPat:$src1,
(i32 imm:$src2))))]>,
EVEX_K, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
//handle fpclass instruction mask = fpclass(reg_vec, reg_vec, imm)
// fpclass(reg_vec, mem_vec, imm)
// fpclass(reg_vec, broadcast(eltVt), imm)
multiclass avx512_vector_fpclass<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
string mem, string broadcast>{
let ExeDomain = _.ExeDomain in {
def rr : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst),
(ins _.RC:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.KRC:$dst,(OpNode (_.VT _.RC:$src1),
(i32 imm:$src2)))]>,
Sched<[sched]>;
def rrk : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix#
"\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}",
[(set _.KRC:$dst,(and _.KRCWM:$mask,
(OpNode (_.VT _.RC:$src1),
(i32 imm:$src2))))]>,
EVEX_K, Sched<[sched]>;
def rm : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst),
(ins _.MemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix##mem#
"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.KRC:$dst,(OpNode
(_.VT (_.LdFrag addr:$src1)),
(i32 imm:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmk : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst),
(ins _.KRCWM:$mask, _.MemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix##mem#
"\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}",
[(set _.KRC:$dst, (and _.KRCWM:$mask, (OpNode
(_.VT (_.LdFrag addr:$src1)),
(i32 imm:$src2))))]>,
EVEX_K, Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmb : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst),
(ins _.ScalarMemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix##broadcast##"\t{$src2, ${src1}"##
_.BroadcastStr##", $dst|$dst, ${src1}"
##_.BroadcastStr##", $src2}",
[(set _.KRC:$dst,(OpNode
(_.VT (X86VBroadcast
(_.ScalarLdFrag addr:$src1))),
(i32 imm:$src2)))]>,
EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
def rmbk : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst),
(ins _.KRCWM:$mask, _.ScalarMemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix##broadcast##"\t{$src2, ${src1}"##
_.BroadcastStr##", $dst {${mask}}|$dst {${mask}}, ${src1}"##
_.BroadcastStr##", $src2}",
[(set _.KRC:$dst,(and _.KRCWM:$mask, (OpNode
(_.VT (X86VBroadcast
(_.ScalarLdFrag addr:$src1))),
(i32 imm:$src2))))]>,
EVEX_B, EVEX_K, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_vector_fpclass_all<string OpcodeStr, AVX512VLVectorVTInfo _,
bits<8> opc, SDNode OpNode,
X86SchedWriteWidths sched, Predicate prd,
string broadcast>{
let Predicates = [prd] in {
defm Z : avx512_vector_fpclass<opc, OpcodeStr, OpNode, sched.ZMM,
_.info512, "{z}", broadcast>, EVEX_V512;
}
let Predicates = [prd, HasVLX] in {
defm Z128 : avx512_vector_fpclass<opc, OpcodeStr, OpNode, sched.XMM,
_.info128, "{x}", broadcast>, EVEX_V128;
defm Z256 : avx512_vector_fpclass<opc, OpcodeStr, OpNode, sched.YMM,
_.info256, "{y}", broadcast>, EVEX_V256;
}
}
multiclass avx512_fp_fpclass_all<string OpcodeStr, bits<8> opcVec,
bits<8> opcScalar, SDNode VecOpNode,
SDNode ScalarOpNode, X86SchedWriteWidths sched,
Predicate prd> {
defm PS : avx512_vector_fpclass_all<OpcodeStr, avx512vl_f32_info, opcVec,
VecOpNode, sched, prd, "{l}">,
EVEX_CD8<32, CD8VF>;
defm PD : avx512_vector_fpclass_all<OpcodeStr, avx512vl_f64_info, opcVec,
VecOpNode, sched, prd, "{q}">,
EVEX_CD8<64, CD8VF> , VEX_W;
defm SSZ : avx512_scalar_fpclass<opcScalar, OpcodeStr, ScalarOpNode,
sched.Scl, f32x_info, prd>,
EVEX_CD8<32, CD8VT1>;
defm SDZ : avx512_scalar_fpclass<opcScalar, OpcodeStr, ScalarOpNode,
sched.Scl, f64x_info, prd>,
EVEX_CD8<64, CD8VT1>, VEX_W;
}
defm VFPCLASS : avx512_fp_fpclass_all<"vfpclass", 0x66, 0x67, X86Vfpclass,
X86Vfpclasss, SchedWriteFCmp, HasDQI>,
AVX512AIi8Base, EVEX;
//-----------------------------------------------------------------
// Mask register copy, including
// - copy between mask registers
// - load/store mask registers
// - copy from GPR to mask register and vice versa
//
multiclass avx512_mask_mov<bits<8> opc_kk, bits<8> opc_km, bits<8> opc_mk,
string OpcodeStr, RegisterClass KRC,
ValueType vvt, X86MemOperand x86memop> {
let isMoveReg = 1, hasSideEffects = 0, SchedRW = [WriteMove] in
def kk : I<opc_kk, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>,
Sched<[WriteMove]>;
def km : I<opc_km, MRMSrcMem, (outs KRC:$dst), (ins x86memop:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set KRC:$dst, (vvt (load addr:$src)))]>,
Sched<[WriteLoad]>;
def mk : I<opc_mk, MRMDestMem, (outs), (ins x86memop:$dst, KRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(store KRC:$src, addr:$dst)]>,
Sched<[WriteStore]>;
}
multiclass avx512_mask_mov_gpr<bits<8> opc_kr, bits<8> opc_rk,
string OpcodeStr,
RegisterClass KRC, RegisterClass GRC> {
let hasSideEffects = 0 in {
def kr : I<opc_kr, MRMSrcReg, (outs KRC:$dst), (ins GRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>,
Sched<[WriteMove]>;
def rk : I<opc_rk, MRMSrcReg, (outs GRC:$dst), (ins KRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>,
Sched<[WriteMove]>;
}
}
let Predicates = [HasDQI] in
defm KMOVB : avx512_mask_mov<0x90, 0x90, 0x91, "kmovb", VK8, v8i1, i8mem>,
avx512_mask_mov_gpr<0x92, 0x93, "kmovb", VK8, GR32>,
VEX, PD;
let Predicates = [HasAVX512] in
defm KMOVW : avx512_mask_mov<0x90, 0x90, 0x91, "kmovw", VK16, v16i1, i16mem>,
avx512_mask_mov_gpr<0x92, 0x93, "kmovw", VK16, GR32>,
VEX, PS;
let Predicates = [HasBWI] in {
defm KMOVD : avx512_mask_mov<0x90, 0x90, 0x91, "kmovd", VK32, v32i1,i32mem>,
VEX, PD, VEX_W;
defm KMOVD : avx512_mask_mov_gpr<0x92, 0x93, "kmovd", VK32, GR32>,
VEX, XD;
defm KMOVQ : avx512_mask_mov<0x90, 0x90, 0x91, "kmovq", VK64, v64i1, i64mem>,
VEX, PS, VEX_W;
defm KMOVQ : avx512_mask_mov_gpr<0x92, 0x93, "kmovq", VK64, GR64>,
VEX, XD, VEX_W;
}
// GR from/to mask register
def : Pat<(v16i1 (bitconvert (i16 GR16:$src))),
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR16:$src, sub_16bit)), VK16)>;
def : Pat<(i16 (bitconvert (v16i1 VK16:$src))),
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK16:$src, GR32)), sub_16bit)>;
def : Pat<(v8i1 (bitconvert (i8 GR8:$src))),
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR8:$src, sub_8bit)), VK8)>;
def : Pat<(i8 (bitconvert (v8i1 VK8:$src))),
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK8:$src, GR32)), sub_8bit)>;
def : Pat<(i32 (zext (i16 (bitconvert (v16i1 VK16:$src))))),
(KMOVWrk VK16:$src)>;
def : Pat<(i32 (anyext (i16 (bitconvert (v16i1 VK16:$src))))),
(COPY_TO_REGCLASS VK16:$src, GR32)>;
def : Pat<(i32 (zext (i8 (bitconvert (v8i1 VK8:$src))))),
(KMOVBrk VK8:$src)>, Requires<[HasDQI]>;
def : Pat<(i32 (anyext (i8 (bitconvert (v8i1 VK8:$src))))),
(COPY_TO_REGCLASS VK8:$src, GR32)>;
def : Pat<(v32i1 (bitconvert (i32 GR32:$src))),
(COPY_TO_REGCLASS GR32:$src, VK32)>;
def : Pat<(i32 (bitconvert (v32i1 VK32:$src))),
(COPY_TO_REGCLASS VK32:$src, GR32)>;
def : Pat<(v64i1 (bitconvert (i64 GR64:$src))),
(COPY_TO_REGCLASS GR64:$src, VK64)>;
def : Pat<(i64 (bitconvert (v64i1 VK64:$src))),
(COPY_TO_REGCLASS VK64:$src, GR64)>;
// Load/store kreg
let Predicates = [HasDQI] in {
def : Pat<(store VK1:$src, addr:$dst),
(KMOVBmk addr:$dst, (COPY_TO_REGCLASS VK1:$src, VK8))>;
def : Pat<(v1i1 (load addr:$src)),
(COPY_TO_REGCLASS (KMOVBkm addr:$src), VK1)>;
def : Pat<(v2i1 (load addr:$src)),
(COPY_TO_REGCLASS (KMOVBkm addr:$src), VK2)>;
def : Pat<(v4i1 (load addr:$src)),
(COPY_TO_REGCLASS (KMOVBkm addr:$src), VK4)>;
}
let Predicates = [HasAVX512] in {
def : Pat<(v8i1 (bitconvert (i8 (load addr:$src)))),
(COPY_TO_REGCLASS (MOVZX32rm8 addr:$src), VK8)>;
}
let Predicates = [HasAVX512] in {
multiclass operation_gpr_mask_copy_lowering<RegisterClass maskRC, ValueType maskVT> {
def : Pat<(maskVT (scalar_to_vector GR32:$src)),
(COPY_TO_REGCLASS GR32:$src, maskRC)>;
def : Pat<(maskVT (scalar_to_vector GR8:$src)),
(COPY_TO_REGCLASS (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit), maskRC)>;
}
defm : operation_gpr_mask_copy_lowering<VK1, v1i1>;
defm : operation_gpr_mask_copy_lowering<VK2, v2i1>;
defm : operation_gpr_mask_copy_lowering<VK4, v4i1>;
defm : operation_gpr_mask_copy_lowering<VK8, v8i1>;
defm : operation_gpr_mask_copy_lowering<VK16, v16i1>;
defm : operation_gpr_mask_copy_lowering<VK32, v32i1>;
defm : operation_gpr_mask_copy_lowering<VK64, v64i1>;
def : Pat<(insert_subvector (v16i1 immAllZerosV),
(v1i1 (scalar_to_vector GR8:$src)), (iPTR 0)),
(COPY_TO_REGCLASS
(KMOVWkr (AND32ri8
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit),
(i32 1))), VK16)>;
}
// Mask unary operation
// - KNOT
multiclass avx512_mask_unop<bits<8> opc, string OpcodeStr,
RegisterClass KRC, SDPatternOperator OpNode,
X86FoldableSchedWrite sched, Predicate prd> {
let Predicates = [prd] in
def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set KRC:$dst, (OpNode KRC:$src))]>,
Sched<[sched]>;
}
multiclass avx512_mask_unop_all<bits<8> opc, string OpcodeStr,
SDPatternOperator OpNode,
X86FoldableSchedWrite sched> {
defm B : avx512_mask_unop<opc, !strconcat(OpcodeStr, "b"), VK8, OpNode,
sched, HasDQI>, VEX, PD;
defm W : avx512_mask_unop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode,
sched, HasAVX512>, VEX, PS;
defm D : avx512_mask_unop<opc, !strconcat(OpcodeStr, "d"), VK32, OpNode,
sched, HasBWI>, VEX, PD, VEX_W;
defm Q : avx512_mask_unop<opc, !strconcat(OpcodeStr, "q"), VK64, OpNode,
sched, HasBWI>, VEX, PS, VEX_W;
}
// TODO - do we need a X86SchedWriteWidths::KMASK type?
defm KNOT : avx512_mask_unop_all<0x44, "knot", vnot, SchedWriteVecLogic.XMM>;
// KNL does not support KMOVB, 8-bit mask is promoted to 16-bit
let Predicates = [HasAVX512, NoDQI] in
def : Pat<(vnot VK8:$src),
(COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$src, VK16)), VK8)>;
def : Pat<(vnot VK4:$src),
(COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK4:$src, VK16)), VK4)>;
def : Pat<(vnot VK2:$src),
(COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK2:$src, VK16)), VK2)>;
// Mask binary operation
// - KAND, KANDN, KOR, KXNOR, KXOR
multiclass avx512_mask_binop<bits<8> opc, string OpcodeStr,
RegisterClass KRC, SDPatternOperator OpNode,
X86FoldableSchedWrite sched, Predicate prd,
bit IsCommutable> {
let Predicates = [prd], isCommutable = IsCommutable in
def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set KRC:$dst, (OpNode KRC:$src1, KRC:$src2))]>,
Sched<[sched]>;
}
multiclass avx512_mask_binop_all<bits<8> opc, string OpcodeStr,
SDPatternOperator OpNode,
X86FoldableSchedWrite sched, bit IsCommutable,
Predicate prdW = HasAVX512> {
defm B : avx512_mask_binop<opc, !strconcat(OpcodeStr, "b"), VK8, OpNode,
sched, HasDQI, IsCommutable>, VEX_4V, VEX_L, PD;
defm W : avx512_mask_binop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode,
sched, prdW, IsCommutable>, VEX_4V, VEX_L, PS;
defm D : avx512_mask_binop<opc, !strconcat(OpcodeStr, "d"), VK32, OpNode,
sched, HasBWI, IsCommutable>, VEX_4V, VEX_L, VEX_W, PD;
defm Q : avx512_mask_binop<opc, !strconcat(OpcodeStr, "q"), VK64, OpNode,
sched, HasBWI, IsCommutable>, VEX_4V, VEX_L, VEX_W, PS;
}
def andn : PatFrag<(ops node:$i0, node:$i1), (and (not node:$i0), node:$i1)>;
def xnor : PatFrag<(ops node:$i0, node:$i1), (not (xor node:$i0, node:$i1))>;
// These nodes use 'vnot' instead of 'not' to support vectors.
def vandn : PatFrag<(ops node:$i0, node:$i1), (and (vnot node:$i0), node:$i1)>;
def vxnor : PatFrag<(ops node:$i0, node:$i1), (vnot (xor node:$i0, node:$i1))>;
// TODO - do we need a X86SchedWriteWidths::KMASK type?
defm KAND : avx512_mask_binop_all<0x41, "kand", and, SchedWriteVecLogic.XMM, 1>;
defm KOR : avx512_mask_binop_all<0x45, "kor", or, SchedWriteVecLogic.XMM, 1>;
defm KXNOR : avx512_mask_binop_all<0x46, "kxnor", vxnor, SchedWriteVecLogic.XMM, 1>;
defm KXOR : avx512_mask_binop_all<0x47, "kxor", xor, SchedWriteVecLogic.XMM, 1>;
defm KANDN : avx512_mask_binop_all<0x42, "kandn", vandn, SchedWriteVecLogic.XMM, 0>;
defm KADD : avx512_mask_binop_all<0x4A, "kadd", X86kadd, SchedWriteVecLogic.XMM, 1, HasDQI>;
multiclass avx512_binop_pat<SDPatternOperator VOpNode, SDPatternOperator OpNode,
Instruction Inst> {
// With AVX512F, 8-bit mask is promoted to 16-bit mask,
// for the DQI set, this type is legal and KxxxB instruction is used
let Predicates = [NoDQI] in
def : Pat<(VOpNode VK8:$src1, VK8:$src2),
(COPY_TO_REGCLASS
(Inst (COPY_TO_REGCLASS VK8:$src1, VK16),
(COPY_TO_REGCLASS VK8:$src2, VK16)), VK8)>;
// All types smaller than 8 bits require conversion anyway
def : Pat<(OpNode VK1:$src1, VK1:$src2),
(COPY_TO_REGCLASS (Inst
(COPY_TO_REGCLASS VK1:$src1, VK16),
(COPY_TO_REGCLASS VK1:$src2, VK16)), VK1)>;
def : Pat<(VOpNode VK2:$src1, VK2:$src2),
(COPY_TO_REGCLASS (Inst
(COPY_TO_REGCLASS VK2:$src1, VK16),
(COPY_TO_REGCLASS VK2:$src2, VK16)), VK1)>;
def : Pat<(VOpNode VK4:$src1, VK4:$src2),
(COPY_TO_REGCLASS (Inst
(COPY_TO_REGCLASS VK4:$src1, VK16),
(COPY_TO_REGCLASS VK4:$src2, VK16)), VK1)>;
}
defm : avx512_binop_pat<and, and, KANDWrr>;
defm : avx512_binop_pat<vandn, andn, KANDNWrr>;
defm : avx512_binop_pat<or, or, KORWrr>;
defm : avx512_binop_pat<vxnor, xnor, KXNORWrr>;
defm : avx512_binop_pat<xor, xor, KXORWrr>;
// Mask unpacking
multiclass avx512_mask_unpck<string Suffix,RegisterClass KRC, ValueType VT,
RegisterClass KRCSrc, X86FoldableSchedWrite sched,
Predicate prd> {
let Predicates = [prd] in {
let hasSideEffects = 0 in
def rr : I<0x4b, MRMSrcReg, (outs KRC:$dst),
(ins KRC:$src1, KRC:$src2),
"kunpck"#Suffix#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
VEX_4V, VEX_L, Sched<[sched]>;
def : Pat<(VT (concat_vectors KRCSrc:$src1, KRCSrc:$src2)),
(!cast<Instruction>(NAME##rr)
(COPY_TO_REGCLASS KRCSrc:$src2, KRC),
(COPY_TO_REGCLASS KRCSrc:$src1, KRC))>;
}
}
defm KUNPCKBW : avx512_mask_unpck<"bw", VK16, v16i1, VK8, WriteShuffle, HasAVX512>, PD;
defm KUNPCKWD : avx512_mask_unpck<"wd", VK32, v32i1, VK16, WriteShuffle, HasBWI>, PS;
defm KUNPCKDQ : avx512_mask_unpck<"dq", VK64, v64i1, VK32, WriteShuffle, HasBWI>, PS, VEX_W;
// Mask bit testing
multiclass avx512_mask_testop<bits<8> opc, string OpcodeStr, RegisterClass KRC,
SDNode OpNode, X86FoldableSchedWrite sched,
Predicate prd> {
let Predicates = [prd], Defs = [EFLAGS] in
def rr : I<opc, MRMSrcReg, (outs), (ins KRC:$src1, KRC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
[(set EFLAGS, (OpNode KRC:$src1, KRC:$src2))]>,
Sched<[sched]>;
}
multiclass avx512_mask_testop_w<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched,
Predicate prdW = HasAVX512> {
defm B : avx512_mask_testop<opc, OpcodeStr#"b", VK8, OpNode, sched, HasDQI>,
VEX, PD;
defm W : avx512_mask_testop<opc, OpcodeStr#"w", VK16, OpNode, sched, prdW>,
VEX, PS;
defm Q : avx512_mask_testop<opc, OpcodeStr#"q", VK64, OpNode, sched, HasBWI>,
VEX, PS, VEX_W;
defm D : avx512_mask_testop<opc, OpcodeStr#"d", VK32, OpNode, sched, HasBWI>,
VEX, PD, VEX_W;
}
// TODO - do we need a X86SchedWriteWidths::KMASK type?
defm KORTEST : avx512_mask_testop_w<0x98, "kortest", X86kortest, SchedWriteVecLogic.XMM>;
defm KTEST : avx512_mask_testop_w<0x99, "ktest", X86ktest, SchedWriteVecLogic.XMM, HasDQI>;
// Mask shift
multiclass avx512_mask_shiftop<bits<8> opc, string OpcodeStr, RegisterClass KRC,
SDNode OpNode, X86FoldableSchedWrite sched> {
let Predicates = [HasAVX512] in
def ri : Ii8<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src, u8imm:$imm),
!strconcat(OpcodeStr,
"\t{$imm, $src, $dst|$dst, $src, $imm}"),
[(set KRC:$dst, (OpNode KRC:$src, (i8 imm:$imm)))]>,
Sched<[sched]>;
}
multiclass avx512_mask_shiftop_w<bits<8> opc1, bits<8> opc2, string OpcodeStr,
SDNode OpNode, X86FoldableSchedWrite sched> {
defm W : avx512_mask_shiftop<opc1, !strconcat(OpcodeStr, "w"), VK16, OpNode,
sched>, VEX, TAPD, VEX_W;
let Predicates = [HasDQI] in
defm B : avx512_mask_shiftop<opc1, !strconcat(OpcodeStr, "b"), VK8, OpNode,
sched>, VEX, TAPD;
let Predicates = [HasBWI] in {
defm Q : avx512_mask_shiftop<opc2, !strconcat(OpcodeStr, "q"), VK64, OpNode,
sched>, VEX, TAPD, VEX_W;
defm D : avx512_mask_shiftop<opc2, !strconcat(OpcodeStr, "d"), VK32, OpNode,
sched>, VEX, TAPD;
}
}
defm KSHIFTL : avx512_mask_shiftop_w<0x32, 0x33, "kshiftl", X86kshiftl, WriteShuffle>;
defm KSHIFTR : avx512_mask_shiftop_w<0x30, 0x31, "kshiftr", X86kshiftr, WriteShuffle>;
// Patterns for comparing 128/256-bit integer vectors using 512-bit instruction.
multiclass axv512_icmp_packed_no_vlx_lowering<PatFrag Frag, string InstStr,
X86VectorVTInfo Narrow,
X86VectorVTInfo Wide> {
def : Pat<(Narrow.KVT (Frag (Narrow.VT Narrow.RC:$src1),
(Narrow.VT Narrow.RC:$src2))),
(COPY_TO_REGCLASS
(!cast<Instruction>(InstStr#"Zrr")
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx))),
Narrow.KRC)>;
def : Pat<(Narrow.KVT (and Narrow.KRC:$mask,
(Frag (Narrow.VT Narrow.RC:$src1),
(Narrow.VT Narrow.RC:$src2)))),
(COPY_TO_REGCLASS
(!cast<Instruction>(InstStr#"Zrrk")
(COPY_TO_REGCLASS Narrow.KRC:$mask, Wide.KRC),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx))),
Narrow.KRC)>;
}
// Patterns for comparing 128/256-bit integer vectors using 512-bit instruction.
multiclass axv512_icmp_packed_cc_no_vlx_lowering<PatFrag Frag,
string InstStr,
X86VectorVTInfo Narrow,
X86VectorVTInfo Wide> {
def : Pat<(Narrow.KVT (Frag:$cc (Narrow.VT Narrow.RC:$src1),
(Narrow.VT Narrow.RC:$src2), cond)),
(COPY_TO_REGCLASS
(!cast<Instruction>(InstStr##Zrri)
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)),
(Frag.OperandTransform $cc)), Narrow.KRC)>;
def : Pat<(Narrow.KVT (and Narrow.KRC:$mask,
(Narrow.KVT (Frag:$cc (Narrow.VT Narrow.RC:$src1),
(Narrow.VT Narrow.RC:$src2),
cond)))),
(COPY_TO_REGCLASS (!cast<Instruction>(InstStr##Zrrik)
(COPY_TO_REGCLASS Narrow.KRC:$mask, Wide.KRC),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)),
(Frag.OperandTransform $cc)), Narrow.KRC)>;
}
// Same as above, but for fp types which don't use PatFrags.
multiclass axv512_cmp_packed_cc_no_vlx_lowering<SDNode OpNode, string InstStr,
X86VectorVTInfo Narrow,
X86VectorVTInfo Wide> {
def : Pat<(Narrow.KVT (OpNode (Narrow.VT Narrow.RC:$src1),
(Narrow.VT Narrow.RC:$src2), imm:$cc)),
(COPY_TO_REGCLASS
(!cast<Instruction>(InstStr##Zrri)
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)),
imm:$cc), Narrow.KRC)>;
def : Pat<(Narrow.KVT (and Narrow.KRC:$mask,
(OpNode (Narrow.VT Narrow.RC:$src1),
(Narrow.VT Narrow.RC:$src2), imm:$cc))),
(COPY_TO_REGCLASS (!cast<Instruction>(InstStr##Zrrik)
(COPY_TO_REGCLASS Narrow.KRC:$mask, Wide.KRC),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)),
imm:$cc), Narrow.KRC)>;
}
let Predicates = [HasAVX512, NoVLX] in {
// AddedComplexity is needed because the explicit SETEQ/SETGT CondCode doesn't
// increase the pattern complexity the way an immediate would.
let AddedComplexity = 2 in {
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTD", v8i32x_info, v16i32_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQD", v8i32x_info, v16i32_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTD", v4i32x_info, v16i32_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQD", v4i32x_info, v16i32_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTQ", v4i64x_info, v8i64_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQQ", v4i64x_info, v8i64_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTQ", v2i64x_info, v8i64_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQQ", v2i64x_info, v8i64_info>;
}
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPD", v8i32x_info, v16i32_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUD", v8i32x_info, v16i32_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPD", v4i32x_info, v16i32_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUD", v4i32x_info, v16i32_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPQ", v4i64x_info, v8i64_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUQ", v4i64x_info, v8i64_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPQ", v2i64x_info, v8i64_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUQ", v2i64x_info, v8i64_info>;
defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPS", v8f32x_info, v16f32_info>;
defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPS", v4f32x_info, v16f32_info>;
defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPD", v4f64x_info, v8f64_info>;
defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPD", v2f64x_info, v8f64_info>;
}
let Predicates = [HasBWI, NoVLX] in {
// AddedComplexity is needed because the explicit SETEQ/SETGT CondCode doesn't
// increase the pattern complexity the way an immediate would.
let AddedComplexity = 2 in {
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTB", v32i8x_info, v64i8_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQB", v32i8x_info, v64i8_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTB", v16i8x_info, v64i8_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQB", v16i8x_info, v64i8_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTW", v16i16x_info, v32i16_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQW", v16i16x_info, v32i16_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTW", v8i16x_info, v32i16_info>;
defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQW", v8i16x_info, v32i16_info>;
}
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPB", v32i8x_info, v64i8_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUB", v32i8x_info, v64i8_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPB", v16i8x_info, v64i8_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUB", v16i8x_info, v64i8_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPW", v16i16x_info, v32i16_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUW", v16i16x_info, v32i16_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPW", v8i16x_info, v32i16_info>;
defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUW", v8i16x_info, v32i16_info>;
}
// Mask setting all 0s or 1s
multiclass avx512_mask_setop<RegisterClass KRC, ValueType VT, PatFrag Val> {
let Predicates = [HasAVX512] in
let isReMaterializable = 1, isAsCheapAsAMove = 1, isPseudo = 1,
SchedRW = [WriteZero] in
def #NAME# : I<0, Pseudo, (outs KRC:$dst), (ins), "",
[(set KRC:$dst, (VT Val))]>;
}
multiclass avx512_mask_setop_w<PatFrag Val> {
defm W : avx512_mask_setop<VK16, v16i1, Val>;
defm D : avx512_mask_setop<VK32, v32i1, Val>;
defm Q : avx512_mask_setop<VK64, v64i1, Val>;
}
defm KSET0 : avx512_mask_setop_w<immAllZerosV>;
defm KSET1 : avx512_mask_setop_w<immAllOnesV>;
// With AVX-512 only, 8-bit mask is promoted to 16-bit mask.
let Predicates = [HasAVX512] in {
def : Pat<(v8i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK8)>;
def : Pat<(v4i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK4)>;
def : Pat<(v2i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK2)>;
def : Pat<(v1i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK1)>;
def : Pat<(v8i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK8)>;
def : Pat<(v4i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK4)>;
def : Pat<(v2i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK2)>;
def : Pat<(v1i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK1)>;
}
// Patterns for kmask insert_subvector/extract_subvector to/from index=0
multiclass operation_subvector_mask_lowering<RegisterClass subRC, ValueType subVT,
RegisterClass RC, ValueType VT> {
def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))),
(subVT (COPY_TO_REGCLASS RC:$src, subRC))>;
def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))),
(VT (COPY_TO_REGCLASS subRC:$src, RC))>;
}
defm : operation_subvector_mask_lowering<VK1, v1i1, VK2, v2i1>;
defm : operation_subvector_mask_lowering<VK1, v1i1, VK4, v4i1>;
defm : operation_subvector_mask_lowering<VK1, v1i1, VK8, v8i1>;
defm : operation_subvector_mask_lowering<VK1, v1i1, VK16, v16i1>;
defm : operation_subvector_mask_lowering<VK1, v1i1, VK32, v32i1>;
defm : operation_subvector_mask_lowering<VK1, v1i1, VK64, v64i1>;
defm : operation_subvector_mask_lowering<VK2, v2i1, VK4, v4i1>;
defm : operation_subvector_mask_lowering<VK2, v2i1, VK8, v8i1>;
defm : operation_subvector_mask_lowering<VK2, v2i1, VK16, v16i1>;
defm : operation_subvector_mask_lowering<VK2, v2i1, VK32, v32i1>;
defm : operation_subvector_mask_lowering<VK2, v2i1, VK64, v64i1>;
defm : operation_subvector_mask_lowering<VK4, v4i1, VK8, v8i1>;
defm : operation_subvector_mask_lowering<VK4, v4i1, VK16, v16i1>;
defm : operation_subvector_mask_lowering<VK4, v4i1, VK32, v32i1>;
defm : operation_subvector_mask_lowering<VK4, v4i1, VK64, v64i1>;
defm : operation_subvector_mask_lowering<VK8, v8i1, VK16, v16i1>;
defm : operation_subvector_mask_lowering<VK8, v8i1, VK32, v32i1>;
defm : operation_subvector_mask_lowering<VK8, v8i1, VK64, v64i1>;
defm : operation_subvector_mask_lowering<VK16, v16i1, VK32, v32i1>;
defm : operation_subvector_mask_lowering<VK16, v16i1, VK64, v64i1>;
defm : operation_subvector_mask_lowering<VK32, v32i1, VK64, v64i1>;
//===----------------------------------------------------------------------===//
// AVX-512 - Aligned and unaligned load and store
//
multiclass avx512_load<bits<8> opc, string OpcodeStr, string Name,
X86VectorVTInfo _, PatFrag ld_frag, PatFrag mload,
X86SchedWriteMoveLS Sched, string EVEX2VEXOvrd,
bit NoRMPattern = 0,
SDPatternOperator SelectOprr = vselect> {
let hasSideEffects = 0 in {
let isMoveReg = 1 in
def rr : AVX512PI<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [],
_.ExeDomain>, EVEX, Sched<[Sched.RR]>,
EVEX2VEXOverride<EVEX2VEXOvrd#"rr">;
def rrkz : AVX512PI<opc, MRMSrcReg, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src),
!strconcat(OpcodeStr, "\t{$src, ${dst} {${mask}} {z}|",
"${dst} {${mask}} {z}, $src}"),
[(set _.RC:$dst, (_.VT (SelectOprr _.KRCWM:$mask,
(_.VT _.RC:$src),
_.ImmAllZerosV)))], _.ExeDomain>,
EVEX, EVEX_KZ, Sched<[Sched.RR]>;
let mayLoad = 1, canFoldAsLoad = 1, isReMaterializable = 1 in
def rm : AVX512PI<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.MemOp:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
!if(NoRMPattern, [],
[(set _.RC:$dst,
(_.VT (ld_frag addr:$src)))]),
_.ExeDomain>, EVEX, Sched<[Sched.RM]>,
EVEX2VEXOverride<EVEX2VEXOvrd#"rm">;
let Constraints = "$src0 = $dst", isConvertibleToThreeAddress = 1 in {
def rrk : AVX512PI<opc, MRMSrcReg, (outs _.RC:$dst),
(ins _.RC:$src0, _.KRCWM:$mask, _.RC:$src1),
!strconcat(OpcodeStr, "\t{$src1, ${dst} {${mask}}|",
"${dst} {${mask}}, $src1}"),
[(set _.RC:$dst, (_.VT (SelectOprr _.KRCWM:$mask,
(_.VT _.RC:$src1),
(_.VT _.RC:$src0))))], _.ExeDomain>,
EVEX, EVEX_K, Sched<[Sched.RR]>;
def rmk : AVX512PI<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.RC:$src0, _.KRCWM:$mask, _.MemOp:$src1),
!strconcat(OpcodeStr, "\t{$src1, ${dst} {${mask}}|",
"${dst} {${mask}}, $src1}"),
[(set _.RC:$dst, (_.VT
(vselect _.KRCWM:$mask,
(_.VT (ld_frag addr:$src1)),
(_.VT _.RC:$src0))))], _.ExeDomain>,
EVEX, EVEX_K, Sched<[Sched.RM]>;
}
def rmkz : AVX512PI<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.MemOp:$src),
OpcodeStr #"\t{$src, ${dst} {${mask}} {z}|"#
"${dst} {${mask}} {z}, $src}",
[(set _.RC:$dst, (_.VT (vselect _.KRCWM:$mask,
(_.VT (ld_frag addr:$src)), _.ImmAllZerosV)))],
_.ExeDomain>, EVEX, EVEX_KZ, Sched<[Sched.RM]>;
}
def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, undef)),
(!cast<Instruction>(Name#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$ptr)>;
def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, _.ImmAllZerosV)),
(!cast<Instruction>(Name#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$ptr)>;
def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, (_.VT _.RC:$src0))),
(!cast<Instruction>(Name#_.ZSuffix##rmk) _.RC:$src0,
_.KRCWM:$mask, addr:$ptr)>;
}
multiclass avx512_alignedload_vl<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _, Predicate prd,
X86SchedWriteMoveLSWidths Sched,
string EVEX2VEXOvrd, bit NoRMPattern = 0> {
let Predicates = [prd] in
defm Z : avx512_load<opc, OpcodeStr, NAME, _.info512,
_.info512.AlignedLdFrag, masked_load_aligned512,
Sched.ZMM, "", NoRMPattern>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_load<opc, OpcodeStr, NAME, _.info256,
_.info256.AlignedLdFrag, masked_load_aligned256,
Sched.YMM, EVEX2VEXOvrd#"Y", NoRMPattern>, EVEX_V256;
defm Z128 : avx512_load<opc, OpcodeStr, NAME, _.info128,
_.info128.AlignedLdFrag, masked_load_aligned128,
Sched.XMM, EVEX2VEXOvrd, NoRMPattern>, EVEX_V128;
}
}
multiclass avx512_load_vl<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _, Predicate prd,
X86SchedWriteMoveLSWidths Sched,
string EVEX2VEXOvrd, bit NoRMPattern = 0,
SDPatternOperator SelectOprr = vselect> {
let Predicates = [prd] in
defm Z : avx512_load<opc, OpcodeStr, NAME, _.info512, _.info512.LdFrag,
masked_load_unaligned, Sched.ZMM, "",
NoRMPattern, SelectOprr>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_load<opc, OpcodeStr, NAME, _.info256, _.info256.LdFrag,
masked_load_unaligned, Sched.YMM, EVEX2VEXOvrd#"Y",
NoRMPattern, SelectOprr>, EVEX_V256;
defm Z128 : avx512_load<opc, OpcodeStr, NAME, _.info128, _.info128.LdFrag,
masked_load_unaligned, Sched.XMM, EVEX2VEXOvrd,
NoRMPattern, SelectOprr>, EVEX_V128;
}
}
multiclass avx512_store<bits<8> opc, string OpcodeStr, string BaseName,
X86VectorVTInfo _, PatFrag st_frag, PatFrag mstore,
X86SchedWriteMoveLS Sched, string EVEX2VEXOvrd,
bit NoMRPattern = 0> {
let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
let isMoveReg = 1 in
def rr_REV : AVX512PI<opc, MRMDestReg, (outs _.RC:$dst), (ins _.RC:$src),
OpcodeStr # "\t{$src, $dst|$dst, $src}",
[], _.ExeDomain>, EVEX,
FoldGenData<BaseName#_.ZSuffix#rr>, Sched<[Sched.RR]>,
EVEX2VEXOverride<EVEX2VEXOvrd#"rr_REV">;
def rrk_REV : AVX512PI<opc, MRMDestReg, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src),
OpcodeStr # "\t{$src, ${dst} {${mask}}|"#
"${dst} {${mask}}, $src}",
[], _.ExeDomain>, EVEX, EVEX_K,
FoldGenData<BaseName#_.ZSuffix#rrk>,
Sched<[Sched.RR]>;
def rrkz_REV : AVX512PI<opc, MRMDestReg, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src),
OpcodeStr # "\t{$src, ${dst} {${mask}} {z}|" #
"${dst} {${mask}} {z}, $src}",
[], _.ExeDomain>, EVEX, EVEX_KZ,
FoldGenData<BaseName#_.ZSuffix#rrkz>,
Sched<[Sched.RR]>;
}
let hasSideEffects = 0, mayStore = 1 in
def mr : AVX512PI<opc, MRMDestMem, (outs), (ins _.MemOp:$dst, _.RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
!if(NoMRPattern, [],
[(st_frag (_.VT _.RC:$src), addr:$dst)]),
_.ExeDomain>, EVEX, Sched<[Sched.MR]>,
EVEX2VEXOverride<EVEX2VEXOvrd#"mr">;
def mrk : AVX512PI<opc, MRMDestMem, (outs),
(ins _.MemOp:$dst, _.KRCWM:$mask, _.RC:$src),
OpcodeStr # "\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}",
[], _.ExeDomain>, EVEX, EVEX_K, Sched<[Sched.MR]>,
NotMemoryFoldable;
def: Pat<(mstore (_.VT _.RC:$src), addr:$ptr, _.KRCWM:$mask),
(!cast<Instruction>(BaseName#_.ZSuffix#mrk) addr:$ptr,
_.KRCWM:$mask, _.RC:$src)>;
def : InstAlias<OpcodeStr#".s\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(BaseName#_.ZSuffix#"rr_REV")
_.RC:$dst, _.RC:$src), 0>;
def : InstAlias<OpcodeStr#".s\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}",
(!cast<Instruction>(BaseName#_.ZSuffix#"rrk_REV")
_.RC:$dst, _.KRCWM:$mask, _.RC:$src), 0>;
def : InstAlias<OpcodeStr#".s\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}",
(!cast<Instruction>(BaseName#_.ZSuffix#"rrkz_REV")
_.RC:$dst, _.KRCWM:$mask, _.RC:$src), 0>;
}
multiclass avx512_store_vl< bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _, Predicate prd,
X86SchedWriteMoveLSWidths Sched,
string EVEX2VEXOvrd, bit NoMRPattern = 0> {
let Predicates = [prd] in
defm Z : avx512_store<opc, OpcodeStr, NAME, _.info512, store,
masked_store_unaligned, Sched.ZMM, "",
NoMRPattern>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_store<opc, OpcodeStr, NAME, _.info256, store,
masked_store_unaligned, Sched.YMM,
EVEX2VEXOvrd#"Y", NoMRPattern>, EVEX_V256;
defm Z128 : avx512_store<opc, OpcodeStr, NAME, _.info128, store,
masked_store_unaligned, Sched.XMM, EVEX2VEXOvrd,
NoMRPattern>, EVEX_V128;
}
}
multiclass avx512_alignedstore_vl<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo _, Predicate prd,
X86SchedWriteMoveLSWidths Sched,
string EVEX2VEXOvrd, bit NoMRPattern = 0> {
let Predicates = [prd] in
defm Z : avx512_store<opc, OpcodeStr, NAME, _.info512, alignedstore,
masked_store_aligned512, Sched.ZMM, "",
NoMRPattern>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_store<opc, OpcodeStr, NAME, _.info256, alignedstore,
masked_store_aligned256, Sched.YMM,
EVEX2VEXOvrd#"Y", NoMRPattern>, EVEX_V256;
defm Z128 : avx512_store<opc, OpcodeStr, NAME, _.info128, alignedstore,
masked_store_aligned128, Sched.XMM, EVEX2VEXOvrd,
NoMRPattern>, EVEX_V128;
}
}
defm VMOVAPS : avx512_alignedload_vl<0x28, "vmovaps", avx512vl_f32_info,
HasAVX512, SchedWriteFMoveLS, "VMOVAPS">,
avx512_alignedstore_vl<0x29, "vmovaps", avx512vl_f32_info,
HasAVX512, SchedWriteFMoveLS, "VMOVAPS">,
PS, EVEX_CD8<32, CD8VF>;
defm VMOVAPD : avx512_alignedload_vl<0x28, "vmovapd", avx512vl_f64_info,
HasAVX512, SchedWriteFMoveLS, "VMOVAPD">,
avx512_alignedstore_vl<0x29, "vmovapd", avx512vl_f64_info,
HasAVX512, SchedWriteFMoveLS, "VMOVAPD">,
PD, VEX_W, EVEX_CD8<64, CD8VF>;
defm VMOVUPS : avx512_load_vl<0x10, "vmovups", avx512vl_f32_info, HasAVX512,
SchedWriteFMoveLS, "VMOVUPS", 0, null_frag>,
avx512_store_vl<0x11, "vmovups", avx512vl_f32_info, HasAVX512,
SchedWriteFMoveLS, "VMOVUPS">,
PS, EVEX_CD8<32, CD8VF>;
defm VMOVUPD : avx512_load_vl<0x10, "vmovupd", avx512vl_f64_info, HasAVX512,
SchedWriteFMoveLS, "VMOVUPD", 0, null_frag>,
avx512_store_vl<0x11, "vmovupd", avx512vl_f64_info, HasAVX512,
SchedWriteFMoveLS, "VMOVUPD">,
PD, VEX_W, EVEX_CD8<64, CD8VF>;
defm VMOVDQA32 : avx512_alignedload_vl<0x6F, "vmovdqa32", avx512vl_i32_info,
HasAVX512, SchedWriteVecMoveLS,
"VMOVDQA", 1>,
avx512_alignedstore_vl<0x7F, "vmovdqa32", avx512vl_i32_info,
HasAVX512, SchedWriteVecMoveLS,
"VMOVDQA", 1>,
PD, EVEX_CD8<32, CD8VF>;
defm VMOVDQA64 : avx512_alignedload_vl<0x6F, "vmovdqa64", avx512vl_i64_info,
HasAVX512, SchedWriteVecMoveLS,
"VMOVDQA">,
avx512_alignedstore_vl<0x7F, "vmovdqa64", avx512vl_i64_info,
HasAVX512, SchedWriteVecMoveLS,
"VMOVDQA">,
PD, VEX_W, EVEX_CD8<64, CD8VF>;
defm VMOVDQU8 : avx512_load_vl<0x6F, "vmovdqu8", avx512vl_i8_info, HasBWI,
SchedWriteVecMoveLS, "VMOVDQU", 1>,
avx512_store_vl<0x7F, "vmovdqu8", avx512vl_i8_info, HasBWI,
SchedWriteVecMoveLS, "VMOVDQU", 1>,
XD, EVEX_CD8<8, CD8VF>;
defm VMOVDQU16 : avx512_load_vl<0x6F, "vmovdqu16", avx512vl_i16_info, HasBWI,
SchedWriteVecMoveLS, "VMOVDQU", 1>,
avx512_store_vl<0x7F, "vmovdqu16", avx512vl_i16_info, HasBWI,
SchedWriteVecMoveLS, "VMOVDQU", 1>,
XD, VEX_W, EVEX_CD8<16, CD8VF>;
defm VMOVDQU32 : avx512_load_vl<0x6F, "vmovdqu32", avx512vl_i32_info, HasAVX512,
SchedWriteVecMoveLS, "VMOVDQU", 1, null_frag>,
avx512_store_vl<0x7F, "vmovdqu32", avx512vl_i32_info, HasAVX512,
SchedWriteVecMoveLS, "VMOVDQU", 1>,
XS, EVEX_CD8<32, CD8VF>;
defm VMOVDQU64 : avx512_load_vl<0x6F, "vmovdqu64", avx512vl_i64_info, HasAVX512,
SchedWriteVecMoveLS, "VMOVDQU", 0, null_frag>,
avx512_store_vl<0x7F, "vmovdqu64", avx512vl_i64_info, HasAVX512,
SchedWriteVecMoveLS, "VMOVDQU">,
XS, VEX_W, EVEX_CD8<64, CD8VF>;
// Special instructions to help with spilling when we don't have VLX. We need
// to load or store from a ZMM register instead. These are converted in
// expandPostRAPseudos.
let isReMaterializable = 1, canFoldAsLoad = 1,
isPseudo = 1, mayLoad = 1, hasSideEffects = 0 in {
def VMOVAPSZ128rm_NOVLX : I<0, Pseudo, (outs VR128X:$dst), (ins f128mem:$src),
"", []>, Sched<[WriteFLoadX]>;
def VMOVAPSZ256rm_NOVLX : I<0, Pseudo, (outs VR256X:$dst), (ins f256mem:$src),
"", []>, Sched<[WriteFLoadY]>;
def VMOVUPSZ128rm_NOVLX : I<0, Pseudo, (outs VR128X:$dst), (ins f128mem:$src),
"", []>, Sched<[WriteFLoadX]>;
def VMOVUPSZ256rm_NOVLX : I<0, Pseudo, (outs VR256X:$dst), (ins f256mem:$src),
"", []>, Sched<[WriteFLoadY]>;
}
let isPseudo = 1, mayStore = 1, hasSideEffects = 0 in {
def VMOVAPSZ128mr_NOVLX : I<0, Pseudo, (outs), (ins f128mem:$dst, VR128X:$src),
"", []>, Sched<[WriteFStoreX]>;
def VMOVAPSZ256mr_NOVLX : I<0, Pseudo, (outs), (ins f256mem:$dst, VR256X:$src),
"", []>, Sched<[WriteFStoreY]>;
def VMOVUPSZ128mr_NOVLX : I<0, Pseudo, (outs), (ins f128mem:$dst, VR128X:$src),
"", []>, Sched<[WriteFStoreX]>;
def VMOVUPSZ256mr_NOVLX : I<0, Pseudo, (outs), (ins f256mem:$dst, VR256X:$src),
"", []>, Sched<[WriteFStoreY]>;
}
def : Pat<(v8i64 (vselect VK8WM:$mask, (bc_v8i64 (v16i32 immAllZerosV)),
(v8i64 VR512:$src))),
(VMOVDQA64Zrrkz (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$mask, VK16)),
VK8), VR512:$src)>;
def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 immAllZerosV),
(v16i32 VR512:$src))),
(VMOVDQA32Zrrkz (KNOTWrr VK16WM:$mask), VR512:$src)>;
// These patterns exist to prevent the above patterns from introducing a second
// mask inversion when one already exists.
def : Pat<(v8i64 (vselect (xor VK8:$mask, (v8i1 immAllOnesV)),
(bc_v8i64 (v16i32 immAllZerosV)),
(v8i64 VR512:$src))),
(VMOVDQA64Zrrkz VK8:$mask, VR512:$src)>;
def : Pat<(v16i32 (vselect (xor VK16:$mask, (v16i1 immAllOnesV)),
(v16i32 immAllZerosV),
(v16i32 VR512:$src))),
(VMOVDQA32Zrrkz VK16WM:$mask, VR512:$src)>;
multiclass mask_move_lowering<string InstrStr, X86VectorVTInfo Narrow,
X86VectorVTInfo Wide> {
def : Pat<(Narrow.VT (vselect (Narrow.KVT Narrow.KRCWM:$mask),
Narrow.RC:$src1, Narrow.RC:$src0)),
(EXTRACT_SUBREG
(Wide.VT
(!cast<Instruction>(InstrStr#"rrk")
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src0, Narrow.SubRegIdx)),
(COPY_TO_REGCLASS Narrow.KRCWM:$mask, Wide.KRCWM),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)))),
Narrow.SubRegIdx)>;
def : Pat<(Narrow.VT (vselect (Narrow.KVT Narrow.KRCWM:$mask),
Narrow.RC:$src1, Narrow.ImmAllZerosV)),
(EXTRACT_SUBREG
(Wide.VT
(!cast<Instruction>(InstrStr#"rrkz")
(COPY_TO_REGCLASS Narrow.KRCWM:$mask, Wide.KRCWM),
(Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)))),
Narrow.SubRegIdx)>;
}
// Patterns for handling v8i1 selects of 256-bit vectors when VLX isn't
// available. Use a 512-bit operation and extract.
let Predicates = [HasAVX512, NoVLX] in {
defm : mask_move_lowering<"VMOVAPSZ", v4f32x_info, v16f32_info>;
defm : mask_move_lowering<"VMOVDQA32Z", v4i32x_info, v16i32_info>;
defm : mask_move_lowering<"VMOVAPSZ", v8f32x_info, v16f32_info>;
defm : mask_move_lowering<"VMOVDQA32Z", v8i32x_info, v16i32_info>;
defm : mask_move_lowering<"VMOVAPDZ", v2f64x_info, v8f64_info>;
defm : mask_move_lowering<"VMOVDQA64Z", v2i64x_info, v8i64_info>;
defm : mask_move_lowering<"VMOVAPDZ", v4f64x_info, v8f64_info>;
defm : mask_move_lowering<"VMOVDQA64Z", v4i64x_info, v8i64_info>;
}
let Predicates = [HasBWI, NoVLX] in {
defm : mask_move_lowering<"VMOVDQU8Z", v16i8x_info, v64i8_info>;
defm : mask_move_lowering<"VMOVDQU8Z", v32i8x_info, v64i8_info>;
defm : mask_move_lowering<"VMOVDQU16Z", v8i16x_info, v32i16_info>;
defm : mask_move_lowering<"VMOVDQU16Z", v16i16x_info, v32i16_info>;
}
let Predicates = [HasAVX512] in {
// 512-bit load.
def : Pat<(alignedloadv16i32 addr:$src),
(VMOVDQA64Zrm addr:$src)>;
def : Pat<(alignedloadv32i16 addr:$src),
(VMOVDQA64Zrm addr:$src)>;
def : Pat<(alignedloadv64i8 addr:$src),
(VMOVDQA64Zrm addr:$src)>;
def : Pat<(loadv16i32 addr:$src),
(VMOVDQU64Zrm addr:$src)>;
def : Pat<(loadv32i16 addr:$src),
(VMOVDQU64Zrm addr:$src)>;
def : Pat<(loadv64i8 addr:$src),
(VMOVDQU64Zrm addr:$src)>;
// 512-bit store.
def : Pat<(alignedstore (v16i32 VR512:$src), addr:$dst),
(VMOVDQA64Zmr addr:$dst, VR512:$src)>;
def : Pat<(alignedstore (v32i16 VR512:$src), addr:$dst),
(VMOVDQA64Zmr addr:$dst, VR512:$src)>;
def : Pat<(alignedstore (v64i8 VR512:$src), addr:$dst),
(VMOVDQA64Zmr addr:$dst, VR512:$src)>;
def : Pat<(store (v16i32 VR512:$src), addr:$dst),
(VMOVDQU64Zmr addr:$dst, VR512:$src)>;
def : Pat<(store (v32i16 VR512:$src), addr:$dst),
(VMOVDQU64Zmr addr:$dst, VR512:$src)>;
def : Pat<(store (v64i8 VR512:$src), addr:$dst),
(VMOVDQU64Zmr addr:$dst, VR512:$src)>;
}
let Predicates = [HasVLX] in {
// 128-bit load.
def : Pat<(alignedloadv4i32 addr:$src),
(VMOVDQA64Z128rm addr:$src)>;
def : Pat<(alignedloadv8i16 addr:$src),
(VMOVDQA64Z128rm addr:$src)>;
def : Pat<(alignedloadv16i8 addr:$src),
(VMOVDQA64Z128rm addr:$src)>;
def : Pat<(loadv4i32 addr:$src),
(VMOVDQU64Z128rm addr:$src)>;
def : Pat<(loadv8i16 addr:$src),
(VMOVDQU64Z128rm addr:$src)>;
def : Pat<(loadv16i8 addr:$src),
(VMOVDQU64Z128rm addr:$src)>;
// 128-bit store.
def : Pat<(alignedstore (v4i32 VR128X:$src), addr:$dst),
(VMOVDQA64Z128mr addr:$dst, VR128X:$src)>;
def : Pat<(alignedstore (v8i16 VR128X:$src), addr:$dst),
(VMOVDQA64Z128mr addr:$dst, VR128X:$src)>;
def : Pat<(alignedstore (v16i8 VR128X:$src), addr:$dst),
(VMOVDQA64Z128mr addr:$dst, VR128X:$src)>;
def : Pat<(store (v4i32 VR128X:$src), addr:$dst),
(VMOVDQU64Z128mr addr:$dst, VR128X:$src)>;
def : Pat<(store (v8i16 VR128X:$src), addr:$dst),
(VMOVDQU64Z128mr addr:$dst, VR128X:$src)>;
def : Pat<(store (v16i8 VR128X:$src), addr:$dst),
(VMOVDQU64Z128mr addr:$dst, VR128X:$src)>;
// 256-bit load.
def : Pat<(alignedloadv8i32 addr:$src),
(VMOVDQA64Z256rm addr:$src)>;
def : Pat<(alignedloadv16i16 addr:$src),
(VMOVDQA64Z256rm addr:$src)>;
def : Pat<(alignedloadv32i8 addr:$src),
(VMOVDQA64Z256rm addr:$src)>;
def : Pat<(loadv8i32 addr:$src),
(VMOVDQU64Z256rm addr:$src)>;
def : Pat<(loadv16i16 addr:$src),
(VMOVDQU64Z256rm addr:$src)>;
def : Pat<(loadv32i8 addr:$src),
(VMOVDQU64Z256rm addr:$src)>;
// 256-bit store.
def : Pat<(alignedstore (v8i32 VR256X:$src), addr:$dst),
(VMOVDQA64Z256mr addr:$dst, VR256X:$src)>;
def : Pat<(alignedstore (v16i16 VR256X:$src), addr:$dst),
(VMOVDQA64Z256mr addr:$dst, VR256X:$src)>;
def : Pat<(alignedstore (v32i8 VR256X:$src), addr:$dst),
(VMOVDQA64Z256mr addr:$dst, VR256X:$src)>;
def : Pat<(store (v8i32 VR256X:$src), addr:$dst),
(VMOVDQU64Z256mr addr:$dst, VR256X:$src)>;
def : Pat<(store (v16i16 VR256X:$src), addr:$dst),
(VMOVDQU64Z256mr addr:$dst, VR256X:$src)>;
def : Pat<(store (v32i8 VR256X:$src), addr:$dst),
(VMOVDQU64Z256mr addr:$dst, VR256X:$src)>;
}
multiclass masked_move_for_extract<string InstrStr, X86VectorVTInfo From,
X86VectorVTInfo To, X86VectorVTInfo Cast> {
def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask,
(bitconvert
(To.VT (extract_subvector
(From.VT From.RC:$src), (iPTR 0)))),
To.RC:$src0)),
(Cast.VT (!cast<Instruction>(InstrStr#"rrk")
Cast.RC:$src0, Cast.KRCWM:$mask,
(To.VT (EXTRACT_SUBREG From.RC:$src, To.SubRegIdx))))>;
def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask,
(bitconvert
(To.VT (extract_subvector
(From.VT From.RC:$src), (iPTR 0)))),
Cast.ImmAllZerosV)),
(Cast.VT (!cast<Instruction>(InstrStr#"rrkz")
Cast.KRCWM:$mask,
(To.VT (EXTRACT_SUBREG From.RC:$src, To.SubRegIdx))))>;
}
let Predicates = [HasVLX] in {
// A masked extract from the first 128-bits of a 256-bit vector can be
// implemented with masked move.
defm : masked_move_for_extract<"VMOVDQA64Z128", v4i64x_info, v2i64x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z128", v8i32x_info, v4i32x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z128", v16i16x_info, v8i16x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z128", v32i8x_info, v16i8x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v4i64x_info, v2i64x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v8i32x_info, v4i32x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v16i16x_info, v8i16x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v32i8x_info, v16i8x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVAPDZ128", v4f64x_info, v2f64x_info, v2f64x_info>;
defm : masked_move_for_extract<"VMOVAPDZ128", v8f32x_info, v4f32x_info, v2f64x_info>;
defm : masked_move_for_extract<"VMOVAPSZ128", v4f64x_info, v2f64x_info, v4f32x_info>;
defm : masked_move_for_extract<"VMOVAPSZ128", v8f32x_info, v4f32x_info, v4f32x_info>;
// A masked extract from the first 128-bits of a 512-bit vector can be
// implemented with masked move.
defm : masked_move_for_extract<"VMOVDQA64Z128", v8i64_info, v2i64x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z128", v16i32_info, v4i32x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z128", v32i16_info, v8i16x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z128", v64i8_info, v16i8x_info, v2i64x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v8i64_info, v2i64x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v16i32_info, v4i32x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v32i16_info, v8i16x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z128", v64i8_info, v16i8x_info, v4i32x_info>;
defm : masked_move_for_extract<"VMOVAPDZ128", v8f64_info, v2f64x_info, v2f64x_info>;
defm : masked_move_for_extract<"VMOVAPDZ128", v16f32_info, v4f32x_info, v2f64x_info>;
defm : masked_move_for_extract<"VMOVAPSZ128", v8f64_info, v2f64x_info, v4f32x_info>;
defm : masked_move_for_extract<"VMOVAPSZ128", v16f32_info, v4f32x_info, v4f32x_info>;
// A masked extract from the first 256-bits of a 512-bit vector can be
// implemented with masked move.
defm : masked_move_for_extract<"VMOVDQA64Z256", v8i64_info, v4i64x_info, v4i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z256", v16i32_info, v8i32x_info, v4i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z256", v32i16_info, v16i16x_info, v4i64x_info>;
defm : masked_move_for_extract<"VMOVDQA64Z256", v64i8_info, v32i8x_info, v4i64x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z256", v8i64_info, v4i64x_info, v8i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z256", v16i32_info, v8i32x_info, v8i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z256", v32i16_info, v16i16x_info, v8i32x_info>;
defm : masked_move_for_extract<"VMOVDQA32Z256", v64i8_info, v32i8x_info, v8i32x_info>;
defm : masked_move_for_extract<"VMOVAPDZ256", v8f64_info, v4f64x_info, v4f64x_info>;
defm : masked_move_for_extract<"VMOVAPDZ256", v16f32_info, v8f32x_info, v4f64x_info>;
defm : masked_move_for_extract<"VMOVAPSZ256", v8f64_info, v4f64x_info, v8f32x_info>;
defm : masked_move_for_extract<"VMOVAPSZ256", v16f32_info, v8f32x_info, v8f32x_info>;
}
// Move Int Doubleword to Packed Double Int
//
let ExeDomain = SSEPackedInt in {
def VMOVDI2PDIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR32:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(set VR128X:$dst,
(v4i32 (scalar_to_vector GR32:$src)))]>,
EVEX, Sched<[WriteVecMoveFromGpr]>;
def VMOVDI2PDIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst), (ins i32mem:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(set VR128X:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))]>,
EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecLoad]>;
def VMOV64toPQIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR64:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128X:$dst,
(v2i64 (scalar_to_vector GR64:$src)))]>,
EVEX, VEX_W, Sched<[WriteVecMoveFromGpr]>;
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in
def VMOV64toPQIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst),
(ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}", []>,
EVEX, VEX_W, EVEX_CD8<64, CD8VT1>, Sched<[WriteVecLoad]>;
let isCodeGenOnly = 1 in {
def VMOV64toSDZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR64X:$dst), (ins GR64:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set FR64X:$dst, (bitconvert GR64:$src))]>,
EVEX, VEX_W, Sched<[WriteVecMoveFromGpr]>;
def VMOV64toSDZrm : AVX512XSI<0x7E, MRMSrcMem, (outs FR64X:$dst), (ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set FR64X:$dst, (bitconvert (loadi64 addr:$src)))]>,
EVEX, VEX_W, EVEX_CD8<8, CD8VT8>, Sched<[WriteVecLoad]>;
def VMOVSDto64Zrr : AVX512BI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64X:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64X:$src))]>,
EVEX, VEX_W, Sched<[WriteVecMoveFromGpr]>;
def VMOVSDto64Zmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64X:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64X:$src)), addr:$dst)]>,
EVEX, VEX_W, Sched<[WriteVecStore]>,
EVEX_CD8<64, CD8VT1>;
}
} // ExeDomain = SSEPackedInt
// Move Int Doubleword to Single Scalar
//
let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
def VMOVDI2SSZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR32X:$dst), (ins GR32:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(set FR32X:$dst, (bitconvert GR32:$src))]>,
EVEX, Sched<[WriteVecMoveFromGpr]>;
def VMOVDI2SSZrm : AVX512BI<0x6E, MRMSrcMem, (outs FR32X:$dst), (ins i32mem:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(set FR32X:$dst, (bitconvert (loadi32 addr:$src)))]>,
EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecLoad]>;
} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
// Move doubleword from xmm register to r/m32
//
let ExeDomain = SSEPackedInt in {
def VMOVPDI2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128X:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (extractelt (v4i32 VR128X:$src),
(iPTR 0)))]>,
EVEX, Sched<[WriteVecMoveToGpr]>;
def VMOVPDI2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs),
(ins i32mem:$dst, VR128X:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(store (i32 (extractelt (v4i32 VR128X:$src),
(iPTR 0))), addr:$dst)]>,
EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecStore]>;
} // ExeDomain = SSEPackedInt
// Move quadword from xmm1 register to r/m64
//
let ExeDomain = SSEPackedInt in {
def VMOVPQIto64Zrr : I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128X:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (extractelt (v2i64 VR128X:$src),
(iPTR 0)))]>,
PD, EVEX, VEX_W, Sched<[WriteVecMoveToGpr]>,
Requires<[HasAVX512]>;
let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in
def VMOVPQIto64Zmr : I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128X:$src),
"vmovq\t{$src, $dst|$dst, $src}", []>, PD,
EVEX, VEX_W, Sched<[WriteVecStore]>,
Requires<[HasAVX512, In64BitMode]>;
def VMOVPQI2QIZmr : I<0xD6, MRMDestMem, (outs),
(ins i64mem:$dst, VR128X:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(store (extractelt (v2i64 VR128X:$src), (iPTR 0)),
addr:$dst)]>,
EVEX, PD, VEX_W, EVEX_CD8<64, CD8VT1>,
Sched<[WriteVecStore]>, Requires<[HasAVX512]>;
let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in
def VMOVPQI2QIZrr : AVX512BI<0xD6, MRMDestReg, (outs VR128X:$dst),
(ins VR128X:$src),
"vmovq\t{$src, $dst|$dst, $src}", []>,
EVEX, VEX_W, Sched<[SchedWriteVecLogic.XMM]>;
} // ExeDomain = SSEPackedInt
def : InstAlias<"vmovq.s\t{$src, $dst|$dst, $src}",
(VMOVPQI2QIZrr VR128X:$dst, VR128X:$src), 0>;
// Move Scalar Single to Double Int
//
let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
def VMOVSS2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst),
(ins FR32X:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32X:$src))]>,
EVEX, Sched<[WriteVecMoveToGpr]>;
def VMOVSS2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs),
(ins i32mem:$dst, FR32X:$src),
"vmovd\t{$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32X:$src)), addr:$dst)]>,
EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecStore]>;
} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
// Move Quadword Int to Packed Quadword Int
//
let ExeDomain = SSEPackedInt in {
def VMOVQI2PQIZrm : AVX512XSI<0x7E, MRMSrcMem, (outs VR128X:$dst),
(ins i64mem:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128X:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>,
EVEX, VEX_W, EVEX_CD8<8, CD8VT8>, Sched<[WriteVecLoad]>;
} // ExeDomain = SSEPackedInt
// Allow "vmovd" but print "vmovq".
def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
(VMOV64toPQIZrr VR128X:$dst, GR64:$src), 0>;
def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
(VMOVPQIto64Zrr GR64:$dst, VR128X:$src), 0>;
//===----------------------------------------------------------------------===//
// AVX-512 MOVSS, MOVSD
//===----------------------------------------------------------------------===//
multiclass avx512_move_scalar<string asm, SDNode OpNode,
X86VectorVTInfo _> {
let Predicates = [HasAVX512, OptForSize] in
def rr : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2),
!strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.RC:$dst, (_.VT (OpNode _.RC:$src1, _.RC:$src2)))],
_.ExeDomain>, EVEX_4V, Sched<[SchedWriteFShuffle.XMM]>;
def rrkz : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
!strconcat(asm, "\t{$src2, $src1, $dst {${mask}} {z}|",
"$dst {${mask}} {z}, $src1, $src2}"),
[(set _.RC:$dst, (_.VT (X86selects _.KRCWM:$mask,
(_.VT (OpNode _.RC:$src1, _.RC:$src2)),
_.ImmAllZerosV)))],
_.ExeDomain>, EVEX_4V, EVEX_KZ, Sched<[SchedWriteFShuffle.XMM]>;
let Constraints = "$src0 = $dst" in
def rrk : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst),
(ins _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, _.RC:$src2),
!strconcat(asm, "\t{$src2, $src1, $dst {${mask}}|",
"$dst {${mask}}, $src1, $src2}"),
[(set _.RC:$dst, (_.VT (X86selects _.KRCWM:$mask,
(_.VT (OpNode _.RC:$src1, _.RC:$src2)),
(_.VT _.RC:$src0))))],
_.ExeDomain>, EVEX_4V, EVEX_K, Sched<[SchedWriteFShuffle.XMM]>;
let canFoldAsLoad = 1, isReMaterializable = 1 in
def rm : AVX512PI<0x10, MRMSrcMem, (outs _.FRC:$dst), (ins _.ScalarMemOp:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(set _.FRC:$dst, (_.ScalarLdFrag addr:$src))],
_.ExeDomain>, EVEX, Sched<[WriteFLoad]>;
let mayLoad = 1, hasSideEffects = 0 in {
let Constraints = "$src0 = $dst" in
def rmk : AVX512PI<0x10, MRMSrcMem, (outs _.RC:$dst),
(ins _.RC:$src0, _.KRCWM:$mask, _.ScalarMemOp:$src),
!strconcat(asm, "\t{$src, $dst {${mask}}|",
"$dst {${mask}}, $src}"),
[], _.ExeDomain>, EVEX, EVEX_K, Sched<[WriteFLoad]>;
def rmkz : AVX512PI<0x10, MRMSrcMem, (outs _.RC:$dst),
(ins _.KRCWM:$mask, _.ScalarMemOp:$src),
!strconcat(asm, "\t{$src, $dst {${mask}} {z}|",
"$dst {${mask}} {z}, $src}"),
[], _.ExeDomain>, EVEX, EVEX_KZ, Sched<[WriteFLoad]>;
}
def mr: AVX512PI<0x11, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, _.FRC:$src),
!strconcat(asm, "\t{$src, $dst|$dst, $src}"),
[(store _.FRC:$src, addr:$dst)], _.ExeDomain>,
EVEX, Sched<[WriteFStore]>;
let mayStore = 1, hasSideEffects = 0 in
def mrk: AVX512PI<0x11, MRMDestMem, (outs),
(ins _.ScalarMemOp:$dst, VK1WM:$mask, _.FRC:$src),
!strconcat(asm, "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}"),
[], _.ExeDomain>, EVEX, EVEX_K, Sched<[WriteFStore]>,
NotMemoryFoldable;
}
defm VMOVSSZ : avx512_move_scalar<"vmovss", X86Movss, f32x_info>,
VEX_LIG, XS, EVEX_CD8<32, CD8VT1>;
defm VMOVSDZ : avx512_move_scalar<"vmovsd", X86Movsd, f64x_info>,
VEX_LIG, XD, VEX_W, EVEX_CD8<64, CD8VT1>;
multiclass avx512_move_scalar_lowering<string InstrStr, SDNode OpNode,
PatLeaf ZeroFP, X86VectorVTInfo _> {
def : Pat<(_.VT (OpNode _.RC:$src0,
(_.VT (scalar_to_vector
(_.EltVT (X86selects VK1WM:$mask,
(_.EltVT _.FRC:$src1),
(_.EltVT _.FRC:$src2))))))),
(!cast<Instruction>(InstrStr#rrk)
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, _.RC)),
VK1WM:$mask,
(_.VT _.RC:$src0),
(_.VT (COPY_TO_REGCLASS _.FRC:$src1, _.RC)))>;
def : Pat<(_.VT (OpNode _.RC:$src0,
(_.VT (scalar_to_vector
(_.EltVT (X86selects VK1WM:$mask,
(_.EltVT _.FRC:$src1),
(_.EltVT ZeroFP))))))),
(!cast<Instruction>(InstrStr#rrkz)
VK1WM:$mask,
(_.VT _.RC:$src0),
(_.VT (COPY_TO_REGCLASS _.FRC:$src1, _.RC)))>;
}
multiclass avx512_store_scalar_lowering<string InstrStr, AVX512VLVectorVTInfo _,
dag Mask, RegisterClass MaskRC> {
def : Pat<(masked_store
(_.info512.VT (insert_subvector undef,
(_.info128.VT _.info128.RC:$src),
(iPTR 0))), addr:$dst, Mask),
(!cast<Instruction>(InstrStr#mrk) addr:$dst,
(COPY_TO_REGCLASS MaskRC:$mask, VK1WM),
(COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>;
}
multiclass avx512_store_scalar_lowering_subreg<string InstrStr,
AVX512VLVectorVTInfo _,
dag Mask, RegisterClass MaskRC,
SubRegIndex subreg> {
def : Pat<(masked_store
(_.info512.VT (insert_subvector undef,
(_.info128.VT _.info128.RC:$src),
(iPTR 0))), addr:$dst, Mask),
(!cast<Instruction>(InstrStr#mrk) addr:$dst,
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
(COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>;
}
// This matches the more recent codegen from clang that avoids emitting a 512
// bit masked store directly. Codegen will widen 128-bit masked store to 512
// bits on AVX512F only targets.
multiclass avx512_store_scalar_lowering_subreg2<string InstrStr,
AVX512VLVectorVTInfo _,
dag Mask512, dag Mask128,
RegisterClass MaskRC,
SubRegIndex subreg> {
// AVX512F pattern.
def : Pat<(masked_store
(_.info512.VT (insert_subvector undef,
(_.info128.VT _.info128.RC:$src),
(iPTR 0))), addr:$dst, Mask512),
(!cast<Instruction>(InstrStr#mrk) addr:$dst,
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
(COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>;
// AVX512VL pattern.
def : Pat<(masked_store (_.info128.VT _.info128.RC:$src), addr:$dst, Mask128),
(!cast<Instruction>(InstrStr#mrk) addr:$dst,
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
(COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>;
}
multiclass avx512_load_scalar_lowering<string InstrStr, AVX512VLVectorVTInfo _,
dag Mask, RegisterClass MaskRC> {
def : Pat<(_.info128.VT (extract_subvector
(_.info512.VT (masked_load addr:$srcAddr, Mask,
(_.info512.VT (bitconvert
(v16i32 immAllZerosV))))),
(iPTR 0))),
(!cast<Instruction>(InstrStr#rmkz)
(COPY_TO_REGCLASS MaskRC:$mask, VK1WM),
addr:$srcAddr)>;
def : Pat<(_.info128.VT (extract_subvector
(_.info512.VT (masked_load addr:$srcAddr, Mask,
(_.info512.VT (insert_subvector undef,
(_.info128.VT (X86vzmovl _.info128.RC:$src)),
(iPTR 0))))),
(iPTR 0))),
(!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src,
(COPY_TO_REGCLASS MaskRC:$mask, VK1WM),
addr:$srcAddr)>;
}
multiclass avx512_load_scalar_lowering_subreg<string InstrStr,
AVX512VLVectorVTInfo _,
dag Mask, RegisterClass MaskRC,
SubRegIndex subreg> {
def : Pat<(_.info128.VT (extract_subvector
(_.info512.VT (masked_load addr:$srcAddr, Mask,
(_.info512.VT (bitconvert
(v16i32 immAllZerosV))))),
(iPTR 0))),
(!cast<Instruction>(InstrStr#rmkz)
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
addr:$srcAddr)>;
def : Pat<(_.info128.VT (extract_subvector
(_.info512.VT (masked_load addr:$srcAddr, Mask,
(_.info512.VT (insert_subvector undef,
(_.info128.VT (X86vzmovl _.info128.RC:$src)),
(iPTR 0))))),
(iPTR 0))),
(!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src,
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
addr:$srcAddr)>;
}
// This matches the more recent codegen from clang that avoids emitting a 512
// bit masked load directly. Codegen will widen 128-bit masked load to 512
// bits on AVX512F only targets.
multiclass avx512_load_scalar_lowering_subreg2<string InstrStr,
AVX512VLVectorVTInfo _,
dag Mask512, dag Mask128,
RegisterClass MaskRC,
SubRegIndex subreg> {
// AVX512F patterns.
def : Pat<(_.info128.VT (extract_subvector
(_.info512.VT (masked_load addr:$srcAddr, Mask512,
(_.info512.VT (bitconvert
(v16i32 immAllZerosV))))),
(iPTR 0))),
(!cast<Instruction>(InstrStr#rmkz)
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
addr:$srcAddr)>;
def : Pat<(_.info128.VT (extract_subvector
(_.info512.VT (masked_load addr:$srcAddr, Mask512,
(_.info512.VT (insert_subvector undef,
(_.info128.VT (X86vzmovl _.info128.RC:$src)),
(iPTR 0))))),
(iPTR 0))),
(!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src,
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
addr:$srcAddr)>;
// AVX512Vl patterns.
def : Pat<(_.info128.VT (masked_load addr:$srcAddr, Mask128,
(_.info128.VT (bitconvert (v4i32 immAllZerosV))))),
(!cast<Instruction>(InstrStr#rmkz)
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
addr:$srcAddr)>;
def : Pat<(_.info128.VT (masked_load addr:$srcAddr, Mask128,
(_.info128.VT (X86vzmovl _.info128.RC:$src)))),
(!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src,
(COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM),
addr:$srcAddr)>;
}
defm : avx512_move_scalar_lowering<"VMOVSSZ", X86Movss, fp32imm0, v4f32x_info>;
defm : avx512_move_scalar_lowering<"VMOVSDZ", X86Movsd, fp64imm0, v2f64x_info>;
defm : avx512_store_scalar_lowering<"VMOVSSZ", avx512vl_f32_info,
(v16i1 (bitconvert (i16 (trunc (and GR32:$mask, (i32 1)))))), GR32>;
defm : avx512_store_scalar_lowering_subreg<"VMOVSSZ", avx512vl_f32_info,
(v16i1 (bitconvert (i16 (and GR16:$mask, (i16 1))))), GR16, sub_16bit>;
defm : avx512_store_scalar_lowering_subreg<"VMOVSDZ", avx512vl_f64_info,
(v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), GR8, sub_8bit>;
defm : avx512_store_scalar_lowering_subreg2<"VMOVSSZ", avx512vl_f32_info,
(v16i1 (insert_subvector
(v16i1 immAllZerosV),
(v4i1 (extract_subvector
(v8i1 (bitconvert (and GR8:$mask, (i8 1)))),
(iPTR 0))),
(iPTR 0))),
(v4i1 (extract_subvector
(v8i1 (bitconvert (and GR8:$mask, (i8 1)))),
(iPTR 0))), GR8, sub_8bit>;
defm : avx512_store_scalar_lowering_subreg2<"VMOVSDZ", avx512vl_f64_info,
(v8i1
(extract_subvector
(v16i1
(insert_subvector
(v16i1 immAllZerosV),
(v2i1 (extract_subvector
(v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))),
(iPTR 0))),
(iPTR 0))),
(iPTR 0))),
(v2i1 (extract_subvector
(v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))),
(iPTR 0))), GR8, sub_8bit>;
defm : avx512_load_scalar_lowering<"VMOVSSZ", avx512vl_f32_info,
(v16i1 (bitconvert (i16 (trunc (and GR32:$mask, (i32 1)))))), GR32>;
defm : avx512_load_scalar_lowering_subreg<"VMOVSSZ", avx512vl_f32_info,
(v16i1 (bitconvert (i16 (and GR16:$mask, (i16 1))))), GR16, sub_16bit>;
defm : avx512_load_scalar_lowering_subreg<"VMOVSDZ", avx512vl_f64_info,
(v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), GR8, sub_8bit>;
defm : avx512_load_scalar_lowering_subreg2<"VMOVSSZ", avx512vl_f32_info,
(v16i1 (insert_subvector
(v16i1 immAllZerosV),
(v4i1 (extract_subvector
(v8i1 (bitconvert (and GR8:$mask, (i8 1)))),
(iPTR 0))),
(iPTR 0))),
(v4i1 (extract_subvector
(v8i1 (bitconvert (and GR8:$mask, (i8 1)))),
(iPTR 0))), GR8, sub_8bit>;
defm : avx512_load_scalar_lowering_subreg2<"VMOVSDZ", avx512vl_f64_info,
(v8i1
(extract_subvector
(v16i1
(insert_subvector
(v16i1 immAllZerosV),
(v2i1 (extract_subvector
(v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))),
(iPTR 0))),
(iPTR 0))),
(iPTR 0))),
(v2i1 (extract_subvector
(v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))),
(iPTR 0))), GR8, sub_8bit>;
def : Pat<(f32 (X86selects VK1WM:$mask, (f32 FR32X:$src1), (f32 FR32X:$src2))),
(COPY_TO_REGCLASS (v4f32 (VMOVSSZrrk
(v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)),
VK1WM:$mask, (v4f32 (IMPLICIT_DEF)),
(v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)))), FR32X)>;
def : Pat<(f32 (X86selects VK1WM:$mask, (f32 FR32X:$src1), fp32imm0)),
(COPY_TO_REGCLASS (v4f32 (VMOVSSZrrkz VK1WM:$mask, (v4f32 (IMPLICIT_DEF)),
(v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)))), FR32X)>;
def : Pat<(f64 (X86selects VK1WM:$mask, (f64 FR64X:$src1), (f64 FR64X:$src2))),
(COPY_TO_REGCLASS (v2f64 (VMOVSDZrrk
(v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)),
VK1WM:$mask, (v2f64 (IMPLICIT_DEF)),
(v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)))), FR64X)>;
def : Pat<(f64 (X86selects VK1WM:$mask, (f64 FR64X:$src1), fpimm0)),
(COPY_TO_REGCLASS (v2f64 (VMOVSDZrrkz VK1WM:$mask, (v2f64 (IMPLICIT_DEF)),
(v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)))), FR64X)>;
let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
def VMOVSSZrr_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst),
(ins VR128X:$src1, VR128X:$src2),
"vmovss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, XS, EVEX_4V, VEX_LIG,
FoldGenData<"VMOVSSZrr">,
Sched<[SchedWriteFShuffle.XMM]>;
let Constraints = "$src0 = $dst" in
def VMOVSSZrrk_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst),
(ins f32x_info.RC:$src0, f32x_info.KRCWM:$mask,
VR128X:$src1, VR128X:$src2),
"vmovss\t{$src2, $src1, $dst {${mask}}|"#
"$dst {${mask}}, $src1, $src2}",
[]>, EVEX_K, XS, EVEX_4V, VEX_LIG,
FoldGenData<"VMOVSSZrrk">,
Sched<[SchedWriteFShuffle.XMM]>;
def VMOVSSZrrkz_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst),
(ins f32x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2),
"vmovss\t{$src2, $src1, $dst {${mask}} {z}|"#
"$dst {${mask}} {z}, $src1, $src2}",
[]>, EVEX_KZ, XS, EVEX_4V, VEX_LIG,
FoldGenData<"VMOVSSZrrkz">,
Sched<[SchedWriteFShuffle.XMM]>;
def VMOVSDZrr_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst),
(ins VR128X:$src1, VR128X:$src2),
"vmovsd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[]>, XD, EVEX_4V, VEX_LIG, VEX_W,
FoldGenData<"VMOVSDZrr">,
Sched<[SchedWriteFShuffle.XMM]>;
let Constraints = "$src0 = $dst" in
def VMOVSDZrrk_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst),
(ins f64x_info.RC:$src0, f64x_info.KRCWM:$mask,
VR128X:$src1, VR128X:$src2),
"vmovsd\t{$src2, $src1, $dst {${mask}}|"#
"$dst {${mask}}, $src1, $src2}",
[]>, EVEX_K, XD, EVEX_4V, VEX_LIG,
VEX_W, FoldGenData<"VMOVSDZrrk">,
Sched<[SchedWriteFShuffle.XMM]>;
def VMOVSDZrrkz_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst),
(ins f64x_info.KRCWM:$mask, VR128X:$src1,
VR128X:$src2),
"vmovsd\t{$src2, $src1, $dst {${mask}} {z}|"#
"$dst {${mask}} {z}, $src1, $src2}",
[]>, EVEX_KZ, XD, EVEX_4V, VEX_LIG,
VEX_W, FoldGenData<"VMOVSDZrrkz">,
Sched<[SchedWriteFShuffle.XMM]>;
}
def : InstAlias<"vmovss.s\t{$src2, $src1, $dst|$dst, $src1, $src2}",
(VMOVSSZrr_REV VR128X:$dst, VR128X:$src1, VR128X:$src2), 0>;
def : InstAlias<"vmovss.s\t{$src2, $src1, $dst {${mask}}|"#
"$dst {${mask}}, $src1, $src2}",
(VMOVSSZrrk_REV VR128X:$dst, VK1WM:$mask,
VR128X:$src1, VR128X:$src2), 0>;
def : InstAlias<"vmovss.s\t{$src2, $src1, $dst {${mask}} {z}|"#
"$dst {${mask}} {z}, $src1, $src2}",
(VMOVSSZrrkz_REV VR128X:$dst, VK1WM:$mask,
VR128X:$src1, VR128X:$src2), 0>;
def : InstAlias<"vmovsd.s\t{$src2, $src1, $dst|$dst, $src1, $src2}",
(VMOVSDZrr_REV VR128X:$dst, VR128X:$src1, VR128X:$src2), 0>;
def : InstAlias<"vmovsd.s\t{$src2, $src1, $dst {${mask}}|"#
"$dst {${mask}}, $src1, $src2}",
(VMOVSDZrrk_REV VR128X:$dst, VK1WM:$mask,
VR128X:$src1, VR128X:$src2), 0>;
def : InstAlias<"vmovsd.s\t{$src2, $src1, $dst {${mask}} {z}|"#
"$dst {${mask}} {z}, $src1, $src2}",
(VMOVSDZrrkz_REV VR128X:$dst, VK1WM:$mask,
VR128X:$src1, VR128X:$src2), 0>;
let Predicates = [HasAVX512, OptForSize] in {
def : Pat<(v4f32 (X86vzmovl (v4f32 VR128X:$src))),
(VMOVSSZrr (v4f32 (AVX512_128_SET0)), VR128X:$src)>;
def : Pat<(v4i32 (X86vzmovl (v4i32 VR128X:$src))),
(VMOVSSZrr (v4i32 (AVX512_128_SET0)), VR128X:$src)>;
// Move low f32 and clear high bits.
def : Pat<(v8f32 (X86vzmovl (v8f32 VR256X:$src))),
(SUBREG_TO_REG (i32 0),
(v4f32 (VMOVSSZrr (v4f32 (AVX512_128_SET0)),
(v4f32 (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)))), sub_xmm)>;
def : Pat<(v8i32 (X86vzmovl (v8i32 VR256X:$src))),
(SUBREG_TO_REG (i32 0),
(v4i32 (VMOVSSZrr (v4i32 (AVX512_128_SET0)),
(v4i32 (EXTRACT_SUBREG (v8i32 VR256X:$src), sub_xmm)))), sub_xmm)>;
def : Pat<(v4f64 (X86vzmovl (v4f64 VR256X:$src))),
(SUBREG_TO_REG (i32 0),
(v2f64 (VMOVSDZrr (v2f64 (AVX512_128_SET0)),
(v2f64 (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)))), sub_xmm)>;
def : Pat<(v4i64 (X86vzmovl (v4i64 VR256X:$src))),
(SUBREG_TO_REG (i32 0),
(v2i64 (VMOVSDZrr (v2i64 (AVX512_128_SET0)),
(v2i64 (EXTRACT_SUBREG (v4i64 VR256X:$src), sub_xmm)))), sub_xmm)>;
def : Pat<(v16f32 (X86vzmovl (v16f32 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v4f32 (VMOVSSZrr (v4f32 (AVX512_128_SET0)),
(v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm)))), sub_xmm)>;
def : Pat<(v16i32 (X86vzmovl (v16i32 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v4i32 (VMOVSSZrr (v4i32 (AVX512_128_SET0)),
(v4i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm)))), sub_xmm)>;
def : Pat<(v8f64 (X86vzmovl (v8f64 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v2f64 (VMOVSDZrr (v2f64 (AVX512_128_SET0)),
(v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm)))), sub_xmm)>;
def : Pat<(v8i64 (X86vzmovl (v8i64 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v2i64 (VMOVSDZrr (v2i64 (AVX512_128_SET0)),
(v2i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm)))), sub_xmm)>;
}
// Use 128-bit blends for OptForSpeed since BLENDs have better throughput than
// VMOVSS/SD. Unfortunately, loses the ability to use XMM16-31.
let Predicates = [HasAVX512, OptForSpeed] in {
def : Pat<(v16f32 (X86vzmovl (v16f32 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v4f32 (VBLENDPSrri (v4f32 (V_SET0)),
(v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm)),
(i8 1))), sub_xmm)>;
def : Pat<(v16i32 (X86vzmovl (v16i32 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v4i32 (VPBLENDWrri (v4i32 (V_SET0)),
(v4i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm)),
(i8 3))), sub_xmm)>;
def : Pat<(v8f64 (X86vzmovl (v8f64 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v2f64 (VBLENDPDrri (v2f64 (V_SET0)),
(v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm)),
(i8 1))), sub_xmm)>;
def : Pat<(v8i64 (X86vzmovl (v8i64 VR512:$src))),
(SUBREG_TO_REG (i32 0),
(v2i64 (VPBLENDWrri (v2i64 (V_SET0)),
(v2i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm)),
(i8 0xf))), sub_xmm)>;
}
let Predicates = [HasAVX512] in {
// MOVSSrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
(COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>;
def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
(COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>;
def : Pat<(v4f32 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>;
// MOVSDrm zeros the high parts of the register; represent this
// with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
(COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
(COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
def : Pat<(v2f64 (X86vzload addr:$src)),
(COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>;
// Represent the same patterns above but in the form they appear for
// 256-bit types
def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>;
def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
(v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>;
def : Pat<(v8f32 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>;
def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
(v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>;
def : Pat<(v4f64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>;
// Represent the same patterns above but in the form they appear for
// 512-bit types
def : Pat<(v16i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>;
def : Pat<(v16f32 (X86vzmovl (insert_subvector undef,
(v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>;
def : Pat<(v16f32 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>;
def : Pat<(v8f64 (X86vzmovl (insert_subvector undef,
(v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>;
def : Pat<(v8f64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>;
def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))),
(SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIZrm addr:$src)), sub_xmm)>;
// Extract and store.
def : Pat<(store (f32 (extractelt (v4f32 VR128X:$src), (iPTR 0))),
addr:$dst),
(VMOVSSZmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128X:$src), FR32X))>;
}
let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecLogic.XMM] in {
def VMOVZPQILo2PQIZrr : AVX512XSI<0x7E, MRMSrcReg, (outs VR128X:$dst),
(ins VR128X:$src),
"vmovq\t{$src, $dst|$dst, $src}",
[(set VR128X:$dst, (v2i64 (X86vzmovl
(v2i64 VR128X:$src))))]>,
EVEX, VEX_W;
}
let Predicates = [HasAVX512] in {
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
(VMOVDI2PDIZrr GR32:$src)>;
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))),
(VMOV64toPQIZrr GR64:$src)>;
def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i64 0), (v2i64 (VMOV64toPQIZrr GR64:$src)), sub_xmm)>;
def : Pat<(v8i64 (X86vzmovl (insert_subvector undef,
(v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i64 0), (v2i64 (VMOV64toPQIZrr GR64:$src)), sub_xmm)>;
// AVX 128-bit movd/movq instruction write zeros in the high 128-bit part.
def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))),
(VMOVDI2PDIZrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
(VMOVDI2PDIZrm addr:$src)>;
def : Pat<(v4i32 (X86vzmovl (loadv4i32 addr:$src))),
(VMOVDI2PDIZrm addr:$src)>;
def : Pat<(v4i32 (X86vzload addr:$src)),
(VMOVDI2PDIZrm addr:$src)>;
def : Pat<(v8i32 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>;
def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
(VMOVQI2PQIZrm addr:$src)>;
def : Pat<(v2f64 (X86vzmovl (v2f64 VR128X:$src))),
(VMOVZPQILo2PQIZrr VR128X:$src)>;
def : Pat<(v2i64 (X86vzload addr:$src)),
(VMOVQI2PQIZrm addr:$src)>;
def : Pat<(v4i64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIZrm addr:$src)), sub_xmm)>;
// Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext.
def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrr GR32:$src)), sub_xmm)>;
def : Pat<(v16i32 (X86vzmovl (insert_subvector undef,
(v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))),
(SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrr GR32:$src)), sub_xmm)>;
// Use regular 128-bit instructions to match 512-bit scalar_to_vec+zext.
def : Pat<(v16i32 (X86vzload addr:$src)),
(SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>;
def : Pat<(v8i64 (X86vzload addr:$src)),
(SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIZrm addr:$src)), sub_xmm)>;
}
//===----------------------------------------------------------------------===//
// AVX-512 - Non-temporals
//===----------------------------------------------------------------------===//
def VMOVNTDQAZrm : AVX512PI<0x2A, MRMSrcMem, (outs VR512:$dst),
(ins i512mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}",
[], SSEPackedInt>, Sched<[SchedWriteVecMoveLS.ZMM.RM]>,
EVEX, T8PD, EVEX_V512, EVEX_CD8<64, CD8VF>;
let Predicates = [HasVLX] in {
def VMOVNTDQAZ256rm : AVX512PI<0x2A, MRMSrcMem, (outs VR256X:$dst),
(ins i256mem:$src),
"vmovntdqa\t{$src, $dst|$dst, $src}",
[], SSEPackedInt>, Sched<[SchedWriteVecMoveLS.YMM.RM]>,
EVEX, T8PD, EVEX_V256, EVEX_CD8<64, CD8VF>;
def VMOVNTDQAZ128rm : AVX512PI<0x2A, MRMSrcMem, (outs VR128X:$dst),
(ins i128mem:$src),
"vmovntdqa\t{$src, $dst|$dst, $src}",
[], SSEPackedInt>, Sched<[SchedWriteVecMoveLS.XMM.RM]>,
EVEX, T8PD, EVEX_V128, EVEX_CD8<64, CD8VF>;
}
multiclass avx512_movnt<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86SchedWriteMoveLS Sched,
PatFrag st_frag = alignednontemporalstore> {
let SchedRW = [Sched.MR], AddedComplexity = 400 in
def mr : AVX512PI<opc, MRMDestMem, (outs), (ins _.MemOp:$dst, _.RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(st_frag (_.VT _.RC:$src), addr:$dst)],
_.ExeDomain>, EVEX, EVEX_CD8<_.EltSize, CD8VF>;
}
multiclass avx512_movnt_vl<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo VTInfo,
X86SchedWriteMoveLSWidths Sched> {
let Predicates = [HasAVX512] in
defm Z : avx512_movnt<opc, OpcodeStr, VTInfo.info512, Sched.ZMM>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in {
defm Z256 : avx512_movnt<opc, OpcodeStr, VTInfo.info256, Sched.YMM>, EVEX_V256;
defm Z128 : avx512_movnt<opc, OpcodeStr, VTInfo.info128, Sched.XMM>, EVEX_V128;
}
}
defm VMOVNTDQ : avx512_movnt_vl<0xE7, "vmovntdq", avx512vl_i64_info,
SchedWriteVecMoveLSNT>, PD;
defm VMOVNTPD : avx512_movnt_vl<0x2B, "vmovntpd", avx512vl_f64_info,
SchedWriteFMoveLSNT>, PD, VEX_W;
defm VMOVNTPS : avx512_movnt_vl<0x2B, "vmovntps", avx512vl_f32_info,
SchedWriteFMoveLSNT>, PS;
let Predicates = [HasAVX512], AddedComplexity = 400 in {
def : Pat<(alignednontemporalstore (v16i32 VR512:$src), addr:$dst),
(VMOVNTDQZmr addr:$dst, VR512:$src)>;
def : Pat<(alignednontemporalstore (v32i16 VR512:$src), addr:$dst),
(VMOVNTDQZmr addr:$dst, VR512:$src)>;
def : Pat<(alignednontemporalstore (v64i8 VR512:$src), addr:$dst),
(VMOVNTDQZmr addr:$dst, VR512:$src)>;
def : Pat<(v8f64 (alignednontemporalload addr:$src)),
(VMOVNTDQAZrm addr:$src)>;
def : Pat<(v16f32 (alignednontemporalload addr:$src)),
(VMOVNTDQAZrm addr:$src)>;
def : Pat<(v8i64 (alignednontemporalload addr:$src)),
(VMOVNTDQAZrm addr:$src)>;
def : Pat<(v16i32 (alignednontemporalload addr:$src)),
(VMOVNTDQAZrm addr:$src)>;
def : Pat<(v32i16 (alignednontemporalload addr:$src)),
(VMOVNTDQAZrm addr:$src)>;
def : Pat<(v64i8 (alignednontemporalload addr:$src)),
(VMOVNTDQAZrm addr:$src)>;
}
let Predicates = [HasVLX], AddedComplexity = 400 in {
def : Pat<(alignednontemporalstore (v8i32 VR256X:$src), addr:$dst),
(VMOVNTDQZ256mr addr:$dst, VR256X:$src)>;
def : Pat<(alignednontemporalstore (v16i16 VR256X:$src), addr:$dst),
(VMOVNTDQZ256mr addr:$dst, VR256X:$src)>;
def : Pat<(alignednontemporalstore (v32i8 VR256X:$src), addr:$dst),
(VMOVNTDQZ256mr addr:$dst, VR256X:$src)>;
def : Pat<(v4f64 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ256rm addr:$src)>;
def : Pat<(v8f32 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ256rm addr:$src)>;
def : Pat<(v4i64 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ256rm addr:$src)>;
def : Pat<(v8i32 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ256rm addr:$src)>;
def : Pat<(v16i16 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ256rm addr:$src)>;
def : Pat<(v32i8 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ256rm addr:$src)>;
def : Pat<(alignednontemporalstore (v4i32 VR128X:$src), addr:$dst),
(VMOVNTDQZ128mr addr:$dst, VR128X:$src)>;
def : Pat<(alignednontemporalstore (v8i16 VR128X:$src), addr:$dst),
(VMOVNTDQZ128mr addr:$dst, VR128X:$src)>;
def : Pat<(alignednontemporalstore (v16i8 VR128X:$src), addr:$dst),
(VMOVNTDQZ128mr addr:$dst, VR128X:$src)>;
def : Pat<(v2f64 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ128rm addr:$src)>;
def : Pat<(v4f32 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ128rm addr:$src)>;
def : Pat<(v2i64 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ128rm addr:$src)>;
def : Pat<(v4i32 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ128rm addr:$src)>;
def : Pat<(v8i16 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ128rm addr:$src)>;
def : Pat<(v16i8 (alignednontemporalload addr:$src)),
(VMOVNTDQAZ128rm addr:$src)>;
}
//===----------------------------------------------------------------------===//
// AVX-512 - Integer arithmetic
//
multiclass avx512_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86VectorVTInfo _, X86FoldableSchedWrite sched,
bit IsCommutable = 0> {
defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, _.RC:$src2)),
IsCommutable>, AVX512BIBase, EVEX_4V,
Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, (_.LdFrag addr:$src2)))>,
AVX512BIBase, EVEX_4V,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_binop_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86VectorVTInfo _, X86FoldableSchedWrite sched,
bit IsCommutable = 0> :
avx512_binop_rm<opc, OpcodeStr, OpNode, _, sched, IsCommutable> {
defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr,
"${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr,
(_.VT (OpNode _.RC:$src1,
(X86VBroadcast
(_.ScalarLdFrag addr:$src2))))>,
AVX512BIBase, EVEX_4V, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_binop_rm_vl<bits<8> opc, string OpcodeStr, SDNode OpNode,
AVX512VLVectorVTInfo VTInfo,
X86SchedWriteWidths sched, Predicate prd,
bit IsCommutable = 0> {
let Predicates = [prd] in
defm Z : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info512, sched.ZMM,
IsCommutable>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info256,
sched.YMM, IsCommutable>, EVEX_V256;
defm Z128 : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info128,
sched.XMM, IsCommutable>, EVEX_V128;
}
}
multiclass avx512_binop_rmb_vl<bits<8> opc, string OpcodeStr, SDNode OpNode,
AVX512VLVectorVTInfo VTInfo,
X86SchedWriteWidths sched, Predicate prd,
bit IsCommutable = 0> {
let Predicates = [prd] in
defm Z : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info512, sched.ZMM,
IsCommutable>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info256,
sched.YMM, IsCommutable>, EVEX_V256;
defm Z128 : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info128,
sched.XMM, IsCommutable>, EVEX_V128;
}
}
multiclass avx512_binop_rm_vl_q<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, Predicate prd,
bit IsCommutable = 0> {
defm NAME : avx512_binop_rmb_vl<opc, OpcodeStr, OpNode, avx512vl_i64_info,
sched, prd, IsCommutable>,
VEX_W, EVEX_CD8<64, CD8VF>;
}
multiclass avx512_binop_rm_vl_d<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, Predicate prd,
bit IsCommutable = 0> {
defm NAME : avx512_binop_rmb_vl<opc, OpcodeStr, OpNode, avx512vl_i32_info,
sched, prd, IsCommutable>, EVEX_CD8<32, CD8VF>;
}
multiclass avx512_binop_rm_vl_w<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, Predicate prd,
bit IsCommutable = 0> {
defm NAME : avx512_binop_rm_vl<opc, OpcodeStr, OpNode, avx512vl_i16_info,
sched, prd, IsCommutable>, EVEX_CD8<16, CD8VF>,
VEX_WIG;
}
multiclass avx512_binop_rm_vl_b<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, Predicate prd,
bit IsCommutable = 0> {
defm NAME : avx512_binop_rm_vl<opc, OpcodeStr, OpNode, avx512vl_i8_info,
sched, prd, IsCommutable>, EVEX_CD8<8, CD8VF>,
VEX_WIG;
}
multiclass avx512_binop_rm_vl_dq<bits<8> opc_d, bits<8> opc_q, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched,
Predicate prd, bit IsCommutable = 0> {
defm Q : avx512_binop_rm_vl_q<opc_q, OpcodeStr#"q", OpNode, sched, prd,
IsCommutable>;
defm D : avx512_binop_rm_vl_d<opc_d, OpcodeStr#"d", OpNode, sched, prd,
IsCommutable>;
}
multiclass avx512_binop_rm_vl_bw<bits<8> opc_b, bits<8> opc_w, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched,
Predicate prd, bit IsCommutable = 0> {
defm W : avx512_binop_rm_vl_w<opc_w, OpcodeStr#"w", OpNode, sched, prd,
IsCommutable>;
defm B : avx512_binop_rm_vl_b<opc_b, OpcodeStr#"b", OpNode, sched, prd,
IsCommutable>;
}
multiclass avx512_binop_rm_vl_all<bits<8> opc_b, bits<8> opc_w,
bits<8> opc_d, bits<8> opc_q,
string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched,
bit IsCommutable = 0> {
defm NAME : avx512_binop_rm_vl_dq<opc_d, opc_q, OpcodeStr, OpNode,
sched, HasAVX512, IsCommutable>,
avx512_binop_rm_vl_bw<opc_b, opc_w, OpcodeStr, OpNode,
sched, HasBWI, IsCommutable>;
}
multiclass avx512_binop_rm2<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
SDNode OpNode,X86VectorVTInfo _Src,
X86VectorVTInfo _Dst, X86VectorVTInfo _Brdct,
bit IsCommutable = 0> {
defm rr : AVX512_maskable<opc, MRMSrcReg, _Dst, (outs _Dst.RC:$dst),
(ins _Src.RC:$src1, _Src.RC:$src2), OpcodeStr,
"$src2, $src1","$src1, $src2",
(_Dst.VT (OpNode
(_Src.VT _Src.RC:$src1),
(_Src.VT _Src.RC:$src2))),
IsCommutable>,
AVX512BIBase, EVEX_4V, Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst),
(ins _Src.RC:$src1, _Src.MemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_Dst.VT (OpNode (_Src.VT _Src.RC:$src1),
(_Src.LdFrag addr:$src2)))>,
AVX512BIBase, EVEX_4V,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmb : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst),
(ins _Src.RC:$src1, _Brdct.ScalarMemOp:$src2),
OpcodeStr,
"${src2}"##_Brdct.BroadcastStr##", $src1",
"$src1, ${src2}"##_Brdct.BroadcastStr,
(_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (bitconvert
(_Brdct.VT (X86VBroadcast
(_Brdct.ScalarLdFrag addr:$src2))))))>,
AVX512BIBase, EVEX_4V, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
defm VPADD : avx512_binop_rm_vl_all<0xFC, 0xFD, 0xFE, 0xD4, "vpadd", add,
SchedWriteVecALU, 1>;
defm VPSUB : avx512_binop_rm_vl_all<0xF8, 0xF9, 0xFA, 0xFB, "vpsub", sub,
SchedWriteVecALU, 0>;
defm VPADDS : avx512_binop_rm_vl_bw<0xEC, 0xED, "vpadds", X86adds,
SchedWriteVecALU, HasBWI, 1>;
defm VPSUBS : avx512_binop_rm_vl_bw<0xE8, 0xE9, "vpsubs", X86subs,
SchedWriteVecALU, HasBWI, 0>;
defm VPADDUS : avx512_binop_rm_vl_bw<0xDC, 0xDD, "vpaddus", X86addus,
SchedWriteVecALU, HasBWI, 1>;
defm VPSUBUS : avx512_binop_rm_vl_bw<0xD8, 0xD9, "vpsubus", X86subus,
SchedWriteVecALU, HasBWI, 0>;
defm VPMULLD : avx512_binop_rm_vl_d<0x40, "vpmulld", mul,
SchedWritePMULLD, HasAVX512, 1>, T8PD;
defm VPMULLW : avx512_binop_rm_vl_w<0xD5, "vpmullw", mul,
SchedWriteVecIMul, HasBWI, 1>;
defm VPMULLQ : avx512_binop_rm_vl_q<0x40, "vpmullq", mul,
SchedWriteVecIMul, HasDQI, 1>, T8PD,
NotEVEX2VEXConvertible;
defm VPMULHW : avx512_binop_rm_vl_w<0xE5, "vpmulhw", mulhs, SchedWriteVecIMul,
HasBWI, 1>;
defm VPMULHUW : avx512_binop_rm_vl_w<0xE4, "vpmulhuw", mulhu, SchedWriteVecIMul,
HasBWI, 1>;
defm VPMULHRSW : avx512_binop_rm_vl_w<0x0B, "vpmulhrsw", X86mulhrs,
SchedWriteVecIMul, HasBWI, 1>, T8PD;
defm VPAVG : avx512_binop_rm_vl_bw<0xE0, 0xE3, "vpavg", X86avg,
SchedWriteVecALU, HasBWI, 1>;
defm VPMULDQ : avx512_binop_rm_vl_q<0x28, "vpmuldq", X86pmuldq,
SchedWriteVecIMul, HasAVX512, 1>, T8PD;
defm VPMULUDQ : avx512_binop_rm_vl_q<0xF4, "vpmuludq", X86pmuludq,
SchedWriteVecIMul, HasAVX512, 1>;
multiclass avx512_binop_all<bits<8> opc, string OpcodeStr,
X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _SrcVTInfo,
AVX512VLVectorVTInfo _DstVTInfo,
SDNode OpNode, Predicate prd, bit IsCommutable = 0> {
let Predicates = [prd] in
defm NAME#Z : avx512_binop_rm2<opc, OpcodeStr, sched.ZMM, OpNode,
_SrcVTInfo.info512, _DstVTInfo.info512,
v8i64_info, IsCommutable>,
EVEX_V512, EVEX_CD8<64, CD8VF>, VEX_W;
let Predicates = [HasVLX, prd] in {
defm NAME#Z256 : avx512_binop_rm2<opc, OpcodeStr, sched.YMM, OpNode,
_SrcVTInfo.info256, _DstVTInfo.info256,
v4i64x_info, IsCommutable>,
EVEX_V256, EVEX_CD8<64, CD8VF>, VEX_W;
defm NAME#Z128 : avx512_binop_rm2<opc, OpcodeStr, sched.XMM, OpNode,
_SrcVTInfo.info128, _DstVTInfo.info128,
v2i64x_info, IsCommutable>,
EVEX_V128, EVEX_CD8<64, CD8VF>, VEX_W;
}
}
defm VPMULTISHIFTQB : avx512_binop_all<0x83, "vpmultishiftqb", SchedWriteVecALU,
avx512vl_i8_info, avx512vl_i8_info,
X86multishift, HasVBMI, 0>, T8PD;
multiclass avx512_packs_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86VectorVTInfo _Src, X86VectorVTInfo _Dst,
X86FoldableSchedWrite sched> {
defm rmb : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst),
(ins _Src.RC:$src1, _Src.ScalarMemOp:$src2),
OpcodeStr,
"${src2}"##_Src.BroadcastStr##", $src1",
"$src1, ${src2}"##_Src.BroadcastStr,
(_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (bitconvert
(_Src.VT (X86VBroadcast
(_Src.ScalarLdFrag addr:$src2))))))>,
EVEX_4V, EVEX_B, EVEX_CD8<_Src.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_packs_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode,X86VectorVTInfo _Src,
X86VectorVTInfo _Dst, X86FoldableSchedWrite sched,
bit IsCommutable = 0> {
defm rr : AVX512_maskable<opc, MRMSrcReg, _Dst, (outs _Dst.RC:$dst),
(ins _Src.RC:$src1, _Src.RC:$src2), OpcodeStr,
"$src2, $src1","$src1, $src2",
(_Dst.VT (OpNode
(_Src.VT _Src.RC:$src1),
(_Src.VT _Src.RC:$src2))),
IsCommutable>,
EVEX_CD8<_Src.EltSize, CD8VF>, EVEX_4V, Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst),
(ins _Src.RC:$src1, _Src.MemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_Dst.VT (OpNode (_Src.VT _Src.RC:$src1),
(_Src.LdFrag addr:$src2)))>,
EVEX_4V, EVEX_CD8<_Src.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_packs_all_i32_i16<bits<8> opc, string OpcodeStr,
SDNode OpNode> {
let Predicates = [HasBWI] in
defm NAME#Z : avx512_packs_rm<opc, OpcodeStr, OpNode, v16i32_info,
v32i16_info, SchedWriteShuffle.ZMM>,
avx512_packs_rmb<opc, OpcodeStr, OpNode, v16i32_info,
v32i16_info, SchedWriteShuffle.ZMM>, EVEX_V512;
let Predicates = [HasBWI, HasVLX] in {
defm NAME#Z256 : avx512_packs_rm<opc, OpcodeStr, OpNode, v8i32x_info,
v16i16x_info, SchedWriteShuffle.YMM>,
avx512_packs_rmb<opc, OpcodeStr, OpNode, v8i32x_info,
v16i16x_info, SchedWriteShuffle.YMM>,
EVEX_V256;
defm NAME#Z128 : avx512_packs_rm<opc, OpcodeStr, OpNode, v4i32x_info,
v8i16x_info, SchedWriteShuffle.XMM>,
avx512_packs_rmb<opc, OpcodeStr, OpNode, v4i32x_info,
v8i16x_info, SchedWriteShuffle.XMM>,
EVEX_V128;
}
}
multiclass avx512_packs_all_i16_i8<bits<8> opc, string OpcodeStr,
SDNode OpNode> {
let Predicates = [HasBWI] in
defm NAME#Z : avx512_packs_rm<opc, OpcodeStr, OpNode, v32i16_info, v64i8_info,
SchedWriteShuffle.ZMM>, EVEX_V512, VEX_WIG;
let Predicates = [HasBWI, HasVLX] in {
defm NAME#Z256 : avx512_packs_rm<opc, OpcodeStr, OpNode, v16i16x_info,
v32i8x_info, SchedWriteShuffle.YMM>,
EVEX_V256, VEX_WIG;
defm NAME#Z128 : avx512_packs_rm<opc, OpcodeStr, OpNode, v8i16x_info,
v16i8x_info, SchedWriteShuffle.XMM>,
EVEX_V128, VEX_WIG;
}
}
multiclass avx512_vpmadd<bits<8> opc, string OpcodeStr,
SDNode OpNode, AVX512VLVectorVTInfo _Src,
AVX512VLVectorVTInfo _Dst, bit IsCommutable = 0> {
let Predicates = [HasBWI] in
defm NAME#Z : avx512_packs_rm<opc, OpcodeStr, OpNode, _Src.info512,
_Dst.info512, SchedWriteVecIMul.ZMM,
IsCommutable>, EVEX_V512;
let Predicates = [HasBWI, HasVLX] in {
defm NAME#Z256 : avx512_packs_rm<opc, OpcodeStr, OpNode, _Src.info256,
_Dst.info256, SchedWriteVecIMul.YMM,
IsCommutable>, EVEX_V256;
defm NAME#Z128 : avx512_packs_rm<opc, OpcodeStr, OpNode, _Src.info128,
_Dst.info128, SchedWriteVecIMul.XMM,
IsCommutable>, EVEX_V128;
}
}
defm VPACKSSDW : avx512_packs_all_i32_i16<0x6B, "vpackssdw", X86Packss>, AVX512BIBase;
defm VPACKUSDW : avx512_packs_all_i32_i16<0x2b, "vpackusdw", X86Packus>, AVX5128IBase;
defm VPACKSSWB : avx512_packs_all_i16_i8 <0x63, "vpacksswb", X86Packss>, AVX512BIBase;
defm VPACKUSWB : avx512_packs_all_i16_i8 <0x67, "vpackuswb", X86Packus>, AVX512BIBase;
defm VPMADDUBSW : avx512_vpmadd<0x04, "vpmaddubsw", X86vpmaddubsw,
avx512vl_i8_info, avx512vl_i16_info>, AVX512BIBase, T8PD, VEX_WIG;
defm VPMADDWD : avx512_vpmadd<0xF5, "vpmaddwd", X86vpmaddwd,
avx512vl_i16_info, avx512vl_i32_info, 1>, AVX512BIBase, VEX_WIG;
defm VPMAXSB : avx512_binop_rm_vl_b<0x3C, "vpmaxsb", smax,
SchedWriteVecALU, HasBWI, 1>, T8PD;
defm VPMAXSW : avx512_binop_rm_vl_w<0xEE, "vpmaxsw", smax,
SchedWriteVecALU, HasBWI, 1>;
defm VPMAXSD : avx512_binop_rm_vl_d<0x3D, "vpmaxsd", smax,
SchedWriteVecALU, HasAVX512, 1>, T8PD;
defm VPMAXSQ : avx512_binop_rm_vl_q<0x3D, "vpmaxsq", smax,
SchedWriteVecALU, HasAVX512, 1>, T8PD,
NotEVEX2VEXConvertible;
defm VPMAXUB : avx512_binop_rm_vl_b<0xDE, "vpmaxub", umax,
SchedWriteVecALU, HasBWI, 1>;
defm VPMAXUW : avx512_binop_rm_vl_w<0x3E, "vpmaxuw", umax,
SchedWriteVecALU, HasBWI, 1>, T8PD;
defm VPMAXUD : avx512_binop_rm_vl_d<0x3F, "vpmaxud", umax,
SchedWriteVecALU, HasAVX512, 1>, T8PD;
defm VPMAXUQ : avx512_binop_rm_vl_q<0x3F, "vpmaxuq", umax,
SchedWriteVecALU, HasAVX512, 1>, T8PD,
NotEVEX2VEXConvertible;
defm VPMINSB : avx512_binop_rm_vl_b<0x38, "vpminsb", smin,
SchedWriteVecALU, HasBWI, 1>, T8PD;
defm VPMINSW : avx512_binop_rm_vl_w<0xEA, "vpminsw", smin,
SchedWriteVecALU, HasBWI, 1>;
defm VPMINSD : avx512_binop_rm_vl_d<0x39, "vpminsd", smin,
SchedWriteVecALU, HasAVX512, 1>, T8PD;
defm VPMINSQ : avx512_binop_rm_vl_q<0x39, "vpminsq", smin,
SchedWriteVecALU, HasAVX512, 1>, T8PD,
NotEVEX2VEXConvertible;
defm VPMINUB : avx512_binop_rm_vl_b<0xDA, "vpminub", umin,
SchedWriteVecALU, HasBWI, 1>;
defm VPMINUW : avx512_binop_rm_vl_w<0x3A, "vpminuw", umin,
SchedWriteVecALU, HasBWI, 1>, T8PD;
defm VPMINUD : avx512_binop_rm_vl_d<0x3B, "vpminud", umin,
SchedWriteVecALU, HasAVX512, 1>, T8PD;
defm VPMINUQ : avx512_binop_rm_vl_q<0x3B, "vpminuq", umin,
SchedWriteVecALU, HasAVX512, 1>, T8PD,
NotEVEX2VEXConvertible;
// PMULLQ: Use 512bit version to implement 128/256 bit in case NoVLX.
let Predicates = [HasDQI, NoVLX] in {
def : Pat<(v4i64 (mul (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))),
(EXTRACT_SUBREG
(VPMULLQZrr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)),
sub_ymm)>;
def : Pat<(v2i64 (mul (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))),
(EXTRACT_SUBREG
(VPMULLQZrr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)),
sub_xmm)>;
}
// PMULLQ: Use 512bit version to implement 128/256 bit in case NoVLX.
let Predicates = [HasDQI, NoVLX] in {
def : Pat<(v4i64 (mul (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))),
(EXTRACT_SUBREG
(VPMULLQZrr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)),
sub_ymm)>;
def : Pat<(v2i64 (mul (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))),
(EXTRACT_SUBREG
(VPMULLQZrr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)),
sub_xmm)>;
}
multiclass avx512_min_max_lowering<Instruction Instr, SDNode OpNode> {
def : Pat<(v4i64 (OpNode VR256X:$src1, VR256X:$src2)),
(EXTRACT_SUBREG
(Instr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)),
sub_ymm)>;
def : Pat<(v2i64 (OpNode VR128X:$src1, VR128X:$src2)),
(EXTRACT_SUBREG
(Instr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)),
sub_xmm)>;
}
let Predicates = [HasAVX512, NoVLX] in {
defm : avx512_min_max_lowering<VPMAXUQZrr, umax>;
defm : avx512_min_max_lowering<VPMINUQZrr, umin>;
defm : avx512_min_max_lowering<VPMAXSQZrr, smax>;
defm : avx512_min_max_lowering<VPMINSQZrr, smin>;
}
//===----------------------------------------------------------------------===//
// AVX-512 Logical Instructions
//===----------------------------------------------------------------------===//
defm VPAND : avx512_binop_rm_vl_dq<0xDB, 0xDB, "vpand", and,
SchedWriteVecLogic, HasAVX512, 1>;
defm VPOR : avx512_binop_rm_vl_dq<0xEB, 0xEB, "vpor", or,
SchedWriteVecLogic, HasAVX512, 1>;
defm VPXOR : avx512_binop_rm_vl_dq<0xEF, 0xEF, "vpxor", xor,
SchedWriteVecLogic, HasAVX512, 1>;
defm VPANDN : avx512_binop_rm_vl_dq<0xDF, 0xDF, "vpandn", X86andnp,
SchedWriteVecLogic, HasAVX512>;
let Predicates = [HasVLX] in {
def : Pat<(v16i8 (and VR128X:$src1, VR128X:$src2)),
(VPANDQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(v8i16 (and VR128X:$src1, VR128X:$src2)),
(VPANDQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(v16i8 (or VR128X:$src1, VR128X:$src2)),
(VPORQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(v8i16 (or VR128X:$src1, VR128X:$src2)),
(VPORQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(v16i8 (xor VR128X:$src1, VR128X:$src2)),
(VPXORQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(v8i16 (xor VR128X:$src1, VR128X:$src2)),
(VPXORQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(v16i8 (X86andnp VR128X:$src1, VR128X:$src2)),
(VPANDNQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(v8i16 (X86andnp VR128X:$src1, VR128X:$src2)),
(VPANDNQZ128rr VR128X:$src1, VR128X:$src2)>;
def : Pat<(and VR128X:$src1, (loadv16i8 addr:$src2)),
(VPANDQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(and VR128X:$src1, (loadv8i16 addr:$src2)),
(VPANDQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(or VR128X:$src1, (loadv16i8 addr:$src2)),
(VPORQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(or VR128X:$src1, (loadv8i16 addr:$src2)),
(VPORQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(xor VR128X:$src1, (loadv16i8 addr:$src2)),
(VPXORQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(xor VR128X:$src1, (loadv8i16 addr:$src2)),
(VPXORQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR128X:$src1, (loadv16i8 addr:$src2)),
(VPANDNQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR128X:$src1, (loadv8i16 addr:$src2)),
(VPANDNQZ128rm VR128X:$src1, addr:$src2)>;
def : Pat<(and VR128X:$src1,
(bc_v4i32 (v4f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPANDDZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(or VR128X:$src1,
(bc_v4i32 (v4f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPORDZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(xor VR128X:$src1,
(bc_v4i32 (v4f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPXORDZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR128X:$src1,
(bc_v4i32 (v4f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPANDNDZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(and VR128X:$src1,
(bc_v2i64 (v2f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPANDQZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(or VR128X:$src1,
(bc_v2i64 (v2f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPORQZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(xor VR128X:$src1,
(bc_v2i64 (v2f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPXORQZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR128X:$src1,
(bc_v2i64 (v2f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPANDNQZ128rmb VR128X:$src1, addr:$src2)>;
def : Pat<(v32i8 (and VR256X:$src1, VR256X:$src2)),
(VPANDQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(v16i16 (and VR256X:$src1, VR256X:$src2)),
(VPANDQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(v32i8 (or VR256X:$src1, VR256X:$src2)),
(VPORQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(v16i16 (or VR256X:$src1, VR256X:$src2)),
(VPORQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(v32i8 (xor VR256X:$src1, VR256X:$src2)),
(VPXORQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(v16i16 (xor VR256X:$src1, VR256X:$src2)),
(VPXORQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(v32i8 (X86andnp VR256X:$src1, VR256X:$src2)),
(VPANDNQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(v16i16 (X86andnp VR256X:$src1, VR256X:$src2)),
(VPANDNQZ256rr VR256X:$src1, VR256X:$src2)>;
def : Pat<(and VR256X:$src1, (loadv32i8 addr:$src2)),
(VPANDQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(and VR256X:$src1, (loadv16i16 addr:$src2)),
(VPANDQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(or VR256X:$src1, (loadv32i8 addr:$src2)),
(VPORQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(or VR256X:$src1, (loadv16i16 addr:$src2)),
(VPORQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(xor VR256X:$src1, (loadv32i8 addr:$src2)),
(VPXORQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(xor VR256X:$src1, (loadv16i16 addr:$src2)),
(VPXORQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR256X:$src1, (loadv32i8 addr:$src2)),
(VPANDNQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR256X:$src1, (loadv16i16 addr:$src2)),
(VPANDNQZ256rm VR256X:$src1, addr:$src2)>;
def : Pat<(and VR256X:$src1,
(bc_v8i32 (v8f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPANDDZ256rmb VR256X:$src1, addr:$src2)>;
def : Pat<(or VR256X:$src1,
(bc_v8i32 (v8f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPORDZ256rmb VR256X:$src1, addr:$src2)>;
def : Pat<(xor VR256X:$src1,
(bc_v8i32 (v8f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPXORDZ256rmb VR256X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR256X:$src1,
(bc_v8i32 (v8f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPANDNDZ256rmb VR256X:$src1, addr:$src2)>;
def : Pat<(and VR256X:$src1,
(bc_v4i64 (v4f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPANDQZ256rmb VR256X:$src1, addr:$src2)>;
def : Pat<(or VR256X:$src1,
(bc_v4i64 (v4f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPORQZ256rmb VR256X:$src1, addr:$src2)>;
def : Pat<(xor VR256X:$src1,
(bc_v4i64 (v4f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPXORQZ256rmb VR256X:$src1, addr:$src2)>;
def : Pat<(X86andnp VR256X:$src1,
(bc_v4i64 (v4f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPANDNQZ256rmb VR256X:$src1, addr:$src2)>;
}
let Predicates = [HasAVX512] in {
def : Pat<(v64i8 (and VR512:$src1, VR512:$src2)),
(VPANDQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(v32i16 (and VR512:$src1, VR512:$src2)),
(VPANDQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(v64i8 (or VR512:$src1, VR512:$src2)),
(VPORQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(v32i16 (or VR512:$src1, VR512:$src2)),
(VPORQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(v64i8 (xor VR512:$src1, VR512:$src2)),
(VPXORQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(v32i16 (xor VR512:$src1, VR512:$src2)),
(VPXORQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(v64i8 (X86andnp VR512:$src1, VR512:$src2)),
(VPANDNQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(v32i16 (X86andnp VR512:$src1, VR512:$src2)),
(VPANDNQZrr VR512:$src1, VR512:$src2)>;
def : Pat<(and VR512:$src1, (loadv64i8 addr:$src2)),
(VPANDQZrm VR512:$src1, addr:$src2)>;
def : Pat<(and VR512:$src1, (loadv32i16 addr:$src2)),
(VPANDQZrm VR512:$src1, addr:$src2)>;
def : Pat<(or VR512:$src1, (loadv64i8 addr:$src2)),
(VPORQZrm VR512:$src1, addr:$src2)>;
def : Pat<(or VR512:$src1, (loadv32i16 addr:$src2)),
(VPORQZrm VR512:$src1, addr:$src2)>;
def : Pat<(xor VR512:$src1, (loadv64i8 addr:$src2)),
(VPXORQZrm VR512:$src1, addr:$src2)>;
def : Pat<(xor VR512:$src1, (loadv32i16 addr:$src2)),
(VPXORQZrm VR512:$src1, addr:$src2)>;
def : Pat<(X86andnp VR512:$src1, (loadv64i8 addr:$src2)),
(VPANDNQZrm VR512:$src1, addr:$src2)>;
def : Pat<(X86andnp VR512:$src1, (loadv32i16 addr:$src2)),
(VPANDNQZrm VR512:$src1, addr:$src2)>;
def : Pat<(and VR512:$src1,
(bc_v16i32 (v16f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPANDDZrmb VR512:$src1, addr:$src2)>;
def : Pat<(or VR512:$src1,
(bc_v16i32 (v16f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPORDZrmb VR512:$src1, addr:$src2)>;
def : Pat<(xor VR512:$src1,
(bc_v16i32 (v16f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPXORDZrmb VR512:$src1, addr:$src2)>;
def : Pat<(X86andnp VR512:$src1,
(bc_v16i32 (v16f32 (X86VBroadcast (loadf32 addr:$src2))))),
(VPANDNDZrmb VR512:$src1, addr:$src2)>;
def : Pat<(and VR512:$src1,
(bc_v8i64 (v8f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPANDQZrmb VR512:$src1, addr:$src2)>;
def : Pat<(or VR512:$src1,
(bc_v8i64 (v8f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPORQZrmb VR512:$src1, addr:$src2)>;
def : Pat<(xor VR512:$src1,
(bc_v8i64 (v8f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPXORQZrmb VR512:$src1, addr:$src2)>;
def : Pat<(X86andnp VR512:$src1,
(bc_v8i64 (v8f64 (X86VBroadcast (loadf64 addr:$src2))))),
(VPANDNQZrmb VR512:$src1, addr:$src2)>;
}
// Patterns to catch vselect with different type than logic op.
multiclass avx512_logical_lowering<string InstrStr, SDNode OpNode,
X86VectorVTInfo _,
X86VectorVTInfo IntInfo> {
// Masked register-register logical operations.
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(bitconvert (IntInfo.VT (OpNode _.RC:$src1, _.RC:$src2))),
_.RC:$src0)),
(!cast<Instruction>(InstrStr#rrk) _.RC:$src0, _.KRCWM:$mask,
_.RC:$src1, _.RC:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(bitconvert (IntInfo.VT (OpNode _.RC:$src1, _.RC:$src2))),
_.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#rrkz) _.KRCWM:$mask, _.RC:$src1,
_.RC:$src2)>;
// Masked register-memory logical operations.
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(bitconvert (IntInfo.VT (OpNode _.RC:$src1,
(load addr:$src2)))),
_.RC:$src0)),
(!cast<Instruction>(InstrStr#rmk) _.RC:$src0, _.KRCWM:$mask,
_.RC:$src1, addr:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(bitconvert (IntInfo.VT (OpNode _.RC:$src1,
(load addr:$src2)))),
_.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#rmkz) _.KRCWM:$mask, _.RC:$src1,
addr:$src2)>;
}
multiclass avx512_logical_lowering_bcast<string InstrStr, SDNode OpNode,
X86VectorVTInfo _,
X86VectorVTInfo IntInfo> {
// Register-broadcast logical operations.
def : Pat<(IntInfo.VT (OpNode _.RC:$src1,
(bitconvert (_.VT (X86VBroadcast
(_.ScalarLdFrag addr:$src2)))))),
(!cast<Instruction>(InstrStr#rmb) _.RC:$src1, addr:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(bitconvert
(IntInfo.VT (OpNode _.RC:$src1,
(bitconvert (_.VT
(X86VBroadcast
(_.ScalarLdFrag addr:$src2))))))),
_.RC:$src0)),
(!cast<Instruction>(InstrStr#rmbk) _.RC:$src0, _.KRCWM:$mask,
_.RC:$src1, addr:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(bitconvert
(IntInfo.VT (OpNode _.RC:$src1,
(bitconvert (_.VT
(X86VBroadcast
(_.ScalarLdFrag addr:$src2))))))),
_.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#rmbkz) _.KRCWM:$mask,
_.RC:$src1, addr:$src2)>;
}
multiclass avx512_logical_lowering_sizes<string InstrStr, SDNode OpNode,
AVX512VLVectorVTInfo SelectInfo,
AVX512VLVectorVTInfo IntInfo> {
let Predicates = [HasVLX] in {
defm : avx512_logical_lowering<InstrStr#"Z128", OpNode, SelectInfo.info128,
IntInfo.info128>;
defm : avx512_logical_lowering<InstrStr#"Z256", OpNode, SelectInfo.info256,
IntInfo.info256>;
}
let Predicates = [HasAVX512] in {
defm : avx512_logical_lowering<InstrStr#"Z", OpNode, SelectInfo.info512,
IntInfo.info512>;
}
}
multiclass avx512_logical_lowering_sizes_bcast<string InstrStr, SDNode OpNode,
AVX512VLVectorVTInfo SelectInfo,
AVX512VLVectorVTInfo IntInfo> {
let Predicates = [HasVLX] in {
defm : avx512_logical_lowering_bcast<InstrStr#"Z128", OpNode,
SelectInfo.info128, IntInfo.info128>;
defm : avx512_logical_lowering_bcast<InstrStr#"Z256", OpNode,
SelectInfo.info256, IntInfo.info256>;
}
let Predicates = [HasAVX512] in {
defm : avx512_logical_lowering_bcast<InstrStr#"Z", OpNode,
SelectInfo.info512, IntInfo.info512>;
}
}
multiclass avx512_logical_lowering_types<string InstrStr, SDNode OpNode> {
// i64 vselect with i32/i16/i8 logic op
defm : avx512_logical_lowering_sizes<InstrStr#"Q", OpNode, avx512vl_i64_info,
avx512vl_i32_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"Q", OpNode, avx512vl_i64_info,
avx512vl_i16_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"Q", OpNode, avx512vl_i64_info,
avx512vl_i8_info>;
// i32 vselect with i64/i16/i8 logic op
defm : avx512_logical_lowering_sizes<InstrStr#"D", OpNode, avx512vl_i32_info,
avx512vl_i64_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"D", OpNode, avx512vl_i32_info,
avx512vl_i16_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"D", OpNode, avx512vl_i32_info,
avx512vl_i8_info>;
// f32 vselect with i64/i32/i16/i8 logic op
defm : avx512_logical_lowering_sizes<InstrStr#"D", OpNode, avx512vl_f32_info,
avx512vl_i64_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"D", OpNode, avx512vl_f32_info,
avx512vl_i32_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"D", OpNode, avx512vl_f32_info,
avx512vl_i16_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"D", OpNode, avx512vl_f32_info,
avx512vl_i8_info>;
// f64 vselect with i64/i32/i16/i8 logic op
defm : avx512_logical_lowering_sizes<InstrStr#"Q", OpNode, avx512vl_f64_info,
avx512vl_i64_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"Q", OpNode, avx512vl_f64_info,
avx512vl_i32_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"Q", OpNode, avx512vl_f64_info,
avx512vl_i16_info>;
defm : avx512_logical_lowering_sizes<InstrStr#"Q", OpNode, avx512vl_f64_info,
avx512vl_i8_info>;
defm : avx512_logical_lowering_sizes_bcast<InstrStr#"D", OpNode,
avx512vl_f32_info,
avx512vl_i32_info>;
defm : avx512_logical_lowering_sizes_bcast<InstrStr#"Q", OpNode,
avx512vl_f64_info,
avx512vl_i64_info>;
}
defm : avx512_logical_lowering_types<"VPAND", and>;
defm : avx512_logical_lowering_types<"VPOR", or>;
defm : avx512_logical_lowering_types<"VPXOR", xor>;
defm : avx512_logical_lowering_types<"VPANDN", X86andnp>;
//===----------------------------------------------------------------------===//
// AVX-512 FP arithmetic
//===----------------------------------------------------------------------===//
multiclass avx512_fp_scalar<bits<8> opc, string OpcodeStr,X86VectorVTInfo _,
SDNode OpNode, SDNode VecNode,
X86FoldableSchedWrite sched, bit IsCommutable> {
let ExeDomain = _.ExeDomain in {
defm rr_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (VecNode _.RC:$src1, _.RC:$src2,
(i32 FROUND_CURRENT)))>,
Sched<[sched]>;
defm rm_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (VecNode _.RC:$src1,
_.ScalarIntMemCPat:$src2,
(i32 FROUND_CURRENT)))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
let isCodeGenOnly = 1, Predicates = [HasAVX512] in {
def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))]>,
Sched<[sched]> {
let isCommutable = IsCommutable;
}
def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.ScalarMemOp:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.FRC:$dst, (OpNode _.FRC:$src1,
(_.ScalarLdFrag addr:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
}
multiclass avx512_fp_scalar_round<bits<8> opc, string OpcodeStr,X86VectorVTInfo _,
SDNode VecNode, X86FoldableSchedWrite sched,
bit IsCommutable = 0> {
let ExeDomain = _.ExeDomain in
defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, AVX512RC:$rc), OpcodeStr,
"$rc, $src2, $src1", "$src1, $src2, $rc",
(VecNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
(i32 imm:$rc)), IsCommutable>,
EVEX_B, EVEX_RC, Sched<[sched]>;
}
multiclass avx512_fp_scalar_sae<bits<8> opc, string OpcodeStr,X86VectorVTInfo _,
SDNode OpNode, SDNode VecNode, SDNode SaeNode,
X86FoldableSchedWrite sched, bit IsCommutable> {
let ExeDomain = _.ExeDomain in {
defm rr_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (VecNode _.RC:$src1, _.RC:$src2))>,
Sched<[sched]>;
defm rm_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (VecNode _.RC:$src1,
_.ScalarIntMemCPat:$src2))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
let isCodeGenOnly = 1, Predicates = [HasAVX512] in {
def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))]>,
Sched<[sched]> {
let isCommutable = IsCommutable;
}
def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.ScalarMemOp:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.FRC:$dst, (OpNode _.FRC:$src1,
(_.ScalarLdFrag addr:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"{sae}, $src2, $src1", "$src1, $src2, {sae}",
(SaeNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
(i32 FROUND_NO_EXC))>, EVEX_B,
Sched<[sched]>;
}
}
multiclass avx512_binop_s_round<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode VecNode, X86SchedWriteSizes sched,
bit IsCommutable> {
defm SSZ : avx512_fp_scalar<opc, OpcodeStr#"ss", f32x_info, OpNode, VecNode,
sched.PS.Scl, IsCommutable>,
avx512_fp_scalar_round<opc, OpcodeStr#"ss", f32x_info, VecNode,
sched.PS.Scl, IsCommutable>,
XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>;
defm SDZ : avx512_fp_scalar<opc, OpcodeStr#"sd", f64x_info, OpNode, VecNode,
sched.PD.Scl, IsCommutable>,
avx512_fp_scalar_round<opc, OpcodeStr#"sd", f64x_info, VecNode,
sched.PD.Scl, IsCommutable>,
XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>;
}
multiclass avx512_binop_s_sae<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode VecNode, SDNode SaeNode,
X86SchedWriteSizes sched, bit IsCommutable> {
defm SSZ : avx512_fp_scalar_sae<opc, OpcodeStr#"ss", f32x_info, OpNode,
VecNode, SaeNode, sched.PS.Scl, IsCommutable>,
XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>;
defm SDZ : avx512_fp_scalar_sae<opc, OpcodeStr#"sd", f64x_info, OpNode,
VecNode, SaeNode, sched.PD.Scl, IsCommutable>,
XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>;
}
defm VADD : avx512_binop_s_round<0x58, "vadd", fadd, X86faddRnds,
SchedWriteFAddSizes, 1>;
defm VMUL : avx512_binop_s_round<0x59, "vmul", fmul, X86fmulRnds,
SchedWriteFMulSizes, 1>;
defm VSUB : avx512_binop_s_round<0x5C, "vsub", fsub, X86fsubRnds,
SchedWriteFAddSizes, 0>;
defm VDIV : avx512_binop_s_round<0x5E, "vdiv", fdiv, X86fdivRnds,
SchedWriteFDivSizes, 0>;
defm VMIN : avx512_binop_s_sae<0x5D, "vmin", X86fmin, X86fmins, X86fminRnds,
SchedWriteFCmpSizes, 0>;
defm VMAX : avx512_binop_s_sae<0x5F, "vmax", X86fmax, X86fmaxs, X86fmaxRnds,
SchedWriteFCmpSizes, 0>;
// MIN/MAX nodes are commutable under "unsafe-fp-math". In this case we use
// X86fminc and X86fmaxc instead of X86fmin and X86fmax
multiclass avx512_comutable_binop_s<bits<8> opc, string OpcodeStr,
X86VectorVTInfo _, SDNode OpNode,
X86FoldableSchedWrite sched> {
let isCodeGenOnly = 1, Predicates = [HasAVX512], ExeDomain = _.ExeDomain in {
def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))]>,
Sched<[sched]> {
let isCommutable = 1;
}
def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.ScalarMemOp:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set _.FRC:$dst, (OpNode _.FRC:$src1,
(_.ScalarLdFrag addr:$src2)))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
defm VMINCSSZ : avx512_comutable_binop_s<0x5D, "vminss", f32x_info, X86fminc,
SchedWriteFCmp.Scl>, XS, EVEX_4V,
VEX_LIG, EVEX_CD8<32, CD8VT1>;
defm VMINCSDZ : avx512_comutable_binop_s<0x5D, "vminsd", f64x_info, X86fminc,
SchedWriteFCmp.Scl>, XD, VEX_W, EVEX_4V,
VEX_LIG, EVEX_CD8<64, CD8VT1>;
defm VMAXCSSZ : avx512_comutable_binop_s<0x5F, "vmaxss", f32x_info, X86fmaxc,
SchedWriteFCmp.Scl>, XS, EVEX_4V,
VEX_LIG, EVEX_CD8<32, CD8VT1>;
defm VMAXCSDZ : avx512_comutable_binop_s<0x5F, "vmaxsd", f64x_info, X86fmaxc,
SchedWriteFCmp.Scl>, XD, VEX_W, EVEX_4V,
VEX_LIG, EVEX_CD8<64, CD8VT1>;
multiclass avx512_fp_packed<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode,
X86VectorVTInfo _, X86FoldableSchedWrite sched,
bit IsCommutable,
bit IsKZCommutable = IsCommutable> {
let ExeDomain = _.ExeDomain, hasSideEffects = 0 in {
defm rr: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, _.RC:$src2)), IsCommutable, 0,
IsKZCommutable>,
EVEX_4V, Sched<[sched]>;
let mayLoad = 1 in {
defm rm: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2), OpcodeStr##_.Suffix,
"$src2, $src1", "$src1, $src2",
(OpNode _.RC:$src1, (_.LdFrag addr:$src2))>,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr##_.Suffix,
"${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr,
(OpNode _.RC:$src1, (_.VT (X86VBroadcast
(_.ScalarLdFrag addr:$src2))))>,
EVEX_4V, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
}
multiclass avx512_fp_round_packed<bits<8> opc, string OpcodeStr,
SDPatternOperator OpNodeRnd,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm rrb: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, AVX512RC:$rc), OpcodeStr##_.Suffix,
"$rc, $src2, $src1", "$src1, $src2, $rc",
(_.VT (OpNodeRnd _.RC:$src1, _.RC:$src2, (i32 imm:$rc)))>,
EVEX_4V, EVEX_B, EVEX_RC, Sched<[sched]>;
}
multiclass avx512_fp_sae_packed<bits<8> opc, string OpcodeStr,
SDPatternOperator OpNodeRnd,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm rrb: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix,
"{sae}, $src2, $src1", "$src1, $src2, {sae}",
(_.VT (OpNodeRnd _.RC:$src1, _.RC:$src2, (i32 FROUND_NO_EXC)))>,
EVEX_4V, EVEX_B, Sched<[sched]>;
}
multiclass avx512_fp_binop_p<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode,
Predicate prd, X86SchedWriteSizes sched,
bit IsCommutable = 0,
bit IsPD128Commutable = IsCommutable> {
let Predicates = [prd] in {
defm PSZ : avx512_fp_packed<opc, OpcodeStr, OpNode, v16f32_info,
sched.PS.ZMM, IsCommutable>, EVEX_V512, PS,
EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_fp_packed<opc, OpcodeStr, OpNode, v8f64_info,
sched.PD.ZMM, IsCommutable>, EVEX_V512, PD, VEX_W,
EVEX_CD8<64, CD8VF>;
}
// Define only if AVX512VL feature is present.
let Predicates = [prd, HasVLX] in {
defm PSZ128 : avx512_fp_packed<opc, OpcodeStr, OpNode, v4f32x_info,
sched.PS.XMM, IsCommutable>, EVEX_V128, PS,
EVEX_CD8<32, CD8VF>;
defm PSZ256 : avx512_fp_packed<opc, OpcodeStr, OpNode, v8f32x_info,
sched.PS.YMM, IsCommutable>, EVEX_V256, PS,
EVEX_CD8<32, CD8VF>;
defm PDZ128 : avx512_fp_packed<opc, OpcodeStr, OpNode, v2f64x_info,
sched.PD.XMM, IsPD128Commutable,
IsCommutable>, EVEX_V128, PD, VEX_W,
EVEX_CD8<64, CD8VF>;
defm PDZ256 : avx512_fp_packed<opc, OpcodeStr, OpNode, v4f64x_info,
sched.PD.YMM, IsCommutable>, EVEX_V256, PD, VEX_W,
EVEX_CD8<64, CD8VF>;
}
}
multiclass avx512_fp_binop_p_round<bits<8> opc, string OpcodeStr, SDNode OpNodeRnd,
X86SchedWriteSizes sched> {
defm PSZ : avx512_fp_round_packed<opc, OpcodeStr, OpNodeRnd, sched.PS.ZMM,
v16f32_info>,
EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_fp_round_packed<opc, OpcodeStr, OpNodeRnd, sched.PD.ZMM,
v8f64_info>,
EVEX_V512, PD, VEX_W,EVEX_CD8<64, CD8VF>;
}
multiclass avx512_fp_binop_p_sae<bits<8> opc, string OpcodeStr, SDNode OpNodeRnd,
X86SchedWriteSizes sched> {
defm PSZ : avx512_fp_sae_packed<opc, OpcodeStr, OpNodeRnd, sched.PS.ZMM,
v16f32_info>,
EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_fp_sae_packed<opc, OpcodeStr, OpNodeRnd, sched.PD.ZMM,
v8f64_info>,
EVEX_V512, PD, VEX_W,EVEX_CD8<64, CD8VF>;
}
defm VADD : avx512_fp_binop_p<0x58, "vadd", fadd, HasAVX512,
SchedWriteFAddSizes, 1>,
avx512_fp_binop_p_round<0x58, "vadd", X86faddRnd, SchedWriteFAddSizes>;
defm VMUL : avx512_fp_binop_p<0x59, "vmul", fmul, HasAVX512,
SchedWriteFMulSizes, 1>,
avx512_fp_binop_p_round<0x59, "vmul", X86fmulRnd, SchedWriteFMulSizes>;
defm VSUB : avx512_fp_binop_p<0x5C, "vsub", fsub, HasAVX512,
SchedWriteFAddSizes>,
avx512_fp_binop_p_round<0x5C, "vsub", X86fsubRnd, SchedWriteFAddSizes>;
defm VDIV : avx512_fp_binop_p<0x5E, "vdiv", fdiv, HasAVX512,
SchedWriteFDivSizes>,
avx512_fp_binop_p_round<0x5E, "vdiv", X86fdivRnd, SchedWriteFDivSizes>;
defm VMIN : avx512_fp_binop_p<0x5D, "vmin", X86fmin, HasAVX512,
SchedWriteFCmpSizes, 0>,
avx512_fp_binop_p_sae<0x5D, "vmin", X86fminRnd, SchedWriteFCmpSizes>;
defm VMAX : avx512_fp_binop_p<0x5F, "vmax", X86fmax, HasAVX512,
SchedWriteFCmpSizes, 0>,
avx512_fp_binop_p_sae<0x5F, "vmax", X86fmaxRnd, SchedWriteFCmpSizes>;
let isCodeGenOnly = 1 in {
defm VMINC : avx512_fp_binop_p<0x5D, "vmin", X86fminc, HasAVX512,
SchedWriteFCmpSizes, 1>;
defm VMAXC : avx512_fp_binop_p<0x5F, "vmax", X86fmaxc, HasAVX512,
SchedWriteFCmpSizes, 1>;
}
defm VAND : avx512_fp_binop_p<0x54, "vand", null_frag, HasDQI,
SchedWriteFLogicSizes, 1>;
defm VANDN : avx512_fp_binop_p<0x55, "vandn", null_frag, HasDQI,
SchedWriteFLogicSizes, 0>;
defm VOR : avx512_fp_binop_p<0x56, "vor", null_frag, HasDQI,
SchedWriteFLogicSizes, 1>;
defm VXOR : avx512_fp_binop_p<0x57, "vxor", null_frag, HasDQI,
SchedWriteFLogicSizes, 1>;
let Predicates = [HasVLX,HasDQI] in {
// Use packed logical operations for scalar ops.
def : Pat<(f64 (X86fand FR64X:$src1, FR64X:$src2)),
(COPY_TO_REGCLASS
(v2f64 (VANDPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)),
(v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))),
FR64X)>;
def : Pat<(f64 (X86for FR64X:$src1, FR64X:$src2)),
(COPY_TO_REGCLASS
(v2f64 (VORPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)),
(v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))),
FR64X)>;
def : Pat<(f64 (X86fxor FR64X:$src1, FR64X:$src2)),
(COPY_TO_REGCLASS
(v2f64 (VXORPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)),
(v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))),
FR64X)>;
def : Pat<(f64 (X86fandn FR64X:$src1, FR64X:$src2)),
(COPY_TO_REGCLASS
(v2f64 (VANDNPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)),
(v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))),
FR64X)>;
def : Pat<(f32 (X86fand FR32X:$src1, FR32X:$src2)),
(COPY_TO_REGCLASS
(v4f32 (VANDPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)),
(v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))),
FR32X)>;
def : Pat<(f32 (X86for FR32X:$src1, FR32X:$src2)),
(COPY_TO_REGCLASS
(v4f32 (VORPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)),
(v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))),
FR32X)>;
def : Pat<(f32 (X86fxor FR32X:$src1, FR32X:$src2)),
(COPY_TO_REGCLASS
(v4f32 (VXORPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)),
(v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))),
FR32X)>;
def : Pat<(f32 (X86fandn FR32X:$src1, FR32X:$src2)),
(COPY_TO_REGCLASS
(v4f32 (VANDNPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)),
(v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))),
FR32X)>;
}
multiclass avx512_fp_scalef_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm rr: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, _.RC:$src2, (i32 FROUND_CURRENT)))>,
EVEX_4V, Sched<[sched]>;
defm rm: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2), OpcodeStr##_.Suffix,
"$src2, $src1", "$src1, $src2",
(OpNode _.RC:$src1, (_.LdFrag addr:$src2), (i32 FROUND_CURRENT))>,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr##_.Suffix,
"${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr,
(OpNode _.RC:$src1, (_.VT (X86VBroadcast
(_.ScalarLdFrag addr:$src2))),
(i32 FROUND_CURRENT))>,
EVEX_4V, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fp_scalef_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm rr: AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, _.RC:$src2, (i32 FROUND_CURRENT)))>,
Sched<[sched]>;
defm rm: AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr##_.Suffix,
"$src2, $src1", "$src1, $src2",
(OpNode _.RC:$src1, _.ScalarIntMemCPat:$src2,
(i32 FROUND_CURRENT))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fp_scalef_all<bits<8> opc, bits<8> opcScaler, string OpcodeStr,
SDNode OpNode, SDNode OpNodeScal,
X86SchedWriteWidths sched> {
defm PSZ : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.ZMM, v16f32_info>,
avx512_fp_round_packed<opc, OpcodeStr, OpNode, sched.ZMM, v16f32_info>,
EVEX_V512, EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.ZMM, v8f64_info>,
avx512_fp_round_packed<opc, OpcodeStr, OpNode, sched.ZMM, v8f64_info>,
EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
defm SSZ : avx512_fp_scalef_scalar<opcScaler, OpcodeStr, OpNodeScal, sched.Scl, f32x_info>,
avx512_fp_scalar_round<opcScaler, OpcodeStr##"ss", f32x_info, OpNodeScal, sched.Scl>,
EVEX_4V,EVEX_CD8<32, CD8VT1>;
defm SDZ : avx512_fp_scalef_scalar<opcScaler, OpcodeStr, OpNodeScal, sched.Scl, f64x_info>,
avx512_fp_scalar_round<opcScaler, OpcodeStr##"sd", f64x_info, OpNodeScal, sched.Scl>,
EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W;
// Define only if AVX512VL feature is present.
let Predicates = [HasVLX] in {
defm PSZ128 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.XMM, v4f32x_info>,
EVEX_V128, EVEX_CD8<32, CD8VF>;
defm PSZ256 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.YMM, v8f32x_info>,
EVEX_V256, EVEX_CD8<32, CD8VF>;
defm PDZ128 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.XMM, v2f64x_info>,
EVEX_V128, VEX_W, EVEX_CD8<64, CD8VF>;
defm PDZ256 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.YMM, v4f64x_info>,
EVEX_V256, VEX_W, EVEX_CD8<64, CD8VF>;
}
}
defm VSCALEF : avx512_fp_scalef_all<0x2C, 0x2D, "vscalef", X86scalef, X86scalefs,
SchedWriteFAdd>, T8PD, NotEVEX2VEXConvertible;
//===----------------------------------------------------------------------===//
// AVX-512 VPTESTM instructions
//===----------------------------------------------------------------------===//
multiclass avx512_vptest<bits<8> opc, string OpcodeStr, PatFrag OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
string Name> {
let ExeDomain = _.ExeDomain in {
let isCommutable = 1 in
defm rr : AVX512_maskable_cmp<opc, MRMSrcReg, _, (outs _.KRC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(OpNode (and _.RC:$src1, _.RC:$src2), _.ImmAllZerosV)>,
EVEX_4V, Sched<[sched]>;
defm rm : AVX512_maskable_cmp<opc, MRMSrcMem, _, (outs _.KRC:$dst),
(ins _.RC:$src1, _.MemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(OpNode (and _.RC:$src1, (_.LdFrag addr:$src2)),
_.ImmAllZerosV)>,
EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
// Patterns for compare with 0 that just use the same source twice.
def : Pat<(_.KVT (OpNode _.RC:$src, _.ImmAllZerosV)),
(_.KVT (!cast<Instruction>(Name # _.ZSuffix # "rr")
_.RC:$src, _.RC:$src))>;
def : Pat<(_.KVT (and _.KRC:$mask, (OpNode _.RC:$src, _.ImmAllZerosV))),
(_.KVT (!cast<Instruction>(Name # _.ZSuffix # "rrk")
_.KRC:$mask, _.RC:$src, _.RC:$src))>;
}
multiclass avx512_vptest_mb<bits<8> opc, string OpcodeStr, PatFrag OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm rmb : AVX512_maskable_cmp<opc, MRMSrcMem, _, (outs _.KRC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr,
"${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr,
(OpNode (and _.RC:$src1,
(X86VBroadcast
(_.ScalarLdFrag addr:$src2))),
_.ImmAllZerosV)>,
EVEX_B, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
// Use 512bit version to implement 128/256 bit in case NoVLX.
multiclass avx512_vptest_lowering<PatFrag OpNode, X86VectorVTInfo ExtendInfo,
X86VectorVTInfo _, string Name> {
def : Pat<(_.KVT (OpNode (and _.RC:$src1, _.RC:$src2),
_.ImmAllZerosV)),
(_.KVT (COPY_TO_REGCLASS
(!cast<Instruction>(Name # "Zrr")
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src1, _.SubRegIdx),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src2, _.SubRegIdx)),
_.KRC))>;
def : Pat<(_.KVT (and _.KRC:$mask,
(OpNode (and _.RC:$src1, _.RC:$src2),
_.ImmAllZerosV))),
(COPY_TO_REGCLASS
(!cast<Instruction>(Name # "Zrrk")
(COPY_TO_REGCLASS _.KRC:$mask, ExtendInfo.KRC),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src1, _.SubRegIdx),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src2, _.SubRegIdx)),
_.KRC)>;
def : Pat<(_.KVT (OpNode _.RC:$src, _.ImmAllZerosV)),
(_.KVT (COPY_TO_REGCLASS
(!cast<Instruction>(Name # "Zrr")
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src, _.SubRegIdx),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src, _.SubRegIdx)),
_.KRC))>;
def : Pat<(_.KVT (and _.KRC:$mask, (OpNode _.RC:$src, _.ImmAllZerosV))),
(COPY_TO_REGCLASS
(!cast<Instruction>(Name # "Zrrk")
(COPY_TO_REGCLASS _.KRC:$mask, ExtendInfo.KRC),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src, _.SubRegIdx),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src, _.SubRegIdx)),
_.KRC)>;
}
multiclass avx512_vptest_dq_sizes<bits<8> opc, string OpcodeStr, PatFrag OpNode,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in
defm Z : avx512_vptest<opc, OpcodeStr, OpNode, sched.ZMM, _.info512, NAME>,
avx512_vptest_mb<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in {
defm Z256 : avx512_vptest<opc, OpcodeStr, OpNode, sched.YMM, _.info256, NAME>,
avx512_vptest_mb<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256;
defm Z128 : avx512_vptest<opc, OpcodeStr, OpNode, sched.XMM, _.info128, NAME>,
avx512_vptest_mb<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128;
}
let Predicates = [HasAVX512, NoVLX] in {
defm Z256_Alt : avx512_vptest_lowering< OpNode, _.info512, _.info256, NAME>;
defm Z128_Alt : avx512_vptest_lowering< OpNode, _.info512, _.info128, NAME>;
}
}
multiclass avx512_vptest_dq<bits<8> opc, string OpcodeStr, PatFrag OpNode,
X86SchedWriteWidths sched> {
defm D : avx512_vptest_dq_sizes<opc, OpcodeStr#"d", OpNode, sched,
avx512vl_i32_info>;
defm Q : avx512_vptest_dq_sizes<opc, OpcodeStr#"q", OpNode, sched,
avx512vl_i64_info>, VEX_W;
}
multiclass avx512_vptest_wb<bits<8> opc, string OpcodeStr,
PatFrag OpNode, X86SchedWriteWidths sched> {
let Predicates = [HasBWI] in {
defm WZ: avx512_vptest<opc, OpcodeStr#"w", OpNode, sched.ZMM,
v32i16_info, NAME#"W">, EVEX_V512, VEX_W;
defm BZ: avx512_vptest<opc, OpcodeStr#"b", OpNode, sched.ZMM,
v64i8_info, NAME#"B">, EVEX_V512;
}
let Predicates = [HasVLX, HasBWI] in {
defm WZ256: avx512_vptest<opc, OpcodeStr#"w", OpNode, sched.YMM,
v16i16x_info, NAME#"W">, EVEX_V256, VEX_W;
defm WZ128: avx512_vptest<opc, OpcodeStr#"w", OpNode, sched.XMM,
v8i16x_info, NAME#"W">, EVEX_V128, VEX_W;
defm BZ256: avx512_vptest<opc, OpcodeStr#"b", OpNode, sched.YMM,
v32i8x_info, NAME#"B">, EVEX_V256;
defm BZ128: avx512_vptest<opc, OpcodeStr#"b", OpNode, sched.XMM,
v16i8x_info, NAME#"B">, EVEX_V128;
}
let Predicates = [HasBWI, NoVLX] in {
defm BZ256_Alt : avx512_vptest_lowering<OpNode, v64i8_info, v32i8x_info, NAME#"B">;
defm BZ128_Alt : avx512_vptest_lowering<OpNode, v64i8_info, v16i8x_info, NAME#"B">;
defm WZ256_Alt : avx512_vptest_lowering<OpNode, v32i16_info, v16i16x_info, NAME#"W">;
defm WZ128_Alt : avx512_vptest_lowering<OpNode, v32i16_info, v8i16x_info, NAME#"W">;
}
}
// These patterns are used to match vptestm/vptestnm. We don't treat pcmpeqm
// as commutable here because we already canonicalized all zeros vectors to the
// RHS during lowering.
def X86pcmpeqm : PatFrag<(ops node:$src1, node:$src2),
(setcc node:$src1, node:$src2, SETEQ)>;
def X86pcmpnem : PatFrag<(ops node:$src1, node:$src2),
(setcc node:$src1, node:$src2, SETNE)>;
multiclass avx512_vptest_all_forms<bits<8> opc_wb, bits<8> opc_dq, string OpcodeStr,
PatFrag OpNode, X86SchedWriteWidths sched> :
avx512_vptest_wb<opc_wb, OpcodeStr, OpNode, sched>,
avx512_vptest_dq<opc_dq, OpcodeStr, OpNode, sched>;
defm VPTESTM : avx512_vptest_all_forms<0x26, 0x27, "vptestm", X86pcmpnem,
SchedWriteVecLogic>, T8PD;
defm VPTESTNM : avx512_vptest_all_forms<0x26, 0x27, "vptestnm", X86pcmpeqm,
SchedWriteVecLogic>, T8XS;
multiclass avx512_vptest_lowering_pats<string InstrStr, PatFrag OpNode,
X86VectorVTInfo _,
X86VectorVTInfo AndInfo> {
def : Pat<(_.KVT (OpNode (bitconvert
(AndInfo.VT (and _.RC:$src1, _.RC:$src2))),
_.ImmAllZerosV)),
(!cast<Instruction>(InstrStr # "rr") _.RC:$src1, _.RC:$src2)>;
def : Pat<(_.KVT (and _.KRC:$mask,
(OpNode (bitconvert
(AndInfo.VT (and _.RC:$src1, _.RC:$src2))),
_.ImmAllZerosV))),
(!cast<Instruction>(InstrStr # "rrk") _.KRC:$mask, _.RC:$src1,
_.RC:$src2)>;
def : Pat<(_.KVT (OpNode (bitconvert
(AndInfo.VT (and _.RC:$src1,
(AndInfo.LdFrag addr:$src2)))),
_.ImmAllZerosV)),
(!cast<Instruction>(InstrStr # "rm") _.RC:$src1, addr:$src2)>;
def : Pat<(_.KVT (and _.KRC:$mask,
(OpNode (bitconvert
(AndInfo.VT (and _.RC:$src1,
(AndInfo.LdFrag addr:$src2)))),
_.ImmAllZerosV))),
(!cast<Instruction>(InstrStr # "rmk") _.KRC:$mask, _.RC:$src1,
addr:$src2)>;
}
// Patterns to use 512-bit instructions when 128/256 are not available.
multiclass avx512_vptest_lowering_wide_pats<string InstrStr, PatFrag OpNode,
X86VectorVTInfo _,
X86VectorVTInfo AndInfo,
X86VectorVTInfo ExtendInfo> {
def : Pat<(_.KVT (OpNode (bitconvert
(AndInfo.VT (and _.RC:$src1, _.RC:$src2))),
_.ImmAllZerosV)),
(_.KVT (COPY_TO_REGCLASS
(!cast<Instruction>(InstrStr#"rr")
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src1, _.SubRegIdx),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src2, _.SubRegIdx)),
_.KRC))>;
def : Pat<(_.KVT (and _.KRC:$mask,
(OpNode (bitconvert
(AndInfo.VT (and _.RC:$src1, _.RC:$src2))),
_.ImmAllZerosV))),
(COPY_TO_REGCLASS
(!cast<Instruction>(InstrStr#"rrk")
(COPY_TO_REGCLASS _.KRC:$mask, ExtendInfo.KRC),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src1, _.SubRegIdx),
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src2, _.SubRegIdx)),
_.KRC)>;
}
multiclass avx512_vptest_lowering_sizes<string InstrStr, PatFrag OpNode,
Predicate prd,
AVX512VLVectorVTInfo CmpInfo,
AVX512VLVectorVTInfo AndInfo> {
let Predicates = [prd, HasVLX] in {
defm : avx512_vptest_lowering_pats<InstrStr#"Z128", OpNode,
CmpInfo.info128, AndInfo.info128>;
defm : avx512_vptest_lowering_pats<InstrStr#"Z256", OpNode,
CmpInfo.info256, AndInfo.info256>;
}
let Predicates = [prd] in {
defm : avx512_vptest_lowering_pats<InstrStr#"Z", OpNode,
CmpInfo.info512, AndInfo.info512>;
}
let Predicates = [prd, NoVLX] in {
defm : avx512_vptest_lowering_wide_pats<InstrStr#"Z", OpNode,
CmpInfo.info128, AndInfo.info128,
CmpInfo.info512>;
defm : avx512_vptest_lowering_wide_pats<InstrStr#"Z", OpNode,
CmpInfo.info256, AndInfo.info256,
CmpInfo.info512>;
}
}
multiclass avx512_vptest_lowering_types<string InstrStr, PatFrag OpNode> {
defm : avx512_vptest_lowering_sizes<InstrStr # "B", OpNode, HasBWI,
avx512vl_i8_info, avx512vl_i16_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "B", OpNode, HasBWI,
avx512vl_i8_info, avx512vl_i32_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "B", OpNode, HasBWI,
avx512vl_i8_info, avx512vl_i64_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "W", OpNode, HasBWI,
avx512vl_i16_info, avx512vl_i8_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "W", OpNode, HasBWI,
avx512vl_i16_info, avx512vl_i32_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "W", OpNode, HasBWI,
avx512vl_i16_info, avx512vl_i64_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "D", OpNode, HasAVX512,
avx512vl_i32_info, avx512vl_i8_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "D", OpNode, HasAVX512,
avx512vl_i32_info, avx512vl_i16_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "D", OpNode, HasAVX512,
avx512vl_i32_info, avx512vl_i64_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "Q", OpNode, HasAVX512,
avx512vl_i64_info, avx512vl_i8_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "Q", OpNode, HasAVX512,
avx512vl_i64_info, avx512vl_i16_info>;
defm : avx512_vptest_lowering_sizes<InstrStr # "Q", OpNode, HasAVX512,
avx512vl_i64_info, avx512vl_i32_info>;
}
defm : avx512_vptest_lowering_types<"VPTESTM", X86pcmpnem>;
defm : avx512_vptest_lowering_types<"VPTESTNM", X86pcmpeqm>;
//===----------------------------------------------------------------------===//
// AVX-512 Shift instructions
//===----------------------------------------------------------------------===//
multiclass avx512_shift_rmi<bits<8> opc, Format ImmFormR, Format ImmFormM,
string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm ri : AVX512_maskable<opc, ImmFormR, _, (outs _.RC:$dst),
(ins _.RC:$src1, u8imm:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, (i8 imm:$src2)))>,
Sched<[sched]>;
defm mi : AVX512_maskable<opc, ImmFormM, _, (outs _.RC:$dst),
(ins _.MemOp:$src1, u8imm:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode (_.VT (_.LdFrag addr:$src1)),
(i8 imm:$src2)))>,
Sched<[sched.Folded]>;
}
}
multiclass avx512_shift_rmbi<bits<8> opc, Format ImmFormM,
string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm mbi : AVX512_maskable<opc, ImmFormM, _, (outs _.RC:$dst),
(ins _.ScalarMemOp:$src1, u8imm:$src2), OpcodeStr,
"$src2, ${src1}"##_.BroadcastStr, "${src1}"##_.BroadcastStr##", $src2",
(_.VT (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src1)), (i8 imm:$src2)))>,
EVEX_B, Sched<[sched.Folded]>;
}
multiclass avx512_shift_rrm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, ValueType SrcVT,
X86VectorVTInfo _> {
// src2 is always 128-bit
let ExeDomain = _.ExeDomain in {
defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, VR128X:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, (SrcVT VR128X:$src2)))>,
AVX512BIBase, EVEX_4V, Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, i128mem:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, (SrcVT (load addr:$src2))))>,
AVX512BIBase,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_shift_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, ValueType SrcVT,
AVX512VLVectorVTInfo VTInfo,
Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_shift_rrm<opc, OpcodeStr, OpNode, sched.ZMM, SrcVT,
VTInfo.info512>, EVEX_V512,
EVEX_CD8<VTInfo.info512.EltSize, CD8VQ> ;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_shift_rrm<opc, OpcodeStr, OpNode, sched.YMM, SrcVT,
VTInfo.info256>, EVEX_V256,
EVEX_CD8<VTInfo.info256.EltSize, CD8VH>;
defm Z128 : avx512_shift_rrm<opc, OpcodeStr, OpNode, sched.XMM, SrcVT,
VTInfo.info128>, EVEX_V128,
EVEX_CD8<VTInfo.info128.EltSize, CD8VF>;
}
}
multiclass avx512_shift_types<bits<8> opcd, bits<8> opcq, bits<8> opcw,
string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched,
bit NotEVEX2VEXConvertibleQ = 0> {
defm D : avx512_shift_sizes<opcd, OpcodeStr#"d", OpNode, sched, v4i32,
avx512vl_i32_info, HasAVX512>;
let notEVEX2VEXConvertible = NotEVEX2VEXConvertibleQ in
defm Q : avx512_shift_sizes<opcq, OpcodeStr#"q", OpNode, sched, v2i64,
avx512vl_i64_info, HasAVX512>, VEX_W;
defm W : avx512_shift_sizes<opcw, OpcodeStr#"w", OpNode, sched, v8i16,
avx512vl_i16_info, HasBWI>;
}
multiclass avx512_shift_rmi_sizes<bits<8> opc, Format ImmFormR, Format ImmFormM,
string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo> {
let Predicates = [HasAVX512] in
defm Z: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched.ZMM, VTInfo.info512>,
avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched.ZMM,
VTInfo.info512>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in {
defm Z256: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched.YMM, VTInfo.info256>,
avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched.YMM,
VTInfo.info256>, EVEX_V256;
defm Z128: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched.XMM, VTInfo.info128>,
avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched.XMM,
VTInfo.info128>, EVEX_V128;
}
}
multiclass avx512_shift_rmi_w<bits<8> opcw, Format ImmFormR, Format ImmFormM,
string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
let Predicates = [HasBWI] in
defm WZ: avx512_shift_rmi<opcw, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched.ZMM, v32i16_info>, EVEX_V512, VEX_WIG;
let Predicates = [HasVLX, HasBWI] in {
defm WZ256: avx512_shift_rmi<opcw, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched.YMM, v16i16x_info>, EVEX_V256, VEX_WIG;
defm WZ128: avx512_shift_rmi<opcw, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched.XMM, v8i16x_info>, EVEX_V128, VEX_WIG;
}
}
multiclass avx512_shift_rmi_dq<bits<8> opcd, bits<8> opcq,
Format ImmFormR, Format ImmFormM,
string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched,
bit NotEVEX2VEXConvertibleQ = 0> {
defm D: avx512_shift_rmi_sizes<opcd, ImmFormR, ImmFormM, OpcodeStr#"d", OpNode,
sched, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
let notEVEX2VEXConvertible = NotEVEX2VEXConvertibleQ in
defm Q: avx512_shift_rmi_sizes<opcq, ImmFormR, ImmFormM, OpcodeStr#"q", OpNode,
sched, avx512vl_i64_info>, EVEX_CD8<64, CD8VF>, VEX_W;
}
defm VPSRL : avx512_shift_rmi_dq<0x72, 0x73, MRM2r, MRM2m, "vpsrl", X86vsrli,
SchedWriteVecShiftImm>,
avx512_shift_rmi_w<0x71, MRM2r, MRM2m, "vpsrlw", X86vsrli,
SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V;
defm VPSLL : avx512_shift_rmi_dq<0x72, 0x73, MRM6r, MRM6m, "vpsll", X86vshli,
SchedWriteVecShiftImm>,
avx512_shift_rmi_w<0x71, MRM6r, MRM6m, "vpsllw", X86vshli,
SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V;
defm VPSRA : avx512_shift_rmi_dq<0x72, 0x72, MRM4r, MRM4m, "vpsra", X86vsrai,
SchedWriteVecShiftImm, 1>,
avx512_shift_rmi_w<0x71, MRM4r, MRM4m, "vpsraw", X86vsrai,
SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V;
defm VPROR : avx512_shift_rmi_dq<0x72, 0x72, MRM0r, MRM0m, "vpror", X86vrotri,
SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V;
defm VPROL : avx512_shift_rmi_dq<0x72, 0x72, MRM1r, MRM1m, "vprol", X86vrotli,
SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V;
defm VPSLL : avx512_shift_types<0xF2, 0xF3, 0xF1, "vpsll", X86vshl,
SchedWriteVecShift>;
defm VPSRA : avx512_shift_types<0xE2, 0xE2, 0xE1, "vpsra", X86vsra,
SchedWriteVecShift, 1>;
defm VPSRL : avx512_shift_types<0xD2, 0xD3, 0xD1, "vpsrl", X86vsrl,
SchedWriteVecShift>;
// Use 512bit VPSRA/VPSRAI version to implement v2i64/v4i64 in case NoVLX.
let Predicates = [HasAVX512, NoVLX] in {
def : Pat<(v4i64 (X86vsra (v4i64 VR256X:$src1), (v2i64 VR128X:$src2))),
(EXTRACT_SUBREG (v8i64
(VPSRAQZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
VR128X:$src2)), sub_ymm)>;
def : Pat<(v2i64 (X86vsra (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))),
(EXTRACT_SUBREG (v8i64
(VPSRAQZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
VR128X:$src2)), sub_xmm)>;
def : Pat<(v4i64 (X86vsrai (v4i64 VR256X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v8i64
(VPSRAQZri
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
imm:$src2)), sub_ymm)>;
def : Pat<(v2i64 (X86vsrai (v2i64 VR128X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v8i64
(VPSRAQZri
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
imm:$src2)), sub_xmm)>;
}
//===-------------------------------------------------------------------===//
// Variable Bit Shifts
//===-------------------------------------------------------------------===//
multiclass avx512_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1, (_.VT _.RC:$src2)))>,
AVX5128IBase, EVEX_4V, Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1,
(_.VT (_.LdFrag addr:$src2))))>,
AVX5128IBase, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_var_shift_mb<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr,
"${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr,
(_.VT (OpNode _.RC:$src1, (_.VT (X86VBroadcast
(_.ScalarLdFrag addr:$src2)))))>,
AVX5128IBase, EVEX_B, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_var_shift_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in
defm Z : avx512_var_shift<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>,
avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in {
defm Z256 : avx512_var_shift<opc, OpcodeStr, OpNode, sched.YMM, _.info256>,
avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256;
defm Z128 : avx512_var_shift<opc, OpcodeStr, OpNode, sched.XMM, _.info128>,
avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128;
}
}
multiclass avx512_var_shift_types<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched> {
defm D : avx512_var_shift_sizes<opc, OpcodeStr#"d", OpNode, sched,
avx512vl_i32_info>;
defm Q : avx512_var_shift_sizes<opc, OpcodeStr#"q", OpNode, sched,
avx512vl_i64_info>, VEX_W;
}
// Use 512bit version to implement 128/256 bit in case NoVLX.
multiclass avx512_var_shift_lowering<AVX512VLVectorVTInfo _, string OpcodeStr,
SDNode OpNode, list<Predicate> p> {
let Predicates = p in {
def : Pat<(_.info256.VT (OpNode (_.info256.VT _.info256.RC:$src1),
(_.info256.VT _.info256.RC:$src2))),
(EXTRACT_SUBREG
(!cast<Instruction>(OpcodeStr#"Zrr")
(INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR256X:$src1, sub_ymm),
(INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)),
sub_ymm)>;
def : Pat<(_.info128.VT (OpNode (_.info128.VT _.info128.RC:$src1),
(_.info128.VT _.info128.RC:$src2))),
(EXTRACT_SUBREG
(!cast<Instruction>(OpcodeStr#"Zrr")
(INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR128X:$src1, sub_xmm),
(INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)),
sub_xmm)>;
}
}
multiclass avx512_var_shift_w<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched> {
let Predicates = [HasBWI] in
defm WZ: avx512_var_shift<opc, OpcodeStr, OpNode, sched.ZMM, v32i16_info>,
EVEX_V512, VEX_W;
let Predicates = [HasVLX, HasBWI] in {
defm WZ256: avx512_var_shift<opc, OpcodeStr, OpNode, sched.YMM, v16i16x_info>,
EVEX_V256, VEX_W;
defm WZ128: avx512_var_shift<opc, OpcodeStr, OpNode, sched.XMM, v8i16x_info>,
EVEX_V128, VEX_W;
}
}
defm VPSLLV : avx512_var_shift_types<0x47, "vpsllv", shl, SchedWriteVarVecShift>,
avx512_var_shift_w<0x12, "vpsllvw", shl, SchedWriteVarVecShift>;
defm VPSRAV : avx512_var_shift_types<0x46, "vpsrav", sra, SchedWriteVarVecShift>,
avx512_var_shift_w<0x11, "vpsravw", sra, SchedWriteVarVecShift>;
defm VPSRLV : avx512_var_shift_types<0x45, "vpsrlv", srl, SchedWriteVarVecShift>,
avx512_var_shift_w<0x10, "vpsrlvw", srl, SchedWriteVarVecShift>;
defm VPRORV : avx512_var_shift_types<0x14, "vprorv", rotr, SchedWriteVarVecShift>;
defm VPROLV : avx512_var_shift_types<0x15, "vprolv", rotl, SchedWriteVarVecShift>;
defm : avx512_var_shift_lowering<avx512vl_i64_info, "VPSRAVQ", sra, [HasAVX512, NoVLX]>;
defm : avx512_var_shift_lowering<avx512vl_i16_info, "VPSLLVW", shl, [HasBWI, NoVLX]>;
defm : avx512_var_shift_lowering<avx512vl_i16_info, "VPSRAVW", sra, [HasBWI, NoVLX]>;
defm : avx512_var_shift_lowering<avx512vl_i16_info, "VPSRLVW", srl, [HasBWI, NoVLX]>;
// Special handing for handling VPSRAV intrinsics.
multiclass avx512_var_shift_int_lowering<string InstrStr, X86VectorVTInfo _,
list<Predicate> p> {
let Predicates = p in {
def : Pat<(_.VT (X86vsrav _.RC:$src1, _.RC:$src2)),
(!cast<Instruction>(InstrStr#_.ZSuffix#rr) _.RC:$src1,
_.RC:$src2)>;
def : Pat<(_.VT (X86vsrav _.RC:$src1, (_.LdFrag addr:$src2))),
(!cast<Instruction>(InstrStr#_.ZSuffix##rm)
_.RC:$src1, addr:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86vsrav _.RC:$src1, _.RC:$src2), _.RC:$src0)),
(!cast<Instruction>(InstrStr#_.ZSuffix#rrk) _.RC:$src0,
_.KRC:$mask, _.RC:$src1, _.RC:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86vsrav _.RC:$src1, (_.LdFrag addr:$src2)),
_.RC:$src0)),
(!cast<Instruction>(InstrStr#_.ZSuffix##rmk) _.RC:$src0,
_.KRC:$mask, _.RC:$src1, addr:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86vsrav _.RC:$src1, _.RC:$src2), _.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#_.ZSuffix#rrkz) _.KRC:$mask,
_.RC:$src1, _.RC:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86vsrav _.RC:$src1, (_.LdFrag addr:$src2)),
_.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#_.ZSuffix##rmkz) _.KRC:$mask,
_.RC:$src1, addr:$src2)>;
}
}
multiclass avx512_var_shift_int_lowering_mb<string InstrStr, X86VectorVTInfo _,
list<Predicate> p> :
avx512_var_shift_int_lowering<InstrStr, _, p> {
let Predicates = p in {
def : Pat<(_.VT (X86vsrav _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src2)))),
(!cast<Instruction>(InstrStr#_.ZSuffix##rmb)
_.RC:$src1, addr:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86vsrav _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src2))),
_.RC:$src0)),
(!cast<Instruction>(InstrStr#_.ZSuffix##rmbk) _.RC:$src0,
_.KRC:$mask, _.RC:$src1, addr:$src2)>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(X86vsrav _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src2))),
_.ImmAllZerosV)),
(!cast<Instruction>(InstrStr#_.ZSuffix##rmbkz) _.KRC:$mask,
_.RC:$src1, addr:$src2)>;
}
}
defm : avx512_var_shift_int_lowering<"VPSRAVW", v8i16x_info, [HasVLX, HasBWI]>;
defm : avx512_var_shift_int_lowering<"VPSRAVW", v16i16x_info, [HasVLX, HasBWI]>;
defm : avx512_var_shift_int_lowering<"VPSRAVW", v32i16_info, [HasBWI]>;
defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v4i32x_info, [HasVLX]>;
defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v8i32x_info, [HasVLX]>;
defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v16i32_info, [HasAVX512]>;
defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v2i64x_info, [HasVLX]>;
defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v4i64x_info, [HasVLX]>;
defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v8i64_info, [HasAVX512]>;
// Use 512bit VPROL/VPROLI version to implement v2i64/v4i64 + v4i32/v8i32 in case NoVLX.
let Predicates = [HasAVX512, NoVLX] in {
def : Pat<(v2i64 (rotl (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))),
(EXTRACT_SUBREG (v8i64
(VPROLVQZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))),
sub_xmm)>;
def : Pat<(v4i64 (rotl (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))),
(EXTRACT_SUBREG (v8i64
(VPROLVQZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))),
sub_ymm)>;
def : Pat<(v4i32 (rotl (v4i32 VR128X:$src1), (v4i32 VR128X:$src2))),
(EXTRACT_SUBREG (v16i32
(VPROLVDZrr
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))),
sub_xmm)>;
def : Pat<(v8i32 (rotl (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))),
(EXTRACT_SUBREG (v16i32
(VPROLVDZrr
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))),
sub_ymm)>;
def : Pat<(v2i64 (X86vrotli (v2i64 VR128X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v8i64
(VPROLQZri
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
imm:$src2)), sub_xmm)>;
def : Pat<(v4i64 (X86vrotli (v4i64 VR256X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v8i64
(VPROLQZri
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
imm:$src2)), sub_ymm)>;
def : Pat<(v4i32 (X86vrotli (v4i32 VR128X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v16i32
(VPROLDZri
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
imm:$src2)), sub_xmm)>;
def : Pat<(v8i32 (X86vrotli (v8i32 VR256X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v16i32
(VPROLDZri
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
imm:$src2)), sub_ymm)>;
}
// Use 512bit VPROR/VPRORI version to implement v2i64/v4i64 + v4i32/v8i32 in case NoVLX.
let Predicates = [HasAVX512, NoVLX] in {
def : Pat<(v2i64 (rotr (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))),
(EXTRACT_SUBREG (v8i64
(VPRORVQZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))),
sub_xmm)>;
def : Pat<(v4i64 (rotr (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))),
(EXTRACT_SUBREG (v8i64
(VPRORVQZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))),
sub_ymm)>;
def : Pat<(v4i32 (rotr (v4i32 VR128X:$src1), (v4i32 VR128X:$src2))),
(EXTRACT_SUBREG (v16i32
(VPRORVDZrr
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))),
sub_xmm)>;
def : Pat<(v8i32 (rotr (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))),
(EXTRACT_SUBREG (v16i32
(VPRORVDZrr
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))),
sub_ymm)>;
def : Pat<(v2i64 (X86vrotri (v2i64 VR128X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v8i64
(VPRORQZri
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
imm:$src2)), sub_xmm)>;
def : Pat<(v4i64 (X86vrotri (v4i64 VR256X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v8i64
(VPRORQZri
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
imm:$src2)), sub_ymm)>;
def : Pat<(v4i32 (X86vrotri (v4i32 VR128X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v16i32
(VPRORDZri
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)),
imm:$src2)), sub_xmm)>;
def : Pat<(v8i32 (X86vrotri (v8i32 VR256X:$src1), (i8 imm:$src2))),
(EXTRACT_SUBREG (v16i32
(VPRORDZri
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)),
imm:$src2)), sub_ymm)>;
}
//===-------------------------------------------------------------------===//
// 1-src variable permutation VPERMW/D/Q
//===-------------------------------------------------------------------===//
multiclass avx512_vperm_dq_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in
defm Z : avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info512>,
avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched, _.info512>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in
defm Z256 : avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info256>,
avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched, _.info256>, EVEX_V256;
}
multiclass avx512_vpermi_dq_sizes<bits<8> opc, Format ImmFormR, Format ImmFormM,
string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo> {
let Predicates = [HasAVX512] in
defm Z: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched, VTInfo.info512>,
avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode,
sched, VTInfo.info512>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in
defm Z256: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode,
sched, VTInfo.info256>,
avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode,
sched, VTInfo.info256>, EVEX_V256;
}
multiclass avx512_vperm_bw<bits<8> opc, string OpcodeStr,
Predicate prd, SDNode OpNode,
X86FoldableSchedWrite sched, AVX512VLVectorVTInfo _> {
let Predicates = [prd] in
defm Z: avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info512>,
EVEX_V512 ;
let Predicates = [HasVLX, prd] in {
defm Z256: avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info256>,
EVEX_V256 ;
defm Z128: avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info128>,
EVEX_V128 ;
}
}
defm VPERMW : avx512_vperm_bw<0x8D, "vpermw", HasBWI, X86VPermv,
WriteVarShuffle256, avx512vl_i16_info>, VEX_W;
defm VPERMB : avx512_vperm_bw<0x8D, "vpermb", HasVBMI, X86VPermv,
WriteVarShuffle256, avx512vl_i8_info>;
defm VPERMD : avx512_vperm_dq_sizes<0x36, "vpermd", X86VPermv,
WriteVarShuffle256, avx512vl_i32_info>;
defm VPERMQ : avx512_vperm_dq_sizes<0x36, "vpermq", X86VPermv,
WriteVarShuffle256, avx512vl_i64_info>, VEX_W;
defm VPERMPS : avx512_vperm_dq_sizes<0x16, "vpermps", X86VPermv,
WriteFVarShuffle256, avx512vl_f32_info>;
defm VPERMPD : avx512_vperm_dq_sizes<0x16, "vpermpd", X86VPermv,
WriteFVarShuffle256, avx512vl_f64_info>, VEX_W;
defm VPERMQ : avx512_vpermi_dq_sizes<0x00, MRMSrcReg, MRMSrcMem, "vpermq",
X86VPermi, WriteShuffle256, avx512vl_i64_info>,
EVEX, AVX512AIi8Base, EVEX_CD8<64, CD8VF>, VEX_W;
defm VPERMPD : avx512_vpermi_dq_sizes<0x01, MRMSrcReg, MRMSrcMem, "vpermpd",
X86VPermi, WriteFShuffle256, avx512vl_f64_info>,
EVEX, AVX512AIi8Base, EVEX_CD8<64, CD8VF>, VEX_W;
//===----------------------------------------------------------------------===//
// AVX-512 - VPERMIL
//===----------------------------------------------------------------------===//
multiclass avx512_permil_vec<bits<8> OpcVar, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
X86VectorVTInfo Ctrl> {
defm rr: AVX512_maskable<OpcVar, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, Ctrl.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode _.RC:$src1,
(Ctrl.VT Ctrl.RC:$src2)))>,
T8PD, EVEX_4V, Sched<[sched]>;
defm rm: AVX512_maskable<OpcVar, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, Ctrl.MemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode
_.RC:$src1,
(Ctrl.VT (Ctrl.LdFrag addr:$src2))))>,
T8PD, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmb: AVX512_maskable<OpcVar, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr,
"${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr,
(_.VT (OpNode
_.RC:$src1,
(Ctrl.VT (X86VBroadcast
(Ctrl.ScalarLdFrag addr:$src2)))))>,
T8PD, EVEX_4V, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_permil_vec_common<string OpcodeStr, bits<8> OpcVar,
X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _,
AVX512VLVectorVTInfo Ctrl> {
let Predicates = [HasAVX512] in {
defm Z : avx512_permil_vec<OpcVar, OpcodeStr, X86VPermilpv, sched.ZMM,
_.info512, Ctrl.info512>, EVEX_V512;
}
let Predicates = [HasAVX512, HasVLX] in {
defm Z128 : avx512_permil_vec<OpcVar, OpcodeStr, X86VPermilpv, sched.XMM,
_.info128, Ctrl.info128>, EVEX_V128;
defm Z256 : avx512_permil_vec<OpcVar, OpcodeStr, X86VPermilpv, sched.YMM,
_.info256, Ctrl.info256>, EVEX_V256;
}
}
multiclass avx512_permil<string OpcodeStr, bits<8> OpcImm, bits<8> OpcVar,
AVX512VLVectorVTInfo _, AVX512VLVectorVTInfo Ctrl>{
defm NAME: avx512_permil_vec_common<OpcodeStr, OpcVar, SchedWriteFVarShuffle,
_, Ctrl>;
defm NAME: avx512_shift_rmi_sizes<OpcImm, MRMSrcReg, MRMSrcMem, OpcodeStr,
X86VPermilpi, SchedWriteFShuffle, _>,
EVEX, AVX512AIi8Base, EVEX_CD8<_.info128.EltSize, CD8VF>;
}
let ExeDomain = SSEPackedSingle in
defm VPERMILPS : avx512_permil<"vpermilps", 0x04, 0x0C, avx512vl_f32_info,
avx512vl_i32_info>;
let ExeDomain = SSEPackedDouble in
defm VPERMILPD : avx512_permil<"vpermilpd", 0x05, 0x0D, avx512vl_f64_info,
avx512vl_i64_info>, VEX_W1X;
//===----------------------------------------------------------------------===//
// AVX-512 - VPSHUFD, VPSHUFLW, VPSHUFHW
//===----------------------------------------------------------------------===//
defm VPSHUFD : avx512_shift_rmi_sizes<0x70, MRMSrcReg, MRMSrcMem, "vpshufd",
X86PShufd, SchedWriteShuffle, avx512vl_i32_info>,
EVEX, AVX512BIi8Base, EVEX_CD8<32, CD8VF>;
defm VPSHUFH : avx512_shift_rmi_w<0x70, MRMSrcReg, MRMSrcMem, "vpshufhw",
X86PShufhw, SchedWriteShuffle>,
EVEX, AVX512XSIi8Base;
defm VPSHUFL : avx512_shift_rmi_w<0x70, MRMSrcReg, MRMSrcMem, "vpshuflw",
X86PShuflw, SchedWriteShuffle>,
EVEX, AVX512XDIi8Base;
//===----------------------------------------------------------------------===//
// AVX-512 - VPSHUFB
//===----------------------------------------------------------------------===//
multiclass avx512_pshufb_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
let Predicates = [HasBWI] in
defm Z: avx512_var_shift<opc, OpcodeStr, OpNode, sched.ZMM, v64i8_info>,
EVEX_V512;
let Predicates = [HasVLX, HasBWI] in {
defm Z256: avx512_var_shift<opc, OpcodeStr, OpNode, sched.YMM, v32i8x_info>,
EVEX_V256;
defm Z128: avx512_var_shift<opc, OpcodeStr, OpNode, sched.XMM, v16i8x_info>,
EVEX_V128;
}
}
defm VPSHUFB: avx512_pshufb_sizes<0x00, "vpshufb", X86pshufb,
SchedWriteVarShuffle>, VEX_WIG;
//===----------------------------------------------------------------------===//
// Move Low to High and High to Low packed FP Instructions
//===----------------------------------------------------------------------===//
def VMOVLHPSZrr : AVX512PSI<0x16, MRMSrcReg, (outs VR128X:$dst),
(ins VR128X:$src1, VR128X:$src2),
"vmovlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128X:$dst, (v4f32 (X86Movlhps VR128X:$src1, VR128X:$src2)))]>,
Sched<[SchedWriteFShuffle.XMM]>, EVEX_4V;
let isCommutable = 1 in
def VMOVHLPSZrr : AVX512PSI<0x12, MRMSrcReg, (outs VR128X:$dst),
(ins VR128X:$src1, VR128X:$src2),
"vmovhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128X:$dst, (v4f32 (X86Movhlps VR128X:$src1, VR128X:$src2)))]>,
Sched<[SchedWriteFShuffle.XMM]>, EVEX_4V, NotMemoryFoldable;
//===----------------------------------------------------------------------===//
// VMOVHPS/PD VMOVLPS Instructions
// All patterns was taken from SSS implementation.
//===----------------------------------------------------------------------===//
multiclass avx512_mov_hilo_packed<bits<8> opc, string OpcodeStr,
SDPatternOperator OpNode,
X86VectorVTInfo _> {
let hasSideEffects = 0, mayLoad = 1, ExeDomain = _.ExeDomain in
def rm : AVX512<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.RC:$src1, f64mem:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.RC:$dst,
(OpNode _.RC:$src1,
(_.VT (bitconvert
(v2f64 (scalar_to_vector (loadf64 addr:$src2)))))))]>,
Sched<[SchedWriteFShuffle.XMM.Folded, SchedWriteFShuffle.XMM.ReadAfterFold]>, EVEX_4V;
}
// No patterns for MOVLPS/MOVHPS as the Movlhps node should only be created in
// SSE1. And MOVLPS pattern is even more complex.
defm VMOVHPSZ128 : avx512_mov_hilo_packed<0x16, "vmovhps", null_frag,
v4f32x_info>, EVEX_CD8<32, CD8VT2>, PS;
defm VMOVHPDZ128 : avx512_mov_hilo_packed<0x16, "vmovhpd", X86Unpckl,
v2f64x_info>, EVEX_CD8<64, CD8VT1>, PD, VEX_W;
defm VMOVLPSZ128 : avx512_mov_hilo_packed<0x12, "vmovlps", null_frag,
v4f32x_info>, EVEX_CD8<32, CD8VT2>, PS;
defm VMOVLPDZ128 : avx512_mov_hilo_packed<0x12, "vmovlpd", X86Movsd,
v2f64x_info>, EVEX_CD8<64, CD8VT1>, PD, VEX_W;
let Predicates = [HasAVX512] in {
// VMOVHPD patterns
def : Pat<(v2f64 (X86Unpckl VR128X:$src1,
(bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
(VMOVHPDZ128rm VR128X:$src1, addr:$src2)>;
}
let SchedRW = [WriteFStore] in {
def VMOVHPSZ128mr : AVX512PSI<0x17, MRMDestMem, (outs),
(ins f64mem:$dst, VR128X:$src),
"vmovhps\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt
(X86Unpckh (bc_v2f64 (v4f32 VR128X:$src)),
(bc_v2f64 (v4f32 VR128X:$src))),
(iPTR 0))), addr:$dst)]>,
EVEX, EVEX_CD8<32, CD8VT2>;
def VMOVHPDZ128mr : AVX512PDI<0x17, MRMDestMem, (outs),
(ins f64mem:$dst, VR128X:$src),
"vmovhpd\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt
(v2f64 (X86Unpckh VR128X:$src, VR128X:$src)),
(iPTR 0))), addr:$dst)]>,
EVEX, EVEX_CD8<64, CD8VT1>, VEX_W;
def VMOVLPSZ128mr : AVX512PSI<0x13, MRMDestMem, (outs),
(ins f64mem:$dst, VR128X:$src),
"vmovlps\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt (bc_v2f64 (v4f32 VR128X:$src)),
(iPTR 0))), addr:$dst)]>,
EVEX, EVEX_CD8<32, CD8VT2>;
def VMOVLPDZ128mr : AVX512PDI<0x13, MRMDestMem, (outs),
(ins f64mem:$dst, VR128X:$src),
"vmovlpd\t{$src, $dst|$dst, $src}",
[(store (f64 (extractelt (v2f64 VR128X:$src),
(iPTR 0))), addr:$dst)]>,
EVEX, EVEX_CD8<64, CD8VT1>, VEX_W;
} // SchedRW
let Predicates = [HasAVX512] in {
// VMOVHPD patterns
def : Pat<(store (f64 (extractelt
(v2f64 (X86VPermilpi VR128X:$src, (i8 1))),
(iPTR 0))), addr:$dst),
(VMOVHPDZ128mr addr:$dst, VR128X:$src)>;
}
//===----------------------------------------------------------------------===//
// FMA - Fused Multiply Operations
//
multiclass avx512_fma3p_213_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Suff> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in {
defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode _.RC:$src2, _.RC:$src1, _.RC:$src3)), 1, 1>,
AVX512FMA3Base, Sched<[sched]>;
defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.MemOp:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode _.RC:$src2, _.RC:$src1, (_.LdFrag addr:$src3))), 1, 0>,
AVX512FMA3Base, Sched<[sched.Folded, sched.ReadAfterFold]>;
defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3),
OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"),
!strconcat("$src2, ${src3}", _.BroadcastStr ),
(OpNode _.RC:$src2,
_.RC:$src1,(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3)))), 1, 0>,
AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fma3_213_round<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Suff> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in
defm rb: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc),
OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc",
(_.VT ( OpNode _.RC:$src2, _.RC:$src1, _.RC:$src3, (i32 imm:$rc))), 1, 1>,
AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[sched]>;
}
multiclass avx512_fma3p_213_common<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _, string Suff> {
let Predicates = [HasAVX512] in {
defm Z : avx512_fma3p_213_rm<opc, OpcodeStr, OpNode, sched.ZMM,
_.info512, Suff>,
avx512_fma3_213_round<opc, OpcodeStr, OpNodeRnd, sched.ZMM,
_.info512, Suff>,
EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>;
}
let Predicates = [HasVLX, HasAVX512] in {
defm Z256 : avx512_fma3p_213_rm<opc, OpcodeStr, OpNode, sched.YMM,
_.info256, Suff>,
EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>;
defm Z128 : avx512_fma3p_213_rm<opc, OpcodeStr, OpNode, sched.XMM,
_.info128, Suff>,
EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>;
}
}
multiclass avx512_fma3p_213_f<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd> {
defm PS : avx512_fma3p_213_common<opc, OpcodeStr#"ps", OpNode, OpNodeRnd,
SchedWriteFMA, avx512vl_f32_info, "PS">;
defm PD : avx512_fma3p_213_common<opc, OpcodeStr#"pd", OpNode, OpNodeRnd,
SchedWriteFMA, avx512vl_f64_info, "PD">,
VEX_W;
}
defm VFMADD213 : avx512_fma3p_213_f<0xA8, "vfmadd213", X86Fmadd, X86FmaddRnd>;
defm VFMSUB213 : avx512_fma3p_213_f<0xAA, "vfmsub213", X86Fmsub, X86FmsubRnd>;
defm VFMADDSUB213 : avx512_fma3p_213_f<0xA6, "vfmaddsub213", X86Fmaddsub, X86FmaddsubRnd>;
defm VFMSUBADD213 : avx512_fma3p_213_f<0xA7, "vfmsubadd213", X86Fmsubadd, X86FmsubaddRnd>;
defm VFNMADD213 : avx512_fma3p_213_f<0xAC, "vfnmadd213", X86Fnmadd, X86FnmaddRnd>;
defm VFNMSUB213 : avx512_fma3p_213_f<0xAE, "vfnmsub213", X86Fnmsub, X86FnmsubRnd>;
multiclass avx512_fma3p_231_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Suff> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in {
defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode _.RC:$src2, _.RC:$src3, _.RC:$src1)), 1, 1,
vselect, 1>, AVX512FMA3Base, Sched<[sched]>;
defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.MemOp:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode _.RC:$src2, (_.LdFrag addr:$src3), _.RC:$src1)), 1, 0>,
AVX512FMA3Base, Sched<[sched.Folded, sched.ReadAfterFold]>;
defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3),
OpcodeStr, "${src3}"##_.BroadcastStr##", $src2",
"$src2, ${src3}"##_.BroadcastStr,
(_.VT (OpNode _.RC:$src2,
(_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src3))),
_.RC:$src1)), 1, 0>, AVX512FMA3Base, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fma3_231_round<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Suff> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in
defm rb: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc),
OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc",
(_.VT ( OpNode _.RC:$src2, _.RC:$src3, _.RC:$src1, (i32 imm:$rc))),
1, 1, vselect, 1>,
AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[sched]>;
}
multiclass avx512_fma3p_231_common<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _, string Suff> {
let Predicates = [HasAVX512] in {
defm Z : avx512_fma3p_231_rm<opc, OpcodeStr, OpNode, sched.ZMM,
_.info512, Suff>,
avx512_fma3_231_round<opc, OpcodeStr, OpNodeRnd, sched.ZMM,
_.info512, Suff>,
EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>;
}
let Predicates = [HasVLX, HasAVX512] in {
defm Z256 : avx512_fma3p_231_rm<opc, OpcodeStr, OpNode, sched.YMM,
_.info256, Suff>,
EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>;
defm Z128 : avx512_fma3p_231_rm<opc, OpcodeStr, OpNode, sched.XMM,
_.info128, Suff>,
EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>;
}
}
multiclass avx512_fma3p_231_f<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd > {
defm PS : avx512_fma3p_231_common<opc, OpcodeStr#"ps", OpNode, OpNodeRnd,
SchedWriteFMA, avx512vl_f32_info, "PS">;
defm PD : avx512_fma3p_231_common<opc, OpcodeStr#"pd", OpNode, OpNodeRnd,
SchedWriteFMA, avx512vl_f64_info, "PD">,
VEX_W;
}
defm VFMADD231 : avx512_fma3p_231_f<0xB8, "vfmadd231", X86Fmadd, X86FmaddRnd>;
defm VFMSUB231 : avx512_fma3p_231_f<0xBA, "vfmsub231", X86Fmsub, X86FmsubRnd>;
defm VFMADDSUB231 : avx512_fma3p_231_f<0xB6, "vfmaddsub231", X86Fmaddsub, X86FmaddsubRnd>;
defm VFMSUBADD231 : avx512_fma3p_231_f<0xB7, "vfmsubadd231", X86Fmsubadd, X86FmsubaddRnd>;
defm VFNMADD231 : avx512_fma3p_231_f<0xBC, "vfnmadd231", X86Fnmadd, X86FnmaddRnd>;
defm VFNMSUB231 : avx512_fma3p_231_f<0xBE, "vfnmsub231", X86Fnmsub, X86FnmsubRnd>;
multiclass avx512_fma3p_132_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Suff> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in {
defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode _.RC:$src1, _.RC:$src3, _.RC:$src2)), 1, 1, vselect, 1>,
AVX512FMA3Base, Sched<[sched]>;
// Pattern is 312 order so that the load is in a different place from the
// 213 and 231 patterns this helps tablegen's duplicate pattern detection.
defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.MemOp:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode (_.LdFrag addr:$src3), _.RC:$src1, _.RC:$src2)), 1, 0>,
AVX512FMA3Base, Sched<[sched.Folded, sched.ReadAfterFold]>;
// Pattern is 312 order so that the load is in a different place from the
// 213 and 231 patterns this helps tablegen's duplicate pattern detection.
defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3),
OpcodeStr, "${src3}"##_.BroadcastStr##", $src2",
"$src2, ${src3}"##_.BroadcastStr,
(_.VT (OpNode (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src3))),
_.RC:$src1, _.RC:$src2)), 1, 0>,
AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fma3_132_round<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Suff> {
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in
defm rb: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc),
OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc",
(_.VT ( OpNode _.RC:$src1, _.RC:$src3, _.RC:$src2, (i32 imm:$rc))),
1, 1, vselect, 1>,
AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[sched]>;
}
multiclass avx512_fma3p_132_common<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _, string Suff> {
let Predicates = [HasAVX512] in {
defm Z : avx512_fma3p_132_rm<opc, OpcodeStr, OpNode, sched.ZMM,
_.info512, Suff>,
avx512_fma3_132_round<opc, OpcodeStr, OpNodeRnd, sched.ZMM,
_.info512, Suff>,
EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>;
}
let Predicates = [HasVLX, HasAVX512] in {
defm Z256 : avx512_fma3p_132_rm<opc, OpcodeStr, OpNode, sched.YMM,
_.info256, Suff>,
EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>;
defm Z128 : avx512_fma3p_132_rm<opc, OpcodeStr, OpNode, sched.XMM,
_.info128, Suff>,
EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>;
}
}
multiclass avx512_fma3p_132_f<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd > {
defm PS : avx512_fma3p_132_common<opc, OpcodeStr#"ps", OpNode, OpNodeRnd,
SchedWriteFMA, avx512vl_f32_info, "PS">;
defm PD : avx512_fma3p_132_common<opc, OpcodeStr#"pd", OpNode, OpNodeRnd,
SchedWriteFMA, avx512vl_f64_info, "PD">,
VEX_W;
}
defm VFMADD132 : avx512_fma3p_132_f<0x98, "vfmadd132", X86Fmadd, X86FmaddRnd>;
defm VFMSUB132 : avx512_fma3p_132_f<0x9A, "vfmsub132", X86Fmsub, X86FmsubRnd>;
defm VFMADDSUB132 : avx512_fma3p_132_f<0x96, "vfmaddsub132", X86Fmaddsub, X86FmaddsubRnd>;
defm VFMSUBADD132 : avx512_fma3p_132_f<0x97, "vfmsubadd132", X86Fmsubadd, X86FmsubaddRnd>;
defm VFNMADD132 : avx512_fma3p_132_f<0x9C, "vfnmadd132", X86Fnmadd, X86FnmaddRnd>;
defm VFNMSUB132 : avx512_fma3p_132_f<0x9E, "vfnmsub132", X86Fnmsub, X86FnmsubRnd>;
// Scalar FMA
multiclass avx512_fma3s_common<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
dag RHS_r, dag RHS_m, dag RHS_b, bit MaskOnlyReg> {
let Constraints = "$src1 = $dst", hasSideEffects = 0 in {
defm r_Int: AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3), OpcodeStr,
"$src3, $src2", "$src2, $src3", (null_frag), 1, 1>,
AVX512FMA3Base, Sched<[SchedWriteFMA.Scl]>;
let mayLoad = 1 in
defm m_Int: AVX512_maskable_3src_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.IntScalarMemOp:$src3), OpcodeStr,
"$src3, $src2", "$src2, $src3", (null_frag), 1, 1>,
AVX512FMA3Base, Sched<[SchedWriteFMA.Scl.Folded, SchedWriteFMA.Scl.ReadAfterFold]>;
defm rb_Int: AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc),
OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc", (null_frag), 1, 1>,
AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[SchedWriteFMA.Scl]>;
let isCodeGenOnly = 1, isCommutable = 1 in {
def r : AVX512FMA3S<opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2, _.FRC:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!if(MaskOnlyReg, [], [RHS_r])>, Sched<[SchedWriteFMA.Scl]>;
def m : AVX512FMA3S<opc, MRMSrcMem, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2, _.ScalarMemOp:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[RHS_m]>, Sched<[SchedWriteFMA.Scl.Folded, SchedWriteFMA.Scl.ReadAfterFold]>;
def rb : AVX512FMA3S<opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2, _.FRC:$src3, AVX512RC:$rc),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
!if(MaskOnlyReg, [], [RHS_b])>, EVEX_B, EVEX_RC,
Sched<[SchedWriteFMA.Scl]>;
}// isCodeGenOnly = 1
}// Constraints = "$src1 = $dst"
}
multiclass avx512_fma3s_all<bits<8> opc213, bits<8> opc231, bits<8> opc132,
string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd,
X86VectorVTInfo _, string SUFF> {
let ExeDomain = _.ExeDomain in {
defm NAME#213#SUFF#Z: avx512_fma3s_common<opc213, OpcodeStr#"213"#_.Suffix, _,
// Operands for intrinsic are in 123 order to preserve passthu
// semantics.
(set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2, _.FRC:$src1,
_.FRC:$src3))),
(set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2, _.FRC:$src1,
(_.ScalarLdFrag addr:$src3)))),
(set _.FRC:$dst, (_.EltVT (OpNodeRnd _.FRC:$src2, _.FRC:$src1,
_.FRC:$src3, (i32 imm:$rc)))), 0>;
defm NAME#231#SUFF#Z: avx512_fma3s_common<opc231, OpcodeStr#"231"#_.Suffix, _,
(set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2, _.FRC:$src3,
_.FRC:$src1))),
(set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2,
(_.ScalarLdFrag addr:$src3), _.FRC:$src1))),
(set _.FRC:$dst, (_.EltVT (OpNodeRnd _.FRC:$src2, _.FRC:$src3,
_.FRC:$src1, (i32 imm:$rc)))), 1>;
// One pattern is 312 order so that the load is in a different place from the
// 213 and 231 patterns this helps tablegen's duplicate pattern detection.
defm NAME#132#SUFF#Z: avx512_fma3s_common<opc132, OpcodeStr#"132"#_.Suffix, _,
(set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src1, _.FRC:$src3,
_.FRC:$src2))),
(set _.FRC:$dst, (_.EltVT (OpNode (_.ScalarLdFrag addr:$src3),
_.FRC:$src1, _.FRC:$src2))),
(set _.FRC:$dst, (_.EltVT (OpNodeRnd _.FRC:$src1, _.FRC:$src3,
_.FRC:$src2, (i32 imm:$rc)))), 1>;
}
}
multiclass avx512_fma3s<bits<8> opc213, bits<8> opc231, bits<8> opc132,
string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd> {
let Predicates = [HasAVX512] in {
defm NAME : avx512_fma3s_all<opc213, opc231, opc132, OpcodeStr, OpNode,
OpNodeRnd, f32x_info, "SS">,
EVEX_CD8<32, CD8VT1>, VEX_LIG;
defm NAME : avx512_fma3s_all<opc213, opc231, opc132, OpcodeStr, OpNode,
OpNodeRnd, f64x_info, "SD">,
EVEX_CD8<64, CD8VT1>, VEX_LIG, VEX_W;
}
}
defm VFMADD : avx512_fma3s<0xA9, 0xB9, 0x99, "vfmadd", X86Fmadd, X86FmaddRnd>;
defm VFMSUB : avx512_fma3s<0xAB, 0xBB, 0x9B, "vfmsub", X86Fmsub, X86FmsubRnd>;
defm VFNMADD : avx512_fma3s<0xAD, 0xBD, 0x9D, "vfnmadd", X86Fnmadd, X86FnmaddRnd>;
defm VFNMSUB : avx512_fma3s<0xAF, 0xBF, 0x9F, "vfnmsub", X86Fnmsub, X86FnmsubRnd>;
multiclass avx512_scalar_fma_patterns<SDNode Op, SDNode RndOp, string Prefix,
string Suffix, SDNode Move,
X86VectorVTInfo _, PatLeaf ZeroFP> {
let Predicates = [HasAVX512] in {
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(Op _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src3))))),
(!cast<I>(Prefix#"213"#Suffix#"Zr_Int")
VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(Op _.FRC:$src2, _.FRC:$src3,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"231"#Suffix#"Zr_Int")
VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(Op _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(_.ScalarLdFrag addr:$src3)))))),
(!cast<I>(Prefix#"213"#Suffix#"Zm_Int")
VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(_.ScalarLdFrag addr:$src3), _.FRC:$src2))))),
(!cast<I>(Prefix#"132"#Suffix#"Zm_Int")
VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(Op _.FRC:$src2, (_.ScalarLdFrag addr:$src3),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"231"#Suffix#"Zm_Int")
VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src3),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"213"#Suffix#"Zr_Intk")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(_.ScalarLdFrag addr:$src3)),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"213"#Suffix#"Zm_Intk")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(_.ScalarLdFrag addr:$src3), _.FRC:$src2),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"132"#Suffix#"Zm_Intk")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2, _.FRC:$src3,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"231"#Suffix#"Zr_Intk")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2, (_.ScalarLdFrag addr:$src3),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"231"#Suffix#"Zm_Intk")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src3),
(_.EltVT ZeroFP)))))),
(!cast<I>(Prefix#"213"#Suffix#"Zr_Intkz")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2, _.FRC:$src3,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))),
(_.EltVT ZeroFP)))))),
(!cast<I>(Prefix#"231"#Suffix#"Zr_Intkz")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(_.ScalarLdFrag addr:$src3)),
(_.EltVT ZeroFP)))))),
(!cast<I>(Prefix#"213"#Suffix#"Zm_Intkz")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src2, (_.ScalarLdFrag addr:$src3)),
(_.EltVT ZeroFP)))))),
(!cast<I>(Prefix#"132"#Suffix#"Zm_Intkz")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(Op _.FRC:$src2, (_.ScalarLdFrag addr:$src3),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))),
(_.EltVT ZeroFP)))))),
(!cast<I>(Prefix#"231"#Suffix#"Zm_Intkz")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>;
// Patterns with rounding mode.
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(RndOp _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src3, (i32 imm:$rc)))))),
(!cast<I>(Prefix#"213"#Suffix#"Zrb_Int")
VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(RndOp _.FRC:$src2, _.FRC:$src3,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(i32 imm:$rc)))))),
(!cast<I>(Prefix#"231"#Suffix#"Zrb_Int")
VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(RndOp _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src3, (i32 imm:$rc)),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"213"#Suffix#"Zrb_Intk")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(RndOp _.FRC:$src2, _.FRC:$src3,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(i32 imm:$rc)),
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))),
(!cast<I>(Prefix#"231"#Suffix#"Zrb_Intk")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(RndOp _.FRC:$src2,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src3, (i32 imm:$rc)),
(_.EltVT ZeroFP)))))),
(!cast<I>(Prefix#"213"#Suffix#"Zrb_Intkz")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>;
def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector
(X86selects VK1WM:$mask,
(RndOp _.FRC:$src2, _.FRC:$src3,
(_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))),
(i32 imm:$rc)),
(_.EltVT ZeroFP)))))),
(!cast<I>(Prefix#"231"#Suffix#"Zrb_Intkz")
VR128X:$src1, VK1WM:$mask,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)),
(_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>;
}
}
defm : avx512_scalar_fma_patterns<X86Fmadd, X86FmaddRnd, "VFMADD", "SS",
X86Movss, v4f32x_info, fp32imm0>;
defm : avx512_scalar_fma_patterns<X86Fmsub, X86FmsubRnd, "VFMSUB", "SS",
X86Movss, v4f32x_info, fp32imm0>;
defm : avx512_scalar_fma_patterns<X86Fnmadd, X86FnmaddRnd, "VFNMADD", "SS",
X86Movss, v4f32x_info, fp32imm0>;
defm : avx512_scalar_fma_patterns<X86Fnmsub, X86FnmsubRnd, "VFNMSUB", "SS",
X86Movss, v4f32x_info, fp32imm0>;
defm : avx512_scalar_fma_patterns<X86Fmadd, X86FmaddRnd, "VFMADD", "SD",
X86Movsd, v2f64x_info, fp64imm0>;
defm : avx512_scalar_fma_patterns<X86Fmsub, X86FmsubRnd, "VFMSUB", "SD",
X86Movsd, v2f64x_info, fp64imm0>;
defm : avx512_scalar_fma_patterns<X86Fnmadd, X86FnmaddRnd, "VFNMADD", "SD",
X86Movsd, v2f64x_info, fp64imm0>;
defm : avx512_scalar_fma_patterns<X86Fnmsub, X86FnmsubRnd, "VFNMSUB", "SD",
X86Movsd, v2f64x_info, fp64imm0>;
//===----------------------------------------------------------------------===//
// AVX-512 Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit IFMA
//===----------------------------------------------------------------------===//
let Constraints = "$src1 = $dst" in {
multiclass avx512_pmadd52_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
// NOTE: The SDNode have the multiply operands first with the add last.
// This enables commuted load patterns to be autogenerated by tablegen.
let ExeDomain = _.ExeDomain in {
defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode _.RC:$src2, _.RC:$src3, _.RC:$src1)), 1, 1>,
AVX512FMA3Base, Sched<[sched]>;
defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.MemOp:$src3),
OpcodeStr, "$src3, $src2", "$src2, $src3",
(_.VT (OpNode _.RC:$src2, (_.LdFrag addr:$src3), _.RC:$src1))>,
AVX512FMA3Base, Sched<[sched.Folded, sched.ReadAfterFold]>;
defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3),
OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"),
!strconcat("$src2, ${src3}", _.BroadcastStr ),
(OpNode _.RC:$src2,
(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3))),
_.RC:$src1)>,
AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
} // Constraints = "$src1 = $dst"
multiclass avx512_pmadd52_common<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> {
let Predicates = [HasIFMA] in {
defm Z : avx512_pmadd52_rm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>,
EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>;
}
let Predicates = [HasVLX, HasIFMA] in {
defm Z256 : avx512_pmadd52_rm<opc, OpcodeStr, OpNode, sched.YMM, _.info256>,
EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>;
defm Z128 : avx512_pmadd52_rm<opc, OpcodeStr, OpNode, sched.XMM, _.info128>,
EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>;
}
}
defm VPMADD52LUQ : avx512_pmadd52_common<0xb4, "vpmadd52luq", x86vpmadd52l,
SchedWriteVecIMul, avx512vl_i64_info>,
VEX_W;
defm VPMADD52HUQ : avx512_pmadd52_common<0xb5, "vpmadd52huq", x86vpmadd52h,
SchedWriteVecIMul, avx512vl_i64_info>,
VEX_W;
//===----------------------------------------------------------------------===//
// AVX-512 Scalar convert from sign integer to float/double
//===----------------------------------------------------------------------===//
multiclass avx512_vcvtsi<bits<8> opc, SDNode OpNode, X86FoldableSchedWrite sched,
RegisterClass SrcRC, X86VectorVTInfo DstVT,
X86MemOperand x86memop, PatFrag ld_frag, string asm> {
let hasSideEffects = 0 in {
def rr : SI<opc, MRMSrcReg, (outs DstVT.FRC:$dst),
(ins DstVT.FRC:$src1, SrcRC:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
EVEX_4V, Sched<[sched]>;
let mayLoad = 1 in
def rm : SI<opc, MRMSrcMem, (outs DstVT.FRC:$dst),
(ins DstVT.FRC:$src1, x86memop:$src),
!strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>;
} // hasSideEffects = 0
let isCodeGenOnly = 1 in {
def rr_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst),
(ins DstVT.RC:$src1, SrcRC:$src2),
!strconcat(asm,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set DstVT.RC:$dst,
(OpNode (DstVT.VT DstVT.RC:$src1),
SrcRC:$src2,
(i32 FROUND_CURRENT)))]>,
EVEX_4V, Sched<[sched]>;
def rm_Int : SI<opc, MRMSrcMem, (outs DstVT.RC:$dst),
(ins DstVT.RC:$src1, x86memop:$src2),
!strconcat(asm,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set DstVT.RC:$dst,
(OpNode (DstVT.VT DstVT.RC:$src1),
(ld_frag addr:$src2),
(i32 FROUND_CURRENT)))]>,
EVEX_4V, Sched<[sched.Folded, sched.ReadAfterFold]>;
}//isCodeGenOnly = 1
}
multiclass avx512_vcvtsi_round<bits<8> opc, SDNode OpNode,
X86FoldableSchedWrite sched, RegisterClass SrcRC,
X86VectorVTInfo DstVT, string asm> {
def rrb_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst),
(ins DstVT.RC:$src1, SrcRC:$src2, AVX512RC:$rc),
!strconcat(asm,
"\t{$src2, $rc, $src1, $dst|$dst, $src1, $rc, $src2}"),
[(set DstVT.RC:$dst,
(OpNode (DstVT.VT DstVT.RC:$src1),
SrcRC:$src2,
(i32 imm:$rc)))]>,
EVEX_4V, EVEX_B, EVEX_RC, Sched<[sched]>;
}
multiclass avx512_vcvtsi_common<bits<8> opc, SDNode OpNode,
X86FoldableSchedWrite sched,
RegisterClass SrcRC, X86VectorVTInfo DstVT,
X86MemOperand x86memop, PatFrag ld_frag, string asm> {
defm NAME : avx512_vcvtsi_round<opc, OpNode, sched, SrcRC, DstVT, asm>,
avx512_vcvtsi<opc, OpNode, sched, SrcRC, DstVT, x86memop,
ld_frag, asm>, VEX_LIG;
}
let Predicates = [HasAVX512] in {
defm VCVTSI2SSZ : avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SS, GR32,
v4f32x_info, i32mem, loadi32, "cvtsi2ss{l}">,
XS, EVEX_CD8<32, CD8VT1>;
defm VCVTSI642SSZ: avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SS, GR64,
v4f32x_info, i64mem, loadi64, "cvtsi2ss{q}">,
XS, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VCVTSI2SDZ : avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SD, GR32,
v2f64x_info, i32mem, loadi32, "cvtsi2sd{l}">,
XD, EVEX_CD8<32, CD8VT1>;
defm VCVTSI642SDZ: avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SD, GR64,
v2f64x_info, i64mem, loadi64, "cvtsi2sd{q}">,
XD, VEX_W, EVEX_CD8<64, CD8VT1>;
def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTSI2SSZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">;
def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTSI2SDZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">;
def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))),
(VCVTSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))),
(VCVTSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))),
(VCVTSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))),
(VCVTSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (sint_to_fp GR32:$src)),
(VCVTSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f32 (sint_to_fp GR64:$src)),
(VCVTSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>;
def : Pat<(f64 (sint_to_fp GR32:$src)),
(VCVTSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f64 (sint_to_fp GR64:$src)),
(VCVTSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>;
defm VCVTUSI2SSZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, WriteCvtI2SS, GR32,
v4f32x_info, i32mem, loadi32,
"cvtusi2ss{l}">, XS, EVEX_CD8<32, CD8VT1>;
defm VCVTUSI642SSZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, WriteCvtI2SS, GR64,
v4f32x_info, i64mem, loadi64, "cvtusi2ss{q}">,
XS, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VCVTUSI2SDZ : avx512_vcvtsi<0x7B, X86UintToFpRnd, WriteCvtI2SD, GR32, v2f64x_info,
i32mem, loadi32, "cvtusi2sd{l}">,
XD, VEX_LIG, EVEX_CD8<32, CD8VT1>;
defm VCVTUSI642SDZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, WriteCvtI2SD, GR64,
v2f64x_info, i64mem, loadi64, "cvtusi2sd{q}">,
XD, VEX_W, EVEX_CD8<64, CD8VT1>;
def : InstAlias<"vcvtusi2ss\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTUSI2SSZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">;
def : InstAlias<"vcvtusi2sd\t{$src, $src1, $dst|$dst, $src1, $src}",
(VCVTUSI2SDZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">;
def : Pat<(f32 (uint_to_fp (loadi32 addr:$src))),
(VCVTUSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (uint_to_fp (loadi64 addr:$src))),
(VCVTUSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (uint_to_fp (loadi32 addr:$src))),
(VCVTUSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f64 (uint_to_fp (loadi64 addr:$src))),
(VCVTUSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>;
def : Pat<(f32 (uint_to_fp GR32:$src)),
(VCVTUSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f32 (uint_to_fp GR64:$src)),
(VCVTUSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>;
def : Pat<(f64 (uint_to_fp GR32:$src)),
(VCVTUSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
def : Pat<(f64 (uint_to_fp GR64:$src)),
(VCVTUSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>;
}
//===----------------------------------------------------------------------===//
// AVX-512 Scalar convert from float/double to integer
//===----------------------------------------------------------------------===//
multiclass avx512_cvt_s_int_round<bits<8> opc, X86VectorVTInfo SrcVT,
X86VectorVTInfo DstVT, SDNode OpNode,
SDNode OpNodeRnd,
X86FoldableSchedWrite sched, string asm,
string aliasStr,
bit CodeGenOnly = 1> {
let Predicates = [HasAVX512] in {
def rr_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst), (ins SrcVT.RC:$src),
!strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstVT.RC:$dst, (OpNode (SrcVT.VT SrcVT.RC:$src)))]>,
EVEX, VEX_LIG, Sched<[sched]>;
def rrb_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst), (ins SrcVT.RC:$src, AVX512RC:$rc),
!strconcat(asm,"\t{$rc, $src, $dst|$dst, $src, $rc}"),
[(set DstVT.RC:$dst, (OpNodeRnd (SrcVT.VT SrcVT.RC:$src),(i32 imm:$rc)))]>,
EVEX, VEX_LIG, EVEX_B, EVEX_RC,
Sched<[sched]>;
let isCodeGenOnly = CodeGenOnly, ForceDisassemble = CodeGenOnly in
def rm_Int : SI<opc, MRMSrcMem, (outs DstVT.RC:$dst), (ins SrcVT.IntScalarMemOp:$src),
!strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set DstVT.RC:$dst, (OpNode
(SrcVT.VT SrcVT.ScalarIntMemCPat:$src)))]>,
EVEX, VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold]>;
def : InstAlias<"v" # asm # aliasStr # "\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "rr_Int") DstVT.RC:$dst, SrcVT.RC:$src), 0, "att">;
def : InstAlias<"v" # asm # aliasStr # "\t{$rc, $src, $dst|$dst, $src, $rc}",
(!cast<Instruction>(NAME # "rrb_Int") DstVT.RC:$dst, SrcVT.RC:$src, AVX512RC:$rc), 0, "att">;
} // Predicates = [HasAVX512]
}
multiclass avx512_cvt_s_int_round_aliases<bits<8> opc, X86VectorVTInfo SrcVT,
X86VectorVTInfo DstVT, SDNode OpNode,
SDNode OpNodeRnd,
X86FoldableSchedWrite sched, string asm,
string aliasStr> :
avx512_cvt_s_int_round<opc, SrcVT, DstVT, OpNode, OpNodeRnd, sched, asm, aliasStr, 0> {
let Predicates = [HasAVX512] in {
def : InstAlias<"v" # asm # aliasStr # "\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "rm_Int") DstVT.RC:$dst,
SrcVT.IntScalarMemOp:$src), 0, "att">;
} // Predicates = [HasAVX512]
}
// Convert float/double to signed/unsigned int 32/64
defm VCVTSS2SIZ: avx512_cvt_s_int_round<0x2D, f32x_info, i32x_info,X86cvts2si,
X86cvts2siRnd, WriteCvtSS2I, "cvtss2si", "{l}">,
XS, EVEX_CD8<32, CD8VT1>;
defm VCVTSS2SI64Z: avx512_cvt_s_int_round<0x2D, f32x_info, i64x_info, X86cvts2si,
X86cvts2siRnd, WriteCvtSS2I, "cvtss2si", "{q}">,
XS, VEX_W, EVEX_CD8<32, CD8VT1>;
defm VCVTSS2USIZ: avx512_cvt_s_int_round_aliases<0x79, f32x_info, i32x_info, X86cvts2usi,
X86cvts2usiRnd, WriteCvtSS2I, "cvtss2usi", "{l}">,
XS, EVEX_CD8<32, CD8VT1>;
defm VCVTSS2USI64Z: avx512_cvt_s_int_round_aliases<0x79, f32x_info, i64x_info, X86cvts2usi,
X86cvts2usiRnd, WriteCvtSS2I, "cvtss2usi", "{q}">,
XS, VEX_W, EVEX_CD8<32, CD8VT1>;
defm VCVTSD2SIZ: avx512_cvt_s_int_round<0x2D, f64x_info, i32x_info, X86cvts2si,
X86cvts2siRnd, WriteCvtSD2I, "cvtsd2si", "{l}">,
XD, EVEX_CD8<64, CD8VT1>;
defm VCVTSD2SI64Z: avx512_cvt_s_int_round<0x2D, f64x_info, i64x_info, X86cvts2si,
X86cvts2siRnd, WriteCvtSD2I, "cvtsd2si", "{q}">,
XD, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VCVTSD2USIZ: avx512_cvt_s_int_round_aliases<0x79, f64x_info, i32x_info, X86cvts2usi,
X86cvts2usiRnd, WriteCvtSD2I, "cvtsd2usi", "{l}">,
XD, EVEX_CD8<64, CD8VT1>;
defm VCVTSD2USI64Z: avx512_cvt_s_int_round_aliases<0x79, f64x_info, i64x_info, X86cvts2usi,
X86cvts2usiRnd, WriteCvtSD2I, "cvtsd2usi", "{q}">,
XD, VEX_W, EVEX_CD8<64, CD8VT1>;
// Patterns used for matching vcvtsi2s{s,d} intrinsic sequences from clang
// which produce unnecessary vmovs{s,d} instructions
let Predicates = [HasAVX512] in {
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))),
(VCVTSI642SSZrr_Int VR128X:$dst, GR64:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi64 addr:$src))))))),
(VCVTSI642SSZrm_Int VR128X:$dst, addr:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))),
(VCVTSI2SSZrr_Int VR128X:$dst, GR32:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi32 addr:$src))))))),
(VCVTSI2SSZrm_Int VR128X:$dst, addr:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))),
(VCVTSI642SDZrr_Int VR128X:$dst, GR64:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi64 addr:$src))))))),
(VCVTSI642SDZrm_Int VR128X:$dst, addr:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))),
(VCVTSI2SDZrr_Int VR128X:$dst, GR32:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi32 addr:$src))))))),
(VCVTSI2SDZrm_Int VR128X:$dst, addr:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (uint_to_fp GR64:$src)))))),
(VCVTUSI642SSZrr_Int VR128X:$dst, GR64:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (uint_to_fp (loadi64 addr:$src))))))),
(VCVTUSI642SSZrm_Int VR128X:$dst, addr:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (uint_to_fp GR32:$src)))))),
(VCVTUSI2SSZrr_Int VR128X:$dst, GR32:$src)>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector (f32 (uint_to_fp (loadi32 addr:$src))))))),
(VCVTUSI2SSZrm_Int VR128X:$dst, addr:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (uint_to_fp GR64:$src)))))),
(VCVTUSI642SDZrr_Int VR128X:$dst, GR64:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (uint_to_fp (loadi64 addr:$src))))))),
(VCVTUSI642SDZrm_Int VR128X:$dst, addr:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (uint_to_fp GR32:$src)))))),
(VCVTUSI2SDZrr_Int VR128X:$dst, GR32:$src)>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector (f64 (uint_to_fp (loadi32 addr:$src))))))),
(VCVTUSI2SDZrm_Int VR128X:$dst, addr:$src)>;
} // Predicates = [HasAVX512]
// Convert float/double to signed/unsigned int 32/64 with truncation
multiclass avx512_cvt_s_all<bits<8> opc, string asm, X86VectorVTInfo _SrcRC,
X86VectorVTInfo _DstRC, SDNode OpNode,
SDNode OpNodeInt, SDNode OpNodeRnd,
X86FoldableSchedWrite sched, string aliasStr,
bit CodeGenOnly = 1>{
let Predicates = [HasAVX512] in {
let isCodeGenOnly = 1 in {
def rr : AVX512<opc, MRMSrcReg, (outs _DstRC.RC:$dst), (ins _SrcRC.FRC:$src),
!strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set _DstRC.RC:$dst, (OpNode _SrcRC.FRC:$src))]>,
EVEX, Sched<[sched]>;
def rm : AVX512<opc, MRMSrcMem, (outs _DstRC.RC:$dst), (ins _SrcRC.ScalarMemOp:$src),
!strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set _DstRC.RC:$dst, (OpNode (_SrcRC.ScalarLdFrag addr:$src)))]>,
EVEX, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
def rr_Int : AVX512<opc, MRMSrcReg, (outs _DstRC.RC:$dst), (ins _SrcRC.RC:$src),
!strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set _DstRC.RC:$dst, (OpNodeInt (_SrcRC.VT _SrcRC.RC:$src)))]>,
EVEX, VEX_LIG, Sched<[sched]>;
def rrb_Int : AVX512<opc, MRMSrcReg, (outs _DstRC.RC:$dst), (ins _SrcRC.RC:$src),
!strconcat(asm,"\t{{sae}, $src, $dst|$dst, $src, {sae}}"),
[(set _DstRC.RC:$dst, (OpNodeRnd (_SrcRC.VT _SrcRC.RC:$src),
(i32 FROUND_NO_EXC)))]>,
EVEX,VEX_LIG , EVEX_B, Sched<[sched]>;
let isCodeGenOnly = CodeGenOnly, ForceDisassemble = CodeGenOnly in
def rm_Int : AVX512<opc, MRMSrcMem, (outs _DstRC.RC:$dst),
(ins _SrcRC.IntScalarMemOp:$src),
!strconcat(asm,"\t{$src, $dst|$dst, $src}"),
[(set _DstRC.RC:$dst,
(OpNodeInt (_SrcRC.VT _SrcRC.ScalarIntMemCPat:$src)))]>,
EVEX, VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold]>;
def : InstAlias<asm # aliasStr # "\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "rr_Int") _DstRC.RC:$dst, _SrcRC.RC:$src), 0, "att">;
def : InstAlias<asm # aliasStr # "\t{{sae}, $src, $dst|$dst, $src, {sae}}",
(!cast<Instruction>(NAME # "rrb_Int") _DstRC.RC:$dst, _SrcRC.RC:$src), 0, "att">;
} //HasAVX512
}
multiclass avx512_cvt_s_all_unsigned<bits<8> opc, string asm,
X86VectorVTInfo _SrcRC,
X86VectorVTInfo _DstRC, SDNode OpNode,
SDNode OpNodeInt, SDNode OpNodeRnd,
X86FoldableSchedWrite sched,
string aliasStr> :
avx512_cvt_s_all<opc, asm, _SrcRC, _DstRC, OpNode, OpNodeInt, OpNodeRnd, sched,
aliasStr, 0> {
let Predicates = [HasAVX512] in {
def : InstAlias<asm # aliasStr # "\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "rm_Int") _DstRC.RC:$dst,
_SrcRC.IntScalarMemOp:$src), 0, "att">;
}
}
defm VCVTTSS2SIZ: avx512_cvt_s_all<0x2C, "vcvttss2si", f32x_info, i32x_info,
fp_to_sint, X86cvtts2Int, X86cvtts2IntRnd, WriteCvtSS2I,
"{l}">, XS, EVEX_CD8<32, CD8VT1>;
defm VCVTTSS2SI64Z: avx512_cvt_s_all<0x2C, "vcvttss2si", f32x_info, i64x_info,
fp_to_sint, X86cvtts2Int, X86cvtts2IntRnd, WriteCvtSS2I,
"{q}">, VEX_W, XS, EVEX_CD8<32, CD8VT1>;
defm VCVTTSD2SIZ: avx512_cvt_s_all<0x2C, "vcvttsd2si", f64x_info, i32x_info,
fp_to_sint, X86cvtts2Int, X86cvtts2IntRnd, WriteCvtSD2I,
"{l}">, XD, EVEX_CD8<64, CD8VT1>;
defm VCVTTSD2SI64Z: avx512_cvt_s_all<0x2C, "vcvttsd2si", f64x_info, i64x_info,
fp_to_sint, X86cvtts2Int, X86cvtts2IntRnd, WriteCvtSD2I,
"{q}">, VEX_W, XD, EVEX_CD8<64, CD8VT1>;
defm VCVTTSS2USIZ: avx512_cvt_s_all_unsigned<0x78, "vcvttss2usi", f32x_info, i32x_info,
fp_to_uint, X86cvtts2UInt, X86cvtts2UIntRnd, WriteCvtSS2I,
"{l}">, XS, EVEX_CD8<32, CD8VT1>;
defm VCVTTSS2USI64Z: avx512_cvt_s_all_unsigned<0x78, "vcvttss2usi", f32x_info, i64x_info,
fp_to_uint, X86cvtts2UInt, X86cvtts2UIntRnd, WriteCvtSS2I,
"{q}">, XS,VEX_W, EVEX_CD8<32, CD8VT1>;
defm VCVTTSD2USIZ: avx512_cvt_s_all_unsigned<0x78, "vcvttsd2usi", f64x_info, i32x_info,
fp_to_uint, X86cvtts2UInt, X86cvtts2UIntRnd, WriteCvtSD2I,
"{l}">, XD, EVEX_CD8<64, CD8VT1>;
defm VCVTTSD2USI64Z: avx512_cvt_s_all_unsigned<0x78, "vcvttsd2usi", f64x_info, i64x_info,
fp_to_uint, X86cvtts2UInt, X86cvtts2UIntRnd, WriteCvtSD2I,
"{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>;
//===----------------------------------------------------------------------===//
// AVX-512 Convert form float to double and back
//===----------------------------------------------------------------------===//
multiclass avx512_cvt_fp_scalar<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86VectorVTInfo _Src, SDNode OpNode,
X86FoldableSchedWrite sched> {
defm rr_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _Src.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode (_.VT _.RC:$src1),
(_Src.VT _Src.RC:$src2),
(i32 FROUND_CURRENT)))>,
EVEX_4V, VEX_LIG, Sched<[sched]>;
defm rm_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _Src.IntScalarMemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(_.VT (OpNode (_.VT _.RC:$src1),
(_Src.VT _Src.ScalarIntMemCPat:$src2),
(i32 FROUND_CURRENT)))>,
EVEX_4V, VEX_LIG,
Sched<[sched.Folded, sched.ReadAfterFold]>;
let isCodeGenOnly = 1, hasSideEffects = 0 in {
def rr : I<opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _Src.FRC:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
EVEX_4V, VEX_LIG, Sched<[sched]>;
let mayLoad = 1 in
def rm : I<opc, MRMSrcMem, (outs _.FRC:$dst),
(ins _.FRC:$src1, _Src.ScalarMemOp:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
EVEX_4V, VEX_LIG, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
// Scalar Coversion with SAE - suppress all exceptions
multiclass avx512_cvt_fp_sae_scalar<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86VectorVTInfo _Src, SDNode OpNodeRnd,
X86FoldableSchedWrite sched> {
defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _Src.RC:$src2), OpcodeStr,
"{sae}, $src2, $src1", "$src1, $src2, {sae}",
(_.VT (OpNodeRnd (_.VT _.RC:$src1),
(_Src.VT _Src.RC:$src2),
(i32 FROUND_NO_EXC)))>,
EVEX_4V, VEX_LIG, EVEX_B, Sched<[sched]>;
}
// Scalar Conversion with rounding control (RC)
multiclass avx512_cvt_fp_rc_scalar<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86VectorVTInfo _Src, SDNode OpNodeRnd,
X86FoldableSchedWrite sched> {
defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _Src.RC:$src2, AVX512RC:$rc), OpcodeStr,
"$rc, $src2, $src1", "$src1, $src2, $rc",
(_.VT (OpNodeRnd (_.VT _.RC:$src1),
(_Src.VT _Src.RC:$src2), (i32 imm:$rc)))>,
EVEX_4V, VEX_LIG, Sched<[sched]>,
EVEX_B, EVEX_RC;
}
multiclass avx512_cvt_fp_scalar_sd2ss<bits<8> opc, string OpcodeStr,
SDNode OpNodeRnd, X86FoldableSchedWrite sched,
X86VectorVTInfo _src, X86VectorVTInfo _dst> {
let Predicates = [HasAVX512] in {
defm Z : avx512_cvt_fp_scalar<opc, OpcodeStr, _dst, _src, OpNodeRnd, sched>,
avx512_cvt_fp_rc_scalar<opc, OpcodeStr, _dst, _src,
OpNodeRnd, sched>, VEX_W, EVEX_CD8<64, CD8VT1>, XD;
}
}
multiclass avx512_cvt_fp_scalar_ss2sd<bits<8> opc, string OpcodeStr, SDNode OpNodeRnd,
X86FoldableSchedWrite sched,
X86VectorVTInfo _src, X86VectorVTInfo _dst> {
let Predicates = [HasAVX512] in {
defm Z : avx512_cvt_fp_scalar<opc, OpcodeStr, _dst, _src, OpNodeRnd, sched>,
avx512_cvt_fp_sae_scalar<opc, OpcodeStr, _dst, _src, OpNodeRnd, sched>,
EVEX_CD8<32, CD8VT1>, XS;
}
}
defm VCVTSD2SS : avx512_cvt_fp_scalar_sd2ss<0x5A, "vcvtsd2ss",
X86froundRnd, WriteCvtSD2SS, f64x_info,
f32x_info>;
defm VCVTSS2SD : avx512_cvt_fp_scalar_ss2sd<0x5A, "vcvtss2sd",
X86fpextRnd, WriteCvtSS2SD, f32x_info,
f64x_info>;
def : Pat<(f64 (fpextend FR32X:$src)),
(VCVTSS2SDZrr (f64 (IMPLICIT_DEF)), FR32X:$src)>,
Requires<[HasAVX512]>;
def : Pat<(f64 (fpextend (loadf32 addr:$src))),
(VCVTSS2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>,
Requires<[HasAVX512, OptForSize]>;
def : Pat<(f64 (extloadf32 addr:$src)),
(VCVTSS2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>,
Requires<[HasAVX512, OptForSize]>;
def : Pat<(f64 (extloadf32 addr:$src)),
(VCVTSS2SDZrr (f64 (IMPLICIT_DEF)), (VMOVSSZrm addr:$src))>,
Requires<[HasAVX512, OptForSpeed]>;
def : Pat<(f32 (fpround FR64X:$src)),
(VCVTSD2SSZrr (f32 (IMPLICIT_DEF)), FR64X:$src)>,
Requires<[HasAVX512]>;
def : Pat<(v4f32 (X86Movss
(v4f32 VR128X:$dst),
(v4f32 (scalar_to_vector
(f32 (fpround (f64 (extractelt VR128X:$src, (iPTR 0))))))))),
(VCVTSD2SSZrr_Int VR128X:$dst, VR128X:$src)>,
Requires<[HasAVX512]>;
def : Pat<(v2f64 (X86Movsd
(v2f64 VR128X:$dst),
(v2f64 (scalar_to_vector
(f64 (fpextend (f32 (extractelt VR128X:$src, (iPTR 0))))))))),
(VCVTSS2SDZrr_Int VR128X:$dst, VR128X:$src)>,
Requires<[HasAVX512]>;
//===----------------------------------------------------------------------===//
// AVX-512 Vector convert from signed/unsigned integer to float/double
// and from float/double to signed/unsigned integer
//===----------------------------------------------------------------------===//
multiclass avx512_vcvt_fp<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86VectorVTInfo _Src, SDNode OpNode,
X86FoldableSchedWrite sched,
string Broadcast = _.BroadcastStr,
string Alias = "", X86MemOperand MemOp = _Src.MemOp> {
defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _Src.RC:$src), OpcodeStr, "$src", "$src",
(_.VT (OpNode (_Src.VT _Src.RC:$src)))>,
EVEX, Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins MemOp:$src), OpcodeStr#Alias, "$src", "$src",
(_.VT (OpNode (_Src.VT
(_Src.LdFrag addr:$src))))>,
EVEX, Sched<[sched.Folded]>;
defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _Src.ScalarMemOp:$src), OpcodeStr,
"${src}"##Broadcast, "${src}"##Broadcast,
(_.VT (OpNode (_Src.VT
(X86VBroadcast (_Src.ScalarLdFrag addr:$src)))
))>, EVEX, EVEX_B,
Sched<[sched.Folded]>;
}
// Coversion with SAE - suppress all exceptions
multiclass avx512_vcvt_fp_sae<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86VectorVTInfo _Src, SDNode OpNodeRnd,
X86FoldableSchedWrite sched> {
defm rrb : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _Src.RC:$src), OpcodeStr,
"{sae}, $src", "$src, {sae}",
(_.VT (OpNodeRnd (_Src.VT _Src.RC:$src),
(i32 FROUND_NO_EXC)))>,
EVEX, EVEX_B, Sched<[sched]>;
}
// Conversion with rounding control (RC)
multiclass avx512_vcvt_fp_rc<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86VectorVTInfo _Src, SDNode OpNodeRnd,
X86FoldableSchedWrite sched> {
defm rrb : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _Src.RC:$src, AVX512RC:$rc), OpcodeStr,
"$rc, $src", "$src, $rc",
(_.VT (OpNodeRnd (_Src.VT _Src.RC:$src), (i32 imm:$rc)))>,
EVEX, EVEX_B, EVEX_RC, Sched<[sched]>;
}
// Extend Float to Double
multiclass avx512_cvtps2pd<bits<8> opc, string OpcodeStr,
X86SchedWriteWidths sched> {
let Predicates = [HasAVX512] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f64_info, v8f32x_info,
fpextend, sched.ZMM>,
avx512_vcvt_fp_sae<opc, OpcodeStr, v8f64_info, v8f32x_info,
X86vfpextRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2f64x_info, v4f32x_info,
X86vfpext, sched.XMM, "{1to2}", "", f64mem>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f64x_info, v4f32x_info, fpextend,
sched.YMM>, EVEX_V256;
}
}
// Truncate Double to Float
multiclass avx512_cvtpd2ps<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched> {
let Predicates = [HasAVX512] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f32x_info, v8f64_info, fpround, sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v8f32x_info, v8f64_info,
X86vfproundRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v2f64x_info,
X86vfpround, sched.XMM, "{1to2}", "{x}">, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v4f64x_info, fpround,
sched.YMM, "{1to4}", "{y}">, EVEX_V256;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, f128mem:$src), 0, "intel">;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, f256mem:$src), 0, "intel">;
}
}
defm VCVTPD2PS : avx512_cvtpd2ps<0x5A, "vcvtpd2ps", SchedWriteCvtPD2PS>,
VEX_W, PD, EVEX_CD8<64, CD8VF>;
defm VCVTPS2PD : avx512_cvtps2pd<0x5A, "vcvtps2pd", SchedWriteCvtPS2PD>,
PS, EVEX_CD8<32, CD8VH>;
def : Pat<(v8f64 (extloadv8f32 addr:$src)),
(VCVTPS2PDZrm addr:$src)>;
let Predicates = [HasVLX] in {
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86vfpround (v2f64 VR128X:$src)))))),
(VCVTPD2PSZ128rr VR128X:$src)>;
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86vfpround (loadv2f64 addr:$src)))))),
(VCVTPD2PSZ128rm addr:$src)>;
def : Pat<(v2f64 (extloadv2f32 addr:$src)),
(VCVTPS2PDZ128rm addr:$src)>;
def : Pat<(v4f64 (extloadv4f32 addr:$src)),
(VCVTPS2PDZ256rm addr:$src)>;
}
// Convert Signed/Unsigned Doubleword to Double
multiclass avx512_cvtdq2pd<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNode128, X86SchedWriteWidths sched> {
// No rounding in this op
let Predicates = [HasAVX512] in
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f64_info, v8i32x_info, OpNode,
sched.ZMM>, EVEX_V512;
let Predicates = [HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2f64x_info, v4i32x_info,
OpNode128, sched.XMM, "{1to2}", "", i64mem>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f64x_info, v4i32x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Signed/Unsigned Doubleword to Float
multiclass avx512_cvtdq2ps<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasAVX512] in
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v16f32_info, v16i32_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v16f32_info, v16i32_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
let Predicates = [HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v4i32x_info, OpNode,
sched.XMM>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v8f32x_info, v8i32x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Float to Signed/Unsigned Doubleword with truncation
multiclass avx512_cvttps2dq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasAVX512] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v16i32_info, v16f32_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_sae<opc, OpcodeStr, v16i32_info, v16f32_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f32x_info, OpNode,
sched.XMM>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f32x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Float to Signed/Unsigned Doubleword
multiclass avx512_cvtps2dq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasAVX512] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v16i32_info, v16f32_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v16i32_info, v16f32_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f32x_info, OpNode,
sched.XMM>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f32x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Double to Signed/Unsigned Doubleword with truncation
multiclass avx512_cvttpd2dq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasAVX512] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f64_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_sae<opc, OpcodeStr, v8i32x_info, v8f64_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasVLX] in {
// we need "x"/"y" suffixes in order to distinguish between 128 and 256
// memory forms of these instructions in Asm Parser. They have the same
// dest type - 'v4i32x_info'. We also specify the broadcast string explicitly
// due to the same reason.
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v2f64x_info,
OpNode, sched.XMM, "{1to2}", "{x}">, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f64x_info, OpNode,
sched.YMM, "{1to4}", "{y}">, EVEX_V256;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, i128mem:$src), 0, "intel">;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, i256mem:$src), 0, "intel">;
}
}
// Convert Double to Signed/Unsigned Doubleword
multiclass avx512_cvtpd2dq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasAVX512] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f64_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v8i32x_info, v8f64_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasVLX] in {
// we need "x"/"y" suffixes in order to distinguish between 128 and 256
// memory forms of these instructions in Asm Parcer. They have the same
// dest type - 'v4i32x_info'. We also specify the broadcast string explicitly
// due to the same reason.
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v2f64x_info, OpNode,
sched.XMM, "{1to2}", "{x}">, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f64x_info, OpNode,
sched.YMM, "{1to4}", "{y}">, EVEX_V256;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, f128mem:$src), 0, "intel">;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, f256mem:$src), 0, "intel">;
}
}
// Convert Double to Signed/Unsigned Quardword
multiclass avx512_cvtpd2qq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasDQI] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f64_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v8i64_info, v8f64_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasDQI, HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v2f64x_info, OpNode,
sched.XMM>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f64x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Double to Signed/Unsigned Quardword with truncation
multiclass avx512_cvttpd2qq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasDQI] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f64_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_sae<opc, OpcodeStr, v8i64_info, v8f64_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasDQI, HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v2f64x_info, OpNode,
sched.XMM>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f64x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Signed/Unsigned Quardword to Double
multiclass avx512_cvtqq2pd<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasDQI] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f64_info, v8i64_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v8f64_info, v8i64_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasDQI, HasVLX] in {
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2f64x_info, v2i64x_info, OpNode,
sched.XMM>, EVEX_V128, NotEVEX2VEXConvertible;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f64x_info, v4i64x_info, OpNode,
sched.YMM>, EVEX_V256, NotEVEX2VEXConvertible;
}
}
// Convert Float to Signed/Unsigned Quardword
multiclass avx512_cvtps2qq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasDQI] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f32x_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v8i64_info, v8f32x_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasDQI, HasVLX] in {
// Explicitly specified broadcast string, since we take only 2 elements
// from v4f32x_info source
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v4f32x_info, OpNode,
sched.XMM, "{1to2}", "", f64mem>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f32x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Float to Signed/Unsigned Quardword with truncation
multiclass avx512_cvttps2qq<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched> {
let Predicates = [HasDQI] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f32x_info, OpNode, sched.ZMM>,
avx512_vcvt_fp_sae<opc, OpcodeStr, v8i64_info, v8f32x_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasDQI, HasVLX] in {
// Explicitly specified broadcast string, since we take only 2 elements
// from v4f32x_info source
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v4f32x_info, OpNode,
sched.XMM, "{1to2}", "", f64mem>, EVEX_V128;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f32x_info, OpNode,
sched.YMM>, EVEX_V256;
}
}
// Convert Signed/Unsigned Quardword to Float
multiclass avx512_cvtqq2ps<bits<8> opc, string OpcodeStr, SDNode OpNode,
SDNode OpNode128, SDNode OpNodeRnd,
X86SchedWriteWidths sched> {
let Predicates = [HasDQI] in {
defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f32x_info, v8i64_info, OpNode,
sched.ZMM>,
avx512_vcvt_fp_rc<opc, OpcodeStr, v8f32x_info, v8i64_info,
OpNodeRnd, sched.ZMM>, EVEX_V512;
}
let Predicates = [HasDQI, HasVLX] in {
// we need "x"/"y" suffixes in order to distinguish between 128 and 256
// memory forms of these instructions in Asm Parcer. They have the same
// dest type - 'v4i32x_info'. We also specify the broadcast string explicitly
// due to the same reason.
defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v2i64x_info, OpNode128,
sched.XMM, "{1to2}", "{x}">, EVEX_V128,
NotEVEX2VEXConvertible;
defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v4i64x_info, OpNode,
sched.YMM, "{1to4}", "{y}">, EVEX_V256,
NotEVEX2VEXConvertible;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>;
def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, i128mem:$src), 0, "intel">;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>;
def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}",
(!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, i256mem:$src), 0, "intel">;
}
}
defm VCVTDQ2PD : avx512_cvtdq2pd<0xE6, "vcvtdq2pd", sint_to_fp, X86VSintToFP,
SchedWriteCvtDQ2PD>, XS, EVEX_CD8<32, CD8VH>;
defm VCVTDQ2PS : avx512_cvtdq2ps<0x5B, "vcvtdq2ps", sint_to_fp,
X86VSintToFpRnd, SchedWriteCvtDQ2PS>,
PS, EVEX_CD8<32, CD8VF>;
defm VCVTTPS2DQ : avx512_cvttps2dq<0x5B, "vcvttps2dq", X86cvttp2si,
X86cvttp2siRnd, SchedWriteCvtPS2DQ>,
XS, EVEX_CD8<32, CD8VF>;
defm VCVTTPD2DQ : avx512_cvttpd2dq<0xE6, "vcvttpd2dq", X86cvttp2si,
X86cvttp2siRnd, SchedWriteCvtPD2DQ>,
PD, VEX_W, EVEX_CD8<64, CD8VF>;
defm VCVTTPS2UDQ : avx512_cvttps2dq<0x78, "vcvttps2udq", X86cvttp2ui,
X86cvttp2uiRnd, SchedWriteCvtPS2DQ>, PS,
EVEX_CD8<32, CD8VF>;
defm VCVTTPD2UDQ : avx512_cvttpd2dq<0x78, "vcvttpd2udq", X86cvttp2ui,
X86cvttp2uiRnd, SchedWriteCvtPD2DQ>,
PS, VEX_W, EVEX_CD8<64, CD8VF>;
defm VCVTUDQ2PD : avx512_cvtdq2pd<0x7A, "vcvtudq2pd", uint_to_fp,
X86VUintToFP, SchedWriteCvtDQ2PD>, XS,
EVEX_CD8<32, CD8VH>;
defm VCVTUDQ2PS : avx512_cvtdq2ps<0x7A, "vcvtudq2ps", uint_to_fp,
X86VUintToFpRnd, SchedWriteCvtDQ2PS>, XD,
EVEX_CD8<32, CD8VF>;
defm VCVTPS2DQ : avx512_cvtps2dq<0x5B, "vcvtps2dq", X86cvtp2Int,
X86cvtp2IntRnd, SchedWriteCvtPS2DQ>, PD,
EVEX_CD8<32, CD8VF>;
defm VCVTPD2DQ : avx512_cvtpd2dq<0xE6, "vcvtpd2dq", X86cvtp2Int,
X86cvtp2IntRnd, SchedWriteCvtPD2DQ>, XD,
VEX_W, EVEX_CD8<64, CD8VF>;
defm VCVTPS2UDQ : avx512_cvtps2dq<0x79, "vcvtps2udq", X86cvtp2UInt,
X86cvtp2UIntRnd, SchedWriteCvtPS2DQ>,
PS, EVEX_CD8<32, CD8VF>;
defm VCVTPD2UDQ : avx512_cvtpd2dq<0x79, "vcvtpd2udq", X86cvtp2UInt,
X86cvtp2UIntRnd, SchedWriteCvtPD2DQ>, VEX_W,
PS, EVEX_CD8<64, CD8VF>;
defm VCVTPD2QQ : avx512_cvtpd2qq<0x7B, "vcvtpd2qq", X86cvtp2Int,
X86cvtp2IntRnd, SchedWriteCvtPD2DQ>, VEX_W,
PD, EVEX_CD8<64, CD8VF>;
defm VCVTPS2QQ : avx512_cvtps2qq<0x7B, "vcvtps2qq", X86cvtp2Int,
X86cvtp2IntRnd, SchedWriteCvtPS2DQ>, PD,
EVEX_CD8<32, CD8VH>;
defm VCVTPD2UQQ : avx512_cvtpd2qq<0x79, "vcvtpd2uqq", X86cvtp2UInt,
X86cvtp2UIntRnd, SchedWriteCvtPD2DQ>, VEX_W,
PD, EVEX_CD8<64, CD8VF>;
defm VCVTPS2UQQ : avx512_cvtps2qq<0x79, "vcvtps2uqq", X86cvtp2UInt,
X86cvtp2UIntRnd, SchedWriteCvtPS2DQ>, PD,
EVEX_CD8<32, CD8VH>;
defm VCVTTPD2QQ : avx512_cvttpd2qq<0x7A, "vcvttpd2qq", X86cvttp2si,
X86cvttp2siRnd, SchedWriteCvtPD2DQ>, VEX_W,
PD, EVEX_CD8<64, CD8VF>;
defm VCVTTPS2QQ : avx512_cvttps2qq<0x7A, "vcvttps2qq", X86cvttp2si,
X86cvttp2siRnd, SchedWriteCvtPS2DQ>, PD,
EVEX_CD8<32, CD8VH>;
defm VCVTTPD2UQQ : avx512_cvttpd2qq<0x78, "vcvttpd2uqq", X86cvttp2ui,
X86cvttp2uiRnd, SchedWriteCvtPD2DQ>, VEX_W,
PD, EVEX_CD8<64, CD8VF>;
defm VCVTTPS2UQQ : avx512_cvttps2qq<0x78, "vcvttps2uqq", X86cvttp2ui,
X86cvttp2uiRnd, SchedWriteCvtPS2DQ>, PD,
EVEX_CD8<32, CD8VH>;
defm VCVTQQ2PD : avx512_cvtqq2pd<0xE6, "vcvtqq2pd", sint_to_fp,
X86VSintToFpRnd, SchedWriteCvtDQ2PD>, VEX_W, XS,
EVEX_CD8<64, CD8VF>;
defm VCVTUQQ2PD : avx512_cvtqq2pd<0x7A, "vcvtuqq2pd", uint_to_fp,
X86VUintToFpRnd, SchedWriteCvtDQ2PD>, VEX_W, XS,
EVEX_CD8<64, CD8VF>;
defm VCVTQQ2PS : avx512_cvtqq2ps<0x5B, "vcvtqq2ps", sint_to_fp, X86VSintToFP,
X86VSintToFpRnd, SchedWriteCvtDQ2PS>, VEX_W, PS,
EVEX_CD8<64, CD8VF>;
defm VCVTUQQ2PS : avx512_cvtqq2ps<0x7A, "vcvtuqq2ps", uint_to_fp, X86VUintToFP,
X86VUintToFpRnd, SchedWriteCvtDQ2PS>, VEX_W, XD,
EVEX_CD8<64, CD8VF>;
let Predicates = [HasAVX512] in {
def : Pat<(v16i32 (fp_to_sint (v16f32 VR512:$src))),
(VCVTTPS2DQZrr VR512:$src)>;
def : Pat<(v16i32 (fp_to_sint (loadv16f32 addr:$src))),
(VCVTTPS2DQZrm addr:$src)>;
def : Pat<(v16i32 (fp_to_uint (v16f32 VR512:$src))),
(VCVTTPS2UDQZrr VR512:$src)>;
def : Pat<(v16i32 (fp_to_uint (loadv16f32 addr:$src))),
(VCVTTPS2UDQZrm addr:$src)>;
def : Pat<(v8i32 (fp_to_sint (v8f64 VR512:$src))),
(VCVTTPD2DQZrr VR512:$src)>;
def : Pat<(v8i32 (fp_to_sint (loadv8f64 addr:$src))),
(VCVTTPD2DQZrm addr:$src)>;
def : Pat<(v8i32 (fp_to_uint (v8f64 VR512:$src))),
(VCVTTPD2UDQZrr VR512:$src)>;
def : Pat<(v8i32 (fp_to_uint (loadv8f64 addr:$src))),
(VCVTTPD2UDQZrm addr:$src)>;
}
let Predicates = [HasVLX] in {
def : Pat<(v4i32 (fp_to_sint (v4f32 VR128X:$src))),
(VCVTTPS2DQZ128rr VR128X:$src)>;
def : Pat<(v4i32 (fp_to_sint (loadv4f32 addr:$src))),
(VCVTTPS2DQZ128rm addr:$src)>;
def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src))),
(VCVTTPS2UDQZ128rr VR128X:$src)>;
def : Pat<(v4i32 (fp_to_uint (loadv4f32 addr:$src))),
(VCVTTPS2UDQZ128rm addr:$src)>;
def : Pat<(v8i32 (fp_to_sint (v8f32 VR256X:$src))),
(VCVTTPS2DQZ256rr VR256X:$src)>;
def : Pat<(v8i32 (fp_to_sint (loadv8f32 addr:$src))),
(VCVTTPS2DQZ256rm addr:$src)>;
def : Pat<(v8i32 (fp_to_uint (v8f32 VR256X:$src))),
(VCVTTPS2UDQZ256rr VR256X:$src)>;
def : Pat<(v8i32 (fp_to_uint (loadv8f32 addr:$src))),
(VCVTTPS2UDQZ256rm addr:$src)>;
def : Pat<(v4i32 (fp_to_sint (v4f64 VR256X:$src))),
(VCVTTPD2DQZ256rr VR256X:$src)>;
def : Pat<(v4i32 (fp_to_sint (loadv4f64 addr:$src))),
(VCVTTPD2DQZ256rm addr:$src)>;
def : Pat<(v4i32 (fp_to_uint (v4f64 VR256X:$src))),
(VCVTTPD2UDQZ256rr VR256X:$src)>;
def : Pat<(v4i32 (fp_to_uint (loadv4f64 addr:$src))),
(VCVTTPD2UDQZ256rm addr:$src)>;
}
let Predicates = [HasDQI] in {
def : Pat<(v8i64 (fp_to_sint (v8f32 VR256X:$src))),
(VCVTTPS2QQZrr VR256X:$src)>;
def : Pat<(v8i64 (fp_to_sint (loadv8f32 addr:$src))),
(VCVTTPS2QQZrm addr:$src)>;
def : Pat<(v8i64 (fp_to_uint (v8f32 VR256X:$src))),
(VCVTTPS2UQQZrr VR256X:$src)>;
def : Pat<(v8i64 (fp_to_uint (loadv8f32 addr:$src))),
(VCVTTPS2UQQZrm addr:$src)>;
def : Pat<(v8i64 (fp_to_sint (v8f64 VR512:$src))),
(VCVTTPD2QQZrr VR512:$src)>;
def : Pat<(v8i64 (fp_to_sint (loadv8f64 addr:$src))),
(VCVTTPD2QQZrm addr:$src)>;
def : Pat<(v8i64 (fp_to_uint (v8f64 VR512:$src))),
(VCVTTPD2UQQZrr VR512:$src)>;
def : Pat<(v8i64 (fp_to_uint (loadv8f64 addr:$src))),
(VCVTTPD2UQQZrm addr:$src)>;
}
let Predicates = [HasDQI, HasVLX] in {
def : Pat<(v4i64 (fp_to_sint (v4f32 VR128X:$src))),
(VCVTTPS2QQZ256rr VR128X:$src)>;
def : Pat<(v4i64 (fp_to_sint (loadv4f32 addr:$src))),
(VCVTTPS2QQZ256rm addr:$src)>;
def : Pat<(v4i64 (fp_to_uint (v4f32 VR128X:$src))),
(VCVTTPS2UQQZ256rr VR128X:$src)>;
def : Pat<(v4i64 (fp_to_uint (loadv4f32 addr:$src))),
(VCVTTPS2UQQZ256rm addr:$src)>;
def : Pat<(v2i64 (fp_to_sint (v2f64 VR128X:$src))),
(VCVTTPD2QQZ128rr VR128X:$src)>;
def : Pat<(v2i64 (fp_to_sint (loadv2f64 addr:$src))),
(VCVTTPD2QQZ128rm addr:$src)>;
def : Pat<(v2i64 (fp_to_uint (v2f64 VR128X:$src))),
(VCVTTPD2UQQZ128rr VR128X:$src)>;
def : Pat<(v2i64 (fp_to_uint (loadv2f64 addr:$src))),
(VCVTTPD2UQQZ128rm addr:$src)>;
def : Pat<(v4i64 (fp_to_sint (v4f64 VR256X:$src))),
(VCVTTPD2QQZ256rr VR256X:$src)>;
def : Pat<(v4i64 (fp_to_sint (loadv4f64 addr:$src))),
(VCVTTPD2QQZ256rm addr:$src)>;
def : Pat<(v4i64 (fp_to_uint (v4f64 VR256X:$src))),
(VCVTTPD2UQQZ256rr VR256X:$src)>;
def : Pat<(v4i64 (fp_to_uint (loadv4f64 addr:$src))),
(VCVTTPD2UQQZ256rm addr:$src)>;
}
let Predicates = [HasAVX512, NoVLX] in {
def : Pat<(v8i32 (fp_to_uint (v8f32 VR256X:$src1))),
(EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr
(v16f32 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_ymm)>;
def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src1))),
(EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr
(v16f32 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_xmm)>;
def : Pat<(v4i32 (fp_to_uint (v4f64 VR256X:$src1))),
(EXTRACT_SUBREG (v8i32 (VCVTTPD2UDQZrr
(v8f64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_xmm)>;
def : Pat<(v8f32 (uint_to_fp (v8i32 VR256X:$src1))),
(EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_ymm)>;
def : Pat<(v4f32 (uint_to_fp (v4i32 VR128X:$src1))),
(EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr
(v16i32 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_xmm)>;
def : Pat<(v4f64 (uint_to_fp (v4i32 VR128X:$src1))),
(EXTRACT_SUBREG (v8f64 (VCVTUDQ2PDZrr
(v8i32 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_ymm)>;
def : Pat<(v2f64 (X86VUintToFP (v4i32 VR128X:$src1))),
(EXTRACT_SUBREG (v8f64 (VCVTUDQ2PDZrr
(v8i32 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_xmm)>;
}
let Predicates = [HasAVX512, HasVLX] in {
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvtp2Int (v2f64 VR128X:$src)))))),
(VCVTPD2DQZ128rr VR128X:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvtp2Int (loadv2f64 addr:$src)))))),
(VCVTPD2DQZ128rm addr:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvtp2UInt (v2f64 VR128X:$src)))))),
(VCVTPD2UDQZ128rr VR128X:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvttp2si (v2f64 VR128X:$src)))))),
(VCVTTPD2DQZ128rr VR128X:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvttp2si (loadv2f64 addr:$src)))))),
(VCVTTPD2DQZ128rm addr:$src)>;
def : Pat<(X86vzmovl (v2i64 (bitconvert
(v4i32 (X86cvttp2ui (v2f64 VR128X:$src)))))),
(VCVTTPD2UDQZ128rr VR128X:$src)>;
def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(VCVTDQ2PDZ128rm addr:$src)>;
def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))),
(VCVTDQ2PDZ128rm addr:$src)>;
def : Pat<(v2f64 (X86VUintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(VCVTUDQ2PDZ128rm addr:$src)>;
def : Pat<(v2f64 (X86VUintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))),
(VCVTUDQ2PDZ128rm addr:$src)>;
}
let Predicates = [HasAVX512] in {
def : Pat<(v8f32 (fpround (loadv8f64 addr:$src))),
(VCVTPD2PSZrm addr:$src)>;
def : Pat<(v8f64 (extloadv8f32 addr:$src)),
(VCVTPS2PDZrm addr:$src)>;
}
let Predicates = [HasDQI, HasVLX] in {
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86VSintToFP (v2i64 VR128X:$src)))))),
(VCVTQQ2PSZ128rr VR128X:$src)>;
def : Pat<(X86vzmovl (v2f64 (bitconvert
(v4f32 (X86VUintToFP (v2i64 VR128X:$src)))))),
(VCVTUQQ2PSZ128rr VR128X:$src)>;
}
let Predicates = [HasDQI, NoVLX] in {
def : Pat<(v2i64 (fp_to_sint (v2f64 VR128X:$src1))),
(EXTRACT_SUBREG (v8i64 (VCVTTPD2QQZrr
(v8f64 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_xmm)>;
def : Pat<(v4i64 (fp_to_sint (v4f32 VR128X:$src1))),
(EXTRACT_SUBREG (v8i64 (VCVTTPS2QQZrr
(v8f32 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_ymm)>;
def : Pat<(v4i64 (fp_to_sint (v4f64 VR256X:$src1))),
(EXTRACT_SUBREG (v8i64 (VCVTTPD2QQZrr
(v8f64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_ymm)>;
def : Pat<(v2i64 (fp_to_uint (v2f64 VR128X:$src1))),
(EXTRACT_SUBREG (v8i64 (VCVTTPD2UQQZrr
(v8f64 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_xmm)>;
def : Pat<(v4i64 (fp_to_uint (v4f32 VR128X:$src1))),
(EXTRACT_SUBREG (v8i64 (VCVTTPS2UQQZrr
(v8f32 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_ymm)>;
def : Pat<(v4i64 (fp_to_uint (v4f64 VR256X:$src1))),
(EXTRACT_SUBREG (v8i64 (VCVTTPD2UQQZrr
(v8f64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_ymm)>;
def : Pat<(v4f32 (sint_to_fp (v4i64 VR256X:$src1))),
(EXTRACT_SUBREG (v8f32 (VCVTQQ2PSZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_xmm)>;
def : Pat<(v2f64 (sint_to_fp (v2i64 VR128X:$src1))),
(EXTRACT_SUBREG (v8f64 (VCVTQQ2PDZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_xmm)>;
def : Pat<(v4f64 (sint_to_fp (v4i64 VR256X:$src1))),
(EXTRACT_SUBREG (v8f64 (VCVTQQ2PDZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_ymm)>;
def : Pat<(v4f32 (uint_to_fp (v4i64 VR256X:$src1))),
(EXTRACT_SUBREG (v8f32 (VCVTUQQ2PSZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_xmm)>;
def : Pat<(v2f64 (uint_to_fp (v2i64 VR128X:$src1))),
(EXTRACT_SUBREG (v8f64 (VCVTUQQ2PDZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF),
VR128X:$src1, sub_xmm)))), sub_xmm)>;
def : Pat<(v4f64 (uint_to_fp (v4i64 VR256X:$src1))),
(EXTRACT_SUBREG (v8f64 (VCVTUQQ2PDZrr
(v8i64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src1, sub_ymm)))), sub_ymm)>;
}
//===----------------------------------------------------------------------===//
// Half precision conversion instructions
//===----------------------------------------------------------------------===//
multiclass avx512_cvtph2ps<X86VectorVTInfo _dest, X86VectorVTInfo _src,
X86MemOperand x86memop, PatFrag ld_frag,
X86FoldableSchedWrite sched> {
defm rr : AVX512_maskable<0x13, MRMSrcReg, _dest ,(outs _dest.RC:$dst),
(ins _src.RC:$src), "vcvtph2ps", "$src", "$src",
(X86cvtph2ps (_src.VT _src.RC:$src))>,
T8PD, Sched<[sched]>;
defm rm : AVX512_maskable<0x13, MRMSrcMem, _dest, (outs _dest.RC:$dst),
(ins x86memop:$src), "vcvtph2ps", "$src", "$src",
(X86cvtph2ps (_src.VT
(ld_frag addr:$src)))>,
T8PD, Sched<[sched.Folded]>;
}
multiclass avx512_cvtph2ps_sae<X86VectorVTInfo _dest, X86VectorVTInfo _src,
X86FoldableSchedWrite sched> {
defm rrb : AVX512_maskable<0x13, MRMSrcReg, _dest, (outs _dest.RC:$dst),
(ins _src.RC:$src), "vcvtph2ps",
"{sae}, $src", "$src, {sae}",
(X86cvtph2psRnd (_src.VT _src.RC:$src),
(i32 FROUND_NO_EXC))>,
T8PD, EVEX_B, Sched<[sched]>;
}
let Predicates = [HasAVX512] in
defm VCVTPH2PSZ : avx512_cvtph2ps<v16f32_info, v16i16x_info, f256mem, load,
WriteCvtPH2PSZ>,
avx512_cvtph2ps_sae<v16f32_info, v16i16x_info, WriteCvtPH2PSZ>,
EVEX, EVEX_V512, EVEX_CD8<32, CD8VH>;
let Predicates = [HasVLX] in {
defm VCVTPH2PSZ256 : avx512_cvtph2ps<v8f32x_info, v8i16x_info, f128mem,
load, WriteCvtPH2PSY>, EVEX, EVEX_V256,
EVEX_CD8<32, CD8VH>;
defm VCVTPH2PSZ128 : avx512_cvtph2ps<v4f32x_info, v8i16x_info, f64mem,
load, WriteCvtPH2PS>, EVEX, EVEX_V128,
EVEX_CD8<32, CD8VH>;
// Pattern match vcvtph2ps of a scalar i64 load.
def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzmovl_v2i64 addr:$src)))),
(VCVTPH2PSZ128rm addr:$src)>;
def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzload_v2i64 addr:$src)))),
(VCVTPH2PSZ128rm addr:$src)>;
def : Pat<(v4f32 (X86cvtph2ps (v8i16 (bitconvert
(v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
(VCVTPH2PSZ128rm addr:$src)>;
}
multiclass avx512_cvtps2ph<X86VectorVTInfo _dest, X86VectorVTInfo _src,
X86MemOperand x86memop, SchedWrite RR, SchedWrite MR> {
defm rr : AVX512_maskable<0x1D, MRMDestReg, _dest ,(outs _dest.RC:$dst),
(ins _src.RC:$src1, i32u8imm:$src2),
"vcvtps2ph", "$src2, $src1", "$src1, $src2",
(X86cvtps2ph (_src.VT _src.RC:$src1),
(i32 imm:$src2)), 0, 0>,
AVX512AIi8Base, Sched<[RR]>;
let hasSideEffects = 0, mayStore = 1 in {
def mr : AVX512AIi8<0x1D, MRMDestMem, (outs),
(ins x86memop:$dst, _src.RC:$src1, i32u8imm:$src2),
"vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
Sched<[MR]>;
def mrk : AVX512AIi8<0x1D, MRMDestMem, (outs),
(ins x86memop:$dst, _dest.KRCWM:$mask, _src.RC:$src1, i32u8imm:$src2),
"vcvtps2ph\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}", []>,
EVEX_K, Sched<[MR]>, NotMemoryFoldable;
}
}
multiclass avx512_cvtps2ph_sae<X86VectorVTInfo _dest, X86VectorVTInfo _src,
SchedWrite Sched> {
let hasSideEffects = 0 in
defm rrb : AVX512_maskable_in_asm<0x1D, MRMDestReg, _dest,
(outs _dest.RC:$dst),
(ins _src.RC:$src1, i32u8imm:$src2),
"vcvtps2ph", "$src2, {sae}, $src1", "$src1, {sae}, $src2", []>,
EVEX_B, AVX512AIi8Base, Sched<[Sched]>;
}
let Predicates = [HasAVX512] in {
defm VCVTPS2PHZ : avx512_cvtps2ph<v16i16x_info, v16f32_info, f256mem,
WriteCvtPS2PHZ, WriteCvtPS2PHZSt>,
avx512_cvtps2ph_sae<v16i16x_info, v16f32_info, WriteCvtPS2PHZ>,
EVEX, EVEX_V512, EVEX_CD8<32, CD8VH>;
let Predicates = [HasVLX] in {
defm VCVTPS2PHZ256 : avx512_cvtps2ph<v8i16x_info, v8f32x_info, f128mem,
WriteCvtPS2PHY, WriteCvtPS2PHYSt>,
EVEX, EVEX_V256, EVEX_CD8<32, CD8VH>;
defm VCVTPS2PHZ128 : avx512_cvtps2ph<v8i16x_info, v4f32x_info, f64mem,
WriteCvtPS2PH, WriteCvtPS2PHSt>,
EVEX, EVEX_V128, EVEX_CD8<32, CD8VH>;
}
def : Pat<(store (f64 (extractelt
(bc_v2f64 (v8i16 (X86cvtps2ph VR128X:$src1, i32:$src2))),
(iPTR 0))), addr:$dst),
(VCVTPS2PHZ128mr addr:$dst, VR128X:$src1, imm:$src2)>;
def : Pat<(store (i64 (extractelt
(bc_v2i64 (v8i16 (X86cvtps2ph VR128X:$src1, i32:$src2))),
(iPTR 0))), addr:$dst),
(VCVTPS2PHZ128mr addr:$dst, VR128X:$src1, imm:$src2)>;
def : Pat<(store (v8i16 (X86cvtps2ph VR256X:$src1, i32:$src2)), addr:$dst),
(VCVTPS2PHZ256mr addr:$dst, VR256X:$src1, imm:$src2)>;
def : Pat<(store (v16i16 (X86cvtps2ph VR512:$src1, i32:$src2)), addr:$dst),
(VCVTPS2PHZmr addr:$dst, VR512:$src1, imm:$src2)>;
}
// Patterns for matching conversions from float to half-float and vice versa.
let Predicates = [HasVLX] in {
// Use MXCSR.RC for rounding instead of explicitly specifying the default
// rounding mode (Nearest-Even, encoded as 0). Both are equivalent in the
// configurations we support (the default). However, falling back to MXCSR is
// more consistent with other instructions, which are always controlled by it.
// It's encoded as 0b100.
def : Pat<(fp_to_f16 FR32X:$src),
(i16 (EXTRACT_SUBREG (VMOVPDI2DIZrr (v8i16 (VCVTPS2PHZ128rr
(v4f32 (COPY_TO_REGCLASS FR32X:$src, VR128X)), 4))), sub_16bit))>;
def : Pat<(f16_to_fp GR16:$src),
(f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSZ128rr
(v8i16 (COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128X)))), FR32X)) >;
def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32X:$src))),
(f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSZ128rr
(v8i16 (VCVTPS2PHZ128rr
(v4f32 (COPY_TO_REGCLASS FR32X:$src, VR128X)), 4)))), FR32X)) >;
}
// Unordered/Ordered scalar fp compare with Sae and set EFLAGS
multiclass avx512_ord_cmp_sae<bits<8> opc, X86VectorVTInfo _,
string OpcodeStr, X86FoldableSchedWrite sched> {
let hasSideEffects = 0 in
def rrb: AVX512<opc, MRMSrcReg, (outs), (ins _.RC:$src1, _.RC:$src2),
!strconcat(OpcodeStr, "\t{{sae}, $src2, $src1|$src1, $src2, {sae}}"), []>,
EVEX, EVEX_B, VEX_LIG, EVEX_V128, Sched<[sched]>;
}
let Defs = [EFLAGS], Predicates = [HasAVX512] in {
defm VUCOMISSZ : avx512_ord_cmp_sae<0x2E, v4f32x_info, "vucomiss", WriteFCom>,
AVX512PSIi8Base, EVEX_CD8<32, CD8VT1>;
defm VUCOMISDZ : avx512_ord_cmp_sae<0x2E, v2f64x_info, "vucomisd", WriteFCom>,
AVX512PDIi8Base, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VCOMISSZ : avx512_ord_cmp_sae<0x2F, v4f32x_info, "vcomiss", WriteFCom>,
AVX512PSIi8Base, EVEX_CD8<32, CD8VT1>;
defm VCOMISDZ : avx512_ord_cmp_sae<0x2F, v2f64x_info, "vcomisd", WriteFCom>,
AVX512PDIi8Base, VEX_W, EVEX_CD8<64, CD8VT1>;
}
let Defs = [EFLAGS], Predicates = [HasAVX512] in {
defm VUCOMISSZ : sse12_ord_cmp<0x2E, FR32X, X86cmp, f32, f32mem, loadf32,
"ucomiss", WriteFCom>, PS, EVEX, VEX_LIG,
EVEX_CD8<32, CD8VT1>;
defm VUCOMISDZ : sse12_ord_cmp<0x2E, FR64X, X86cmp, f64, f64mem, loadf64,
"ucomisd", WriteFCom>, PD, EVEX,
VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
let Pattern = []<dag> in {
defm VCOMISSZ : sse12_ord_cmp<0x2F, FR32X, undef, f32, f32mem, loadf32,
"comiss", WriteFCom>, PS, EVEX, VEX_LIG,
EVEX_CD8<32, CD8VT1>;
defm VCOMISDZ : sse12_ord_cmp<0x2F, FR64X, undef, f64, f64mem, loadf64,
"comisd", WriteFCom>, PD, EVEX,
VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
}
let isCodeGenOnly = 1 in {
defm VUCOMISSZ : sse12_ord_cmp_int<0x2E, VR128X, X86ucomi, v4f32, ssmem,
sse_load_f32, "ucomiss", WriteFCom>, PS, EVEX, VEX_LIG,
EVEX_CD8<32, CD8VT1>;
defm VUCOMISDZ : sse12_ord_cmp_int<0x2E, VR128X, X86ucomi, v2f64, sdmem,
sse_load_f64, "ucomisd", WriteFCom>, PD, EVEX,
VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VCOMISSZ : sse12_ord_cmp_int<0x2F, VR128X, X86comi, v4f32, ssmem,
sse_load_f32, "comiss", WriteFCom>, PS, EVEX, VEX_LIG,
EVEX_CD8<32, CD8VT1>;
defm VCOMISDZ : sse12_ord_cmp_int<0x2F, VR128X, X86comi, v2f64, sdmem,
sse_load_f64, "comisd", WriteFCom>, PD, EVEX,
VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>;
}
}
/// avx512_fp14_s rcp14ss, rcp14sd, rsqrt14ss, rsqrt14sd
multiclass avx512_fp14_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let Predicates = [HasAVX512], ExeDomain = _.ExeDomain in {
defm rr : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2))>,
EVEX_4V, Sched<[sched]>;
defm rm : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(OpNode (_.VT _.RC:$src1),
_.ScalarIntMemCPat:$src2)>, EVEX_4V,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
defm VRCP14SSZ : avx512_fp14_s<0x4D, "vrcp14ss", X86rcp14s, SchedWriteFRcp.Scl,
f32x_info>, EVEX_CD8<32, CD8VT1>,
T8PD;
defm VRCP14SDZ : avx512_fp14_s<0x4D, "vrcp14sd", X86rcp14s, SchedWriteFRcp.Scl,
f64x_info>, VEX_W, EVEX_CD8<64, CD8VT1>,
T8PD;
defm VRSQRT14SSZ : avx512_fp14_s<0x4F, "vrsqrt14ss", X86rsqrt14s,
SchedWriteFRsqrt.Scl, f32x_info>,
EVEX_CD8<32, CD8VT1>, T8PD;
defm VRSQRT14SDZ : avx512_fp14_s<0x4F, "vrsqrt14sd", X86rsqrt14s,
SchedWriteFRsqrt.Scl, f64x_info>, VEX_W,
EVEX_CD8<64, CD8VT1>, T8PD;
/// avx512_fp14_p rcp14ps, rcp14pd, rsqrt14ps, rsqrt14pd
multiclass avx512_fp14_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm r: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src), OpcodeStr, "$src", "$src",
(_.VT (OpNode _.RC:$src))>, EVEX, T8PD,
Sched<[sched]>;
defm m: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.MemOp:$src), OpcodeStr, "$src", "$src",
(OpNode (_.VT
(bitconvert (_.LdFrag addr:$src))))>, EVEX, T8PD,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm mb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.ScalarMemOp:$src), OpcodeStr,
"${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr,
(OpNode (_.VT
(X86VBroadcast (_.ScalarLdFrag addr:$src))))>,
EVEX, T8PD, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fp14_p_vl_all<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
defm PSZ : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"), OpNode, sched.ZMM,
v16f32_info>, EVEX_V512, EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"), OpNode, sched.ZMM,
v8f64_info>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
// Define only if AVX512VL feature is present.
let Predicates = [HasVLX] in {
defm PSZ128 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"),
OpNode, sched.XMM, v4f32x_info>,
EVEX_V128, EVEX_CD8<32, CD8VF>;
defm PSZ256 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"),
OpNode, sched.YMM, v8f32x_info>,
EVEX_V256, EVEX_CD8<32, CD8VF>;
defm PDZ128 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"),
OpNode, sched.XMM, v2f64x_info>,
EVEX_V128, VEX_W, EVEX_CD8<64, CD8VF>;
defm PDZ256 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"),
OpNode, sched.YMM, v4f64x_info>,
EVEX_V256, VEX_W, EVEX_CD8<64, CD8VF>;
}
}
defm VRSQRT14 : avx512_fp14_p_vl_all<0x4E, "vrsqrt14", X86rsqrt14, SchedWriteFRsqrt>;
defm VRCP14 : avx512_fp14_p_vl_all<0x4C, "vrcp14", X86rcp14, SchedWriteFRcp>;
/// avx512_fp28_s rcp28ss, rcp28sd, rsqrt28ss, rsqrt28sd
multiclass avx512_fp28_s<bits<8> opc, string OpcodeStr,X86VectorVTInfo _,
SDNode OpNode, X86FoldableSchedWrite sched> {
let ExeDomain = _.ExeDomain in {
defm r : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
(i32 FROUND_CURRENT))>,
Sched<[sched]>;
defm rb : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"{sae}, $src2, $src1", "$src1, $src2, {sae}",
(OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2),
(i32 FROUND_NO_EXC))>, EVEX_B,
Sched<[sched]>;
defm m : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(OpNode (_.VT _.RC:$src1), _.ScalarIntMemCPat:$src2,
(i32 FROUND_CURRENT))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_eri_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched> {
defm SSZ : avx512_fp28_s<opc, OpcodeStr#"ss", f32x_info, OpNode, sched>,
EVEX_CD8<32, CD8VT1>;
defm SDZ : avx512_fp28_s<opc, OpcodeStr#"sd", f64x_info, OpNode, sched>,
EVEX_CD8<64, CD8VT1>, VEX_W;
}
let Predicates = [HasERI] in {
defm VRCP28 : avx512_eri_s<0xCB, "vrcp28", X86rcp28s, SchedWriteFRcp.Scl>,
T8PD, EVEX_4V;
defm VRSQRT28 : avx512_eri_s<0xCD, "vrsqrt28", X86rsqrt28s,
SchedWriteFRsqrt.Scl>, T8PD, EVEX_4V;
}
defm VGETEXP : avx512_eri_s<0x43, "vgetexp", X86fgetexpRnds,
SchedWriteFRnd.Scl>, T8PD, EVEX_4V;
/// avx512_fp28_p rcp28ps, rcp28pd, rsqrt28ps, rsqrt28pd
multiclass avx512_fp28_p<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
SDNode OpNode, X86FoldableSchedWrite sched> {
let ExeDomain = _.ExeDomain in {
defm r : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src), OpcodeStr, "$src", "$src",
(OpNode (_.VT _.RC:$src), (i32 FROUND_CURRENT))>,
Sched<[sched]>;
defm m : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.MemOp:$src), OpcodeStr, "$src", "$src",
(OpNode (_.VT
(bitconvert (_.LdFrag addr:$src))),
(i32 FROUND_CURRENT))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm mb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.ScalarMemOp:$src), OpcodeStr,
"${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr,
(OpNode (_.VT
(X86VBroadcast (_.ScalarLdFrag addr:$src))),
(i32 FROUND_CURRENT))>, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fp28_p_round<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
SDNode OpNode, X86FoldableSchedWrite sched> {
let ExeDomain = _.ExeDomain in
defm rb : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src), OpcodeStr,
"{sae}, $src", "$src, {sae}",
(OpNode (_.VT _.RC:$src), (i32 FROUND_NO_EXC))>,
EVEX_B, Sched<[sched]>;
}
multiclass avx512_eri<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
defm PSZ : avx512_fp28_p<opc, OpcodeStr#"ps", v16f32_info, OpNode, sched.ZMM>,
avx512_fp28_p_round<opc, OpcodeStr#"ps", v16f32_info, OpNode, sched.ZMM>,
T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_fp28_p<opc, OpcodeStr#"pd", v8f64_info, OpNode, sched.ZMM>,
avx512_fp28_p_round<opc, OpcodeStr#"pd", v8f64_info, OpNode, sched.ZMM>,
T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>;
}
multiclass avx512_fp_unaryop_packed<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched> {
// Define only if AVX512VL feature is present.
let Predicates = [HasVLX] in {
defm PSZ128 : avx512_fp28_p<opc, OpcodeStr#"ps", v4f32x_info, OpNode, sched.XMM>,
EVEX_V128, T8PD, EVEX_CD8<32, CD8VF>;
defm PSZ256 : avx512_fp28_p<opc, OpcodeStr#"ps", v8f32x_info, OpNode, sched.YMM>,
EVEX_V256, T8PD, EVEX_CD8<32, CD8VF>;
defm PDZ128 : avx512_fp28_p<opc, OpcodeStr#"pd", v2f64x_info, OpNode, sched.XMM>,
EVEX_V128, VEX_W, T8PD, EVEX_CD8<64, CD8VF>;
defm PDZ256 : avx512_fp28_p<opc, OpcodeStr#"pd", v4f64x_info, OpNode, sched.YMM>,
EVEX_V256, VEX_W, T8PD, EVEX_CD8<64, CD8VF>;
}
}
let Predicates = [HasERI] in {
defm VRSQRT28 : avx512_eri<0xCC, "vrsqrt28", X86rsqrt28, SchedWriteFRsqrt>, EVEX;
defm VRCP28 : avx512_eri<0xCA, "vrcp28", X86rcp28, SchedWriteFRcp>, EVEX;
defm VEXP2 : avx512_eri<0xC8, "vexp2", X86exp2, SchedWriteFAdd>, EVEX;
}
defm VGETEXP : avx512_eri<0x42, "vgetexp", X86fgetexpRnd, SchedWriteFRnd>,
avx512_fp_unaryop_packed<0x42, "vgetexp", X86fgetexpRnd,
SchedWriteFRnd>, EVEX;
multiclass avx512_sqrt_packed_round<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched, X86VectorVTInfo _>{
let ExeDomain = _.ExeDomain in
defm rb: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src, AVX512RC:$rc), OpcodeStr, "$rc, $src", "$src, $rc",
(_.VT (X86fsqrtRnd _.RC:$src, (i32 imm:$rc)))>,
EVEX, EVEX_B, EVEX_RC, Sched<[sched]>;
}
multiclass avx512_sqrt_packed<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched, X86VectorVTInfo _>{
let ExeDomain = _.ExeDomain in {
defm r: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src), OpcodeStr, "$src", "$src",
(_.VT (fsqrt _.RC:$src))>, EVEX,
Sched<[sched]>;
defm m: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.MemOp:$src), OpcodeStr, "$src", "$src",
(fsqrt (_.VT
(bitconvert (_.LdFrag addr:$src))))>, EVEX,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm mb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.ScalarMemOp:$src), OpcodeStr,
"${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr,
(fsqrt (_.VT
(X86VBroadcast (_.ScalarLdFrag addr:$src))))>,
EVEX, EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_sqrt_packed_all<bits<8> opc, string OpcodeStr,
X86SchedWriteSizes sched> {
defm PSZ : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"),
sched.PS.ZMM, v16f32_info>,
EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"),
sched.PD.ZMM, v8f64_info>,
EVEX_V512, VEX_W, PD, EVEX_CD8<64, CD8VF>;
// Define only if AVX512VL feature is present.
let Predicates = [HasVLX] in {
defm PSZ128 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"),
sched.PS.XMM, v4f32x_info>,
EVEX_V128, PS, EVEX_CD8<32, CD8VF>;
defm PSZ256 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"),
sched.PS.YMM, v8f32x_info>,
EVEX_V256, PS, EVEX_CD8<32, CD8VF>;
defm PDZ128 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"),
sched.PD.XMM, v2f64x_info>,
EVEX_V128, VEX_W, PD, EVEX_CD8<64, CD8VF>;
defm PDZ256 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"),
sched.PD.YMM, v4f64x_info>,
EVEX_V256, VEX_W, PD, EVEX_CD8<64, CD8VF>;
}
}
multiclass avx512_sqrt_packed_all_round<bits<8> opc, string OpcodeStr,
X86SchedWriteSizes sched> {
defm PSZ : avx512_sqrt_packed_round<opc, !strconcat(OpcodeStr, "ps"),
sched.PS.ZMM, v16f32_info>,
EVEX_V512, PS, EVEX_CD8<32, CD8VF>;
defm PDZ : avx512_sqrt_packed_round<opc, !strconcat(OpcodeStr, "pd"),
sched.PD.ZMM, v8f64_info>,
EVEX_V512, VEX_W, PD, EVEX_CD8<64, CD8VF>;
}
multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched,
X86VectorVTInfo _, string Name> {
let ExeDomain = _.ExeDomain in {
defm r_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(X86fsqrtRnds (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(i32 FROUND_CURRENT))>,
Sched<[sched]>;
defm m_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr,
"$src2, $src1", "$src1, $src2",
(X86fsqrtRnds (_.VT _.RC:$src1),
_.ScalarIntMemCPat:$src2,
(i32 FROUND_CURRENT))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, AVX512RC:$rc), OpcodeStr,
"$rc, $src2, $src1", "$src1, $src2, $rc",
(X86fsqrtRnds (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(i32 imm:$rc))>,
EVEX_B, EVEX_RC, Sched<[sched]>;
let isCodeGenOnly = 1, hasSideEffects = 0, Predicates=[HasAVX512] in {
def r : I<opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
Sched<[sched]>;
let mayLoad = 1 in
def m : I<opc, MRMSrcMem, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.ScalarMemOp:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
let Predicates = [HasAVX512] in {
def : Pat<(_.EltVT (fsqrt _.FRC:$src)),
(!cast<Instruction>(Name#Zr)
(_.EltVT (IMPLICIT_DEF)), _.FRC:$src)>;
}
let Predicates = [HasAVX512, OptForSize] in {
def : Pat<(_.EltVT (fsqrt (load addr:$src))),
(!cast<Instruction>(Name#Zm)
(_.EltVT (IMPLICIT_DEF)), addr:$src)>;
}
}
multiclass avx512_sqrt_scalar_all<bits<8> opc, string OpcodeStr,
X86SchedWriteSizes sched> {
defm SSZ : avx512_sqrt_scalar<opc, OpcodeStr#"ss", sched.PS.Scl, f32x_info, NAME#"SS">,
EVEX_CD8<32, CD8VT1>, EVEX_4V, XS;
defm SDZ : avx512_sqrt_scalar<opc, OpcodeStr#"sd", sched.PD.Scl, f64x_info, NAME#"SD">,
EVEX_CD8<64, CD8VT1>, EVEX_4V, XD, VEX_W;
}
defm VSQRT : avx512_sqrt_packed_all<0x51, "vsqrt", SchedWriteFSqrtSizes>,
avx512_sqrt_packed_all_round<0x51, "vsqrt", SchedWriteFSqrtSizes>;
defm VSQRT : avx512_sqrt_scalar_all<0x51, "vsqrt", SchedWriteFSqrtSizes>, VEX_LIG;
multiclass avx512_rndscale_scalar<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm r_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr,
"$src3, $src2, $src1", "$src1, $src2, $src3",
(_.VT (X86RndScales (_.VT _.RC:$src1), (_.VT _.RC:$src2),
(i32 imm:$src3)))>,
Sched<[sched]>;
defm rb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr,
"$src3, {sae}, $src2, $src1", "$src1, $src2, {sae}, $src3",
(_.VT (X86RndScalesRnd (_.VT _.RC:$src1), (_.VT _.RC:$src2),
(i32 imm:$src3), (i32 FROUND_NO_EXC)))>, EVEX_B,
Sched<[sched]>;
defm m_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.IntScalarMemOp:$src2, i32u8imm:$src3),
OpcodeStr,
"$src3, $src2, $src1", "$src1, $src2, $src3",
(_.VT (X86RndScales _.RC:$src1,
_.ScalarIntMemCPat:$src2, (i32 imm:$src3)))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
let isCodeGenOnly = 1, hasSideEffects = 0, Predicates = [HasAVX512] in {
def r : I<opc, MRMSrcReg, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.FRC:$src2, i32u8imm:$src3),
OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[sched]>;
let mayLoad = 1 in
def m : I<opc, MRMSrcMem, (outs _.FRC:$dst),
(ins _.FRC:$src1, _.ScalarMemOp:$src2, i32u8imm:$src3),
OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[]>, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
let Predicates = [HasAVX512] in {
def : Pat<(ffloor _.FRC:$src),
(_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)),
_.FRC:$src, (i32 0x9)))>;
def : Pat<(fceil _.FRC:$src),
(_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)),
_.FRC:$src, (i32 0xa)))>;
def : Pat<(ftrunc _.FRC:$src),
(_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)),
_.FRC:$src, (i32 0xb)))>;
def : Pat<(frint _.FRC:$src),
(_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)),
_.FRC:$src, (i32 0x4)))>;
def : Pat<(fnearbyint _.FRC:$src),
(_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)),
_.FRC:$src, (i32 0xc)))>;
}
let Predicates = [HasAVX512, OptForSize] in {
def : Pat<(ffloor (_.ScalarLdFrag addr:$src)),
(_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)),
addr:$src, (i32 0x9)))>;
def : Pat<(fceil (_.ScalarLdFrag addr:$src)),
(_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)),
addr:$src, (i32 0xa)))>;
def : Pat<(ftrunc (_.ScalarLdFrag addr:$src)),
(_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)),
addr:$src, (i32 0xb)))>;
def : Pat<(frint (_.ScalarLdFrag addr:$src)),
(_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)),
addr:$src, (i32 0x4)))>;
def : Pat<(fnearbyint (_.ScalarLdFrag addr:$src)),
(_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)),
addr:$src, (i32 0xc)))>;
}
}
defm VRNDSCALESSZ : avx512_rndscale_scalar<0x0A, "vrndscaless",
SchedWriteFRnd.Scl, f32x_info>,
AVX512AIi8Base, EVEX_4V,
EVEX_CD8<32, CD8VT1>;
defm VRNDSCALESDZ : avx512_rndscale_scalar<0x0B, "vrndscalesd",
SchedWriteFRnd.Scl, f64x_info>,
VEX_W, AVX512AIi8Base, EVEX_4V,
EVEX_CD8<64, CD8VT1>;
multiclass avx512_masked_scalar<SDNode OpNode, string OpcPrefix, SDNode Move,
dag Mask, X86VectorVTInfo _, PatLeaf ZeroFP,
dag OutMask, Predicate BasePredicate> {
let Predicates = [BasePredicate] in {
def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects Mask,
(OpNode (extractelt _.VT:$src2, (iPTR 0))),
(extractelt _.VT:$dst, (iPTR 0))))),
(!cast<Instruction>("V"#OpcPrefix#r_Intk)
_.VT:$dst, OutMask, _.VT:$src2, _.VT:$src1)>;
def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects Mask,
(OpNode (extractelt _.VT:$src2, (iPTR 0))),
ZeroFP))),
(!cast<Instruction>("V"#OpcPrefix#r_Intkz)
OutMask, _.VT:$src2, _.VT:$src1)>;
}
}
defm : avx512_masked_scalar<fsqrt, "SQRTSSZ", X86Movss,
(v1i1 (scalar_to_vector (i8 (trunc (i32 GR32:$mask))))), v4f32x_info,
fp32imm0, (COPY_TO_REGCLASS $mask, VK1WM), HasAVX512>;
defm : avx512_masked_scalar<fsqrt, "SQRTSDZ", X86Movsd,
(v1i1 (scalar_to_vector (i8 (trunc (i32 GR32:$mask))))), v2f64x_info,
fp64imm0, (COPY_TO_REGCLASS $mask, VK1WM), HasAVX512>;
multiclass avx512_masked_scalar_imm<SDNode OpNode, string OpcPrefix, SDNode Move,
X86VectorVTInfo _, PatLeaf ZeroFP,
bits<8> ImmV, Predicate BasePredicate> {
let Predicates = [BasePredicate] in {
def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects VK1WM:$mask,
(OpNode (extractelt _.VT:$src2, (iPTR 0))),
(extractelt _.VT:$dst, (iPTR 0))))),
(!cast<Instruction>("V"#OpcPrefix#Zr_Intk)
_.VT:$dst, VK1WM:$mask, _.VT:$src1, _.VT:$src2, (i32 ImmV))>;
def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects VK1WM:$mask,
(OpNode (extractelt _.VT:$src2, (iPTR 0))), ZeroFP))),
(!cast<Instruction>("V"#OpcPrefix#Zr_Intkz)
VK1WM:$mask, _.VT:$src1, _.VT:$src2, (i32 ImmV))>;
}
}
defm : avx512_masked_scalar_imm<ffloor, "RNDSCALESS", X86Movss,
v4f32x_info, fp32imm0, 0x01, HasAVX512>;
defm : avx512_masked_scalar_imm<fceil, "RNDSCALESS", X86Movss,
v4f32x_info, fp32imm0, 0x02, HasAVX512>;
defm : avx512_masked_scalar_imm<ffloor, "RNDSCALESD", X86Movsd,
v2f64x_info, fp64imm0, 0x01, HasAVX512>;
defm : avx512_masked_scalar_imm<fceil, "RNDSCALESD", X86Movsd,
v2f64x_info, fp64imm0, 0x02, HasAVX512>;
//-------------------------------------------------
// Integer truncate and extend operations
//-------------------------------------------------
multiclass avx512_trunc_common<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo SrcInfo,
X86VectorVTInfo DestInfo, X86MemOperand x86memop> {
let ExeDomain = DestInfo.ExeDomain in
defm rr : AVX512_maskable<opc, MRMDestReg, DestInfo, (outs DestInfo.RC:$dst),
(ins SrcInfo.RC:$src1), OpcodeStr ,"$src1", "$src1",
(DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src1)))>,
EVEX, T8XS, Sched<[sched]>;
let mayStore = 1, hasSideEffects = 0, ExeDomain = DestInfo.ExeDomain in {
def mr : AVX512XS8I<opc, MRMDestMem, (outs),
(ins x86memop:$dst, SrcInfo.RC:$src),
OpcodeStr # "\t{$src, $dst|$dst, $src}", []>,
EVEX, Sched<[sched.Folded]>;
def mrk : AVX512XS8I<opc, MRMDestMem, (outs),
(ins x86memop:$dst, SrcInfo.KRCWM:$mask, SrcInfo.RC:$src),
OpcodeStr # "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}", []>,
EVEX, EVEX_K, Sched<[sched.Folded]>, NotMemoryFoldable;
}//mayStore = 1, hasSideEffects = 0
}
multiclass avx512_trunc_mr_lowering<X86VectorVTInfo SrcInfo,
X86VectorVTInfo DestInfo,
PatFrag truncFrag, PatFrag mtruncFrag,
string Name> {
def : Pat<(truncFrag (SrcInfo.VT SrcInfo.RC:$src), addr:$dst),
(!cast<Instruction>(Name#SrcInfo.ZSuffix##mr)
addr:$dst, SrcInfo.RC:$src)>;
def : Pat<(mtruncFrag (SrcInfo.VT SrcInfo.RC:$src), addr:$dst,
SrcInfo.KRCWM:$mask),
(!cast<Instruction>(Name#SrcInfo.ZSuffix##mrk)
addr:$dst, SrcInfo.KRCWM:$mask, SrcInfo.RC:$src)>;
}
multiclass avx512_trunc<bits<8> opc, string OpcodeStr, SDNode OpNode128,
SDNode OpNode256, SDNode OpNode512, X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo VTSrcInfo,
X86VectorVTInfo DestInfoZ128,
X86VectorVTInfo DestInfoZ256, X86VectorVTInfo DestInfoZ,
X86MemOperand x86memopZ128, X86MemOperand x86memopZ256,
X86MemOperand x86memopZ, PatFrag truncFrag,
PatFrag mtruncFrag, Predicate prd = HasAVX512>{
let Predicates = [HasVLX, prd] in {
defm Z128: avx512_trunc_common<opc, OpcodeStr, OpNode128, sched,
VTSrcInfo.info128, DestInfoZ128, x86memopZ128>,
avx512_trunc_mr_lowering<VTSrcInfo.info128, DestInfoZ128,
truncFrag, mtruncFrag, NAME>, EVEX_V128;
defm Z256: avx512_trunc_common<opc, OpcodeStr, OpNode256, sched,
VTSrcInfo.info256, DestInfoZ256, x86memopZ256>,
avx512_trunc_mr_lowering<VTSrcInfo.info256, DestInfoZ256,
truncFrag, mtruncFrag, NAME>, EVEX_V256;
}
let Predicates = [prd] in
defm Z: avx512_trunc_common<opc, OpcodeStr, OpNode512, sched,
VTSrcInfo.info512, DestInfoZ, x86memopZ>,
avx512_trunc_mr_lowering<VTSrcInfo.info512, DestInfoZ,
truncFrag, mtruncFrag, NAME>, EVEX_V512;
}
multiclass avx512_trunc_qb<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag StoreNode,
PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> {
defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, InVecNode, InVecNode, sched,
avx512vl_i64_info, v16i8x_info, v16i8x_info,
v16i8x_info, i16mem, i32mem, i64mem, StoreNode,
MaskedStoreNode>, EVEX_CD8<8, CD8VO>;
}
multiclass avx512_trunc_qw<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag StoreNode,
PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> {
defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, InVecNode, OpNode, sched,
avx512vl_i64_info, v8i16x_info, v8i16x_info,
v8i16x_info, i32mem, i64mem, i128mem, StoreNode,
MaskedStoreNode>, EVEX_CD8<16, CD8VQ>;
}
multiclass avx512_trunc_qd<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag StoreNode,
PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> {
defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, OpNode, OpNode, sched,
avx512vl_i64_info, v4i32x_info, v4i32x_info,
v8i32x_info, i64mem, i128mem, i256mem, StoreNode,
MaskedStoreNode>, EVEX_CD8<32, CD8VH>;
}
multiclass avx512_trunc_db<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag StoreNode,
PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> {
defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, InVecNode, OpNode, sched,
avx512vl_i32_info, v16i8x_info, v16i8x_info,
v16i8x_info, i32mem, i64mem, i128mem, StoreNode,
MaskedStoreNode>, EVEX_CD8<8, CD8VQ>;
}
multiclass avx512_trunc_dw<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag StoreNode,
PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> {
defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, OpNode, OpNode, sched,
avx512vl_i32_info, v8i16x_info, v8i16x_info,
v16i16x_info, i64mem, i128mem, i256mem, StoreNode,
MaskedStoreNode>, EVEX_CD8<16, CD8VH>;
}
multiclass avx512_trunc_wb<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, PatFrag StoreNode,
PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> {
defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, OpNode, OpNode,
sched, avx512vl_i16_info, v16i8x_info, v16i8x_info,
v32i8x_info, i64mem, i128mem, i256mem, StoreNode,
MaskedStoreNode, HasBWI>, EVEX_CD8<16, CD8VH>;
}
defm VPMOVQB : avx512_trunc_qb<0x32, "vpmovqb", trunc, WriteShuffle256,
truncstorevi8, masked_truncstorevi8, X86vtrunc>;
defm VPMOVSQB : avx512_trunc_qb<0x22, "vpmovsqb", X86vtruncs, WriteShuffle256,
truncstore_s_vi8, masked_truncstore_s_vi8>;
defm VPMOVUSQB : avx512_trunc_qb<0x12, "vpmovusqb", X86vtruncus, WriteShuffle256,
truncstore_us_vi8, masked_truncstore_us_vi8>;
defm VPMOVQW : avx512_trunc_qw<0x34, "vpmovqw", trunc, WriteShuffle256,
truncstorevi16, masked_truncstorevi16, X86vtrunc>;
defm VPMOVSQW : avx512_trunc_qw<0x24, "vpmovsqw", X86vtruncs, WriteShuffle256,
truncstore_s_vi16, masked_truncstore_s_vi16>;
defm VPMOVUSQW : avx512_trunc_qw<0x14, "vpmovusqw", X86vtruncus, WriteShuffle256,
truncstore_us_vi16, masked_truncstore_us_vi16>;
defm VPMOVQD : avx512_trunc_qd<0x35, "vpmovqd", trunc, WriteShuffle256,
truncstorevi32, masked_truncstorevi32, X86vtrunc>;
defm VPMOVSQD : avx512_trunc_qd<0x25, "vpmovsqd", X86vtruncs, WriteShuffle256,
truncstore_s_vi32, masked_truncstore_s_vi32>;
defm VPMOVUSQD : avx512_trunc_qd<0x15, "vpmovusqd", X86vtruncus, WriteShuffle256,
truncstore_us_vi32, masked_truncstore_us_vi32>;
defm VPMOVDB : avx512_trunc_db<0x31, "vpmovdb", trunc, WriteShuffle256,
truncstorevi8, masked_truncstorevi8, X86vtrunc>;
defm VPMOVSDB : avx512_trunc_db<0x21, "vpmovsdb", X86vtruncs, WriteShuffle256,
truncstore_s_vi8, masked_truncstore_s_vi8>;
defm VPMOVUSDB : avx512_trunc_db<0x11, "vpmovusdb", X86vtruncus, WriteShuffle256,
truncstore_us_vi8, masked_truncstore_us_vi8>;
defm VPMOVDW : avx512_trunc_dw<0x33, "vpmovdw", trunc, WriteShuffle256,
truncstorevi16, masked_truncstorevi16, X86vtrunc>;
defm VPMOVSDW : avx512_trunc_dw<0x23, "vpmovsdw", X86vtruncs, WriteShuffle256,
truncstore_s_vi16, masked_truncstore_s_vi16>;
defm VPMOVUSDW : avx512_trunc_dw<0x13, "vpmovusdw", X86vtruncus, WriteShuffle256,
truncstore_us_vi16, masked_truncstore_us_vi16>;
defm VPMOVWB : avx512_trunc_wb<0x30, "vpmovwb", trunc, WriteShuffle256,
truncstorevi8, masked_truncstorevi8, X86vtrunc>;
defm VPMOVSWB : avx512_trunc_wb<0x20, "vpmovswb", X86vtruncs, WriteShuffle256,
truncstore_s_vi8, masked_truncstore_s_vi8>;
defm VPMOVUSWB : avx512_trunc_wb<0x10, "vpmovuswb", X86vtruncus, WriteShuffle256,
truncstore_us_vi8, masked_truncstore_us_vi8>;
let Predicates = [HasAVX512, NoVLX] in {
def: Pat<(v8i16 (trunc (v8i32 VR256X:$src))),
(v8i16 (EXTRACT_SUBREG
(v16i16 (VPMOVDWZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src, sub_ymm)))), sub_xmm))>;
def: Pat<(v4i32 (trunc (v4i64 VR256X:$src))),
(v4i32 (EXTRACT_SUBREG
(v8i32 (VPMOVQDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src, sub_ymm)))), sub_xmm))>;
}
let Predicates = [HasBWI, NoVLX] in {
def: Pat<(v16i8 (trunc (v16i16 VR256X:$src))),
(v16i8 (EXTRACT_SUBREG (VPMOVWBZrr (v32i16 (INSERT_SUBREG (IMPLICIT_DEF),
VR256X:$src, sub_ymm))), sub_xmm))>;
}
multiclass WriteShuffle256_common<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched,
X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo,
X86MemOperand x86memop, PatFrag LdFrag, SDNode OpNode>{
let ExeDomain = DestInfo.ExeDomain in {
defm rr : AVX512_maskable<opc, MRMSrcReg, DestInfo, (outs DestInfo.RC:$dst),
(ins SrcInfo.RC:$src), OpcodeStr ,"$src", "$src",
(DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src)))>,
EVEX, Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, DestInfo, (outs DestInfo.RC:$dst),
(ins x86memop:$src), OpcodeStr ,"$src", "$src",
(DestInfo.VT (LdFrag addr:$src))>,
EVEX, Sched<[sched.Folded]>;
}
}
multiclass WriteShuffle256_BW<bits<8> opc, string OpcodeStr,
SDNode OpNode, SDNode InVecNode, string ExtTy,
X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi8")> {
let Predicates = [HasVLX, HasBWI] in {
defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v8i16x_info,
v16i8x_info, i64mem, LdFrag, InVecNode>,
EVEX_CD8<8, CD8VH>, T8PD, EVEX_V128, VEX_WIG;
defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v16i16x_info,
v16i8x_info, i128mem, LdFrag, OpNode>,
EVEX_CD8<8, CD8VH>, T8PD, EVEX_V256, VEX_WIG;
}
let Predicates = [HasBWI] in {
defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v32i16_info,
v32i8x_info, i256mem, LdFrag, OpNode>,
EVEX_CD8<8, CD8VH>, T8PD, EVEX_V512, VEX_WIG;
}
}
multiclass WriteShuffle256_BD<bits<8> opc, string OpcodeStr,
SDNode OpNode, SDNode InVecNode, string ExtTy,
X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi8")> {
let Predicates = [HasVLX, HasAVX512] in {
defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v4i32x_info,
v16i8x_info, i32mem, LdFrag, InVecNode>,
EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V128, VEX_WIG;
defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v8i32x_info,
v16i8x_info, i64mem, LdFrag, InVecNode>,
EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V256, VEX_WIG;
}
let Predicates = [HasAVX512] in {
defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v16i32_info,
v16i8x_info, i128mem, LdFrag, OpNode>,
EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V512, VEX_WIG;
}
}
multiclass WriteShuffle256_BQ<bits<8> opc, string OpcodeStr,
SDNode OpNode, SDNode InVecNode, string ExtTy,
X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi8")> {
let Predicates = [HasVLX, HasAVX512] in {
defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v2i64x_info,
v16i8x_info, i16mem, LdFrag, InVecNode>,
EVEX_CD8<8, CD8VO>, T8PD, EVEX_V128, VEX_WIG;
defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v4i64x_info,
v16i8x_info, i32mem, LdFrag, InVecNode>,
EVEX_CD8<8, CD8VO>, T8PD, EVEX_V256, VEX_WIG;
}
let Predicates = [HasAVX512] in {
defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v8i64_info,
v16i8x_info, i64mem, LdFrag, InVecNode>,
EVEX_CD8<8, CD8VO>, T8PD, EVEX_V512, VEX_WIG;
}
}
multiclass WriteShuffle256_WD<bits<8> opc, string OpcodeStr,
SDNode OpNode, SDNode InVecNode, string ExtTy,
X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi16")> {
let Predicates = [HasVLX, HasAVX512] in {
defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v4i32x_info,
v8i16x_info, i64mem, LdFrag, InVecNode>,
EVEX_CD8<16, CD8VH>, T8PD, EVEX_V128, VEX_WIG;
defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v8i32x_info,
v8i16x_info, i128mem, LdFrag, OpNode>,
EVEX_CD8<16, CD8VH>, T8PD, EVEX_V256, VEX_WIG;
}
let Predicates = [HasAVX512] in {
defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v16i32_info,
v16i16x_info, i256mem, LdFrag, OpNode>,
EVEX_CD8<16, CD8VH>, T8PD, EVEX_V512, VEX_WIG;
}
}
multiclass WriteShuffle256_WQ<bits<8> opc, string OpcodeStr,
SDNode OpNode, SDNode InVecNode, string ExtTy,
X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi16")> {
let Predicates = [HasVLX, HasAVX512] in {
defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v2i64x_info,
v8i16x_info, i32mem, LdFrag, InVecNode>,
EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V128, VEX_WIG;
defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v4i64x_info,
v8i16x_info, i64mem, LdFrag, InVecNode>,
EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V256, VEX_WIG;
}
let Predicates = [HasAVX512] in {
defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v8i64_info,
v8i16x_info, i128mem, LdFrag, OpNode>,
EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V512, VEX_WIG;
}
}
multiclass WriteShuffle256_DQ<bits<8> opc, string OpcodeStr,
SDNode OpNode, SDNode InVecNode, string ExtTy,
X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi32")> {
let Predicates = [HasVLX, HasAVX512] in {
defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v2i64x_info,
v4i32x_info, i64mem, LdFrag, InVecNode>,
EVEX_CD8<32, CD8VH>, T8PD, EVEX_V128;
defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v4i64x_info,
v4i32x_info, i128mem, LdFrag, OpNode>,
EVEX_CD8<32, CD8VH>, T8PD, EVEX_V256;
}
let Predicates = [HasAVX512] in {
defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v8i64_info,
v8i32x_info, i256mem, LdFrag, OpNode>,
EVEX_CD8<32, CD8VH>, T8PD, EVEX_V512;
}
}
defm VPMOVZXBW : WriteShuffle256_BW<0x30, "vpmovzxbw", zext, zext_invec, "z", WriteShuffle256>;
defm VPMOVZXBD : WriteShuffle256_BD<0x31, "vpmovzxbd", zext, zext_invec, "z", WriteShuffle256>;
defm VPMOVZXBQ : WriteShuffle256_BQ<0x32, "vpmovzxbq", zext, zext_invec, "z", WriteShuffle256>;
defm VPMOVZXWD : WriteShuffle256_WD<0x33, "vpmovzxwd", zext, zext_invec, "z", WriteShuffle256>;
defm VPMOVZXWQ : WriteShuffle256_WQ<0x34, "vpmovzxwq", zext, zext_invec, "z", WriteShuffle256>;
defm VPMOVZXDQ : WriteShuffle256_DQ<0x35, "vpmovzxdq", zext, zext_invec, "z", WriteShuffle256>;
defm VPMOVSXBW: WriteShuffle256_BW<0x20, "vpmovsxbw", sext, sext_invec, "s", WriteShuffle256>;
defm VPMOVSXBD: WriteShuffle256_BD<0x21, "vpmovsxbd", sext, sext_invec, "s", WriteShuffle256>;
defm VPMOVSXBQ: WriteShuffle256_BQ<0x22, "vpmovsxbq", sext, sext_invec, "s", WriteShuffle256>;
defm VPMOVSXWD: WriteShuffle256_WD<0x23, "vpmovsxwd", sext, sext_invec, "s", WriteShuffle256>;
defm VPMOVSXWQ: WriteShuffle256_WQ<0x24, "vpmovsxwq", sext, sext_invec, "s", WriteShuffle256>;
defm VPMOVSXDQ: WriteShuffle256_DQ<0x25, "vpmovsxdq", sext, sext_invec, "s", WriteShuffle256>;
// Patterns that we also need any extend versions of. aext_vector_inreg
// is currently legalized to zext_vector_inreg.
multiclass AVX512_pmovx_patterns_base<string OpcPrefix, SDNode ExtOp> {
// 256-bit patterns
let Predicates = [HasVLX, HasBWI] in {
def : Pat<(v16i16 (ExtOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BWZ256rm) addr:$src)>;
def : Pat<(v16i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWZ256rm) addr:$src)>;
def : Pat<(v16i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWZ256rm) addr:$src)>;
}
let Predicates = [HasVLX] in {
def : Pat<(v8i32 (ExtOp (loadv8i16 addr:$src))),
(!cast<I>(OpcPrefix#WDZ256rm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDZ256rm) addr:$src)>;
def : Pat<(v8i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDZ256rm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (loadv4i32 addr:$src))),
(!cast<I>(OpcPrefix#DQZ256rm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQZ256rm) addr:$src)>;
def : Pat<(v4i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQZ256rm) addr:$src)>;
}
// 512-bit patterns
let Predicates = [HasBWI] in {
def : Pat<(v32i16 (ExtOp (loadv32i8 addr:$src))),
(!cast<I>(OpcPrefix#BWZrm) addr:$src)>;
}
let Predicates = [HasAVX512] in {
def : Pat<(v16i32 (ExtOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BDZrm) addr:$src)>;
def : Pat<(v16i32 (ExtOp (loadv16i16 addr:$src))),
(!cast<I>(OpcPrefix#WDZrm) addr:$src)>;
def : Pat<(v8i64 (ExtOp (loadv8i16 addr:$src))),
(!cast<I>(OpcPrefix#WQZrm) addr:$src)>;
def : Pat<(v8i64 (ExtOp (loadv8i32 addr:$src))),
(!cast<I>(OpcPrefix#DQZrm) addr:$src)>;
}
}
multiclass AVX512_pmovx_patterns_aext<string OpcPrefix, SDNode ExtOp> :
AVX512_pmovx_patterns_base<OpcPrefix, ExtOp> {
let Predicates = [HasVLX, HasBWI] in {
def : Pat<(v16i16 (ExtOp (v16i8 VR128X:$src))),
(!cast<I>(OpcPrefix#BWZ256rr) VR128X:$src)>;
}
let Predicates = [HasVLX] in {
def : Pat<(v8i32 (ExtOp (v8i16 VR128X:$src))),
(!cast<I>(OpcPrefix#WDZ256rr) VR128X:$src)>;
def : Pat<(v4i64 (ExtOp (v4i32 VR128X:$src))),
(!cast<I>(OpcPrefix#DQZ256rr) VR128X:$src)>;
}
// 512-bit patterns
let Predicates = [HasBWI] in {
def : Pat<(v32i16 (ExtOp (v32i8 VR256X:$src))),
(!cast<I>(OpcPrefix#BWZrr) VR256X:$src)>;
}
let Predicates = [HasAVX512] in {
def : Pat<(v16i32 (ExtOp (v16i8 VR128X:$src))),
(!cast<I>(OpcPrefix#BDZrr) VR128X:$src)>;
def : Pat<(v16i32 (ExtOp (v16i16 VR256X:$src))),
(!cast<I>(OpcPrefix#WDZrr) VR256X:$src)>;
def : Pat<(v8i64 (ExtOp (v8i16 VR128X:$src))),
(!cast<I>(OpcPrefix#WQZrr) VR128X:$src)>;
def : Pat<(v8i64 (ExtOp (v8i32 VR256X:$src))),
(!cast<I>(OpcPrefix#DQZrr) VR256X:$src)>;
}
}
multiclass AVX512_pmovx_patterns<string OpcPrefix, SDNode ExtOp,
SDNode InVecOp> :
AVX512_pmovx_patterns_base<OpcPrefix, ExtOp> {
// 128-bit patterns
let Predicates = [HasVLX, HasBWI] in {
def : Pat<(v8i16 (InVecOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>;
def : Pat<(v8i16 (InVecOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
(!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>;
def : Pat<(v8i16 (InVecOp (v16i8 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>;
def : Pat<(v8i16 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>;
def : Pat<(v8i16 (InVecOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>;
}
let Predicates = [HasVLX] in {
def : Pat<(v4i32 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
(!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (v16i8 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (extloadi32i16 addr:$src)))))),
(!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (v16i8 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
(!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (v8i16 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>;
def : Pat<(v4i32 (InVecOp (loadv8i16 addr:$src))),
(!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
(!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (v8i16 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (loadv8i16 addr:$src))),
(!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
(!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (v4i32 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (v4i32 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>;
def : Pat<(v2i64 (InVecOp (loadv4i32 addr:$src))),
(!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>;
}
let Predicates = [HasVLX] in {
def : Pat<(v8i32 (InVecOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>;
def : Pat<(v8i32 (InVecOp (v16i8 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>;
def : Pat<(v8i32 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>;
def : Pat<(v8i32 (InVecOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
(!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (v16i8 (vzmovl_v4i32 addr:$src)))),
(!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (v8i16 (vzmovl_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (v8i16 (vzload_v2i64 addr:$src)))),
(!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>;
def : Pat<(v4i64 (InVecOp (loadv8i16 addr:$src))),
(!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>;
}
// 512-bit patterns
let Predicates = [HasAVX512] in {
def : Pat<(v8i64 (InVecOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
(!cast<I>(OpcPrefix#BQZrm) addr:$src)>;
def : Pat<(v8i64 (InVecOp (loadv16i8 addr:$src))),
(!cast<I>(OpcPrefix#BQZrm) addr:$src)>;
}
}
defm : AVX512_pmovx_patterns<"VPMOVSX", sext, sext_invec>;
defm : AVX512_pmovx_patterns<"VPMOVZX", zext, zext_invec>;
defm : AVX512_pmovx_patterns_aext<"VPMOVZX", anyext>;
// Without BWI we can't do a trunc from v16i16 to v16i8. DAG combine can merge
// ext+trunc aggresively making it impossible to legalize the DAG to this
// pattern directly.
let Predicates = [HasAVX512, NoBWI] in {
def: Pat<(v16i8 (trunc (v16i16 VR256X:$src))),
(VPMOVDBZrr (v16i32 (VPMOVZXWDZrr VR256X:$src)))>;
def: Pat<(v16i8 (trunc (bc_v16i16 (loadv4i64 addr:$src)))),
(VPMOVDBZrr (v16i32 (VPMOVZXWDZrm addr:$src)))>;
def: Pat<(store (v16i8 (trunc (v16i16 VR256X:$src))), addr:$dst),
(VPMOVDBZmr addr:$dst, (v16i32 (VPMOVZXWDZrr VR256X:$src)))>;
}
// Without BWI we can't do a trunc from v16i16 to v16i8. DAG combine can merge
// ext+trunc aggresively making it impossible to legalize the DAG to this
// pattern directly.
let Predicates = [HasAVX512, NoBWI] in {
def: Pat<(v16i8 (trunc (v16i16 VR256X:$src))),
(VPMOVDBZrr (v16i32 (VPMOVZXWDZrr VR256X:$src)))>;
def: Pat<(v16i8 (trunc (bc_v16i16 (loadv4i64 addr:$src)))),
(VPMOVDBZrr (v16i32 (VPMOVZXWDZrm addr:$src)))>;
def: Pat<(store (v16i8 (trunc (v16i16 VR256X:$src))), addr:$dst),
(VPMOVDBZmr addr:$dst, (v16i32 (VPMOVZXWDZrr VR256X:$src)))>;
}
//===----------------------------------------------------------------------===//
// GATHER - SCATTER Operations
// FIXME: Improve scheduling of gather/scatter instructions.
multiclass avx512_gather<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86MemOperand memop, PatFrag GatherNode,
RegisterClass MaskRC = _.KRCWM> {
let Constraints = "@earlyclobber $dst, $src1 = $dst, $mask = $mask_wb",
ExeDomain = _.ExeDomain in
def rm : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst, MaskRC:$mask_wb),
(ins _.RC:$src1, MaskRC:$mask, memop:$src2),
!strconcat(OpcodeStr#_.Suffix,
"\t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"),
[(set _.RC:$dst, MaskRC:$mask_wb,
(GatherNode (_.VT _.RC:$src1), MaskRC:$mask,
vectoraddr:$src2))]>, EVEX, EVEX_K,
EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteLoad]>;
}
multiclass avx512_gather_q_pd<bits<8> dopc, bits<8> qopc,
AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> {
defm NAME##D##SUFF##Z: avx512_gather<dopc, OpcodeStr##"d", _.info512,
vy512xmem, mgatherv8i32>, EVEX_V512, VEX_W;
defm NAME##Q##SUFF##Z: avx512_gather<qopc, OpcodeStr##"q", _.info512,
vz512mem, mgatherv8i64>, EVEX_V512, VEX_W;
let Predicates = [HasVLX] in {
defm NAME##D##SUFF##Z256: avx512_gather<dopc, OpcodeStr##"d", _.info256,
vx256xmem, mgatherv4i32>, EVEX_V256, VEX_W;
defm NAME##Q##SUFF##Z256: avx512_gather<qopc, OpcodeStr##"q", _.info256,
vy256xmem, mgatherv4i64>, EVEX_V256, VEX_W;
defm NAME##D##SUFF##Z128: avx512_gather<dopc, OpcodeStr##"d", _.info128,
vx128xmem, mgatherv4i32>, EVEX_V128, VEX_W;
defm NAME##Q##SUFF##Z128: avx512_gather<qopc, OpcodeStr##"q", _.info128,
vx128xmem, mgatherv2i64>, EVEX_V128, VEX_W;
}
}
multiclass avx512_gather_d_ps<bits<8> dopc, bits<8> qopc,
AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> {
defm NAME##D##SUFF##Z: avx512_gather<dopc, OpcodeStr##"d", _.info512, vz512mem,
mgatherv16i32>, EVEX_V512;
defm NAME##Q##SUFF##Z: avx512_gather<qopc, OpcodeStr##"q", _.info256, vz256mem,
mgatherv8i64>, EVEX_V512;
let Predicates = [HasVLX] in {
defm NAME##D##SUFF##Z256: avx512_gather<dopc, OpcodeStr##"d", _.info256,
vy256xmem, mgatherv8i32>, EVEX_V256;
defm NAME##Q##SUFF##Z256: avx512_gather<qopc, OpcodeStr##"q", _.info128,
vy128xmem, mgatherv4i64>, EVEX_V256;
defm NAME##D##SUFF##Z128: avx512_gather<dopc, OpcodeStr##"d", _.info128,
vx128xmem, mgatherv4i32>, EVEX_V128;
defm NAME##Q##SUFF##Z128: avx512_gather<qopc, OpcodeStr##"q", _.info128,
vx64xmem, mgatherv2i64, VK2WM>,
EVEX_V128;
}
}
defm VGATHER : avx512_gather_q_pd<0x92, 0x93, avx512vl_f64_info, "vgather", "PD">,
avx512_gather_d_ps<0x92, 0x93, avx512vl_f32_info, "vgather", "PS">;
defm VPGATHER : avx512_gather_q_pd<0x90, 0x91, avx512vl_i64_info, "vpgather", "Q">,
avx512_gather_d_ps<0x90, 0x91, avx512vl_i32_info, "vpgather", "D">;
multiclass avx512_scatter<bits<8> opc, string OpcodeStr, X86VectorVTInfo _,
X86MemOperand memop, PatFrag ScatterNode,
RegisterClass MaskRC = _.KRCWM> {
let mayStore = 1, Constraints = "$mask = $mask_wb", ExeDomain = _.ExeDomain in
def mr : AVX5128I<opc, MRMDestMem, (outs MaskRC:$mask_wb),
(ins memop:$dst, MaskRC:$mask, _.RC:$src),
!strconcat(OpcodeStr#_.Suffix,
"\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"),
[(set MaskRC:$mask_wb, (ScatterNode (_.VT _.RC:$src),
MaskRC:$mask, vectoraddr:$dst))]>,
EVEX, EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>,
Sched<[WriteStore]>;
}
multiclass avx512_scatter_q_pd<bits<8> dopc, bits<8> qopc,
AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> {
defm NAME##D##SUFF##Z: avx512_scatter<dopc, OpcodeStr##"d", _.info512,
vy512xmem, mscatterv8i32>, EVEX_V512, VEX_W;
defm NAME##Q##SUFF##Z: avx512_scatter<qopc, OpcodeStr##"q", _.info512,
vz512mem, mscatterv8i64>, EVEX_V512, VEX_W;
let Predicates = [HasVLX] in {
defm NAME##D##SUFF##Z256: avx512_scatter<dopc, OpcodeStr##"d", _.info256,
vx256xmem, mscatterv4i32>, EVEX_V256, VEX_W;
defm NAME##Q##SUFF##Z256: avx512_scatter<qopc, OpcodeStr##"q", _.info256,
vy256xmem, mscatterv4i64>, EVEX_V256, VEX_W;
defm NAME##D##SUFF##Z128: avx512_scatter<dopc, OpcodeStr##"d", _.info128,
vx128xmem, mscatterv4i32>, EVEX_V128, VEX_W;
defm NAME##Q##SUFF##Z128: avx512_scatter<qopc, OpcodeStr##"q", _.info128,
vx128xmem, mscatterv2i64>, EVEX_V128, VEX_W;
}
}
multiclass avx512_scatter_d_ps<bits<8> dopc, bits<8> qopc,
AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> {
defm NAME##D##SUFF##Z: avx512_scatter<dopc, OpcodeStr##"d", _.info512, vz512mem,
mscatterv16i32>, EVEX_V512;
defm NAME##Q##SUFF##Z: avx512_scatter<qopc, OpcodeStr##"q", _.info256, vz256mem,
mscatterv8i64>, EVEX_V512;
let Predicates = [HasVLX] in {
defm NAME##D##SUFF##Z256: avx512_scatter<dopc, OpcodeStr##"d", _.info256,
vy256xmem, mscatterv8i32>, EVEX_V256;
defm NAME##Q##SUFF##Z256: avx512_scatter<qopc, OpcodeStr##"q", _.info128,
vy128xmem, mscatterv4i64>, EVEX_V256;
defm NAME##D##SUFF##Z128: avx512_scatter<dopc, OpcodeStr##"d", _.info128,
vx128xmem, mscatterv4i32>, EVEX_V128;
defm NAME##Q##SUFF##Z128: avx512_scatter<qopc, OpcodeStr##"q", _.info128,
vx64xmem, mscatterv2i64, VK2WM>,
EVEX_V128;
}
}
defm VSCATTER : avx512_scatter_q_pd<0xA2, 0xA3, avx512vl_f64_info, "vscatter", "PD">,
avx512_scatter_d_ps<0xA2, 0xA3, avx512vl_f32_info, "vscatter", "PS">;
defm VPSCATTER : avx512_scatter_q_pd<0xA0, 0xA1, avx512vl_i64_info, "vpscatter", "Q">,
avx512_scatter_d_ps<0xA0, 0xA1, avx512vl_i32_info, "vpscatter", "D">;
// prefetch
multiclass avx512_gather_scatter_prefetch<bits<8> opc, Format F, string OpcodeStr,
RegisterClass KRC, X86MemOperand memop> {
let Predicates = [HasPFI], mayLoad = 1, mayStore = 1 in
def m : AVX5128I<opc, F, (outs), (ins KRC:$mask, memop:$src),
!strconcat(OpcodeStr, "\t{$src {${mask}}|{${mask}}, $src}"), []>,
EVEX, EVEX_K, Sched<[WriteLoad]>;
}
defm VGATHERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dps",
VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
defm VGATHERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qps",
VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
defm VGATHERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dpd",
VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
defm VGATHERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qpd",
VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VGATHERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dps",
VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
defm VGATHERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qps",
VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
defm VGATHERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dpd",
VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
defm VGATHERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qpd",
VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VSCATTERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dps",
VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
defm VSCATTERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qps",
VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
defm VSCATTERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dpd",
VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
defm VSCATTERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qpd",
VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
defm VSCATTERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dps",
VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>;
defm VSCATTERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qps",
VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>;
defm VSCATTERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dpd",
VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>;
defm VSCATTERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qpd",
VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>;
multiclass cvt_by_vec_width<bits<8> opc, X86VectorVTInfo Vec, string OpcodeStr > {
def rr : AVX512XS8I<opc, MRMSrcReg, (outs Vec.RC:$dst), (ins Vec.KRC:$src),
!strconcat(OpcodeStr##Vec.Suffix, "\t{$src, $dst|$dst, $src}"),
[(set Vec.RC:$dst, (Vec.VT (sext Vec.KRC:$src)))]>,
EVEX, Sched<[WriteMove]>; // TODO - WriteVecTrunc?
// Also need a pattern for anyextend.
def : Pat<(Vec.VT (anyext Vec.KRC:$src)),
(!cast<Instruction>(NAME#"rr") Vec.KRC:$src)>;
}
multiclass cvt_mask_by_elt_width<bits<8> opc, AVX512VLVectorVTInfo VTInfo,
string OpcodeStr, Predicate prd> {
let Predicates = [prd] in
defm Z : cvt_by_vec_width<opc, VTInfo.info512, OpcodeStr>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : cvt_by_vec_width<opc, VTInfo.info256, OpcodeStr>, EVEX_V256;
defm Z128 : cvt_by_vec_width<opc, VTInfo.info128, OpcodeStr>, EVEX_V128;
}
}
defm VPMOVM2B : cvt_mask_by_elt_width<0x28, avx512vl_i8_info, "vpmovm2" , HasBWI>;
defm VPMOVM2W : cvt_mask_by_elt_width<0x28, avx512vl_i16_info, "vpmovm2", HasBWI> , VEX_W;
defm VPMOVM2D : cvt_mask_by_elt_width<0x38, avx512vl_i32_info, "vpmovm2", HasDQI>;
defm VPMOVM2Q : cvt_mask_by_elt_width<0x38, avx512vl_i64_info, "vpmovm2", HasDQI> , VEX_W;
multiclass convert_vector_to_mask_common<bits<8> opc, X86VectorVTInfo _, string OpcodeStr > {
def rr : AVX512XS8I<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.RC:$src),
!strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
[(set _.KRC:$dst, (X86pcmpgtm _.ImmAllZerosV, (_.VT _.RC:$src)))]>,
EVEX, Sched<[WriteMove]>;
}
// Use 512bit version to implement 128/256 bit in case NoVLX.
multiclass convert_vector_to_mask_lowering<X86VectorVTInfo ExtendInfo,
X86VectorVTInfo _,
string Name> {
def : Pat<(_.KVT (X86pcmpgtm _.ImmAllZerosV, (_.VT _.RC:$src))),
(_.KVT (COPY_TO_REGCLASS
(!cast<Instruction>(Name#"Zrr")
(INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)),
_.RC:$src, _.SubRegIdx)),
_.KRC))>;
}
multiclass avx512_convert_vector_to_mask<bits<8> opc, string OpcodeStr,
AVX512VLVectorVTInfo VTInfo, Predicate prd> {
let Predicates = [prd] in
defm Z : convert_vector_to_mask_common <opc, VTInfo.info512, OpcodeStr>,
EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : convert_vector_to_mask_common<opc, VTInfo.info256, OpcodeStr>,
EVEX_V256;
defm Z128 : convert_vector_to_mask_common<opc, VTInfo.info128, OpcodeStr>,
EVEX_V128;
}
let Predicates = [prd, NoVLX] in {
defm Z256_Alt : convert_vector_to_mask_lowering<VTInfo.info512, VTInfo.info256, NAME>;
defm Z128_Alt : convert_vector_to_mask_lowering<VTInfo.info512, VTInfo.info128, NAME>;
}
}
defm VPMOVB2M : avx512_convert_vector_to_mask<0x29, "vpmovb2m",
avx512vl_i8_info, HasBWI>;
defm VPMOVW2M : avx512_convert_vector_to_mask<0x29, "vpmovw2m",
avx512vl_i16_info, HasBWI>, VEX_W;
defm VPMOVD2M : avx512_convert_vector_to_mask<0x39, "vpmovd2m",
avx512vl_i32_info, HasDQI>;
defm VPMOVQ2M : avx512_convert_vector_to_mask<0x39, "vpmovq2m",
avx512vl_i64_info, HasDQI>, VEX_W;
// Patterns for handling sext from a mask register to v16i8/v16i16 when DQI
// is available, but BWI is not. We can't handle this in lowering because
// a target independent DAG combine likes to combine sext and trunc.
let Predicates = [HasDQI, NoBWI] in {
def : Pat<(v16i8 (sext (v16i1 VK16:$src))),
(VPMOVDBZrr (v16i32 (VPMOVM2DZrr VK16:$src)))>;
def : Pat<(v16i16 (sext (v16i1 VK16:$src))),
(VPMOVDWZrr (v16i32 (VPMOVM2DZrr VK16:$src)))>;
def : Pat<(v16i8 (anyext (v16i1 VK16:$src))),
(VPMOVDBZrr (v16i32 (VPMOVM2DZrr VK16:$src)))>;
def : Pat<(v16i16 (anyext (v16i1 VK16:$src))),
(VPMOVDWZrr (v16i32 (VPMOVM2DZrr VK16:$src)))>;
}
let Predicates = [HasDQI, NoBWI, HasVLX] in {
def : Pat<(v8i16 (sext (v8i1 VK8:$src))),
(VPMOVDWZ256rr (v8i32 (VPMOVM2DZ256rr VK8:$src)))>;
def : Pat<(v8i16 (anyext (v8i1 VK8:$src))),
(VPMOVDWZ256rr (v8i32 (VPMOVM2DZ256rr VK8:$src)))>;
}
//===----------------------------------------------------------------------===//
// AVX-512 - COMPRESS and EXPAND
//
multiclass compress_by_vec_width_common<bits<8> opc, X86VectorVTInfo _,
string OpcodeStr, X86FoldableSchedWrite sched> {
defm rr : AVX512_maskable<opc, MRMDestReg, _, (outs _.RC:$dst),
(ins _.RC:$src1), OpcodeStr, "$src1", "$src1",
(_.VT (X86compress _.RC:$src1))>, AVX5128IBase,
Sched<[sched]>;
let mayStore = 1, hasSideEffects = 0 in
def mr : AVX5128I<opc, MRMDestMem, (outs),
(ins _.MemOp:$dst, _.RC:$src),
OpcodeStr # "\t{$src, $dst|$dst, $src}",
[]>, EVEX_CD8<_.EltSize, CD8VT1>,
Sched<[sched.Folded]>;
def mrk : AVX5128I<opc, MRMDestMem, (outs),
(ins _.MemOp:$dst, _.KRCWM:$mask, _.RC:$src),
OpcodeStr # "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}",
[]>,
EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>,
Sched<[sched.Folded]>;
}
multiclass compress_by_vec_width_lowering<X86VectorVTInfo _, string Name> {
def : Pat<(X86mCompressingStore (_.VT _.RC:$src), addr:$dst, _.KRCWM:$mask),
(!cast<Instruction>(Name#_.ZSuffix##mrk)
addr:$dst, _.KRCWM:$mask, _.RC:$src)>;
}
multiclass compress_by_elt_width<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo VTInfo,
Predicate Pred = HasAVX512> {
let Predicates = [Pred] in
defm Z : compress_by_vec_width_common<opc, VTInfo.info512, OpcodeStr, sched>,
compress_by_vec_width_lowering<VTInfo.info512, NAME>, EVEX_V512;
let Predicates = [Pred, HasVLX] in {
defm Z256 : compress_by_vec_width_common<opc, VTInfo.info256, OpcodeStr, sched>,
compress_by_vec_width_lowering<VTInfo.info256, NAME>, EVEX_V256;
defm Z128 : compress_by_vec_width_common<opc, VTInfo.info128, OpcodeStr, sched>,
compress_by_vec_width_lowering<VTInfo.info128, NAME>, EVEX_V128;
}
}
// FIXME: Is there a better scheduler class for VPCOMPRESS?
defm VPCOMPRESSD : compress_by_elt_width <0x8B, "vpcompressd", WriteVarShuffle256,
avx512vl_i32_info>, EVEX, NotMemoryFoldable;
defm VPCOMPRESSQ : compress_by_elt_width <0x8B, "vpcompressq", WriteVarShuffle256,
avx512vl_i64_info>, EVEX, VEX_W, NotMemoryFoldable;
defm VCOMPRESSPS : compress_by_elt_width <0x8A, "vcompressps", WriteVarShuffle256,
avx512vl_f32_info>, EVEX, NotMemoryFoldable;
defm VCOMPRESSPD : compress_by_elt_width <0x8A, "vcompresspd", WriteVarShuffle256,
avx512vl_f64_info>, EVEX, VEX_W, NotMemoryFoldable;
// expand
multiclass expand_by_vec_width<bits<8> opc, X86VectorVTInfo _,
string OpcodeStr, X86FoldableSchedWrite sched> {
defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1), OpcodeStr, "$src1", "$src1",
(_.VT (X86expand _.RC:$src1))>, AVX5128IBase,
Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.MemOp:$src1), OpcodeStr, "$src1", "$src1",
(_.VT (X86expand (_.VT (bitconvert
(_.LdFrag addr:$src1)))))>,
AVX5128IBase, EVEX_CD8<_.EltSize, CD8VT1>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass expand_by_vec_width_lowering<X86VectorVTInfo _, string Name> {
def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask, undef)),
(!cast<Instruction>(Name#_.ZSuffix##rmkz)
_.KRCWM:$mask, addr:$src)>;
def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask, _.ImmAllZerosV)),
(!cast<Instruction>(Name#_.ZSuffix##rmkz)
_.KRCWM:$mask, addr:$src)>;
def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask,
(_.VT _.RC:$src0))),
(!cast<Instruction>(Name#_.ZSuffix##rmk)
_.RC:$src0, _.KRCWM:$mask, addr:$src)>;
}
multiclass expand_by_elt_width<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo VTInfo,
Predicate Pred = HasAVX512> {
let Predicates = [Pred] in
defm Z : expand_by_vec_width<opc, VTInfo.info512, OpcodeStr, sched>,
expand_by_vec_width_lowering<VTInfo.info512, NAME>, EVEX_V512;
let Predicates = [Pred, HasVLX] in {
defm Z256 : expand_by_vec_width<opc, VTInfo.info256, OpcodeStr, sched>,
expand_by_vec_width_lowering<VTInfo.info256, NAME>, EVEX_V256;
defm Z128 : expand_by_vec_width<opc, VTInfo.info128, OpcodeStr, sched>,
expand_by_vec_width_lowering<VTInfo.info128, NAME>, EVEX_V128;
}
}
// FIXME: Is there a better scheduler class for VPEXPAND?
defm VPEXPANDD : expand_by_elt_width <0x89, "vpexpandd", WriteVarShuffle256,
avx512vl_i32_info>, EVEX;
defm VPEXPANDQ : expand_by_elt_width <0x89, "vpexpandq", WriteVarShuffle256,
avx512vl_i64_info>, EVEX, VEX_W;
defm VEXPANDPS : expand_by_elt_width <0x88, "vexpandps", WriteVarShuffle256,
avx512vl_f32_info>, EVEX;
defm VEXPANDPD : expand_by_elt_width <0x88, "vexpandpd", WriteVarShuffle256,
avx512vl_f64_info>, EVEX, VEX_W;
//handle instruction reg_vec1 = op(reg_vec,imm)
// op(mem_vec,imm)
// op(broadcast(eltVt),imm)
//all instruction created with FROUND_CURRENT
multiclass avx512_unary_fp_packed_imm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2",
(OpNode (_.VT _.RC:$src1),
(i32 imm:$src2))>, Sched<[sched]>;
defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.MemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2",
(OpNode (_.VT (bitconvert (_.LdFrag addr:$src1))),
(i32 imm:$src2))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.ScalarMemOp:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix, "$src2, ${src1}"##_.BroadcastStr,
"${src1}"##_.BroadcastStr##", $src2",
(OpNode (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src1))),
(i32 imm:$src2))>, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
//handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae}
multiclass avx512_unary_fp_sae_packed_imm<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86FoldableSchedWrite sched,
X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm rrib : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, i32u8imm:$src2),
OpcodeStr##_.Suffix, "$src2, {sae}, $src1",
"$src1, {sae}, $src2",
(OpNode (_.VT _.RC:$src1),
(i32 imm:$src2),
(i32 FROUND_NO_EXC))>,
EVEX_B, Sched<[sched]>;
}
multiclass avx512_common_unary_fp_sae_packed_imm<string OpcodeStr,
AVX512VLVectorVTInfo _, bits<8> opc, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd>{
let Predicates = [prd] in {
defm Z : avx512_unary_fp_packed_imm<opc, OpcodeStr, OpNode, sched.ZMM,
_.info512>,
avx512_unary_fp_sae_packed_imm<opc, OpcodeStr, OpNodeRnd,
sched.ZMM, _.info512>, EVEX_V512;
}
let Predicates = [prd, HasVLX] in {
defm Z128 : avx512_unary_fp_packed_imm<opc, OpcodeStr, OpNode, sched.XMM,
_.info128>, EVEX_V128;
defm Z256 : avx512_unary_fp_packed_imm<opc, OpcodeStr, OpNode, sched.YMM,
_.info256>, EVEX_V256;
}
}
//handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm)
// op(reg_vec2,mem_vec,imm)
// op(reg_vec2,broadcast(eltVt),imm)
//all instruction created with FROUND_CURRENT
multiclass avx512_fp_packed_imm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _>{
let ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(i32 imm:$src3))>,
Sched<[sched]>;
defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2, i32u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT (bitconvert (_.LdFrag addr:$src2))),
(i32 imm:$src3))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, i32u8imm:$src3),
OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr##", $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))),
(i32 imm:$src3))>, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
//handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm)
// op(reg_vec2,mem_vec,imm)
multiclass avx512_3Op_rm_imm8<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo DestInfo,
X86VectorVTInfo SrcInfo>{
let ExeDomain = DestInfo.ExeDomain in {
defm rri : AVX512_maskable<opc, MRMSrcReg, DestInfo, (outs DestInfo.RC:$dst),
(ins SrcInfo.RC:$src1, SrcInfo.RC:$src2, u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src1),
(SrcInfo.VT SrcInfo.RC:$src2),
(i8 imm:$src3)))>,
Sched<[sched]>;
defm rmi : AVX512_maskable<opc, MRMSrcMem, DestInfo, (outs DestInfo.RC:$dst),
(ins SrcInfo.RC:$src1, SrcInfo.MemOp:$src2, u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src1),
(SrcInfo.VT (bitconvert
(SrcInfo.LdFrag addr:$src2))),
(i8 imm:$src3)))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
//handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm)
// op(reg_vec2,mem_vec,imm)
// op(reg_vec2,broadcast(eltVt),imm)
multiclass avx512_3Op_imm8<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _>:
avx512_3Op_rm_imm8<opc, OpcodeStr, OpNode, sched, _, _>{
let ExeDomain = _.ExeDomain in
defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3),
OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr##", $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))),
(i8 imm:$src3))>, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
//handle scalar instruction reg_vec1 = op(reg_vec2,reg_vec3,imm)
// op(reg_vec2,mem_scalar,imm)
multiclass avx512_fp_scalar_imm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(i32 imm:$src3))>,
Sched<[sched]>;
defm rmi : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, i32u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT (scalar_to_vector
(_.ScalarLdFrag addr:$src2))),
(i32 imm:$src3))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
//handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae}
multiclass avx512_fp_sae_packed_imm<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86FoldableSchedWrite sched,
X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm rrib : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3),
OpcodeStr, "$src3, {sae}, $src2, $src1",
"$src1, $src2, {sae}, $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(i32 imm:$src3),
(i32 FROUND_NO_EXC))>,
EVEX_B, Sched<[sched]>;
}
//handle scalar instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae}
multiclass avx512_fp_sae_scalar_imm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in
defm NAME#rrib : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3),
OpcodeStr, "$src3, {sae}, $src2, $src1",
"$src1, $src2, {sae}, $src3",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(i32 imm:$src3),
(i32 FROUND_NO_EXC))>,
EVEX_B, Sched<[sched]>;
}
multiclass avx512_common_fp_sae_packed_imm<string OpcodeStr,
AVX512VLVectorVTInfo _, bits<8> opc, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd>{
let Predicates = [prd] in {
defm Z : avx512_fp_packed_imm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>,
avx512_fp_sae_packed_imm<opc, OpcodeStr, OpNodeRnd, sched.ZMM, _.info512>,
EVEX_V512;
}
let Predicates = [prd, HasVLX] in {
defm Z128 : avx512_fp_packed_imm<opc, OpcodeStr, OpNode, sched.XMM, _.info128>,
EVEX_V128;
defm Z256 : avx512_fp_packed_imm<opc, OpcodeStr, OpNode, sched.YMM, _.info256>,
EVEX_V256;
}
}
multiclass avx512_common_3Op_rm_imm8<bits<8> opc, SDNode OpNode, string OpStr,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo DestInfo,
AVX512VLVectorVTInfo SrcInfo, Predicate Pred = HasBWI> {
let Predicates = [Pred] in {
defm Z : avx512_3Op_rm_imm8<opc, OpStr, OpNode, sched.ZMM, DestInfo.info512,
SrcInfo.info512>, EVEX_V512, AVX512AIi8Base, EVEX_4V;
}
let Predicates = [Pred, HasVLX] in {
defm Z128 : avx512_3Op_rm_imm8<opc, OpStr, OpNode, sched.XMM, DestInfo.info128,
SrcInfo.info128>, EVEX_V128, AVX512AIi8Base, EVEX_4V;
defm Z256 : avx512_3Op_rm_imm8<opc, OpStr, OpNode, sched.YMM, DestInfo.info256,
SrcInfo.info256>, EVEX_V256, AVX512AIi8Base, EVEX_4V;
}
}
multiclass avx512_common_3Op_imm8<string OpcodeStr, AVX512VLVectorVTInfo _,
bits<8> opc, SDNode OpNode, X86SchedWriteWidths sched,
Predicate Pred = HasAVX512> {
let Predicates = [Pred] in {
defm Z : avx512_3Op_imm8<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>,
EVEX_V512;
}
let Predicates = [Pred, HasVLX] in {
defm Z128 : avx512_3Op_imm8<opc, OpcodeStr, OpNode, sched.XMM, _.info128>,
EVEX_V128;
defm Z256 : avx512_3Op_imm8<opc, OpcodeStr, OpNode, sched.YMM, _.info256>,
EVEX_V256;
}
}
multiclass avx512_common_fp_sae_scalar_imm<string OpcodeStr,
X86VectorVTInfo _, bits<8> opc, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd> {
let Predicates = [prd] in {
defm Z : avx512_fp_scalar_imm<opc, OpcodeStr, OpNode, sched.XMM, _>,
avx512_fp_sae_scalar_imm<opc, OpcodeStr, OpNodeRnd, sched.XMM, _>;
}
}
multiclass avx512_common_unary_fp_sae_packed_imm_all<string OpcodeStr,
bits<8> opcPs, bits<8> opcPd, SDNode OpNode,
SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd>{
defm PS : avx512_common_unary_fp_sae_packed_imm<OpcodeStr, avx512vl_f32_info,
opcPs, OpNode, OpNodeRnd, sched, prd>,
EVEX_CD8<32, CD8VF>;
defm PD : avx512_common_unary_fp_sae_packed_imm<OpcodeStr, avx512vl_f64_info,
opcPd, OpNode, OpNodeRnd, sched, prd>,
EVEX_CD8<64, CD8VF>, VEX_W;
}
defm VREDUCE : avx512_common_unary_fp_sae_packed_imm_all<"vreduce", 0x56, 0x56,
X86VReduce, X86VReduceRnd, SchedWriteFRnd, HasDQI>,
AVX512AIi8Base, EVEX;
defm VRNDSCALE : avx512_common_unary_fp_sae_packed_imm_all<"vrndscale", 0x08, 0x09,
X86VRndScale, X86VRndScaleRnd, SchedWriteFRnd, HasAVX512>,
AVX512AIi8Base, EVEX;
defm VGETMANT : avx512_common_unary_fp_sae_packed_imm_all<"vgetmant", 0x26, 0x26,
X86VGetMant, X86VGetMantRnd, SchedWriteFRnd, HasAVX512>,
AVX512AIi8Base, EVEX;
defm VRANGEPD : avx512_common_fp_sae_packed_imm<"vrangepd", avx512vl_f64_info,
0x50, X86VRange, X86VRangeRnd,
SchedWriteFAdd, HasDQI>,
AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W;
defm VRANGEPS : avx512_common_fp_sae_packed_imm<"vrangeps", avx512vl_f32_info,
0x50, X86VRange, X86VRangeRnd,
SchedWriteFAdd, HasDQI>,
AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>;
defm VRANGESD: avx512_common_fp_sae_scalar_imm<"vrangesd",
f64x_info, 0x51, X86Ranges, X86RangesRnd, SchedWriteFAdd, HasDQI>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W;
defm VRANGESS: avx512_common_fp_sae_scalar_imm<"vrangess", f32x_info,
0x51, X86Ranges, X86RangesRnd, SchedWriteFAdd, HasDQI>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>;
defm VREDUCESD: avx512_common_fp_sae_scalar_imm<"vreducesd", f64x_info,
0x57, X86Reduces, X86ReducesRnd, SchedWriteFRnd, HasDQI>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W;
defm VREDUCESS: avx512_common_fp_sae_scalar_imm<"vreducess", f32x_info,
0x57, X86Reduces, X86ReducesRnd, SchedWriteFRnd, HasDQI>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>;
defm VGETMANTSD: avx512_common_fp_sae_scalar_imm<"vgetmantsd", f64x_info,
0x27, X86GetMants, X86GetMantsRnd, SchedWriteFRnd, HasAVX512>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W;
defm VGETMANTSS: avx512_common_fp_sae_scalar_imm<"vgetmantss", f32x_info,
0x27, X86GetMants, X86GetMantsRnd, SchedWriteFRnd, HasAVX512>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>;
multiclass AVX512_rndscale_lowering<X86VectorVTInfo _, string Suffix> {
// Register
def : Pat<(_.VT (ffloor _.RC:$src)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri")
_.RC:$src, (i32 0x9))>;
def : Pat<(_.VT (fnearbyint _.RC:$src)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri")
_.RC:$src, (i32 0xC))>;
def : Pat<(_.VT (fceil _.RC:$src)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri")
_.RC:$src, (i32 0xA))>;
def : Pat<(_.VT (frint _.RC:$src)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri")
_.RC:$src, (i32 0x4))>;
def : Pat<(_.VT (ftrunc _.RC:$src)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri")
_.RC:$src, (i32 0xB))>;
// Merge-masking
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor _.RC:$src), _.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik")
_.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0x9))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint _.RC:$src), _.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik")
_.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0xC))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil _.RC:$src), _.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik")
_.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0xA))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint _.RC:$src), _.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik")
_.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0x4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc _.RC:$src), _.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik")
_.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0xB))>;
// Zero-masking
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor _.RC:$src),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz")
_.KRCWM:$mask, _.RC:$src, (i32 0x9))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint _.RC:$src),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz")
_.KRCWM:$mask, _.RC:$src, (i32 0xC))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil _.RC:$src),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz")
_.KRCWM:$mask, _.RC:$src, (i32 0xA))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint _.RC:$src),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz")
_.KRCWM:$mask, _.RC:$src, (i32 0x4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc _.RC:$src),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz")
_.KRCWM:$mask, _.RC:$src, (i32 0xB))>;
// Load
def : Pat<(_.VT (ffloor (_.LdFrag addr:$src))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi")
addr:$src, (i32 0x9))>;
def : Pat<(_.VT (fnearbyint (_.LdFrag addr:$src))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi")
addr:$src, (i32 0xC))>;
def : Pat<(_.VT (fceil (_.LdFrag addr:$src))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi")
addr:$src, (i32 0xA))>;
def : Pat<(_.VT (frint (_.LdFrag addr:$src))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi")
addr:$src, (i32 0x4))>;
def : Pat<(_.VT (ftrunc (_.LdFrag addr:$src))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi")
addr:$src, (i32 0xB))>;
// Merge-masking + load
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor (_.LdFrag addr:$src)),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x9))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint (_.LdFrag addr:$src)),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xC))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil (_.LdFrag addr:$src)),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xA))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint (_.LdFrag addr:$src)),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc (_.LdFrag addr:$src)),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xB))>;
// Zero-masking + load
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor (_.LdFrag addr:$src)),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz")
_.KRCWM:$mask, addr:$src, (i32 0x9))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint (_.LdFrag addr:$src)),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz")
_.KRCWM:$mask, addr:$src, (i32 0xC))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil (_.LdFrag addr:$src)),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz")
_.KRCWM:$mask, addr:$src, (i32 0xA))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint (_.LdFrag addr:$src)),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz")
_.KRCWM:$mask, addr:$src, (i32 0x4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc (_.LdFrag addr:$src)),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz")
_.KRCWM:$mask, addr:$src, (i32 0xB))>;
// Broadcast load
def : Pat<(_.VT (ffloor (X86VBroadcast (_.ScalarLdFrag addr:$src)))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi")
addr:$src, (i32 0x9))>;
def : Pat<(_.VT (fnearbyint (X86VBroadcast (_.ScalarLdFrag addr:$src)))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi")
addr:$src, (i32 0xC))>;
def : Pat<(_.VT (fceil (X86VBroadcast (_.ScalarLdFrag addr:$src)))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi")
addr:$src, (i32 0xA))>;
def : Pat<(_.VT (frint (X86VBroadcast (_.ScalarLdFrag addr:$src)))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi")
addr:$src, (i32 0x4))>;
def : Pat<(_.VT (ftrunc (X86VBroadcast (_.ScalarLdFrag addr:$src)))),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi")
addr:$src, (i32 0xB))>;
// Merge-masking + broadcast load
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(ffloor (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x9))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(fnearbyint (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xC))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(fceil (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xA))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(frint (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(ftrunc (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.RC:$dst)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik")
_.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xB))>;
// Zero-masking + broadcast load
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(ffloor (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz")
_.KRCWM:$mask, addr:$src, (i32 0x9))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(fnearbyint (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz")
_.KRCWM:$mask, addr:$src, (i32 0xC))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(fceil (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz")
_.KRCWM:$mask, addr:$src, (i32 0xA))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(frint (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz")
_.KRCWM:$mask, addr:$src, (i32 0x4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(ftrunc (X86VBroadcast (_.ScalarLdFrag addr:$src))),
_.ImmAllZerosV)),
(!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz")
_.KRCWM:$mask, addr:$src, (i32 0xB))>;
}
let Predicates = [HasAVX512] in {
defm : AVX512_rndscale_lowering<v16f32_info, "PS">;
defm : AVX512_rndscale_lowering<v8f64_info, "PD">;
}
let Predicates = [HasVLX] in {
defm : AVX512_rndscale_lowering<v8f32x_info, "PS">;
defm : AVX512_rndscale_lowering<v4f64x_info, "PD">;
defm : AVX512_rndscale_lowering<v4f32x_info, "PS">;
defm : AVX512_rndscale_lowering<v2f64x_info, "PD">;
}
multiclass avx512_shuff_packed_128_common<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched,
X86VectorVTInfo _,
X86VectorVTInfo CastInfo,
string EVEX2VEXOvrd> {
let ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(_.VT (bitconvert
(CastInfo.VT (X86Shuf128 _.RC:$src1, _.RC:$src2,
(i8 imm:$src3)))))>,
Sched<[sched]>, EVEX2VEXOverride<EVEX2VEXOvrd#"rr">;
defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2, u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(_.VT
(bitconvert
(CastInfo.VT (X86Shuf128 _.RC:$src1,
(CastInfo.LdFrag addr:$src2),
(i8 imm:$src3)))))>,
Sched<[sched.Folded, sched.ReadAfterFold]>,
EVEX2VEXOverride<EVEX2VEXOvrd#"rm">;
defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3),
OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr##", $src3",
(_.VT
(bitconvert
(CastInfo.VT
(X86Shuf128 _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src2)),
(i8 imm:$src3)))))>, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_shuff_packed_128<string OpcodeStr, X86FoldableSchedWrite sched,
AVX512VLVectorVTInfo _,
AVX512VLVectorVTInfo CastInfo, bits<8> opc,
string EVEX2VEXOvrd>{
let Predicates = [HasAVX512] in
defm Z : avx512_shuff_packed_128_common<opc, OpcodeStr, sched,
_.info512, CastInfo.info512, "">, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in
defm Z256 : avx512_shuff_packed_128_common<opc, OpcodeStr, sched,
_.info256, CastInfo.info256,
EVEX2VEXOvrd>, EVEX_V256;
}
defm VSHUFF32X4 : avx512_shuff_packed_128<"vshuff32x4", WriteFShuffle256,
avx512vl_f32_info, avx512vl_f64_info, 0x23, "VPERM2F128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>;
defm VSHUFF64X2 : avx512_shuff_packed_128<"vshuff64x2", WriteFShuffle256,
avx512vl_f64_info, avx512vl_f64_info, 0x23, "VPERM2F128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W;
defm VSHUFI32X4 : avx512_shuff_packed_128<"vshufi32x4", WriteFShuffle256,
avx512vl_i32_info, avx512vl_i64_info, 0x43, "VPERM2I128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>;
defm VSHUFI64X2 : avx512_shuff_packed_128<"vshufi64x2", WriteFShuffle256,
avx512vl_i64_info, avx512vl_i64_info, 0x43, "VPERM2I128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W;
let Predicates = [HasAVX512] in {
// Provide fallback in case the load node that is used in the broadcast
// patterns above is used by additional users, which prevents the pattern
// selection.
def : Pat<(v8f64 (X86SubVBroadcast (v2f64 VR128X:$src))),
(VSHUFF64X2Zrri (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
0)>;
def : Pat<(v8i64 (X86SubVBroadcast (v2i64 VR128X:$src))),
(VSHUFI64X2Zrri (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
0)>;
def : Pat<(v16f32 (X86SubVBroadcast (v4f32 VR128X:$src))),
(VSHUFF32X4Zrri (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
0)>;
def : Pat<(v16i32 (X86SubVBroadcast (v4i32 VR128X:$src))),
(VSHUFI32X4Zrri (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
0)>;
def : Pat<(v32i16 (X86SubVBroadcast (v8i16 VR128X:$src))),
(VSHUFI32X4Zrri (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
0)>;
def : Pat<(v64i8 (X86SubVBroadcast (v16i8 VR128X:$src))),
(VSHUFI32X4Zrri (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
0)>;
}
multiclass avx512_valign<bits<8> opc, string OpcodeStr,
X86FoldableSchedWrite sched, X86VectorVTInfo _>{
// NOTE: EVEX2VEXOverride changed back to Unset for 256-bit at the
// instantiation of this class.
let ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.RC:$src2, u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(_.VT (X86VAlign _.RC:$src1, _.RC:$src2, (i8 imm:$src3)))>,
Sched<[sched]>, EVEX2VEXOverride<"VPALIGNRrri">;
defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.MemOp:$src2, u8imm:$src3),
OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3",
(_.VT (X86VAlign _.RC:$src1,
(bitconvert (_.LdFrag addr:$src2)),
(i8 imm:$src3)))>,
Sched<[sched.Folded, sched.ReadAfterFold]>,
EVEX2VEXOverride<"VPALIGNRrmi">;
defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3),
OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1",
"$src1, ${src2}"##_.BroadcastStr##", $src3",
(X86VAlign _.RC:$src1,
(_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))),
(i8 imm:$src3))>, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_valign_common<string OpcodeStr, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in {
defm Z : avx512_valign<0x03, OpcodeStr, sched.ZMM, _.info512>,
AVX512AIi8Base, EVEX_4V, EVEX_V512;
}
let Predicates = [HasAVX512, HasVLX] in {
defm Z128 : avx512_valign<0x03, OpcodeStr, sched.XMM, _.info128>,
AVX512AIi8Base, EVEX_4V, EVEX_V128;
// We can't really override the 256-bit version so change it back to unset.
let EVEX2VEXOverride = ? in
defm Z256 : avx512_valign<0x03, OpcodeStr, sched.YMM, _.info256>,
AVX512AIi8Base, EVEX_4V, EVEX_V256;
}
}
defm VALIGND: avx512_valign_common<"valignd", SchedWriteShuffle,
avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
defm VALIGNQ: avx512_valign_common<"valignq", SchedWriteShuffle,
avx512vl_i64_info>, EVEX_CD8<64, CD8VF>,
VEX_W;
defm VPALIGNR: avx512_common_3Op_rm_imm8<0x0F, X86PAlignr, "vpalignr",
SchedWriteShuffle, avx512vl_i8_info,
avx512vl_i8_info>, EVEX_CD8<8, CD8VF>;
// Fragments to help convert valignq into masked valignd. Or valignq/valignd
// into vpalignr.
def ValignqImm32XForm : SDNodeXForm<imm, [{
return getI8Imm(N->getZExtValue() * 2, SDLoc(N));
}]>;
def ValignqImm8XForm : SDNodeXForm<imm, [{
return getI8Imm(N->getZExtValue() * 8, SDLoc(N));
}]>;
def ValigndImm8XForm : SDNodeXForm<imm, [{
return getI8Imm(N->getZExtValue() * 4, SDLoc(N));
}]>;
multiclass avx512_vpalign_mask_lowering<string OpcodeStr, SDNode OpNode,
X86VectorVTInfo From, X86VectorVTInfo To,
SDNodeXForm ImmXForm> {
def : Pat<(To.VT (vselect To.KRCWM:$mask,
(bitconvert
(From.VT (OpNode From.RC:$src1, From.RC:$src2,
imm:$src3))),
To.RC:$src0)),
(!cast<Instruction>(OpcodeStr#"rrik") To.RC:$src0, To.KRCWM:$mask,
To.RC:$src1, To.RC:$src2,
(ImmXForm imm:$src3))>;
def : Pat<(To.VT (vselect To.KRCWM:$mask,
(bitconvert
(From.VT (OpNode From.RC:$src1, From.RC:$src2,
imm:$src3))),
To.ImmAllZerosV)),
(!cast<Instruction>(OpcodeStr#"rrikz") To.KRCWM:$mask,
To.RC:$src1, To.RC:$src2,
(ImmXForm imm:$src3))>;
def : Pat<(To.VT (vselect To.KRCWM:$mask,
(bitconvert
(From.VT (OpNode From.RC:$src1,
(From.LdFrag addr:$src2),
imm:$src3))),
To.RC:$src0)),
(!cast<Instruction>(OpcodeStr#"rmik") To.RC:$src0, To.KRCWM:$mask,
To.RC:$src1, addr:$src2,
(ImmXForm imm:$src3))>;
def : Pat<(To.VT (vselect To.KRCWM:$mask,
(bitconvert
(From.VT (OpNode From.RC:$src1,
(From.LdFrag addr:$src2),
imm:$src3))),
To.ImmAllZerosV)),
(!cast<Instruction>(OpcodeStr#"rmikz") To.KRCWM:$mask,
To.RC:$src1, addr:$src2,
(ImmXForm imm:$src3))>;
}
multiclass avx512_vpalign_mask_lowering_mb<string OpcodeStr, SDNode OpNode,
X86VectorVTInfo From,
X86VectorVTInfo To,
SDNodeXForm ImmXForm> :
avx512_vpalign_mask_lowering<OpcodeStr, OpNode, From, To, ImmXForm> {
def : Pat<(From.VT (OpNode From.RC:$src1,
(bitconvert (To.VT (X86VBroadcast
(To.ScalarLdFrag addr:$src2)))),
imm:$src3)),
(!cast<Instruction>(OpcodeStr#"rmbi") To.RC:$src1, addr:$src2,
(ImmXForm imm:$src3))>;
def : Pat<(To.VT (vselect To.KRCWM:$mask,
(bitconvert
(From.VT (OpNode From.RC:$src1,
(bitconvert
(To.VT (X86VBroadcast
(To.ScalarLdFrag addr:$src2)))),
imm:$src3))),
To.RC:$src0)),
(!cast<Instruction>(OpcodeStr#"rmbik") To.RC:$src0, To.KRCWM:$mask,
To.RC:$src1, addr:$src2,
(ImmXForm imm:$src3))>;
def : Pat<(To.VT (vselect To.KRCWM:$mask,
(bitconvert
(From.VT (OpNode From.RC:$src1,
(bitconvert
(To.VT (X86VBroadcast
(To.ScalarLdFrag addr:$src2)))),
imm:$src3))),
To.ImmAllZerosV)),
(!cast<Instruction>(OpcodeStr#"rmbikz") To.KRCWM:$mask,
To.RC:$src1, addr:$src2,
(ImmXForm imm:$src3))>;
}
let Predicates = [HasAVX512] in {
// For 512-bit we lower to the widest element type we can. So we only need
// to handle converting valignq to valignd.
defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ", X86VAlign, v8i64_info,
v16i32_info, ValignqImm32XForm>;
}
let Predicates = [HasVLX] in {
// For 128-bit we lower to the widest element type we can. So we only need
// to handle converting valignq to valignd.
defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ128", X86VAlign, v2i64x_info,
v4i32x_info, ValignqImm32XForm>;
// For 256-bit we lower to the widest element type we can. So we only need
// to handle converting valignq to valignd.
defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ256", X86VAlign, v4i64x_info,
v8i32x_info, ValignqImm32XForm>;
}
let Predicates = [HasVLX, HasBWI] in {
// We can turn 128 and 256 bit VALIGND/VALIGNQ into VPALIGNR.
defm : avx512_vpalign_mask_lowering<"VPALIGNRZ128", X86VAlign, v2i64x_info,
v16i8x_info, ValignqImm8XForm>;
defm : avx512_vpalign_mask_lowering<"VPALIGNRZ128", X86VAlign, v4i32x_info,
v16i8x_info, ValigndImm8XForm>;
}
defm VDBPSADBW: avx512_common_3Op_rm_imm8<0x42, X86dbpsadbw, "vdbpsadbw",
SchedWritePSADBW, avx512vl_i16_info, avx512vl_i8_info>,
EVEX_CD8<8, CD8VF>, NotEVEX2VEXConvertible;
multiclass avx512_unary_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src1), OpcodeStr,
"$src1", "$src1",
(_.VT (OpNode _.RC:$src1))>, EVEX, AVX5128IBase,
Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.MemOp:$src1), OpcodeStr,
"$src1", "$src1",
(_.VT (OpNode (bitconvert (_.LdFrag addr:$src1))))>,
EVEX, AVX5128IBase, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded]>;
}
}
multiclass avx512_unary_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> :
avx512_unary_rm<opc, OpcodeStr, OpNode, sched, _> {
defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.ScalarMemOp:$src1), OpcodeStr,
"${src1}"##_.BroadcastStr,
"${src1}"##_.BroadcastStr,
(_.VT (OpNode (X86VBroadcast
(_.ScalarLdFrag addr:$src1))))>,
EVEX, AVX5128IBase, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded]>;
}
multiclass avx512_unary_rm_vl<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched,
AVX512VLVectorVTInfo VTInfo, Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_unary_rm<opc, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512>,
EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_unary_rm<opc, OpcodeStr, OpNode, sched.YMM, VTInfo.info256>,
EVEX_V256;
defm Z128 : avx512_unary_rm<opc, OpcodeStr, OpNode, sched.XMM, VTInfo.info128>,
EVEX_V128;
}
}
multiclass avx512_unary_rmb_vl<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo,
Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_unary_rmb<opc, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512>,
EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_unary_rmb<opc, OpcodeStr, OpNode, sched.YMM, VTInfo.info256>,
EVEX_V256;
defm Z128 : avx512_unary_rmb<opc, OpcodeStr, OpNode, sched.XMM, VTInfo.info128>,
EVEX_V128;
}
}
multiclass avx512_unary_rm_vl_dq<bits<8> opc_d, bits<8> opc_q, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched,
Predicate prd> {
defm Q : avx512_unary_rmb_vl<opc_q, OpcodeStr#"q", OpNode, sched,
avx512vl_i64_info, prd>, VEX_W;
defm D : avx512_unary_rmb_vl<opc_d, OpcodeStr#"d", OpNode, sched,
avx512vl_i32_info, prd>;
}
multiclass avx512_unary_rm_vl_bw<bits<8> opc_b, bits<8> opc_w, string OpcodeStr,
SDNode OpNode, X86SchedWriteWidths sched,
Predicate prd> {
defm W : avx512_unary_rm_vl<opc_w, OpcodeStr#"w", OpNode, sched,
avx512vl_i16_info, prd>, VEX_WIG;
defm B : avx512_unary_rm_vl<opc_b, OpcodeStr#"b", OpNode, sched,
avx512vl_i8_info, prd>, VEX_WIG;
}
multiclass avx512_unary_rm_vl_all<bits<8> opc_b, bits<8> opc_w,
bits<8> opc_d, bits<8> opc_q,
string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
defm NAME : avx512_unary_rm_vl_dq<opc_d, opc_q, OpcodeStr, OpNode, sched,
HasAVX512>,
avx512_unary_rm_vl_bw<opc_b, opc_w, OpcodeStr, OpNode, sched,
HasBWI>;
}
defm VPABS : avx512_unary_rm_vl_all<0x1C, 0x1D, 0x1E, 0x1F, "vpabs", abs,
SchedWriteVecALU>;
// VPABS: Use 512bit version to implement 128/256 bit in case NoVLX.
let Predicates = [HasAVX512, NoVLX] in {
def : Pat<(v4i64 (abs VR256X:$src)),
(EXTRACT_SUBREG
(VPABSQZrr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm)),
sub_ymm)>;
def : Pat<(v2i64 (abs VR128X:$src)),
(EXTRACT_SUBREG
(VPABSQZrr
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm)),
sub_xmm)>;
}
// Use 512bit version to implement 128/256 bit.
multiclass avx512_unary_lowering<string InstrStr, SDNode OpNode,
AVX512VLVectorVTInfo _, Predicate prd> {
let Predicates = [prd, NoVLX] in {
def : Pat<(_.info256.VT(OpNode _.info256.RC:$src1)),
(EXTRACT_SUBREG
(!cast<Instruction>(InstrStr # "Zrr")
(INSERT_SUBREG(_.info512.VT(IMPLICIT_DEF)),
_.info256.RC:$src1,
_.info256.SubRegIdx)),
_.info256.SubRegIdx)>;
def : Pat<(_.info128.VT(OpNode _.info128.RC:$src1)),
(EXTRACT_SUBREG
(!cast<Instruction>(InstrStr # "Zrr")
(INSERT_SUBREG(_.info512.VT(IMPLICIT_DEF)),
_.info128.RC:$src1,
_.info128.SubRegIdx)),
_.info128.SubRegIdx)>;
}
}
defm VPLZCNT : avx512_unary_rm_vl_dq<0x44, 0x44, "vplzcnt", ctlz,
SchedWriteVecIMul, HasCDI>;
// FIXME: Is there a better scheduler class for VPCONFLICT?
defm VPCONFLICT : avx512_unary_rm_vl_dq<0xC4, 0xC4, "vpconflict", X86Conflict,
SchedWriteVecALU, HasCDI>;
// VPLZCNT: Use 512bit version to implement 128/256 bit in case NoVLX.
defm : avx512_unary_lowering<"VPLZCNTQ", ctlz, avx512vl_i64_info, HasCDI>;
defm : avx512_unary_lowering<"VPLZCNTD", ctlz, avx512vl_i32_info, HasCDI>;
//===---------------------------------------------------------------------===//
// Counts number of ones - VPOPCNTD and VPOPCNTQ
//===---------------------------------------------------------------------===//
// FIXME: Is there a better scheduler class for VPOPCNTD/VPOPCNTQ?
defm VPOPCNT : avx512_unary_rm_vl_dq<0x55, 0x55, "vpopcnt", ctpop,
SchedWriteVecALU, HasVPOPCNTDQ>;
defm : avx512_unary_lowering<"VPOPCNTQ", ctpop, avx512vl_i64_info, HasVPOPCNTDQ>;
defm : avx512_unary_lowering<"VPOPCNTD", ctpop, avx512vl_i32_info, HasVPOPCNTDQ>;
//===---------------------------------------------------------------------===//
// Replicate Single FP - MOVSHDUP and MOVSLDUP
//===---------------------------------------------------------------------===//
multiclass avx512_replicate<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
defm NAME: avx512_unary_rm_vl<opc, OpcodeStr, OpNode, sched,
avx512vl_f32_info, HasAVX512>, XS;
}
defm VMOVSHDUP : avx512_replicate<0x16, "vmovshdup", X86Movshdup,
SchedWriteFShuffle>;
defm VMOVSLDUP : avx512_replicate<0x12, "vmovsldup", X86Movsldup,
SchedWriteFShuffle>;
//===----------------------------------------------------------------------===//
// AVX-512 - MOVDDUP
//===----------------------------------------------------------------------===//
multiclass avx512_movddup_128<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _> {
let ExeDomain = _.ExeDomain in {
defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src), OpcodeStr, "$src", "$src",
(_.VT (OpNode (_.VT _.RC:$src)))>, EVEX,
Sched<[sched]>;
defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.ScalarMemOp:$src), OpcodeStr, "$src", "$src",
(_.VT (OpNode (_.VT (scalar_to_vector
(_.ScalarLdFrag addr:$src)))))>,
EVEX, EVEX_CD8<_.EltSize, CD8VH>,
Sched<[sched.Folded]>;
}
}
multiclass avx512_movddup_common<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo> {
defm Z : avx512_unary_rm<opc, OpcodeStr, X86Movddup, sched.ZMM,
VTInfo.info512>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in {
defm Z256 : avx512_unary_rm<opc, OpcodeStr, X86Movddup, sched.YMM,
VTInfo.info256>, EVEX_V256;
defm Z128 : avx512_movddup_128<opc, OpcodeStr, X86VBroadcast, sched.XMM,
VTInfo.info128>, EVEX_V128;
}
}
multiclass avx512_movddup<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86SchedWriteWidths sched> {
defm NAME: avx512_movddup_common<opc, OpcodeStr, OpNode, sched,
avx512vl_f64_info>, XD, VEX_W;
}
defm VMOVDDUP : avx512_movddup<0x12, "vmovddup", X86Movddup, SchedWriteFShuffle>;
let Predicates = [HasVLX] in {
def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))),
(VMOVDDUPZ128rm addr:$src)>;
def : Pat<(v2f64 (X86VBroadcast f64:$src)),
(VMOVDDUPZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src, VR128X)))>;
def : Pat<(v2f64 (X86VBroadcast (loadv2f64 addr:$src))),
(VMOVDDUPZ128rm addr:$src)>;
def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast f64:$src)),
(v2f64 VR128X:$src0)),
(VMOVDDUPZ128rrk VR128X:$src0, VK2WM:$mask,
(v2f64 (COPY_TO_REGCLASS FR64X:$src, VR128X)))>;
def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast f64:$src)),
(bitconvert (v4i32 immAllZerosV))),
(VMOVDDUPZ128rrkz VK2WM:$mask, (v2f64 (COPY_TO_REGCLASS FR64X:$src, VR128X)))>;
def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadf64 addr:$src))),
(v2f64 VR128X:$src0)),
(VMOVDDUPZ128rmk VR128X:$src0, VK2WM:$mask, addr:$src)>;
def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadf64 addr:$src))),
(bitconvert (v4i32 immAllZerosV))),
(VMOVDDUPZ128rmkz VK2WM:$mask, addr:$src)>;
def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadv2f64 addr:$src))),
(v2f64 VR128X:$src0)),
(VMOVDDUPZ128rmk VR128X:$src0, VK2WM:$mask, addr:$src)>;
def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadv2f64 addr:$src))),
(bitconvert (v4i32 immAllZerosV))),
(VMOVDDUPZ128rmkz VK2WM:$mask, addr:$src)>;
}
//===----------------------------------------------------------------------===//
// AVX-512 - Unpack Instructions
//===----------------------------------------------------------------------===//
defm VUNPCKH : avx512_fp_binop_p<0x15, "vunpckh", X86Unpckh, HasAVX512,
SchedWriteFShuffleSizes, 0, 1>;
defm VUNPCKL : avx512_fp_binop_p<0x14, "vunpckl", X86Unpckl, HasAVX512,
SchedWriteFShuffleSizes>;
defm VPUNPCKLBW : avx512_binop_rm_vl_b<0x60, "vpunpcklbw", X86Unpckl,
SchedWriteShuffle, HasBWI>;
defm VPUNPCKHBW : avx512_binop_rm_vl_b<0x68, "vpunpckhbw", X86Unpckh,
SchedWriteShuffle, HasBWI>;
defm VPUNPCKLWD : avx512_binop_rm_vl_w<0x61, "vpunpcklwd", X86Unpckl,
SchedWriteShuffle, HasBWI>;
defm VPUNPCKHWD : avx512_binop_rm_vl_w<0x69, "vpunpckhwd", X86Unpckh,
SchedWriteShuffle, HasBWI>;
defm VPUNPCKLDQ : avx512_binop_rm_vl_d<0x62, "vpunpckldq", X86Unpckl,
SchedWriteShuffle, HasAVX512>;
defm VPUNPCKHDQ : avx512_binop_rm_vl_d<0x6A, "vpunpckhdq", X86Unpckh,
SchedWriteShuffle, HasAVX512>;
defm VPUNPCKLQDQ : avx512_binop_rm_vl_q<0x6C, "vpunpcklqdq", X86Unpckl,
SchedWriteShuffle, HasAVX512>;
defm VPUNPCKHQDQ : avx512_binop_rm_vl_q<0x6D, "vpunpckhqdq", X86Unpckh,
SchedWriteShuffle, HasAVX512>;
//===----------------------------------------------------------------------===//
// AVX-512 - Extract & Insert Integer Instructions
//===----------------------------------------------------------------------===//
multiclass avx512_extract_elt_bw_m<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86VectorVTInfo _> {
def mr : AVX512Ii8<opc, MRMDestMem, (outs),
(ins _.ScalarMemOp:$dst, _.RC:$src1, u8imm:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(store (_.EltVT (trunc (OpNode (_.VT _.RC:$src1), imm:$src2))),
addr:$dst)]>,
EVEX, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteVecExtractSt]>;
}
multiclass avx512_extract_elt_b<string OpcodeStr, X86VectorVTInfo _> {
let Predicates = [HasBWI] in {
def rr : AVX512Ii8<0x14, MRMDestReg, (outs GR32orGR64:$dst),
(ins _.RC:$src1, u8imm:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32orGR64:$dst,
(X86pextrb (_.VT _.RC:$src1), imm:$src2))]>,
EVEX, TAPD, Sched<[WriteVecExtract]>;
defm NAME : avx512_extract_elt_bw_m<0x14, OpcodeStr, X86pextrb, _>, TAPD;
}
}
multiclass avx512_extract_elt_w<string OpcodeStr, X86VectorVTInfo _> {
let Predicates = [HasBWI] in {
def rr : AVX512Ii8<0xC5, MRMSrcReg, (outs GR32orGR64:$dst),
(ins _.RC:$src1, u8imm:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32orGR64:$dst,
(X86pextrw (_.VT _.RC:$src1), imm:$src2))]>,
EVEX, PD, Sched<[WriteVecExtract]>;
let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in
def rr_REV : AVX512Ii8<0x15, MRMDestReg, (outs GR32orGR64:$dst),
(ins _.RC:$src1, u8imm:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
EVEX, TAPD, FoldGenData<NAME#rr>,
Sched<[WriteVecExtract]>;
defm NAME : avx512_extract_elt_bw_m<0x15, OpcodeStr, X86pextrw, _>, TAPD;
}
}
multiclass avx512_extract_elt_dq<string OpcodeStr, X86VectorVTInfo _,
RegisterClass GRC> {
let Predicates = [HasDQI] in {
def rr : AVX512Ii8<0x16, MRMDestReg, (outs GRC:$dst),
(ins _.RC:$src1, u8imm:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GRC:$dst,
(extractelt (_.VT _.RC:$src1), imm:$src2))]>,
EVEX, TAPD, Sched<[WriteVecExtract]>;
def mr : AVX512Ii8<0x16, MRMDestMem, (outs),
(ins _.ScalarMemOp:$dst, _.RC:$src1, u8imm:$src2),
OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(store (extractelt (_.VT _.RC:$src1),
imm:$src2),addr:$dst)]>,
EVEX, EVEX_CD8<_.EltSize, CD8VT1>, TAPD,
Sched<[WriteVecExtractSt]>;
}
}
defm VPEXTRBZ : avx512_extract_elt_b<"vpextrb", v16i8x_info>, VEX_WIG;
defm VPEXTRWZ : avx512_extract_elt_w<"vpextrw", v8i16x_info>, VEX_WIG;
defm VPEXTRDZ : avx512_extract_elt_dq<"vpextrd", v4i32x_info, GR32>;
defm VPEXTRQZ : avx512_extract_elt_dq<"vpextrq", v2i64x_info, GR64>, VEX_W;
multiclass avx512_insert_elt_m<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86VectorVTInfo _, PatFrag LdFrag> {
def rm : AVX512Ii8<opc, MRMSrcMem, (outs _.RC:$dst),
(ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3),
OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set _.RC:$dst,
(_.VT (OpNode _.RC:$src1, (LdFrag addr:$src2), imm:$src3)))]>,
EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteVecInsert.Folded, WriteVecInsert.ReadAfterFold]>;
}
multiclass avx512_insert_elt_bw<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86VectorVTInfo _, PatFrag LdFrag> {
let Predicates = [HasBWI] in {
def rr : AVX512Ii8<opc, MRMSrcReg, (outs _.RC:$dst),
(ins _.RC:$src1, GR32orGR64:$src2, u8imm:$src3),
OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set _.RC:$dst,
(OpNode _.RC:$src1, GR32orGR64:$src2, imm:$src3))]>, EVEX_4V,
Sched<[WriteVecInsert]>;
defm NAME : avx512_insert_elt_m<opc, OpcodeStr, OpNode, _, LdFrag>;
}
}
multiclass avx512_insert_elt_dq<bits<8> opc, string OpcodeStr,
X86VectorVTInfo _, RegisterClass GRC> {
let Predicates = [HasDQI] in {
def rr : AVX512Ii8<opc, MRMSrcReg, (outs _.RC:$dst),
(ins _.RC:$src1, GRC:$src2, u8imm:$src3),
OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
[(set _.RC:$dst,
(_.VT (insertelt _.RC:$src1, GRC:$src2, imm:$src3)))]>,
EVEX_4V, TAPD, Sched<[WriteVecInsert]>;
defm NAME : avx512_insert_elt_m<opc, OpcodeStr, insertelt, _,
_.ScalarLdFrag>, TAPD;
}
}
defm VPINSRBZ : avx512_insert_elt_bw<0x20, "vpinsrb", X86pinsrb, v16i8x_info,
extloadi8>, TAPD, VEX_WIG;
defm VPINSRWZ : avx512_insert_elt_bw<0xC4, "vpinsrw", X86pinsrw, v8i16x_info,
extloadi16>, PD, VEX_WIG;
defm VPINSRDZ : avx512_insert_elt_dq<0x22, "vpinsrd", v4i32x_info, GR32>;
defm VPINSRQZ : avx512_insert_elt_dq<0x22, "vpinsrq", v2i64x_info, GR64>, VEX_W;
//===----------------------------------------------------------------------===//
// VSHUFPS - VSHUFPD Operations
//===----------------------------------------------------------------------===//
multiclass avx512_shufp<string OpcodeStr, AVX512VLVectorVTInfo VTInfo_I,
AVX512VLVectorVTInfo VTInfo_FP>{
defm NAME: avx512_common_3Op_imm8<OpcodeStr, VTInfo_FP, 0xC6, X86Shufp,
SchedWriteFShuffle>,
EVEX_CD8<VTInfo_FP.info512.EltSize, CD8VF>,
AVX512AIi8Base, EVEX_4V;
}
defm VSHUFPS: avx512_shufp<"vshufps", avx512vl_i32_info, avx512vl_f32_info>, PS;
defm VSHUFPD: avx512_shufp<"vshufpd", avx512vl_i64_info, avx512vl_f64_info>, PD, VEX_W;
//===----------------------------------------------------------------------===//
// AVX-512 - Byte shift Left/Right
//===----------------------------------------------------------------------===//
// FIXME: The SSE/AVX names are PSLLDQri etc. - should we add the i here as well?
multiclass avx512_shift_packed<bits<8> opc, SDNode OpNode, Format MRMr,
Format MRMm, string OpcodeStr,
X86FoldableSchedWrite sched, X86VectorVTInfo _>{
def rr : AVX512<opc, MRMr,
(outs _.RC:$dst), (ins _.RC:$src1, u8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.RC:$dst,(_.VT (OpNode _.RC:$src1, (i8 imm:$src2))))]>,
Sched<[sched]>;
def rm : AVX512<opc, MRMm,
(outs _.RC:$dst), (ins _.MemOp:$src1, u8imm:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _.RC:$dst,(_.VT (OpNode
(_.VT (bitconvert (_.LdFrag addr:$src1))),
(i8 imm:$src2))))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_shift_packed_all<bits<8> opc, SDNode OpNode, Format MRMr,
Format MRMm, string OpcodeStr,
X86SchedWriteWidths sched, Predicate prd>{
let Predicates = [prd] in
defm Z : avx512_shift_packed<opc, OpNode, MRMr, MRMm, OpcodeStr,
sched.ZMM, v64i8_info>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_shift_packed<opc, OpNode, MRMr, MRMm, OpcodeStr,
sched.YMM, v32i8x_info>, EVEX_V256;
defm Z128 : avx512_shift_packed<opc, OpNode, MRMr, MRMm, OpcodeStr,
sched.XMM, v16i8x_info>, EVEX_V128;
}
}
defm VPSLLDQ : avx512_shift_packed_all<0x73, X86vshldq, MRM7r, MRM7m, "vpslldq",
SchedWriteShuffle, HasBWI>,
AVX512PDIi8Base, EVEX_4V, VEX_WIG;
defm VPSRLDQ : avx512_shift_packed_all<0x73, X86vshrdq, MRM3r, MRM3m, "vpsrldq",
SchedWriteShuffle, HasBWI>,
AVX512PDIi8Base, EVEX_4V, VEX_WIG;
multiclass avx512_psadbw_packed<bits<8> opc, SDNode OpNode,
string OpcodeStr, X86FoldableSchedWrite sched,
X86VectorVTInfo _dst, X86VectorVTInfo _src> {
def rr : AVX512BI<opc, MRMSrcReg,
(outs _dst.RC:$dst), (ins _src.RC:$src1, _src.RC:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _dst.RC:$dst,(_dst.VT
(OpNode (_src.VT _src.RC:$src1),
(_src.VT _src.RC:$src2))))]>,
Sched<[sched]>;
def rm : AVX512BI<opc, MRMSrcMem,
(outs _dst.RC:$dst), (ins _src.RC:$src1, _src.MemOp:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set _dst.RC:$dst,(_dst.VT
(OpNode (_src.VT _src.RC:$src1),
(_src.VT (bitconvert
(_src.LdFrag addr:$src2))))))]>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass avx512_psadbw_packed_all<bits<8> opc, SDNode OpNode,
string OpcodeStr, X86SchedWriteWidths sched,
Predicate prd> {
let Predicates = [prd] in
defm Z : avx512_psadbw_packed<opc, OpNode, OpcodeStr, sched.ZMM,
v8i64_info, v64i8_info>, EVEX_V512;
let Predicates = [prd, HasVLX] in {
defm Z256 : avx512_psadbw_packed<opc, OpNode, OpcodeStr, sched.YMM,
v4i64x_info, v32i8x_info>, EVEX_V256;
defm Z128 : avx512_psadbw_packed<opc, OpNode, OpcodeStr, sched.XMM,
v2i64x_info, v16i8x_info>, EVEX_V128;
}
}
defm VPSADBW : avx512_psadbw_packed_all<0xf6, X86psadbw, "vpsadbw",
SchedWritePSADBW, HasBWI>, EVEX_4V, VEX_WIG;
// Transforms to swizzle an immediate to enable better matching when
// memory operand isn't in the right place.
def VPTERNLOG321_imm8 : SDNodeXForm<imm, [{
// Convert a VPTERNLOG immediate by swapping operand 0 and operand 2.
uint8_t Imm = N->getZExtValue();
// Swap bits 1/4 and 3/6.
uint8_t NewImm = Imm & 0xa5;
if (Imm & 0x02) NewImm |= 0x10;
if (Imm & 0x10) NewImm |= 0x02;
if (Imm & 0x08) NewImm |= 0x40;
if (Imm & 0x40) NewImm |= 0x08;
return getI8Imm(NewImm, SDLoc(N));
}]>;
def VPTERNLOG213_imm8 : SDNodeXForm<imm, [{
// Convert a VPTERNLOG immediate by swapping operand 1 and operand 2.
uint8_t Imm = N->getZExtValue();
// Swap bits 2/4 and 3/5.
uint8_t NewImm = Imm & 0xc3;
if (Imm & 0x04) NewImm |= 0x10;
if (Imm & 0x10) NewImm |= 0x04;
if (Imm & 0x08) NewImm |= 0x20;
if (Imm & 0x20) NewImm |= 0x08;
return getI8Imm(NewImm, SDLoc(N));
}]>;
def VPTERNLOG132_imm8 : SDNodeXForm<imm, [{
// Convert a VPTERNLOG immediate by swapping operand 1 and operand 2.
uint8_t Imm = N->getZExtValue();
// Swap bits 1/2 and 5/6.
uint8_t NewImm = Imm & 0x99;
if (Imm & 0x02) NewImm |= 0x04;
if (Imm & 0x04) NewImm |= 0x02;
if (Imm & 0x20) NewImm |= 0x40;
if (Imm & 0x40) NewImm |= 0x20;
return getI8Imm(NewImm, SDLoc(N));
}]>;
def VPTERNLOG231_imm8 : SDNodeXForm<imm, [{
// Convert a VPTERNLOG immediate by moving operand 1 to the end.
uint8_t Imm = N->getZExtValue();
// Move bits 1->2, 2->4, 3->6, 4->1, 5->3, 6->5
uint8_t NewImm = Imm & 0x81;
if (Imm & 0x02) NewImm |= 0x04;
if (Imm & 0x04) NewImm |= 0x10;
if (Imm & 0x08) NewImm |= 0x40;
if (Imm & 0x10) NewImm |= 0x02;
if (Imm & 0x20) NewImm |= 0x08;
if (Imm & 0x40) NewImm |= 0x20;
return getI8Imm(NewImm, SDLoc(N));
}]>;
def VPTERNLOG312_imm8 : SDNodeXForm<imm, [{
// Convert a VPTERNLOG immediate by moving operand 2 to the beginning.
uint8_t Imm = N->getZExtValue();
// Move bits 1->4, 2->1, 3->5, 4->2, 5->6, 6->3
uint8_t NewImm = Imm & 0x81;
if (Imm & 0x02) NewImm |= 0x10;
if (Imm & 0x04) NewImm |= 0x02;
if (Imm & 0x08) NewImm |= 0x20;
if (Imm & 0x10) NewImm |= 0x04;
if (Imm & 0x20) NewImm |= 0x40;
if (Imm & 0x40) NewImm |= 0x08;
return getI8Imm(NewImm, SDLoc(N));
}]>;
multiclass avx512_ternlog<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
string Name>{
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, u8imm:$src4),
OpcodeStr, "$src4, $src3, $src2", "$src2, $src3, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(_.VT _.RC:$src3),
(i8 imm:$src4)), 1, 1>,
AVX512AIi8Base, EVEX_4V, Sched<[sched]>;
defm rmi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.MemOp:$src3, u8imm:$src4),
OpcodeStr, "$src4, $src3, $src2", "$src2, $src3, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(_.VT (bitconvert (_.LdFrag addr:$src3))),
(i8 imm:$src4)), 1, 0>,
AVX512AIi8Base, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmbi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3, u8imm:$src4),
OpcodeStr, "$src4, ${src3}"##_.BroadcastStr##", $src2",
"$src2, ${src3}"##_.BroadcastStr##", $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src3))),
(i8 imm:$src4)), 1, 0>, EVEX_B,
AVX512AIi8Base, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}// Constraints = "$src1 = $dst"
// Additional patterns for matching passthru operand in other positions.
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src3, _.RC:$src2, _.RC:$src1, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rrik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, _.RC:$src3, (VPTERNLOG321_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src2, _.RC:$src1, _.RC:$src3, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rrik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, _.RC:$src3, (VPTERNLOG213_imm8 imm:$src4))>;
// Additional patterns for matching loads in other positions.
def : Pat<(_.VT (OpNode (bitconvert (_.LdFrag addr:$src3)),
_.RC:$src2, _.RC:$src1, (i8 imm:$src4))),
(!cast<Instruction>(Name#_.ZSuffix#rmi) _.RC:$src1, _.RC:$src2,
addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>;
def : Pat<(_.VT (OpNode _.RC:$src1,
(bitconvert (_.LdFrag addr:$src3)),
_.RC:$src2, (i8 imm:$src4))),
(!cast<Instruction>(Name#_.ZSuffix#rmi) _.RC:$src1, _.RC:$src2,
addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>;
// Additional patterns for matching zero masking with loads in other
// positions.
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode (bitconvert (_.LdFrag addr:$src3)),
_.RC:$src2, _.RC:$src1, (i8 imm:$src4)),
_.ImmAllZerosV)),
(!cast<Instruction>(Name#_.ZSuffix#rmikz) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)),
_.RC:$src2, (i8 imm:$src4)),
_.ImmAllZerosV)),
(!cast<Instruction>(Name#_.ZSuffix#rmikz) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>;
// Additional patterns for matching masked loads with different
// operand orders.
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)),
_.RC:$src2, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode (bitconvert (_.LdFrag addr:$src3)),
_.RC:$src2, _.RC:$src1, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src2, _.RC:$src1,
(bitconvert (_.LdFrag addr:$src3)), (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG213_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src2, (bitconvert (_.LdFrag addr:$src3)),
_.RC:$src1, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG231_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode (bitconvert (_.LdFrag addr:$src3)),
_.RC:$src1, _.RC:$src2, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG312_imm8 imm:$src4))>;
// Additional patterns for matching broadcasts in other positions.
def : Pat<(_.VT (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src2, _.RC:$src1, (i8 imm:$src4))),
(!cast<Instruction>(Name#_.ZSuffix#rmbi) _.RC:$src1, _.RC:$src2,
addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>;
def : Pat<(_.VT (OpNode _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src2, (i8 imm:$src4))),
(!cast<Instruction>(Name#_.ZSuffix#rmbi) _.RC:$src1, _.RC:$src2,
addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>;
// Additional patterns for matching zero masking with broadcasts in other
// positions.
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src2, _.RC:$src1, (i8 imm:$src4)),
_.ImmAllZerosV)),
(!cast<Instruction>(Name#_.ZSuffix#rmbikz) _.RC:$src1,
_.KRCWM:$mask, _.RC:$src2, addr:$src3,
(VPTERNLOG321_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src2, (i8 imm:$src4)),
_.ImmAllZerosV)),
(!cast<Instruction>(Name#_.ZSuffix#rmbikz) _.RC:$src1,
_.KRCWM:$mask, _.RC:$src2, addr:$src3,
(VPTERNLOG132_imm8 imm:$src4))>;
// Additional patterns for matching masked broadcasts with different
// operand orders.
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src2, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src2, _.RC:$src1, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src2, _.RC:$src1,
(X86VBroadcast (_.ScalarLdFrag addr:$src3)),
(i8 imm:$src4)), _.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG213_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode _.RC:$src2,
(X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src1, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG231_imm8 imm:$src4))>;
def : Pat<(_.VT (vselect _.KRCWM:$mask,
(OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)),
_.RC:$src1, _.RC:$src2, (i8 imm:$src4)),
_.RC:$src1)),
(!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask,
_.RC:$src2, addr:$src3, (VPTERNLOG312_imm8 imm:$src4))>;
}
multiclass avx512_common_ternlog<string OpcodeStr, X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _> {
let Predicates = [HasAVX512] in
defm Z : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, sched.ZMM,
_.info512, NAME>, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in {
defm Z128 : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, sched.XMM,
_.info128, NAME>, EVEX_V128;
defm Z256 : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, sched.YMM,
_.info256, NAME>, EVEX_V256;
}
}
defm VPTERNLOGD : avx512_common_ternlog<"vpternlogd", SchedWriteVecALU,
avx512vl_i32_info>;
defm VPTERNLOGQ : avx512_common_ternlog<"vpternlogq", SchedWriteVecALU,
avx512vl_i64_info>, VEX_W;
// Patterns to implement vnot using vpternlog instead of creating all ones
// using pcmpeq or vpternlog and then xoring with that. The value 15 is chosen
// so that the result is only dependent on src0. But we use the same source
// for all operands to prevent a false dependency.
// TODO: We should maybe have a more generalized algorithm for folding to
// vpternlog.
let Predicates = [HasAVX512] in {
def : Pat<(xor VR512:$src, (bc_v64i8 (v16i32 immAllOnesV))),
(VPTERNLOGQZrri VR512:$src, VR512:$src, VR512:$src, (i8 15))>;
def : Pat<(xor VR512:$src, (bc_v32i16 (v16i32 immAllOnesV))),
(VPTERNLOGQZrri VR512:$src, VR512:$src, VR512:$src, (i8 15))>;
def : Pat<(xor VR512:$src, (bc_v16i32 (v16i32 immAllOnesV))),
(VPTERNLOGQZrri VR512:$src, VR512:$src, VR512:$src, (i8 15))>;
def : Pat<(xor VR512:$src, (bc_v8i64 (v16i32 immAllOnesV))),
(VPTERNLOGQZrri VR512:$src, VR512:$src, VR512:$src, (i8 15))>;
}
let Predicates = [HasAVX512, NoVLX] in {
def : Pat<(xor VR128X:$src, (bc_v16i8 (v4i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(i8 15)), sub_xmm)>;
def : Pat<(xor VR128X:$src, (bc_v8i16 (v4i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(i8 15)), sub_xmm)>;
def : Pat<(xor VR128X:$src, (bc_v4i32 (v4i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(i8 15)), sub_xmm)>;
def : Pat<(xor VR128X:$src, (bc_v2i64 (v4i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm),
(i8 15)), sub_xmm)>;
def : Pat<(xor VR256X:$src, (bc_v32i8 (v8i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(i8 15)), sub_ymm)>;
def : Pat<(xor VR256X:$src, (bc_v16i16 (v8i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(i8 15)), sub_ymm)>;
def : Pat<(xor VR256X:$src, (bc_v8i32 (v8i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(i8 15)), sub_ymm)>;
def : Pat<(xor VR256X:$src, (bc_v4i64 (v8i32 immAllOnesV))),
(EXTRACT_SUBREG
(VPTERNLOGQZrri
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm),
(i8 15)), sub_ymm)>;
}
let Predicates = [HasVLX] in {
def : Pat<(xor VR128X:$src, (bc_v16i8 (v4i32 immAllOnesV))),
(VPTERNLOGQZ128rri VR128X:$src, VR128X:$src, VR128X:$src, (i8 15))>;
def : Pat<(xor VR128X:$src, (bc_v8i16 (v4i32 immAllOnesV))),
(VPTERNLOGQZ128rri VR128X:$src, VR128X:$src, VR128X:$src, (i8 15))>;
def : Pat<(xor VR128X:$src, (bc_v4i32 (v4i32 immAllOnesV))),
(VPTERNLOGQZ128rri VR128X:$src, VR128X:$src, VR128X:$src, (i8 15))>;
def : Pat<(xor VR128X:$src, (bc_v2i64 (v4i32 immAllOnesV))),
(VPTERNLOGQZ128rri VR128X:$src, VR128X:$src, VR128X:$src, (i8 15))>;
def : Pat<(xor VR256X:$src, (bc_v32i8 (v8i32 immAllOnesV))),
(VPTERNLOGQZ256rri VR256X:$src, VR256X:$src, VR256X:$src, (i8 15))>;
def : Pat<(xor VR256X:$src, (bc_v16i16 (v8i32 immAllOnesV))),
(VPTERNLOGQZ256rri VR256X:$src, VR256X:$src, VR256X:$src, (i8 15))>;
def : Pat<(xor VR256X:$src, (bc_v8i32 (v8i32 immAllOnesV))),
(VPTERNLOGQZ256rri VR256X:$src, VR256X:$src, VR256X:$src, (i8 15))>;
def : Pat<(xor VR256X:$src, (bc_v4i64 (v8i32 immAllOnesV))),
(VPTERNLOGQZ256rri VR256X:$src, VR256X:$src, VR256X:$src, (i8 15))>;
}
//===----------------------------------------------------------------------===//
// AVX-512 - FixupImm
//===----------------------------------------------------------------------===//
multiclass avx512_fixupimm_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
X86VectorVTInfo TblVT>{
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4),
OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(TblVT.VT _.RC:$src3),
(i32 imm:$src4),
(i32 FROUND_CURRENT))>, Sched<[sched]>;
defm rmi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.MemOp:$src3, i32u8imm:$src4),
OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(TblVT.VT (bitconvert (TblVT.LdFrag addr:$src3))),
(i32 imm:$src4),
(i32 FROUND_CURRENT))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmbi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3, i32u8imm:$src4),
OpcodeStr##_.Suffix, "$src4, ${src3}"##_.BroadcastStr##", $src2",
"$src2, ${src3}"##_.BroadcastStr##", $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(TblVT.VT (X86VBroadcast(TblVT.ScalarLdFrag addr:$src3))),
(i32 imm:$src4),
(i32 FROUND_CURRENT))>,
EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
} // Constraints = "$src1 = $dst"
}
multiclass avx512_fixupimm_packed_sae<bits<8> opc, string OpcodeStr,
SDNode OpNode, X86FoldableSchedWrite sched,
X86VectorVTInfo _, X86VectorVTInfo TblVT>{
let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in {
defm rrib : AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4),
OpcodeStr##_.Suffix, "$src4, {sae}, $src3, $src2",
"$src2, $src3, {sae}, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(TblVT.VT _.RC:$src3),
(i32 imm:$src4),
(i32 FROUND_NO_EXC))>,
EVEX_B, Sched<[sched]>;
}
}
multiclass avx512_fixupimm_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo _,
X86VectorVTInfo _src3VT> {
let Constraints = "$src1 = $dst" , Predicates = [HasAVX512],
ExeDomain = _.ExeDomain in {
defm rri : AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4),
OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(_src3VT.VT _src3VT.RC:$src3),
(i32 imm:$src4),
(i32 FROUND_CURRENT))>, Sched<[sched]>;
defm rrib : AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4),
OpcodeStr##_.Suffix, "$src4, {sae}, $src3, $src2",
"$src2, $src3, {sae}, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(_src3VT.VT _src3VT.RC:$src3),
(i32 imm:$src4),
(i32 FROUND_NO_EXC))>,
EVEX_B, Sched<[sched.Folded, sched.ReadAfterFold]>;
defm rmi : AVX512_maskable_3src_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst),
(ins _.RC:$src2, _.ScalarMemOp:$src3, i32u8imm:$src4),
OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4",
(OpNode (_.VT _.RC:$src1),
(_.VT _.RC:$src2),
(_src3VT.VT (scalar_to_vector
(_src3VT.ScalarLdFrag addr:$src3))),
(i32 imm:$src4),
(i32 FROUND_CURRENT))>,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass avx512_fixupimm_packed_all<X86SchedWriteWidths sched,
AVX512VLVectorVTInfo _Vec,
AVX512VLVectorVTInfo _Tbl> {
let Predicates = [HasAVX512] in
defm Z : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, sched.ZMM,
_Vec.info512, _Tbl.info512>,
avx512_fixupimm_packed_sae<0x54, "vfixupimm", X86VFixupimm, sched.ZMM,
_Vec.info512, _Tbl.info512>, AVX512AIi8Base,
EVEX_4V, EVEX_V512;
let Predicates = [HasAVX512, HasVLX] in {
defm Z128 : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, sched.XMM,
_Vec.info128, _Tbl.info128>, AVX512AIi8Base,
EVEX_4V, EVEX_V128;
defm Z256 : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, sched.YMM,
_Vec.info256, _Tbl.info256>, AVX512AIi8Base,
EVEX_4V, EVEX_V256;
}
}
defm VFIXUPIMMSSZ : avx512_fixupimm_scalar<0x55, "vfixupimm", X86VFixupimmScalar,
SchedWriteFAdd.Scl, f32x_info, v4i32x_info>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>;
defm VFIXUPIMMSDZ : avx512_fixupimm_scalar<0x55, "vfixupimm", X86VFixupimmScalar,
SchedWriteFAdd.Scl, f64x_info, v2i64x_info>,
AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W;
defm VFIXUPIMMPS : avx512_fixupimm_packed_all<SchedWriteFAdd, avx512vl_f32_info,
avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
defm VFIXUPIMMPD : avx512_fixupimm_packed_all<SchedWriteFAdd, avx512vl_f64_info,
avx512vl_i64_info>, EVEX_CD8<64, CD8VF>, VEX_W;
// Patterns used to select SSE scalar fp arithmetic instructions from
// either:
//
// (1) a scalar fp operation followed by a blend
//
// The effect is that the backend no longer emits unnecessary vector
// insert instructions immediately after SSE scalar fp instructions
// like addss or mulss.
//
// For example, given the following code:
// __m128 foo(__m128 A, __m128 B) {
// A[0] += B[0];
// return A;
// }
//
// Previously we generated:
// addss %xmm0, %xmm1
// movss %xmm1, %xmm0
//
// We now generate:
// addss %xmm1, %xmm0
//
// (2) a vector packed single/double fp operation followed by a vector insert
//
// The effect is that the backend converts the packed fp instruction
// followed by a vector insert into a single SSE scalar fp instruction.
//
// For example, given the following code:
// __m128 foo(__m128 A, __m128 B) {
// __m128 C = A + B;
// return (__m128) {c[0], a[1], a[2], a[3]};
// }
//
// Previously we generated:
// addps %xmm0, %xmm1
// movss %xmm1, %xmm0
//
// We now generate:
// addss %xmm1, %xmm0
// TODO: Some canonicalization in lowering would simplify the number of
// patterns we have to try to match.
multiclass AVX512_scalar_math_fp_patterns<SDNode Op, string OpcPrefix, SDNode MoveNode,
X86VectorVTInfo _, PatLeaf ZeroFP> {
let Predicates = [HasAVX512] in {
// extracted scalar math op with insert via movss
def : Pat<(MoveNode
(_.VT VR128X:$dst),
(_.VT (scalar_to_vector
(Op (_.EltVT (extractelt (_.VT VR128X:$dst), (iPTR 0))),
_.FRC:$src)))),
(!cast<Instruction>("V"#OpcPrefix#Zrr_Int) _.VT:$dst,
(_.VT (COPY_TO_REGCLASS _.FRC:$src, VR128X)))>;
// extracted masked scalar math op with insert via movss
def : Pat<(MoveNode (_.VT VR128X:$src1),
(scalar_to_vector
(X86selects VK1WM:$mask,
(Op (_.EltVT
(extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src2),
_.FRC:$src0))),
(!cast<Instruction>("V"#OpcPrefix#Zrr_Intk)
(_.VT (COPY_TO_REGCLASS _.FRC:$src0, VR128X)),
VK1WM:$mask, _.VT:$src1,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)))>;
// extracted masked scalar math op with insert via movss
def : Pat<(MoveNode (_.VT VR128X:$src1),
(scalar_to_vector
(X86selects VK1WM:$mask,
(Op (_.EltVT
(extractelt (_.VT VR128X:$src1), (iPTR 0))),
_.FRC:$src2), (_.EltVT ZeroFP)))),
(!cast<I>("V"#OpcPrefix#Zrr_Intkz)
VK1WM:$mask, _.VT:$src1,
(_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)))>;
}
}
defm : AVX512_scalar_math_fp_patterns<fadd, "ADDSS", X86Movss, v4f32x_info, fp32imm0>;
defm : AVX512_scalar_math_fp_patterns<fsub, "SUBSS", X86Movss, v4f32x_info, fp32imm0>;
defm : AVX512_scalar_math_fp_patterns<fmul, "MULSS", X86Movss, v4f32x_info, fp32imm0>;
defm : AVX512_scalar_math_fp_patterns<fdiv, "DIVSS", X86Movss, v4f32x_info, fp32imm0>;
defm : AVX512_scalar_math_fp_patterns<fadd, "ADDSD", X86Movsd, v2f64x_info, fp64imm0>;
defm : AVX512_scalar_math_fp_patterns<fsub, "SUBSD", X86Movsd, v2f64x_info, fp64imm0>;
defm : AVX512_scalar_math_fp_patterns<fmul, "MULSD", X86Movsd, v2f64x_info, fp64imm0>;
defm : AVX512_scalar_math_fp_patterns<fdiv, "DIVSD", X86Movsd, v2f64x_info, fp64imm0>;
multiclass AVX512_scalar_unary_math_patterns<SDNode OpNode, string OpcPrefix,
SDNode Move, X86VectorVTInfo _> {
let Predicates = [HasAVX512] in {
def : Pat<(_.VT (Move _.VT:$dst,
(scalar_to_vector (OpNode (extractelt _.VT:$src, 0))))),
(!cast<Instruction>("V"#OpcPrefix#Zr_Int) _.VT:$dst, _.VT:$src)>;
}
}
defm : AVX512_scalar_unary_math_patterns<fsqrt, "SQRTSS", X86Movss, v4f32x_info>;
defm : AVX512_scalar_unary_math_patterns<fsqrt, "SQRTSD", X86Movsd, v2f64x_info>;
multiclass AVX512_scalar_unary_math_imm_patterns<SDNode OpNode, string OpcPrefix,
SDNode Move, X86VectorVTInfo _,
bits<8> ImmV> {
let Predicates = [HasAVX512] in {
def : Pat<(_.VT (Move _.VT:$dst,
(scalar_to_vector (OpNode (extractelt _.VT:$src, 0))))),
(!cast<Instruction>("V"#OpcPrefix#Zr_Int) _.VT:$dst, _.VT:$src,
(i32 ImmV))>;
}
}
defm : AVX512_scalar_unary_math_imm_patterns<ffloor, "RNDSCALESS", X86Movss,
v4f32x_info, 0x01>;
defm : AVX512_scalar_unary_math_imm_patterns<fceil, "RNDSCALESS", X86Movss,
v4f32x_info, 0x02>;
defm : AVX512_scalar_unary_math_imm_patterns<ffloor, "RNDSCALESD", X86Movsd,
v2f64x_info, 0x01>;
defm : AVX512_scalar_unary_math_imm_patterns<fceil, "RNDSCALESD", X86Movsd,
v2f64x_info, 0x02>;
//===----------------------------------------------------------------------===//
// AES instructions
//===----------------------------------------------------------------------===//
multiclass avx512_vaes<bits<8> Op, string OpStr, string IntPrefix> {
let Predicates = [HasVLX, HasVAES] in {
defm Z128 : AESI_binop_rm_int<Op, OpStr,
!cast<Intrinsic>(IntPrefix),
loadv2i64, 0, VR128X, i128mem>,
EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V128, VEX_WIG;
defm Z256 : AESI_binop_rm_int<Op, OpStr,
!cast<Intrinsic>(IntPrefix##"_256"),
loadv4i64, 0, VR256X, i256mem>,
EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V256, VEX_WIG;
}
let Predicates = [HasAVX512, HasVAES] in
defm Z : AESI_binop_rm_int<Op, OpStr,
!cast<Intrinsic>(IntPrefix##"_512"),
loadv8i64, 0, VR512, i512mem>,
EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V512, VEX_WIG;
}
defm VAESENC : avx512_vaes<0xDC, "vaesenc", "int_x86_aesni_aesenc">;
defm VAESENCLAST : avx512_vaes<0xDD, "vaesenclast", "int_x86_aesni_aesenclast">;
defm VAESDEC : avx512_vaes<0xDE, "vaesdec", "int_x86_aesni_aesdec">;
defm VAESDECLAST : avx512_vaes<0xDF, "vaesdeclast", "int_x86_aesni_aesdeclast">;
//===----------------------------------------------------------------------===//
// PCLMUL instructions - Carry less multiplication
//===----------------------------------------------------------------------===//
let Predicates = [HasAVX512, HasVPCLMULQDQ] in
defm VPCLMULQDQZ : vpclmulqdq<VR512, i512mem, loadv8i64, int_x86_pclmulqdq_512>,
EVEX_4V, EVEX_V512, EVEX_CD8<64, CD8VF>, VEX_WIG;
let Predicates = [HasVLX, HasVPCLMULQDQ] in {
defm VPCLMULQDQZ128 : vpclmulqdq<VR128X, i128mem, loadv2i64, int_x86_pclmulqdq>,
EVEX_4V, EVEX_V128, EVEX_CD8<64, CD8VF>, VEX_WIG;
defm VPCLMULQDQZ256: vpclmulqdq<VR256X, i256mem, loadv4i64,
int_x86_pclmulqdq_256>, EVEX_4V, EVEX_V256,
EVEX_CD8<64, CD8VF>, VEX_WIG;
}
// Aliases
defm : vpclmulqdq_aliases<"VPCLMULQDQZ", VR512, i512mem>;
defm : vpclmulqdq_aliases<"VPCLMULQDQZ128", VR128X, i128mem>;
defm : vpclmulqdq_aliases<"VPCLMULQDQZ256", VR256X, i256mem>;
//===----------------------------------------------------------------------===//
// VBMI2
//===----------------------------------------------------------------------===//
multiclass VBMI2_shift_var_rm<bits<8> Op, string OpStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo VTI> {
let Constraints = "$src1 = $dst",
ExeDomain = VTI.ExeDomain in {
defm r: AVX512_maskable_3src<Op, MRMSrcReg, VTI, (outs VTI.RC:$dst),
(ins VTI.RC:$src2, VTI.RC:$src3), OpStr,
"$src3, $src2", "$src2, $src3",
(VTI.VT (OpNode VTI.RC:$src1, VTI.RC:$src2, VTI.RC:$src3))>,
AVX512FMA3Base, Sched<[sched]>;
defm m: AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst),
(ins VTI.RC:$src2, VTI.MemOp:$src3), OpStr,
"$src3, $src2", "$src2, $src3",
(VTI.VT (OpNode VTI.RC:$src1, VTI.RC:$src2,
(VTI.VT (VTI.LdFrag addr:$src3))))>,
AVX512FMA3Base,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
}
multiclass VBMI2_shift_var_rmb<bits<8> Op, string OpStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo VTI>
: VBMI2_shift_var_rm<Op, OpStr, OpNode, sched, VTI> {
let Constraints = "$src1 = $dst",
ExeDomain = VTI.ExeDomain in
defm mb: AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst),
(ins VTI.RC:$src2, VTI.ScalarMemOp:$src3), OpStr,
"${src3}"##VTI.BroadcastStr##", $src2",
"$src2, ${src3}"##VTI.BroadcastStr,
(OpNode VTI.RC:$src1, VTI.RC:$src2,
(VTI.VT (X86VBroadcast (VTI.ScalarLdFrag addr:$src3))))>,
AVX512FMA3Base, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass VBMI2_shift_var_rm_common<bits<8> Op, string OpStr, SDNode OpNode,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTI> {
let Predicates = [HasVBMI2] in
defm Z : VBMI2_shift_var_rm<Op, OpStr, OpNode, sched.ZMM, VTI.info512>,
EVEX_V512;
let Predicates = [HasVBMI2, HasVLX] in {
defm Z256 : VBMI2_shift_var_rm<Op, OpStr, OpNode, sched.YMM, VTI.info256>,
EVEX_V256;
defm Z128 : VBMI2_shift_var_rm<Op, OpStr, OpNode, sched.XMM, VTI.info128>,
EVEX_V128;
}
}
multiclass VBMI2_shift_var_rmb_common<bits<8> Op, string OpStr, SDNode OpNode,
X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTI> {
let Predicates = [HasVBMI2] in
defm Z : VBMI2_shift_var_rmb<Op, OpStr, OpNode, sched.ZMM, VTI.info512>,
EVEX_V512;
let Predicates = [HasVBMI2, HasVLX] in {
defm Z256 : VBMI2_shift_var_rmb<Op, OpStr, OpNode, sched.YMM, VTI.info256>,
EVEX_V256;
defm Z128 : VBMI2_shift_var_rmb<Op, OpStr, OpNode, sched.XMM, VTI.info128>,
EVEX_V128;
}
}
multiclass VBMI2_shift_var<bits<8> wOp, bits<8> dqOp, string Prefix,
SDNode OpNode, X86SchedWriteWidths sched> {
defm W : VBMI2_shift_var_rm_common<wOp, Prefix##"w", OpNode, sched,
avx512vl_i16_info>, VEX_W, EVEX_CD8<16, CD8VF>;
defm D : VBMI2_shift_var_rmb_common<dqOp, Prefix##"d", OpNode, sched,
avx512vl_i32_info>, EVEX_CD8<32, CD8VF>;
defm Q : VBMI2_shift_var_rmb_common<dqOp, Prefix##"q", OpNode, sched,
avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>;
}
multiclass VBMI2_shift_imm<bits<8> wOp, bits<8> dqOp, string Prefix,
SDNode OpNode, X86SchedWriteWidths sched> {
defm W : avx512_common_3Op_rm_imm8<wOp, OpNode, Prefix##"w", sched,
avx512vl_i16_info, avx512vl_i16_info, HasVBMI2>,
VEX_W, EVEX_CD8<16, CD8VF>;
defm D : avx512_common_3Op_imm8<Prefix##"d", avx512vl_i32_info, dqOp,
OpNode, sched, HasVBMI2>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>;
defm Q : avx512_common_3Op_imm8<Prefix##"q", avx512vl_i64_info, dqOp, OpNode,
sched, HasVBMI2>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W;
}
// Concat & Shift
defm VPSHLDV : VBMI2_shift_var<0x70, 0x71, "vpshldv", X86VShldv, SchedWriteVecIMul>;
defm VPSHRDV : VBMI2_shift_var<0x72, 0x73, "vpshrdv", X86VShrdv, SchedWriteVecIMul>;
defm VPSHLD : VBMI2_shift_imm<0x70, 0x71, "vpshld", X86VShld, SchedWriteVecIMul>;
defm VPSHRD : VBMI2_shift_imm<0x72, 0x73, "vpshrd", X86VShrd, SchedWriteVecIMul>;
// Compress
defm VPCOMPRESSB : compress_by_elt_width<0x63, "vpcompressb", WriteVarShuffle256,
avx512vl_i8_info, HasVBMI2>, EVEX,
NotMemoryFoldable;
defm VPCOMPRESSW : compress_by_elt_width <0x63, "vpcompressw", WriteVarShuffle256,
avx512vl_i16_info, HasVBMI2>, EVEX, VEX_W,
NotMemoryFoldable;
// Expand
defm VPEXPANDB : expand_by_elt_width <0x62, "vpexpandb", WriteVarShuffle256,
avx512vl_i8_info, HasVBMI2>, EVEX;
defm VPEXPANDW : expand_by_elt_width <0x62, "vpexpandw", WriteVarShuffle256,
avx512vl_i16_info, HasVBMI2>, EVEX, VEX_W;
//===----------------------------------------------------------------------===//
// VNNI
//===----------------------------------------------------------------------===//
let Constraints = "$src1 = $dst" in
multiclass VNNI_rmb<bits<8> Op, string OpStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo VTI> {
defm r : AVX512_maskable_3src<Op, MRMSrcReg, VTI, (outs VTI.RC:$dst),
(ins VTI.RC:$src2, VTI.RC:$src3), OpStr,
"$src3, $src2", "$src2, $src3",
(VTI.VT (OpNode VTI.RC:$src1,
VTI.RC:$src2, VTI.RC:$src3))>,
EVEX_4V, T8PD, Sched<[sched]>;
defm m : AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst),
(ins VTI.RC:$src2, VTI.MemOp:$src3), OpStr,
"$src3, $src2", "$src2, $src3",
(VTI.VT (OpNode VTI.RC:$src1, VTI.RC:$src2,
(VTI.VT (VTI.LdFrag addr:$src3))))>,
EVEX_4V, EVEX_CD8<32, CD8VF>, T8PD,
Sched<[sched.Folded, sched.ReadAfterFold]>;
defm mb : AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst),
(ins VTI.RC:$src2, VTI.ScalarMemOp:$src3),
OpStr, "${src3}"##VTI.BroadcastStr##", $src2",
"$src2, ${src3}"##VTI.BroadcastStr,
(OpNode VTI.RC:$src1, VTI.RC:$src2,
(VTI.VT (X86VBroadcast
(VTI.ScalarLdFrag addr:$src3))))>,
EVEX_4V, EVEX_CD8<32, CD8VF>, EVEX_B,
T8PD, Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass VNNI_common<bits<8> Op, string OpStr, SDNode OpNode,
X86SchedWriteWidths sched> {
let Predicates = [HasVNNI] in
defm Z : VNNI_rmb<Op, OpStr, OpNode, sched.ZMM, v16i32_info>, EVEX_V512;
let Predicates = [HasVNNI, HasVLX] in {
defm Z256 : VNNI_rmb<Op, OpStr, OpNode, sched.YMM, v8i32x_info>, EVEX_V256;
defm Z128 : VNNI_rmb<Op, OpStr, OpNode, sched.XMM, v4i32x_info>, EVEX_V128;
}
}
// FIXME: Is there a better scheduler class for VPDP?
defm VPDPBUSD : VNNI_common<0x50, "vpdpbusd", X86Vpdpbusd, SchedWriteVecIMul>;
defm VPDPBUSDS : VNNI_common<0x51, "vpdpbusds", X86Vpdpbusds, SchedWriteVecIMul>;
defm VPDPWSSD : VNNI_common<0x52, "vpdpwssd", X86Vpdpwssd, SchedWriteVecIMul>;
defm VPDPWSSDS : VNNI_common<0x53, "vpdpwssds", X86Vpdpwssds, SchedWriteVecIMul>;
//===----------------------------------------------------------------------===//
// Bit Algorithms
//===----------------------------------------------------------------------===//
// FIXME: Is there a better scheduler class for VPOPCNTB/VPOPCNTW?
defm VPOPCNTB : avx512_unary_rm_vl<0x54, "vpopcntb", ctpop, SchedWriteVecALU,
avx512vl_i8_info, HasBITALG>;
defm VPOPCNTW : avx512_unary_rm_vl<0x54, "vpopcntw", ctpop, SchedWriteVecALU,
avx512vl_i16_info, HasBITALG>, VEX_W;
defm : avx512_unary_lowering<"VPOPCNTB", ctpop, avx512vl_i8_info, HasBITALG>;
defm : avx512_unary_lowering<"VPOPCNTW", ctpop, avx512vl_i16_info, HasBITALG>;
multiclass VPSHUFBITQMB_rm<X86FoldableSchedWrite sched, X86VectorVTInfo VTI> {
defm rr : AVX512_maskable_cmp<0x8F, MRMSrcReg, VTI, (outs VTI.KRC:$dst),
(ins VTI.RC:$src1, VTI.RC:$src2),
"vpshufbitqmb",
"$src2, $src1", "$src1, $src2",
(X86Vpshufbitqmb (VTI.VT VTI.RC:$src1),
(VTI.VT VTI.RC:$src2))>, EVEX_4V, T8PD,
Sched<[sched]>;
defm rm : AVX512_maskable_cmp<0x8F, MRMSrcMem, VTI, (outs VTI.KRC:$dst),
(ins VTI.RC:$src1, VTI.MemOp:$src2),
"vpshufbitqmb",
"$src2, $src1", "$src1, $src2",
(X86Vpshufbitqmb (VTI.VT VTI.RC:$src1),
(VTI.VT (VTI.LdFrag addr:$src2)))>,
EVEX_4V, EVEX_CD8<8, CD8VF>, T8PD,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass VPSHUFBITQMB_common<X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTI> {
let Predicates = [HasBITALG] in
defm Z : VPSHUFBITQMB_rm<sched.ZMM, VTI.info512>, EVEX_V512;
let Predicates = [HasBITALG, HasVLX] in {
defm Z256 : VPSHUFBITQMB_rm<sched.YMM, VTI.info256>, EVEX_V256;
defm Z128 : VPSHUFBITQMB_rm<sched.XMM, VTI.info128>, EVEX_V128;
}
}
// FIXME: Is there a better scheduler class for VPSHUFBITQMB?
defm VPSHUFBITQMB : VPSHUFBITQMB_common<SchedWriteVecIMul, avx512vl_i8_info>;
//===----------------------------------------------------------------------===//
// GFNI
//===----------------------------------------------------------------------===//
multiclass GF2P8MULB_avx512_common<bits<8> Op, string OpStr, SDNode OpNode,
X86SchedWriteWidths sched> {
let Predicates = [HasGFNI, HasAVX512, HasBWI] in
defm Z : avx512_binop_rm<Op, OpStr, OpNode, v64i8_info, sched.ZMM, 1>,
EVEX_V512;
let Predicates = [HasGFNI, HasVLX, HasBWI] in {
defm Z256 : avx512_binop_rm<Op, OpStr, OpNode, v32i8x_info, sched.YMM, 1>,
EVEX_V256;
defm Z128 : avx512_binop_rm<Op, OpStr, OpNode, v16i8x_info, sched.XMM, 1>,
EVEX_V128;
}
}
defm VGF2P8MULB : GF2P8MULB_avx512_common<0xCF, "vgf2p8mulb", X86GF2P8mulb,
SchedWriteVecALU>,
EVEX_CD8<8, CD8VF>, T8PD;
multiclass GF2P8AFFINE_avx512_rmb_imm<bits<8> Op, string OpStr, SDNode OpNode,
X86FoldableSchedWrite sched, X86VectorVTInfo VTI,
X86VectorVTInfo BcstVTI>
: avx512_3Op_rm_imm8<Op, OpStr, OpNode, sched, VTI, VTI> {
let ExeDomain = VTI.ExeDomain in
defm rmbi : AVX512_maskable<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst),
(ins VTI.RC:$src1, VTI.ScalarMemOp:$src2, u8imm:$src3),
OpStr, "$src3, ${src2}"##BcstVTI.BroadcastStr##", $src1",
"$src1, ${src2}"##BcstVTI.BroadcastStr##", $src3",
(OpNode (VTI.VT VTI.RC:$src1),
(bitconvert (BcstVTI.VT (X86VBroadcast (loadi64 addr:$src2)))),
(i8 imm:$src3))>, EVEX_B,
Sched<[sched.Folded, sched.ReadAfterFold]>;
}
multiclass GF2P8AFFINE_avx512_common<bits<8> Op, string OpStr, SDNode OpNode,
X86SchedWriteWidths sched> {
let Predicates = [HasGFNI, HasAVX512, HasBWI] in
defm Z : GF2P8AFFINE_avx512_rmb_imm<Op, OpStr, OpNode, sched.ZMM,
v64i8_info, v8i64_info>, EVEX_V512;
let Predicates = [HasGFNI, HasVLX, HasBWI] in {
defm Z256 : GF2P8AFFINE_avx512_rmb_imm<Op, OpStr, OpNode, sched.YMM,
v32i8x_info, v4i64x_info>, EVEX_V256;
defm Z128 : GF2P8AFFINE_avx512_rmb_imm<Op, OpStr, OpNode, sched.XMM,
v16i8x_info, v2i64x_info>, EVEX_V128;
}
}
defm VGF2P8AFFINEINVQB : GF2P8AFFINE_avx512_common<0xCF, "vgf2p8affineinvqb",
X86GF2P8affineinvqb, SchedWriteVecIMul>,
EVEX_4V, EVEX_CD8<8, CD8VF>, VEX_W, AVX512AIi8Base;
defm VGF2P8AFFINEQB : GF2P8AFFINE_avx512_common<0xCE, "vgf2p8affineqb",
X86GF2P8affineqb, SchedWriteVecIMul>,
EVEX_4V, EVEX_CD8<8, CD8VF>, VEX_W, AVX512AIi8Base;
//===----------------------------------------------------------------------===//
// AVX5124FMAPS
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 1, ExeDomain = SSEPackedSingle,
Constraints = "$src1 = $dst" in {
defm V4FMADDPSrm : AVX512_maskable_3src_in_asm<0x9A, MRMSrcMem, v16f32_info,
(outs VR512:$dst), (ins VR512:$src2, f128mem:$src3),
"v4fmaddps", "$src3, $src2", "$src2, $src3",
[]>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>,
Sched<[SchedWriteFMA.ZMM.Folded]>;
defm V4FNMADDPSrm : AVX512_maskable_3src_in_asm<0xAA, MRMSrcMem, v16f32_info,
(outs VR512:$dst), (ins VR512:$src2, f128mem:$src3),
"v4fnmaddps", "$src3, $src2", "$src2, $src3",
[]>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>,
Sched<[SchedWriteFMA.ZMM.Folded]>;
defm V4FMADDSSrm : AVX512_maskable_3src_in_asm<0x9B, MRMSrcMem, f32x_info,
(outs VR128X:$dst), (ins VR128X:$src2, f128mem:$src3),
"v4fmaddss", "$src3, $src2", "$src2, $src3",
[]>, EVEX_V128, EVEX_4V, T8XD, EVEX_CD8<32, CD8VF>,
Sched<[SchedWriteFMA.Scl.Folded]>;
defm V4FNMADDSSrm : AVX512_maskable_3src_in_asm<0xAB, MRMSrcMem, f32x_info,
(outs VR128X:$dst), (ins VR128X:$src2, f128mem:$src3),
"v4fnmaddss", "$src3, $src2", "$src2, $src3",
[]>, EVEX_V128, EVEX_4V, T8XD, EVEX_CD8<32, CD8VF>,
Sched<[SchedWriteFMA.Scl.Folded]>;
}
//===----------------------------------------------------------------------===//
// AVX5124VNNIW
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 1, ExeDomain = SSEPackedInt,
Constraints = "$src1 = $dst" in {
defm VP4DPWSSDrm : AVX512_maskable_3src_in_asm<0x52, MRMSrcMem, v16i32_info,
(outs VR512:$dst), (ins VR512:$src2, f128mem:$src3),
"vp4dpwssd", "$src3, $src2", "$src2, $src3",
[]>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>,
Sched<[SchedWriteFMA.ZMM.Folded]>;
defm VP4DPWSSDSrm : AVX512_maskable_3src_in_asm<0x53, MRMSrcMem, v16i32_info,
(outs VR512:$dst), (ins VR512:$src2, f128mem:$src3),
"vp4dpwssds", "$src3, $src2", "$src2, $src3",
[]>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>,
Sched<[SchedWriteFMA.ZMM.Folded]>;
}