Go to file
Matt Arsenault 1ee6ce9bad GlobalISel: Allow forming atomic/volatile G_ZEXTLOAD
SelectionDAG has a target hook, getExtendForAtomicOps, which it uses
in the computeKnownBits implementation for ATOMIC_LOAD. This is pretty
ugly (as is having a separate load opcode for atomics), so instead
allow making use of atomic zextload. Enable this for AArch64 since the
DAG path defaults in to the zext behavior.

The tablegen changes are pretty ugly, but partially helps migrate
SelectionDAG from using ISD::ATOMIC_LOAD to regular ISD::LOAD with
atomic memory operands. For now the DAG emitter will emit matchers for
patterns which the DAG will not produce.

I'm still a bit confused by the intent of the isLoad/isStore/isAtomic
bits. The DAG implementation rejects trying to use any of these in
combination. For now I've opted to make the isLoad checks also check
isAtomic, although I think having isLoad and isAtomic set on these
makes most sense.
2022-07-08 11:55:08 -04:00
.github [github] format and refactor GitHub workflows 2022-06-11 11:31:21 +04:30
bolt [BOLT] Fix concurrent hash table modification in the instrumentation runtime 2022-07-07 14:27:29 +03:00
clang [Clang] Fix test failing due to renamed arg 2022-07-08 11:50:56 -04:00
clang-tools-extra Disable clang-format entirely for test directories 2022-07-08 07:34:18 -04:00
cmake [CMake] Make FindLibEdit.cmake more robust 2022-05-27 13:06:45 -07:00
compiler-rt Revert "[Sanitizer][Darwin] Cleanup MaybeReexec() function and usage" 2022-07-07 17:27:10 -07:00
cross-project-tests [Dexter] Remove debugger-dependent test from windows 2022-06-13 19:27:34 +01:00
flang [flang][openacc][NFC] Extract device_type parser to its own 2022-07-08 16:02:04 +02:00
libc [libc][nfc] update get_explicit_mantissa 2022-07-07 10:13:24 -07:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libc++] Re-apply the use of ABI tags to provide per-TU insulation 2022-07-08 08:38:36 -04:00
libcxxabi [SystemZ][z/OS] Modify cxxabi to be compatible with existing z/OS runtime 2022-06-28 21:01:25 +03:00
libunwind [libunwind,EHABI,ARM] Fix get/set of RA_AUTH_CODE. 2022-06-27 09:36:21 +01:00
lld [ELF] Relax R_RISCV_CALL and R_RISCV_CALL_PLT 2022-07-07 10:18:45 -07:00
lldb [libc++] Re-apply the use of ABI tags to provide per-TU insulation 2022-07-08 08:38:36 -04:00
llvm GlobalISel: Allow forming atomic/volatile G_ZEXTLOAD 2022-07-08 11:55:08 -04:00
llvm-libgcc [llvm-libgcc] initial commit 2022-02-16 17:06:45 +00:00
mlir [mlir][Transform] Fix isDefiniteFailure helper 2022-07-08 00:39:42 -07:00
openmp [libomptarget] compile DeviceRTL bc files with -O3 2022-07-08 10:00:26 -05:00
polly [Polly][MatMul] Abandon dependence analysis. 2022-06-29 17:20:05 -05:00
pstl [libc++] Use _LIBCPP_ASSERT by default for _PSTL_ASSERTions 2022-05-20 16:58:21 +02:00
runtimes [runtimes] adds llvm-libgcc to the list of runtimes to be sorted 2022-06-30 23:50:24 +00:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [mlir][bzl] Update for 1a92dbcfa8 and cab44c515c 2022-07-07 17:36:28 -07:00
.arcconfig
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy [clangd] Cleanup of readability-identifier-naming 2022-02-01 13:31:52 +00:00
.git-blame-ignore-revs Add __config formatting to .git-blame-ignore-revs 2022-06-14 09:52:49 -04:00
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.