llvm-project/flang/runtime/matmul.cpp

221 lines
8.5 KiB
C++

//===-- runtime/matmul.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements all forms of MATMUL (Fortran 2018 16.9.124)
//
// There are two main entry points; one establishes a descriptor for the
// result and allocates it, and the other expects a result descriptor that
// points to existing storage.
//
// This implementation must handle all combinations of numeric types and
// kinds (100 - 165 cases depending on the target), plus all combinations
// of logical kinds (16). A single template undergoes many instantiations
// to cover all of the valid possibilities.
//
// Places where BLAS routines could be called are marked as TODO items.
#include "matmul.h"
#include "cpp-type.h"
#include "descriptor.h"
#include "terminator.h"
#include "tools.h"
namespace Fortran::runtime {
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
class Accumulator {
public:
// Accumulate floating-point results in (at least) double precision
using Result = CppTypeFor<RCAT,
RCAT == TypeCategory::Real || RCAT == TypeCategory::Complex
? std::max(RKIND, static_cast<int>(sizeof(double)))
: RKIND>;
Accumulator(const Descriptor &x, const Descriptor &y) : x_{x}, y_{y} {}
void Accumulate(const SubscriptValue xAt[], const SubscriptValue yAt[]) {
if constexpr (RCAT == TypeCategory::Logical) {
sum_ = sum_ ||
(IsLogicalElementTrue(x_, xAt) && IsLogicalElementTrue(y_, yAt));
} else {
sum_ += static_cast<Result>(*x_.Element<XT>(xAt)) *
static_cast<Result>(*y_.Element<YT>(yAt));
}
}
Result GetResult() const { return sum_; }
private:
const Descriptor &x_, &y_;
Result sum_{};
};
// Implements an instance of MATMUL for given argument types.
template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT,
typename YT>
static inline void DoMatmul(
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result,
const Descriptor &x, const Descriptor &y, Terminator &terminator) {
int xRank{x.rank()};
int yRank{y.rank()};
int resRank{xRank + yRank - 2};
if (xRank * yRank != 2 * resRank) {
terminator.Crash("MATMUL: bad argument ranks (%d * %d)", xRank, yRank);
}
SubscriptValue extent[2]{
xRank == 2 ? x.GetDimension(0).Extent() : y.GetDimension(1).Extent(),
resRank == 2 ? y.GetDimension(1).Extent() : 0};
if constexpr (IS_ALLOCATING) {
result.Establish(
RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable);
for (int j{0}; j < resRank; ++j) {
result.GetDimension(j).SetBounds(1, extent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"MATMUL: could not allocate memory for result; STAT=%d", stat);
}
} else {
RUNTIME_CHECK(terminator, resRank == result.rank());
RUNTIME_CHECK(terminator, result.type() == (TypeCode{RCAT, RKIND}));
RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]);
RUNTIME_CHECK(terminator,
resRank == 1 || result.GetDimension(1).Extent() == extent[1]);
}
using WriteResult =
CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT,
RKIND>;
SubscriptValue n{x.GetDimension(xRank - 1).Extent()};
if (n != y.GetDimension(0).Extent()) {
terminator.Crash("MATMUL: arrays do not conform (%jd != %jd)",
static_cast<std::intmax_t>(n),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()));
}
SubscriptValue xAt[2], yAt[2], resAt[2];
x.GetLowerBounds(xAt);
y.GetLowerBounds(yAt);
result.GetLowerBounds(resAt);
if (resRank == 2) { // M*M -> M
if constexpr (std::is_same_v<XT, YT>) {
if constexpr (std::is_same_v<XT, float>) {
// TODO: call BLAS-3 SGEMM
} else if constexpr (std::is_same_v<XT, double>) {
// TODO: call BLAS-3 DGEMM
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-3 CGEMM
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-3 ZGEMM
}
}
SubscriptValue x1{xAt[1]}, y0{yAt[0]}, y1{yAt[1]}, res1{resAt[1]};
for (SubscriptValue i{0}; i < extent[0]; ++i) {
for (SubscriptValue j{0}; j < extent[1]; ++j) {
Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y};
yAt[1] = y1 + j;
for (SubscriptValue k{0}; k < n; ++k) {
xAt[1] = x1 + k;
yAt[0] = y0 + k;
accumulator.Accumulate(xAt, yAt);
}
resAt[1] = res1 + j;
*result.template Element<WriteResult>(resAt) = accumulator.GetResult();
}
++resAt[0];
++xAt[0];
}
} else {
if constexpr (std::is_same_v<XT, YT>) {
if constexpr (std::is_same_v<XT, float>) {
// TODO: call BLAS-2 SGEMV
} else if constexpr (std::is_same_v<XT, double>) {
// TODO: call BLAS-2 DGEMV
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-2 CGEMV
} else if constexpr (std::is_same_v<XT, std::complex<float>>) {
// TODO: call BLAS-2 ZGEMV
}
}
if (xRank == 2) { // M*V -> V
SubscriptValue x1{xAt[1]}, y0{yAt[0]};
for (SubscriptValue j{0}; j < extent[0]; ++j) {
Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y};
for (SubscriptValue k{0}; k < n; ++k) {
xAt[1] = x1 + k;
yAt[0] = y0 + k;
accumulator.Accumulate(xAt, yAt);
}
*result.template Element<WriteResult>(resAt) = accumulator.GetResult();
++resAt[0];
++xAt[0];
}
} else { // V*M -> V
SubscriptValue x0{xAt[0]}, y0{yAt[0]};
for (SubscriptValue j{0}; j < extent[0]; ++j) {
Accumulator<RCAT, RKIND, XT, YT> accumulator{x, y};
for (SubscriptValue k{0}; k < n; ++k) {
xAt[0] = x0 + k;
yAt[0] = y0 + k;
accumulator.Accumulate(xAt, yAt);
}
*result.template Element<WriteResult>(resAt) = accumulator.GetResult();
++resAt[0];
++yAt[1];
}
}
}
}
// Maps the dynamic type information from the arguments' descriptors
// to the right instantiation of DoMatmul() for valid combinations of
// types.
template <bool IS_ALLOCATING> struct Matmul {
using ResultDescriptor =
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>;
template <TypeCategory XCAT, int XKIND> struct MM1 {
template <TypeCategory YCAT, int YKIND> struct MM2 {
void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, Terminator &terminator) const {
if constexpr (constexpr auto resultType{
GetResultType(XCAT, XKIND, YCAT, YKIND)}) {
if constexpr (common::IsNumericTypeCategory(resultType->first) ||
resultType->first == TypeCategory::Logical) {
return DoMatmul<IS_ALLOCATING, resultType->first,
resultType->second, CppTypeFor<XCAT, XKIND>,
CppTypeFor<YCAT, YKIND>>(result, x, y, terminator);
}
}
terminator.Crash("MATMUL: bad operand types (%d(%d), %d(%d))",
static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND);
}
};
void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, Terminator &terminator, TypeCategory yCat,
int yKind) const {
ApplyType<MM2, void>(yCat, yKind, terminator, result, x, y, terminator);
}
};
void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) const {
Terminator terminator{sourceFile, line};
auto xCatKind{x.type().GetCategoryAndKind()};
auto yCatKind{y.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value());
ApplyType<MM1, void>(xCatKind->first, xCatKind->second, terminator, result,
x, y, terminator, yCatKind->first, yCatKind->second);
}
};
extern "C" {
void RTNAME(Matmul)(Descriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) {
Matmul<true>{}(result, x, y, sourceFile, line);
}
void RTNAME(MatmulDirect)(const Descriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) {
Matmul<false>{}(result, x, y, sourceFile, line);
}
} // extern "C"
} // namespace Fortran::runtime