llvm-project/llvm/lib/Target/ARM/ARMISelLowering.cpp

13505 lines
522 KiB
C++

//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "ARMISelLowering.h"
#include "ARMCallingConv.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMPerfectShuffle.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "arm-isel"
STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
STATISTIC(NumConstpoolPromoted,
"Number of constants with their storage promoted into constant pools");
static cl::opt<bool>
ARMInterworking("arm-interworking", cl::Hidden,
cl::desc("Enable / disable ARM interworking (for debugging only)"),
cl::init(true));
static cl::opt<bool> EnableConstpoolPromotion(
"arm-promote-constant", cl::Hidden,
cl::desc("Enable / disable promotion of unnamed_addr constants into "
"constant pools"),
cl::init(true));
static cl::opt<unsigned> ConstpoolPromotionMaxSize(
"arm-promote-constant-max-size", cl::Hidden,
cl::desc("Maximum size of constant to promote into a constant pool"),
cl::init(64));
static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
"arm-promote-constant-max-total", cl::Hidden,
cl::desc("Maximum size of ALL constants to promote into a constant pool"),
cl::init(128));
namespace {
class ARMCCState : public CCState {
public:
ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
ParmContext PC)
: CCState(CC, isVarArg, MF, locs, C) {
assert(((PC == Call) || (PC == Prologue)) &&
"ARMCCState users must specify whether their context is call"
"or prologue generation.");
CallOrPrologue = PC;
}
};
}
void ARMTargetLowering::InitLibcallCallingConvs() {
// The builtins on ARM always use AAPCS, irrespective of wheter C is AAPCS or
// AAPCS_VFP.
for (const auto LC : {
RTLIB::SHL_I16,
RTLIB::SHL_I32,
RTLIB::SHL_I64,
RTLIB::SHL_I128,
RTLIB::SRL_I16,
RTLIB::SRL_I32,
RTLIB::SRL_I64,
RTLIB::SRL_I128,
RTLIB::SRA_I16,
RTLIB::SRA_I32,
RTLIB::SRA_I64,
RTLIB::SRA_I128,
RTLIB::MUL_I8,
RTLIB::MUL_I16,
RTLIB::MUL_I32,
RTLIB::MUL_I64,
RTLIB::MUL_I128,
RTLIB::MULO_I32,
RTLIB::MULO_I64,
RTLIB::MULO_I128,
RTLIB::SDIV_I8,
RTLIB::SDIV_I16,
RTLIB::SDIV_I32,
RTLIB::SDIV_I64,
RTLIB::SDIV_I128,
RTLIB::UDIV_I8,
RTLIB::UDIV_I16,
RTLIB::UDIV_I32,
RTLIB::UDIV_I64,
RTLIB::UDIV_I128,
RTLIB::SREM_I8,
RTLIB::SREM_I16,
RTLIB::SREM_I32,
RTLIB::SREM_I64,
RTLIB::SREM_I128,
RTLIB::UREM_I8,
RTLIB::UREM_I16,
RTLIB::UREM_I32,
RTLIB::UREM_I64,
RTLIB::UREM_I128,
RTLIB::SDIVREM_I8,
RTLIB::SDIVREM_I16,
RTLIB::SDIVREM_I32,
RTLIB::SDIVREM_I64,
RTLIB::SDIVREM_I128,
RTLIB::UDIVREM_I8,
RTLIB::UDIVREM_I16,
RTLIB::UDIVREM_I32,
RTLIB::UDIVREM_I64,
RTLIB::UDIVREM_I128,
RTLIB::NEG_I32,
RTLIB::NEG_I64,
RTLIB::ADD_F32,
RTLIB::ADD_F64,
RTLIB::ADD_F80,
RTLIB::ADD_F128,
RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_F128,
RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_F128,
RTLIB::DIV_F32,
RTLIB::DIV_F64,
RTLIB::DIV_F80,
RTLIB::DIV_F128,
RTLIB::POWI_F32,
RTLIB::POWI_F64,
RTLIB::POWI_F80,
RTLIB::POWI_F128,
RTLIB::FPEXT_F64_F128,
RTLIB::FPEXT_F32_F128,
RTLIB::FPEXT_F32_F64,
RTLIB::FPEXT_F16_F32,
RTLIB::FPROUND_F32_F16,
RTLIB::FPROUND_F64_F16,
RTLIB::FPROUND_F80_F16,
RTLIB::FPROUND_F128_F16,
RTLIB::FPROUND_F64_F32,
RTLIB::FPROUND_F80_F32,
RTLIB::FPROUND_F128_F32,
RTLIB::FPROUND_F80_F64,
RTLIB::FPROUND_F128_F64,
RTLIB::FPTOSINT_F32_I32,
RTLIB::FPTOSINT_F32_I64,
RTLIB::FPTOSINT_F32_I128,
RTLIB::FPTOSINT_F64_I32,
RTLIB::FPTOSINT_F64_I64,
RTLIB::FPTOSINT_F64_I128,
RTLIB::FPTOSINT_F80_I32,
RTLIB::FPTOSINT_F80_I64,
RTLIB::FPTOSINT_F80_I128,
RTLIB::FPTOSINT_F128_I32,
RTLIB::FPTOSINT_F128_I64,
RTLIB::FPTOSINT_F128_I128,
RTLIB::FPTOUINT_F32_I32,
RTLIB::FPTOUINT_F32_I64,
RTLIB::FPTOUINT_F32_I128,
RTLIB::FPTOUINT_F64_I32,
RTLIB::FPTOUINT_F64_I64,
RTLIB::FPTOUINT_F64_I128,
RTLIB::FPTOUINT_F80_I32,
RTLIB::FPTOUINT_F80_I64,
RTLIB::FPTOUINT_F80_I128,
RTLIB::FPTOUINT_F128_I32,
RTLIB::FPTOUINT_F128_I64,
RTLIB::FPTOUINT_F128_I128,
RTLIB::SINTTOFP_I32_F32,
RTLIB::SINTTOFP_I32_F64,
RTLIB::SINTTOFP_I32_F80,
RTLIB::SINTTOFP_I32_F128,
RTLIB::SINTTOFP_I64_F32,
RTLIB::SINTTOFP_I64_F64,
RTLIB::SINTTOFP_I64_F80,
RTLIB::SINTTOFP_I64_F128,
RTLIB::SINTTOFP_I128_F32,
RTLIB::SINTTOFP_I128_F64,
RTLIB::SINTTOFP_I128_F80,
RTLIB::SINTTOFP_I128_F128,
RTLIB::UINTTOFP_I32_F32,
RTLIB::UINTTOFP_I32_F64,
RTLIB::UINTTOFP_I32_F80,
RTLIB::UINTTOFP_I32_F128,
RTLIB::UINTTOFP_I64_F32,
RTLIB::UINTTOFP_I64_F64,
RTLIB::UINTTOFP_I64_F80,
RTLIB::UINTTOFP_I64_F128,
RTLIB::UINTTOFP_I128_F32,
RTLIB::UINTTOFP_I128_F64,
RTLIB::UINTTOFP_I128_F80,
RTLIB::UINTTOFP_I128_F128,
RTLIB::OEQ_F32,
RTLIB::OEQ_F64,
RTLIB::OEQ_F128,
RTLIB::UNE_F32,
RTLIB::UNE_F64,
RTLIB::UNE_F128,
RTLIB::OGE_F32,
RTLIB::OGE_F64,
RTLIB::OGE_F128,
RTLIB::OLT_F32,
RTLIB::OLT_F64,
RTLIB::OLT_F128,
RTLIB::OLE_F32,
RTLIB::OLE_F64,
RTLIB::OLE_F128,
RTLIB::OGT_F32,
RTLIB::OGT_F64,
RTLIB::OGT_F128,
RTLIB::UO_F32,
RTLIB::UO_F64,
RTLIB::UO_F128,
RTLIB::O_F32,
RTLIB::O_F64,
RTLIB::O_F128,
})
setLibcallCallingConv(LC, CallingConv::ARM_AAPCS);
}
// The APCS parameter registers.
static const MCPhysReg GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
MVT PromotedBitwiseVT) {
if (VT != PromotedLdStVT) {
setOperationAction(ISD::LOAD, VT, Promote);
AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
setOperationAction(ISD::STORE, VT, Promote);
AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
}
MVT ElemTy = VT.getVectorElementType();
if (ElemTy != MVT::f64)
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
if (ElemTy == MVT::i32) {
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
} else {
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
}
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
if (VT.isInteger()) {
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
}
// Promote all bit-wise operations.
if (VT.isInteger() && VT != PromotedBitwiseVT) {
setOperationAction(ISD::AND, VT, Promote);
AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
setOperationAction(ISD::OR, VT, Promote);
AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
setOperationAction(ISD::XOR, VT, Promote);
AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
}
// Neon does not support vector divide/remainder operations.
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
if (!VT.isFloatingPoint() &&
VT != MVT::v2i64 && VT != MVT::v1i64)
for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
setOperationAction(Opcode, VT, Legal);
}
void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
addRegisterClass(VT, &ARM::DPRRegClass);
addTypeForNEON(VT, MVT::f64, MVT::v2i32);
}
void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
addRegisterClass(VT, &ARM::DPairRegClass);
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
}
ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
const ARMSubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
RegInfo = Subtarget->getRegisterInfo();
Itins = Subtarget->getInstrItineraryData();
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
InitLibcallCallingConvs();
if (Subtarget->isTargetMachO()) {
// Uses VFP for Thumb libfuncs if available.
if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Single-precision floating-point arithmetic.
{ RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
// Double-precision floating-point arithmetic.
{ RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
// Single-precision comparisons.
{ RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
{ RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
{ RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
{ RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
{ RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
{ RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
{ RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
{ RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ },
// Double-precision comparisons.
{ RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
{ RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
{ RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
{ RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
{ RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
{ RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
{ RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
{ RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ },
// Floating-point to integer conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
{ RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
// Conversions between floating types.
{ RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
// Integer to floating-point conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
// e.g., __floatunsidf vs. __floatunssidfvfp.
{ RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
}
// Set the correct calling convention for ARMv7k WatchOS. It's just
// AAPCS_VFP for functions as simple as libcalls.
if (Subtarget->isTargetWatchABI()) {
for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
}
}
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
// RTLIB
if (Subtarget->isAAPCS_ABI() &&
(Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Double-precision floating-point arithmetic helper functions
// RTABI chapter 4.1.2, Table 2
{ RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Double-precision floating-point comparison helper functions
// RTABI chapter 4.1.2, Table 3
{ RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
{ RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
// Single-precision floating-point arithmetic helper functions
// RTABI chapter 4.1.2, Table 4
{ RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Single-precision floating-point comparison helper functions
// RTABI chapter 4.1.2, Table 5
{ RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
{ RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
{ RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
// Floating-point to integer conversions.
// RTABI chapter 4.1.2, Table 6
{ RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Conversions between floating types.
// RTABI chapter 4.1.2, Table 7
{ RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Integer to floating-point conversions.
// RTABI chapter 4.1.2, Table 8
{ RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Long long helper functions
// RTABI chapter 4.2, Table 9
{ RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
// Integer division functions
// RTABI chapter 4.3.1
{ RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
// EABI dependent RTLIB
if (TM.Options.EABIVersion == EABI::EABI4 ||
TM.Options.EABIVersion == EABI::EABI5) {
static const struct {
const RTLIB::Libcall Op;
const char *const Name;
const CallingConv::ID CC;
const ISD::CondCode Cond;
} MemOpsLibraryCalls[] = {
// Memory operations
// RTABI chapter 4.3.4
{ RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
{ RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
};
for (const auto &LC : MemOpsLibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
}
}
if (Subtarget->isTargetWindows()) {
static const struct {
const RTLIB::Libcall Op;
const char * const Name;
const CallingConv::ID CC;
} LibraryCalls[] = {
{ RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
{ RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
setLibcallCallingConv(LC.Op, LC.CC);
}
}
// Use divmod compiler-rt calls for iOS 5.0 and later.
if (Subtarget->isTargetWatchOS() ||
(Subtarget->isTargetIOS() &&
!Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
}
// The half <-> float conversion functions are always soft-float on
// non-watchos platforms, but are needed for some targets which use a
// hard-float calling convention by default.
if (!Subtarget->isTargetWatchABI()) {
if (Subtarget->isAAPCS_ABI()) {
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
} else {
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
}
}
// In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
// a __gnu_ prefix (which is the default).
if (Subtarget->isTargetAEABI()) {
setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
setLibcallName(RTLIB::FPEXT_F16_F32, "__aeabi_h2f");
}
if (Subtarget->isThumb1Only())
addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
else
addRegisterClass(MVT::i32, &ARM::GPRRegClass);
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
!Subtarget->isThumb1Only()) {
addRegisterClass(MVT::f32, &ARM::SPRRegClass);
addRegisterClass(MVT::f64, &ARM::DPRRegClass);
}
for (MVT VT : MVT::vector_valuetypes()) {
for (MVT InnerVT : MVT::vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
}
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
if (Subtarget->hasNEON()) {
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
addDRTypeForNEON(MVT::v4i16);
addDRTypeForNEON(MVT::v2i32);
addDRTypeForNEON(MVT::v1i64);
addQRTypeForNEON(MVT::v4f32);
addQRTypeForNEON(MVT::v2f64);
addQRTypeForNEON(MVT::v16i8);
addQRTypeForNEON(MVT::v8i16);
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
// neither Neon nor VFP support any arithmetic operations on it.
// The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
// supported for v4f32.
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
// FIXME: Code duplication: FDIV and FREM are expanded always, see
// ARMTargetLowering::addTypeForNEON method for details.
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
// FIXME: Create unittest.
// In another words, find a way when "copysign" appears in DAG with vector
// operands.
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
// FIXME: Code duplication: SETCC has custom operation action, see
// ARMTargetLowering::addTypeForNEON method for details.
setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
// FIXME: Create unittest for FNEG and for FABS.
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
// FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
setOperationAction(ISD::FMA, MVT::v2f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
// Mark v2f32 intrinsics.
setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
// Neon does not support some operations on v1i64 and v2i64 types.
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
// Custom handling for some quad-vector types to detect VMULL.
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
// Custom handling for some vector types to avoid expensive expansions
setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
// Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
// a destination type that is wider than the source, and nor does
// it have a FP_TO_[SU]INT instruction with a narrower destination than
// source.
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
// NEON does not have single instruction CTPOP for vectors with element
// types wider than 8-bits. However, custom lowering can leverage the
// v8i8/v16i8 vcnt instruction.
setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
setOperationAction(ISD::CTPOP, MVT::v1i64, Expand);
setOperationAction(ISD::CTPOP, MVT::v2i64, Expand);
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
// NEON does not have single instruction CTTZ for vectors.
setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
// NEON only has FMA instructions as of VFP4.
if (!Subtarget->hasVFP4()) {
setOperationAction(ISD::FMA, MVT::v2f32, Expand);
setOperationAction(ISD::FMA, MVT::v4f32, Expand);
}
setTargetDAGCombine(ISD::INTRINSIC_VOID);
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::BUILD_VECTOR);
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::FP_TO_UINT);
setTargetDAGCombine(ISD::FDIV);
setTargetDAGCombine(ISD::LOAD);
// It is legal to extload from v4i8 to v4i16 or v4i32.
for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
MVT::v2i32}) {
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
}
}
}
// ARM and Thumb2 support UMLAL/SMLAL.
if (!Subtarget->isThumb1Only())
setTargetDAGCombine(ISD::ADDC);
if (Subtarget->isFPOnlySP()) {
// When targeting a floating-point unit with only single-precision
// operations, f64 is legal for the few double-precision instructions which
// are present However, no double-precision operations other than moves,
// loads and stores are provided by the hardware.
setOperationAction(ISD::FADD, MVT::f64, Expand);
setOperationAction(ISD::FSUB, MVT::f64, Expand);
setOperationAction(ISD::FMUL, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FDIV, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
setOperationAction(ISD::FNEG, MVT::f64, Expand);
setOperationAction(ISD::FABS, MVT::f64, Expand);
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOWI, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f64, Expand);
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
setOperationAction(ISD::FEXP, MVT::f64, Expand);
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
setOperationAction(ISD::FCEIL, MVT::f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
setOperationAction(ISD::FRINT, MVT::f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
}
computeRegisterProperties(Subtarget->getRegisterInfo());
// ARM does not have floating-point extending loads.
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
}
// ... or truncating stores
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
// ARM does not have i1 sign extending load.
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// ARM supports all 4 flavors of integer indexed load / store.
if (!Subtarget->isThumb1Only()) {
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i1, Legal);
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i1, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
}
} else {
// Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
}
setOperationAction(ISD::SADDO, MVT::i32, Custom);
setOperationAction(ISD::UADDO, MVT::i32, Custom);
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
setOperationAction(ISD::USUBO, MVT::i32, Custom);
// i64 operation support.
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
if (Subtarget->isThumb1Only()) {
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
}
if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
|| (Subtarget->isThumb2() && !Subtarget->hasDSP()))
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL, MVT::i64, Custom);
setOperationAction(ISD::SRA, MVT::i64, Custom);
if (!Subtarget->isThumb1Only()) {
// FIXME: We should do this for Thumb1 as well.
setOperationAction(ISD::ADDC, MVT::i32, Custom);
setOperationAction(ISD::ADDE, MVT::i32, Custom);
setOperationAction(ISD::SUBC, MVT::i32, Custom);
setOperationAction(ISD::SUBE, MVT::i32, Custom);
}
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
// ARM does not have ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
for (MVT VT : MVT::vector_valuetypes()) {
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
}
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
// @llvm.readcyclecounter requires the Performance Monitors extension.
// Default to the 0 expansion on unsupported platforms.
// FIXME: Technically there are older ARM CPUs that have
// implementation-specific ways of obtaining this information.
if (Subtarget->hasPerfMon())
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
// Only ARMv6 has BSWAP.
if (!Subtarget->hasV6Ops())
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
: Subtarget->hasDivideInARMMode();
if (!hasDivide) {
// These are expanded into libcalls if the cpu doesn't have HW divider.
setOperationAction(ISD::SDIV, MVT::i32, LibCall);
setOperationAction(ISD::UDIV, MVT::i32, LibCall);
}
if (Subtarget->isTargetWindows() && !Subtarget->hasDivide()) {
setOperationAction(ISD::SDIV, MVT::i32, Custom);
setOperationAction(ISD::UDIV, MVT::i32, Custom);
setOperationAction(ISD::SDIV, MVT::i64, Custom);
setOperationAction(ISD::UDIV, MVT::i64, Custom);
}
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
// Register based DivRem for AEABI (RTABI 4.2)
if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
Subtarget->isTargetWindows()) {
setOperationAction(ISD::SREM, MVT::i64, Custom);
setOperationAction(ISD::UREM, MVT::i64, Custom);
HasStandaloneRem = false;
for (const auto &LC :
{RTLIB::SDIVREM_I8, RTLIB::SDIVREM_I16, RTLIB::SDIVREM_I32})
setLibcallName(LC, Subtarget->isTargetWindows() ? "__rt_sdiv"
: "__aeabi_idivmod");
setLibcallName(RTLIB::SDIVREM_I64, Subtarget->isTargetWindows()
? "__rt_sdiv64"
: "__aeabi_ldivmod");
for (const auto &LC :
{RTLIB::UDIVREM_I8, RTLIB::UDIVREM_I16, RTLIB::UDIVREM_I32})
setLibcallName(LC, Subtarget->isTargetWindows() ? "__rt_udiv"
: "__aeabi_uidivmod");
setLibcallName(RTLIB::UDIVREM_I64, Subtarget->isTargetWindows()
? "__rt_udiv64"
: "__aeabi_uldivmod");
setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
} else {
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
}
if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
for (auto &VT : {MVT::f32, MVT::f64})
setOperationAction(ISD::FPOWI, VT, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// Use the default implementation.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
// the default expansion.
InsertFencesForAtomic = false;
if (Subtarget->hasAnyDataBarrier() &&
(!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
// ATOMIC_FENCE needs custom lowering; the others should have been expanded
// to ldrex/strex loops already.
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
if (!Subtarget->isThumb() || !Subtarget->isMClass())
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
// On v8, we have particularly efficient implementations of atomic fences
// if they can be combined with nearby atomic loads and stores.
if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
// Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
InsertFencesForAtomic = true;
}
} else {
// If there's anything we can use as a barrier, go through custom lowering
// for ATOMIC_FENCE.
// If target has DMB in thumb, Fences can be inserted.
if (Subtarget->hasDataBarrier())
InsertFencesForAtomic = true;
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
Subtarget->hasAnyDataBarrier() ? Custom : Expand);
// Set them all for expansion, which will force libcalls.
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
// Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
// Unordered/Monotonic case.
if (!InsertFencesForAtomic) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
}
}
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
if (!Subtarget->hasV6Ops()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
}
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
!Subtarget->isThumb1Only()) {
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
// iff target supports vfp2.
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
if (Subtarget->useSjLjEH())
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// Thumb-1 cannot currently select ARMISD::SUBE.
if (!Subtarget->isThumb1Only())
setOperationAction(ISD::SETCCE, MVT::i32, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
// We don't support sin/cos/fmod/copysign/pow
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
!Subtarget->isThumb1Only()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
}
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
if (!Subtarget->hasVFP4()) {
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
}
// Various VFP goodness
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
// FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
}
// fp16 is a special v7 extension that adds f16 <-> f32 conversions.
if (!Subtarget->hasFP16()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
}
}
// Combine sin / cos into one node or libcall if possible.
if (Subtarget->hasSinCos()) {
setLibcallName(RTLIB::SINCOS_F32, "sincosf");
setLibcallName(RTLIB::SINCOS_F64, "sincos");
if (Subtarget->isTargetWatchABI()) {
setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
}
if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
// For iOS, we don't want to the normal expansion of a libcall to
// sincos. We want to issue a libcall to __sincos_stret.
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
}
}
// FP-ARMv8 implements a lot of rounding-like FP operations.
if (Subtarget->hasFPARMv8()) {
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
if (!Subtarget->isFPOnlySP()) {
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FROUND, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
}
}
if (Subtarget->hasNEON()) {
// vmin and vmax aren't available in a scalar form, so we use
// a NEON instruction with an undef lane instead.
setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
}
// We have target-specific dag combine patterns for the following nodes:
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::XOR);
if (Subtarget->hasV6Ops())
setTargetDAGCombine(ISD::SRL);
setStackPointerRegisterToSaveRestore(ARM::SP);
if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
!Subtarget->hasVFP2())
setSchedulingPreference(Sched::RegPressure);
else
setSchedulingPreference(Sched::Hybrid);
//// temporary - rewrite interface to use type
MaxStoresPerMemset = 8;
MaxStoresPerMemsetOptSize = 4;
MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
MaxStoresPerMemcpyOptSize = 2;
MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
MaxStoresPerMemmoveOptSize = 2;
// On ARM arguments smaller than 4 bytes are extended, so all arguments
// are at least 4 bytes aligned.
setMinStackArgumentAlignment(4);
// Prefer likely predicted branches to selects on out-of-order cores.
PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
}
bool ARMTargetLowering::useSoftFloat() const {
return Subtarget->useSoftFloat();
}
// FIXME: It might make sense to define the representative register class as the
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
// SPR's representative would be DPR_VFP2. This should work well if register
// pressure tracking were modified such that a register use would increment the
// pressure of the register class's representative and all of it's super
// classes' representatives transitively. We have not implemented this because
// of the difficulty prior to coalescing of modeling operand register classes
// due to the common occurrence of cross class copies and subregister insertions
// and extractions.
std::pair<const TargetRegisterClass *, uint8_t>
ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RRC = nullptr;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(TRI, VT);
// Use DPR as representative register class for all floating point
// and vector types. Since there are 32 SPR registers and 32 DPR registers so
// the cost is 1 for both f32 and f64.
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
RRC = &ARM::DPRRegClass;
// When NEON is used for SP, only half of the register file is available
// because operations that define both SP and DP results will be constrained
// to the VFP2 class (D0-D15). We currently model this constraint prior to
// coalescing by double-counting the SP regs. See the FIXME above.
if (Subtarget->useNEONForSinglePrecisionFP())
Cost = 2;
break;
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
RRC = &ARM::DPRRegClass;
Cost = 2;
break;
case MVT::v4i64:
RRC = &ARM::DPRRegClass;
Cost = 4;
break;
case MVT::v8i64:
RRC = &ARM::DPRRegClass;
Cost = 8;
break;
}
return std::make_pair(RRC, Cost);
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((ARMISD::NodeType)Opcode) {
case ARMISD::FIRST_NUMBER: break;
case ARMISD::Wrapper: return "ARMISD::Wrapper";
case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
case ARMISD::BRCOND: return "ARMISD::BRCOND";
case ARMISD::BR_JT: return "ARMISD::BR_JT";
case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::CMN: return "ARMISD::CMN";
case ARMISD::CMPZ: return "ARMISD::CMPZ";
case ARMISD::CMPFP: return "ARMISD::CMPFP";
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
case ARMISD::CMOV: return "ARMISD::CMOV";
case ARMISD::SSAT: return "ARMISD::SSAT";
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
case ARMISD::RRX: return "ARMISD::RRX";
case ARMISD::ADDC: return "ARMISD::ADDC";
case ARMISD::ADDE: return "ARMISD::ADDE";
case ARMISD::SUBC: return "ARMISD::SUBC";
case ARMISD::SUBE: return "ARMISD::SUBE";
case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
case ARMISD::VCEQ: return "ARMISD::VCEQ";
case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
case ARMISD::VCGE: return "ARMISD::VCGE";
case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
case ARMISD::VCGEU: return "ARMISD::VCGEU";
case ARMISD::VCGT: return "ARMISD::VCGT";
case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
case ARMISD::VCGTU: return "ARMISD::VCGTU";
case ARMISD::VTST: return "ARMISD::VTST";
case ARMISD::VSHL: return "ARMISD::VSHL";
case ARMISD::VSHRs: return "ARMISD::VSHRs";
case ARMISD::VSHRu: return "ARMISD::VSHRu";
case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
case ARMISD::VSLI: return "ARMISD::VSLI";
case ARMISD::VSRI: return "ARMISD::VSRI";
case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
case ARMISD::VDUP: return "ARMISD::VDUP";
case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
case ARMISD::VEXT: return "ARMISD::VEXT";
case ARMISD::VREV64: return "ARMISD::VREV64";
case ARMISD::VREV32: return "ARMISD::VREV32";
case ARMISD::VREV16: return "ARMISD::VREV16";
case ARMISD::VZIP: return "ARMISD::VZIP";
case ARMISD::VUZP: return "ARMISD::VUZP";
case ARMISD::VTRN: return "ARMISD::VTRN";
case ARMISD::VTBL1: return "ARMISD::VTBL1";
case ARMISD::VTBL2: return "ARMISD::VTBL2";
case ARMISD::VMULLs: return "ARMISD::VMULLs";
case ARMISD::VMULLu: return "ARMISD::VMULLu";
case ARMISD::UMAAL: return "ARMISD::UMAAL";
case ARMISD::UMLAL: return "ARMISD::UMLAL";
case ARMISD::SMLAL: return "ARMISD::SMLAL";
case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
case ARMISD::BFI: return "ARMISD::BFI";
case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
case ARMISD::VBSL: return "ARMISD::VBSL";
case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
}
return nullptr;
}
EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return getPointerTy(DL);
return VT.changeVectorElementTypeToInteger();
}
/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
// Map v4i64 to QQ registers but do not make the type legal. Similarly map
// v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
// load / store 4 to 8 consecutive D registers.
if (Subtarget->hasNEON()) {
if (VT == MVT::v4i64)
return &ARM::QQPRRegClass;
if (VT == MVT::v8i64)
return &ARM::QQQQPRRegClass;
}
return TargetLowering::getRegClassFor(VT);
}
// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
// source/dest is aligned and the copy size is large enough. We therefore want
// to align such objects passed to memory intrinsics.
bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
unsigned &PrefAlign) const {
if (!isa<MemIntrinsic>(CI))
return false;
MinSize = 8;
// On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
// cycle faster than 4-byte aligned LDM.
PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
return true;
}
// Create a fast isel object.
FastISel *
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return ARM::createFastISel(funcInfo, libInfo);
}
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
unsigned NumVals = N->getNumValues();
if (!NumVals)
return Sched::RegPressure;
for (unsigned i = 0; i != NumVals; ++i) {
EVT VT = N->getValueType(i);
if (VT == MVT::Glue || VT == MVT::Other)
continue;
if (VT.isFloatingPoint() || VT.isVector())
return Sched::ILP;
}
if (!N->isMachineOpcode())
return Sched::RegPressure;
// Load are scheduled for latency even if there instruction itinerary
// is not available.
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
if (MCID.getNumDefs() == 0)
return Sched::RegPressure;
if (!Itins->isEmpty() &&
Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
return Sched::ILP;
return Sched::RegPressure;
}
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown condition code!");
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETUGE: return ARMCC::HS;
case ISD::SETULT: return ARMCC::LO;
case ISD::SETULE: return ARMCC::LS;
}
}
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
ARMCC::CondCodes &CondCode2) {
CondCode2 = ARMCC::AL;
switch (CC) {
default: llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = ARMCC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = ARMCC::GE; break;
case ISD::SETOLT: CondCode = ARMCC::MI; break;
case ISD::SETOLE: CondCode = ARMCC::LS; break;
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
case ISD::SETO: CondCode = ARMCC::VC; break;
case ISD::SETUO: CondCode = ARMCC::VS; break;
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
case ISD::SETUGT: CondCode = ARMCC::HI; break;
case ISD::SETUGE: CondCode = ARMCC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = ARMCC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = ARMCC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = ARMCC::NE; break;
}
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "ARMGenCallingConv.inc"
/// getEffectiveCallingConv - Get the effective calling convention, taking into
/// account presence of floating point hardware and calling convention
/// limitations, such as support for variadic functions.
CallingConv::ID
ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
bool isVarArg) const {
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::ARM_AAPCS:
case CallingConv::ARM_APCS:
case CallingConv::GHC:
return CC;
case CallingConv::PreserveMost:
return CallingConv::PreserveMost;
case CallingConv::ARM_AAPCS_VFP:
case CallingConv::Swift:
return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
case CallingConv::C:
if (!Subtarget->isAAPCS_ABI())
return CallingConv::ARM_APCS;
else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
!isVarArg)
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
case CallingConv::Fast:
case CallingConv::CXX_FAST_TLS:
if (!Subtarget->isAAPCS_ABI()) {
if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
return CallingConv::Fast;
return CallingConv::ARM_APCS;
} else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
return CallingConv::ARM_AAPCS_VFP;
else
return CallingConv::ARM_AAPCS;
}
}
CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool isVarArg) const {
return CCAssignFnForNode(CC, false, isVarArg);
}
CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
bool isVarArg) const {
return CCAssignFnForNode(CC, true, isVarArg);
}
/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
/// CallingConvention.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
bool Return,
bool isVarArg) const {
switch (getEffectiveCallingConv(CC, isVarArg)) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::ARM_APCS:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
case CallingConv::ARM_AAPCS_VFP:
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
case CallingConv::Fast:
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
case CallingConv::GHC:
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
case CallingConv::PreserveMost:
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
}
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue ARMTargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext(), Call);
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
// Pass 'this' value directly from the argument to return value, to avoid
// reg unit interference
if (i == 0 && isThisReturn) {
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
"unexpected return calling convention register assignment");
InVals.push_back(ThisVal);
continue;
}
SDValue Val;
if (VA.needsCustom()) {
// Handle f64 or half of a v2f64.
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
if (VA.getLocVT() == MVT::v2f64) {
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(0, dl, MVT::i32));
VA = RVLocs[++i]; // skip ahead to next loc
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(1, dl, MVT::i32));
}
} else {
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
/// LowerMemOpCallTo - Store the argument to the stack.
SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
SDValue Arg, const SDLoc &dl,
SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, PtrOff);
return DAG.getStore(
Chain, dl, Arg, PtrOff,
MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
}
void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
SDValue Chain, SDValue &Arg,
RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
SDValue &StackPtr,
SmallVectorImpl<SDValue> &MemOpChains,
ISD::ArgFlagsTy Flags) const {
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
unsigned id = Subtarget->isLittle() ? 0 : 1;
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
if (NextVA.isRegLoc())
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
else {
assert(NextVA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
getPointerTy(DAG.getDataLayout()));
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
dl, DAG, NextVA,
Flags));
}
}
/// LowerCall - Lowering a call into a callseq_start <-
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
/// nodes.
SDValue
ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool doesNotRet = CLI.DoesNotReturn;
bool isVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
bool isThisReturn = false;
bool isSibCall = false;
auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
// Disable tail calls if they're not supported.
if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
isTailCall = false;
if (isTailCall) {
// Check if it's really possible to do a tail call.
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
Outs, OutVals, Ins, DAG);
if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
// We don't support GuaranteedTailCallOpt for ARM, only automatically
// detected sibcalls.
if (isTailCall) {
++NumTailCalls;
isSibCall = true;
}
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext(), Call);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
// For tail calls, memory operands are available in our caller's stack.
if (isSibCall)
NumBytes = 0;
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
if (!isSibCall)
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getIntPtrConstant(NumBytes, dl, true), dl);
SDValue StackPtr =
DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
RegsToPassVector RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization, arguments are handled later.
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
if (VA.needsCustom()) {
if (VA.getLocVT() == MVT::v2f64) {
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, dl, MVT::i32));
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, dl, MVT::i32));
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
VA = ArgLocs[++i]; // skip ahead to next loc
if (VA.isRegLoc()) {
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
} else {
assert(VA.isMemLoc());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
dl, DAG, VA, Flags));
}
} else {
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
StackPtr, MemOpChains, Flags);
}
} else if (VA.isRegLoc()) {
if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
assert(VA.getLocVT() == MVT::i32 &&
"unexpected calling convention register assignment");
assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
"unexpected use of 'returned'");
isThisReturn = true;
}
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else if (isByVal) {
assert(VA.isMemLoc());
unsigned offset = 0;
// True if this byval aggregate will be split between registers
// and memory.
unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
if (CurByValIdx < ByValArgsCount) {
unsigned RegBegin, RegEnd;
CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
EVT PtrVT =
DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
unsigned int i, j;
for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
MachinePointerInfo(),
DAG.InferPtrAlignment(AddArg));
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(j, Load));
}
// If parameter size outsides register area, "offset" value
// helps us to calculate stack slot for remained part properly.
offset = RegEnd - RegBegin;
CCInfo.nextInRegsParam();
}
if (Flags.getByValSize() > 4*offset) {
auto PtrVT = getPointerTy(DAG.getDataLayout());
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
MVT::i32);
SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
MVT::i32);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
Ops));
}
} else if (!isSibCall) {
assert(VA.isMemLoc());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
dl, DAG, VA, Flags));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
// Tail call byval lowering might overwrite argument registers so in case of
// tail call optimization the copies to registers are lowered later.
if (!isTailCall)
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// For tail calls lower the arguments to the 'real' stack slot.
if (isTailCall) {
// Force all the incoming stack arguments to be loaded from the stack
// before any new outgoing arguments are stored to the stack, because the
// outgoing stack slots may alias the incoming argument stack slots, and
// the alias isn't otherwise explicit. This is slightly more conservative
// than necessary, because it means that each store effectively depends
// on every argument instead of just those arguments it would clobber.
// Do not flag preceding copytoreg stuff together with the following stuff.
InFlag = SDValue();
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
InFlag = SDValue();
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool isDirect = false;
const TargetMachine &TM = getTargetMachine();
const Module *Mod = MF.getFunction()->getParent();
const GlobalValue *GV = nullptr;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
GV = G->getGlobal();
bool isStub =
!TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
bool isLocalARMFunc = false;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
auto PtrVt = getPointerTy(DAG.getDataLayout());
if (Subtarget->genLongCalls()) {
assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
"long-calls codegen is not position independent!");
// Handle a global address or an external symbol. If it's not one of
// those, the target's already in a register, so we don't need to do
// anything extra.
if (isa<GlobalAddressSDNode>(Callee)) {
// Create a constant pool entry for the callee address
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
// Create a constant pool entry for the callee address
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
ARMPCLabelIndex, 0);
// Get the address of the callee into a register
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
} else if (isa<GlobalAddressSDNode>(Callee)) {
// If we're optimizing for minimum size and the function is called three or
// more times in this block, we can improve codesize by calling indirectly
// as BLXr has a 16-bit encoding.
auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
auto *BB = CLI.CS->getParent();
bool PreferIndirect =
Subtarget->isThumb() && MF.getFunction()->optForMinSize() &&
count_if(GV->users(), [&BB](const User *U) {
return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
}) > 2;
if (!PreferIndirect) {
isDirect = true;
bool isDef = GV->isStrongDefinitionForLinker();
// ARM call to a local ARM function is predicable.
isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
// tBX takes a register source operand.
if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
Callee = DAG.getNode(
ARMISD::WrapperPIC, dl, PtrVt,
DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
/* Alignment = */ 0, MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
} else if (Subtarget->isTargetCOFF()) {
assert(Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target");
unsigned TargetFlags = GV->hasDLLImportStorageClass()
? ARMII::MO_DLLIMPORT
: ARMII::MO_NO_FLAG;
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
TargetFlags);
if (GV->hasDLLImportStorageClass())
Callee =
DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
} else {
Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
}
}
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
isDirect = true;
// tBX takes a register source operand.
const char *Sym = S->getSymbol();
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
ARMPCLabelIndex, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(
PtrVt, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
} else {
Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
}
}
// FIXME: handle tail calls differently.
unsigned CallOpc;
if (Subtarget->isThumb()) {
if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = ARMISD::CALL;
} else {
if (!isDirect && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
// Emit regular call when code size is the priority
!MF.getFunction()->optForMinSize())
// "mov lr, pc; b _foo" to avoid confusing the RSP
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
}
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
if (!isTailCall) {
const uint32_t *Mask;
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
if (isThisReturn) {
// For 'this' returns, use the R0-preserving mask if applicable
Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
if (!Mask) {
// Set isThisReturn to false if the calling convention is not one that
// allows 'returned' to be modeled in this way, so LowerCallResult does
// not try to pass 'this' straight through
isThisReturn = false;
Mask = ARI->getCallPreservedMask(MF, CallConv);
}
} else
Mask = ARI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
}
if (InFlag.getNode())
Ops.push_back(InFlag);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (isTailCall) {
MF.getFrameInfo().setHasTailCall();
return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
}
// Returns a chain and a flag for retval copy to use.
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
if (!Ins.empty())
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
InVals, isThisReturn,
isThisReturn ? OutVals[0] : SDValue());
}
/// HandleByVal - Every parameter *after* a byval parameter is passed
/// on the stack. Remember the next parameter register to allocate,
/// and then confiscate the rest of the parameter registers to insure
/// this.
void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
unsigned Align) const {
assert((State->getCallOrPrologue() == Prologue ||
State->getCallOrPrologue() == Call) &&
"unhandled ParmContext");
// Byval (as with any stack) slots are always at least 4 byte aligned.
Align = std::max(Align, 4U);
unsigned Reg = State->AllocateReg(GPRArgRegs);
if (!Reg)
return;
unsigned AlignInRegs = Align / 4;
unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
for (unsigned i = 0; i < Waste; ++i)
Reg = State->AllocateReg(GPRArgRegs);
if (!Reg)
return;
unsigned Excess = 4 * (ARM::R4 - Reg);
// Special case when NSAA != SP and parameter size greater than size of
// all remained GPR regs. In that case we can't split parameter, we must
// send it to stack. We also must set NCRN to R4, so waste all
// remained registers.
const unsigned NSAAOffset = State->getNextStackOffset();
if (NSAAOffset != 0 && Size > Excess) {
while (State->AllocateReg(GPRArgRegs))
;
return;
}
// First register for byval parameter is the first register that wasn't
// allocated before this method call, so it would be "reg".
// If parameter is small enough to be saved in range [reg, r4), then
// the end (first after last) register would be reg + param-size-in-regs,
// else parameter would be splitted between registers and stack,
// end register would be r4 in this case.
unsigned ByValRegBegin = Reg;
unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
// Note, first register is allocated in the beginning of function already,
// allocate remained amount of registers we need.
for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
State->AllocateReg(GPRArgRegs);
// A byval parameter that is split between registers and memory needs its
// size truncated here.
// In the case where the entire structure fits in registers, we set the
// size in memory to zero.
Size = std::max<int>(Size - Excess, 0);
}
/// MatchingStackOffset - Return true if the given stack call argument is
/// already available in the same position (relatively) of the caller's
/// incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
const TargetInstrInfo *TII) {
unsigned Bytes = Arg.getValueSizeInBits() / 8;
int FI = INT_MAX;
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
if (!TargetRegisterInfo::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
return false;
if (!Flags.isByVal()) {
if (!TII->isLoadFromStackSlot(*Def, FI))
return false;
} else {
return false;
}
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
if (Flags.isByVal())
// ByVal argument is passed in as a pointer but it's now being
// dereferenced. e.g.
// define @foo(%struct.X* %A) {
// tail call @bar(%struct.X* byval %A)
// }
return false;
SDValue Ptr = Ld->getBasePtr();
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
if (!FINode)
return false;
FI = FINode->getIndex();
} else
return false;
assert(FI != INT_MAX);
if (!MFI.isFixedObjectIndex(FI))
return false;
return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool
ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
bool isCalleeStructRet,
bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const Function *CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF->getCallingConv();
assert(Subtarget->supportsTailCall());
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes. This is what gcc calls sibcall.
// Exception-handling functions need a special set of instructions to indicate
// a return to the hardware. Tail-calling another function would probably
// break this.
if (CallerF->hasFnAttribute("interrupt"))
return false;
// Also avoid sibcall optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// Externally-defined functions with weak linkage should not be
// tail-called on ARM when the OS does not support dynamic
// pre-emption of symbols, as the AAELF spec requires normal calls
// to undefined weak functions to be replaced with a NOP or jump to the
// next instruction. The behaviour of branch instructions in this
// situation (as used for tail calls) is implementation-defined, so we
// cannot rely on the linker replacing the tail call with a return.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
const Triple &TT = getTargetMachine().getTargetTriple();
if (GV->hasExternalWeakLinkage() &&
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
return false;
}
// Check that the call results are passed in the same way.
LLVMContext &C = *DAG.getContext();
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
CCAssignFnForReturn(CalleeCC, isVarArg),
CCAssignFnForReturn(CallerCC, isVarArg)))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (CalleeCC != CallerCC) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
// If Caller's vararg or byval argument has been split between registers and
// stack, do not perform tail call, since part of the argument is in caller's
// local frame.
const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
if (AFI_Caller->getArgRegsSaveSize())
return false;
// If the callee takes no arguments then go on to check the results of the
// call.
if (!Outs.empty()) {
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
ARMCCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C, Call);
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
if (CCInfo.getNextStackOffset()) {
// Check if the arguments are already laid out in the right way as
// the caller's fixed stack objects.
MachineFrameInfo &MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
EVT RegVT = VA.getLocVT();
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (VA.needsCustom()) {
// f64 and vector types are split into multiple registers or
// register/stack-slot combinations. The types will not match
// the registers; give up on memory f64 refs until we figure
// out what to do about this.
if (!VA.isRegLoc())
return false;
if (!ArgLocs[++i].isRegLoc())
return false;
if (RegVT == MVT::v2f64) {
if (!ArgLocs[++i].isRegLoc())
return false;
if (!ArgLocs[++i].isRegLoc())
return false;
}
} else if (!VA.isRegLoc()) {
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
MFI, MRI, TII))
return false;
}
}
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
}
return true;
}
bool
ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
}
static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
const SDLoc &DL, SelectionDAG &DAG) {
const MachineFunction &MF = DAG.getMachineFunction();
const Function *F = MF.getFunction();
StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
// See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
// version of the "preferred return address". These offsets affect the return
// instruction if this is a return from PL1 without hypervisor extensions.
// IRQ/FIQ: +4 "subs pc, lr, #4"
// SWI: 0 "subs pc, lr, #0"
// ABORT: +4 "subs pc, lr, #4"
// UNDEF: +4/+2 "subs pc, lr, #0"
// UNDEF varies depending on where the exception came from ARM or Thumb
// mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
int64_t LROffset;
if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
IntKind == "ABORT")
LROffset = 4;
else if (IntKind == "SWI" || IntKind == "UNDEF")
LROffset = 0;
else
report_fatal_error("Unsupported interrupt attribute. If present, value "
"must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
RetOps.insert(RetOps.begin() + 1,
DAG.getConstant(LROffset, DL, MVT::i32, false));
return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
}
SDValue
ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slots.
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext(), Call);
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
SDValue Flag;
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
bool isLittleEndian = Subtarget->isLittle();
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
AFI->setReturnRegsCount(RVLocs.size());
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = OutVals[realRVLocIdx];
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (VA.needsCustom()) {
if (VA.getLocVT() == MVT::v2f64) {
// Extract the first half and return it in two registers.
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, dl, MVT::i32));
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Half);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
HalfGPRs.getValue(isLittleEndian ? 0 : 1),
Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
HalfGPRs.getValue(isLittleEndian ? 1 : 0),
Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
// Extract the 2nd half and fall through to handle it as an f64 value.
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, dl, MVT::i32));
}
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
// available.
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
fmrrd.getValue(isLittleEndian ? 0 : 1),
Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
fmrrd.getValue(isLittleEndian ? 1 : 0),
Flag);
} else
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
// Guarantee that all emitted copies are
// stuck together, avoiding something bad.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (ARM::GPRRegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i32));
else if (ARM::DPRRegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
// Update chain and glue.
RetOps[0] = Chain;
if (Flag.getNode())
RetOps.push_back(Flag);
// CPUs which aren't M-class use a special sequence to return from
// exceptions (roughly, any instruction setting pc and cpsr simultaneously,
// though we use "subs pc, lr, #N").
//
// M-class CPUs actually use a normal return sequence with a special
// (hardware-provided) value in LR, so the normal code path works.
if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
!Subtarget->isMClass()) {
if (Subtarget->isThumb1Only())
report_fatal_error("interrupt attribute is not supported in Thumb1");
return LowerInterruptReturn(RetOps, dl, DAG);
}
return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
}
bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (N->getNumValues() != 1)
return false;
if (!N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
SDNode *VMov = Copy;
// f64 returned in a pair of GPRs.
SmallPtrSet<SDNode*, 2> Copies;
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != ISD::CopyToReg)
return false;
Copies.insert(*UI);
}
if (Copies.size() > 2)
return false;
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
UI != UE; ++UI) {
SDValue UseChain = UI->getOperand(0);
if (Copies.count(UseChain.getNode()))
// Second CopyToReg
Copy = *UI;
else {
// We are at the top of this chain.
// If the copy has a glue operand, we conservatively assume it
// isn't safe to perform a tail call.
if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
// First CopyToReg
TCChain = UseChain;
}
}
} else if (Copy->getOpcode() == ISD::BITCAST) {
// f32 returned in a single GPR.
if (!Copy->hasOneUse())
return false;
Copy = *Copy->use_begin();
if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
return false;
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else {
return false;
}
bool HasRet = false;
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != ARMISD::RET_FLAG &&
UI->getOpcode() != ARMISD::INTRET_FLAG)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
if (!Subtarget->supportsTailCall())
return false;
auto Attr =
CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
if (!CI->isTailCall() || Attr.getValueAsString() == "true")
return false;
return true;
}
// Trying to write a 64 bit value so need to split into two 32 bit values first,
// and pass the lower and high parts through.
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
SDValue WriteValue = Op->getOperand(2);
// This function is only supposed to be called for i64 type argument.
assert(WriteValue.getValueType() == MVT::i64
&& "LowerWRITE_REGISTER called for non-i64 type argument.");
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
DAG.getConstant(1, DL, MVT::i32));
SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVi.
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
EVT PtrVT = Op.getValueType();
// FIXME there is no actual debug info here
SDLoc dl(Op);
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Res;
if (CP->isMachineConstantPoolEntry())
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
else
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment());
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
}
unsigned ARMTargetLowering::getJumpTableEncoding() const {
return MachineJumpTableInfo::EK_Inline;
}
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = 0;
SDLoc DL(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue CPAddr;
bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
if (!IsPositionIndependent) {
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
} else {
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
ARMCP::CPBlockAddress, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
}
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
SDValue Result = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
if (!IsPositionIndependent)
return Result;
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
}
/// \brief Convert a TLS address reference into the correct sequence of loads
/// and calls to compute the variable's address for Darwin, and return an
/// SDValue containing the final node.
/// Darwin only has one TLS scheme which must be capable of dealing with the
/// fully general situation, in the worst case. This means:
/// + "extern __thread" declaration.
/// + Defined in a possibly unknown dynamic library.
///
/// The general system is that each __thread variable has a [3 x i32] descriptor
/// which contains information used by the runtime to calculate the address. The
/// only part of this the compiler needs to know about is the first word, which
/// contains a function pointer that must be called with the address of the
/// entire descriptor in "r0".
///
/// Since this descriptor may be in a different unit, in general access must
/// proceed along the usual ARM rules. A common sequence to produce is:
///
/// movw rT1, :lower16:_var$non_lazy_ptr
/// movt rT1, :upper16:_var$non_lazy_ptr
/// ldr r0, [rT1]
/// ldr rT2, [r0]
/// blx rT2
/// [...address now in r0...]
SDValue
ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
SDLoc DL(Op);
// First step is to get the address of the actua global symbol. This is where
// the TLS descriptor lives.
SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
// The first entry in the descriptor is a function pointer that we must call
// to obtain the address of the variable.
SDValue Chain = DAG.getEntryNode();
SDValue FuncTLVGet = DAG.getLoad(
MVT::i32, DL, Chain, DescAddr,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
/* Alignment = */ 4,
MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
Chain = FuncTLVGet.getValue(1);
MachineFunction &F = DAG.getMachineFunction();
MachineFrameInfo &MFI = F.getFrameInfo();
MFI.setAdjustsStack(true);
// TLS calls preserve all registers except those that absolutely must be
// trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
// silly).
auto TRI =
getTargetMachine().getSubtargetImpl(*F.getFunction())->getRegisterInfo();
auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
// Finally, we can make the call. This is just a degenerate version of a
// normal AArch64 call node: r0 takes the address of the descriptor, and
// returns the address of the variable in this thread.
Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
Chain =
DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
DAG.getRegisterMask(Mask), Chain.getValue(1));
return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
}
SDValue
ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc DL(Op);
// Load the current TEB (thread environment block)
SDValue Ops[] = {Chain,
DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
DAG.getConstant(15, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(13, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(2, DL, MVT::i32)};
SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
DAG.getVTList(MVT::i32, MVT::Other), Ops);
SDValue TEB = CurrentTEB.getValue(0);
Chain = CurrentTEB.getValue(1);
// Load the ThreadLocalStoragePointer from the TEB
// A pointer to the TLS array is located at offset 0x2c from the TEB.
SDValue TLSArray =
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
// The pointer to the thread's TLS data area is at the TLS Index scaled by 4
// offset into the TLSArray.
// Load the TLS index from the C runtime
SDValue TLSIndex =
DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
DAG.getConstant(2, DL, MVT::i32));
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
MachinePointerInfo());
// Get the offset of the start of the .tls section (section base)
const auto *GA = cast<GlobalAddressSDNode>(Op);
auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
SDValue Offset = DAG.getLoad(
PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
DAG.getTargetConstantPool(CPV, PtrVT, 4)),
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
SDValue
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const {
SDLoc dl(GA);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
Argument = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), Argument,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue Chain = Argument.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
// call __tls_get_addr.
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
Args.push_back(Entry);
// FIXME: is there useful debug info available here?
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.first;
}
// Lower ISD::GlobalTLSAddress using the "initial exec" or
// "local exec" model.
SDValue
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
TLSModel::Model model) const {
const GlobalValue *GV = GA->getGlobal();
SDLoc dl(GA);
SDValue Offset;
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
// Get the Thread Pointer
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
if (model == TLSModel::InitialExec) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
// Initial exec model.
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
true);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
Chain = Offset.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
} else {
// local exec model
assert(model == TLSModel::LocalExec);
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(
PtrVT, dl, Chain, Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->isTargetDarwin())
return LowerGlobalTLSAddressDarwin(Op, DAG);
if (Subtarget->isTargetWindows())
return LowerGlobalTLSAddressWindows(Op, DAG);
// TODO: implement the "local dynamic" model
assert(Subtarget->isTargetELF() && "Only ELF implemented here");
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().Options.EmulatedTLS)
return LowerToTLSEmulatedModel(GA, DAG);
TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic:
return LowerToTLSGeneralDynamicModel(GA, DAG);
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModels(GA, DAG, model);
}
llvm_unreachable("bogus TLS model");
}
/// Return true if all users of V are within function F, looking through
/// ConstantExprs.
static bool allUsersAreInFunction(const Value *V, const Function *F) {
SmallVector<const User*,4> Worklist;
for (auto *U : V->users())
Worklist.push_back(U);
while (!Worklist.empty()) {
auto *U = Worklist.pop_back_val();
if (isa<ConstantExpr>(U)) {
for (auto *UU : U->users())
Worklist.push_back(UU);
continue;
}
auto *I = dyn_cast<Instruction>(U);
if (!I || I->getParent()->getParent() != F)
return false;
}
return true;
}
/// Return true if all users of V are within some (any) function, looking through
/// ConstantExprs. In other words, are there any global constant users?
static bool allUsersAreInFunctions(const Value *V) {
SmallVector<const User*,4> Worklist;
for (auto *U : V->users())
Worklist.push_back(U);
while (!Worklist.empty()) {
auto *U = Worklist.pop_back_val();
if (isa<ConstantExpr>(U)) {
for (auto *UU : U->users())
Worklist.push_back(UU);
continue;
}
if (!isa<Instruction>(U))
return false;
}
return true;
}
// Return true if T is an integer, float or an array/vector of either.
static bool isSimpleType(Type *T) {
if (T->isIntegerTy() || T->isFloatingPointTy())
return true;
Type *SubT = nullptr;
if (T->isArrayTy())
SubT = T->getArrayElementType();
else if (T->isVectorTy())
SubT = T->getVectorElementType();
else
return false;
return SubT->isIntegerTy() || SubT->isFloatingPointTy();
}
static SDValue promoteToConstantPool(const GlobalValue *GV, SelectionDAG &DAG,
EVT PtrVT, SDLoc dl) {
// If we're creating a pool entry for a constant global with unnamed address,
// and the global is small enough, we can emit it inline into the constant pool
// to save ourselves an indirection.
//
// This is a win if the constant is only used in one function (so it doesn't
// need to be duplicated) or duplicating the constant wouldn't increase code
// size (implying the constant is no larger than 4 bytes).
const Function *F = DAG.getMachineFunction().getFunction();
// We rely on this decision to inline being idemopotent and unrelated to the
// use-site. We know that if we inline a variable at one use site, we'll
// inline it elsewhere too (and reuse the constant pool entry). Fast-isel
// doesn't know about this optimization, so bail out if it's enabled else
// we could decide to inline here (and thus never emit the GV) but require
// the GV from fast-isel generated code.
if (!EnableConstpoolPromotion ||
DAG.getMachineFunction().getTarget().Options.EnableFastISel)
return SDValue();
auto *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar || !GVar->hasInitializer() ||
!GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
!GVar->hasLocalLinkage())
return SDValue();
// Ensure that we don't try and inline any type that contains pointers. If
// we inline a value that contains relocations, we move the relocations from
// .data to .text which is not ideal.
auto *Init = GVar->getInitializer();
if (!isSimpleType(Init->getType()))
return SDValue();
// The constant islands pass can only really deal with alignment requests
// <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
// any type wanting greater alignment requirements than 4 bytes. We also
// can only promote constants that are multiples of 4 bytes in size or
// are paddable to a multiple of 4. Currently we only try and pad constants
// that are strings for simplicity.
auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
unsigned Align = GVar->getAlignment();
unsigned RequiredPadding = 4 - (Size % 4);
bool PaddingPossible =
RequiredPadding == 4 || (CDAInit && CDAInit->isString());
if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize)
return SDValue();
unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We can't bloat the constant pool too much, else the ConstantIslands pass
// may fail to converge. If we haven't promoted this global yet (it may have
// multiple uses), and promoting it would increase the constant pool size (Sz
// > 4), ensure we have space to do so up to MaxTotal.
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
ConstpoolPromotionMaxTotal)
return SDValue();
// This is only valid if all users are in a single function OR it has users
// in multiple functions but it no larger than a pointer. We also check if
// GVar has constant (non-ConstantExpr) users. If so, it essentially has its
// address taken.
if (!allUsersAreInFunction(GVar, F) &&
!(Size <= 4 && allUsersAreInFunctions(GVar)))
return SDValue();
// We're going to inline this global. Pad it out if needed.
if (RequiredPadding != 4) {
StringRef S = CDAInit->getAsString();
SmallVector<uint8_t,16> V(S.size());
std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
while (RequiredPadding--)
V.push_back(0);
Init = ConstantDataArray::get(*DAG.getContext(), V);
}
auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
SDValue CPAddr =
DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
AFI->markGlobalAsPromotedToConstantPool(GVar);
AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
PaddedSize - 4);
}
++NumConstpoolPromoted;
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
}
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
const TargetMachine &TM = getTargetMachine();
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GV = GA->getBaseObject();
bool IsRO =
(isa<GlobalVariable>(GV) && cast<GlobalVariable>(GV)->isConstant()) ||
isa<Function>(GV);
// promoteToConstantPool only if not generating XO text section
if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
if (SDValue V = promoteToConstantPool(GV, DAG, PtrVT, dl))
return V;
if (isPositionIndependent()) {
bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
/*AddCurrentAddress=*/UseGOT_PREL);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue Chain = Result.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
if (UseGOT_PREL)
Result =
DAG.getLoad(PtrVT, dl, Chain, Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
} else if (Subtarget->isROPI() && IsRO) {
// PC-relative.
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
return Result;
} else if (Subtarget->isRWPI() && !IsRO) {
// SB-relative.
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue G = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, G);
return Result;
}
// If we have T2 ops, we can materialize the address directly via movt/movw
// pair. This is always cheaper.
if (Subtarget->useMovt(DAG.getMachineFunction())) {
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes.
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
} else {
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
return DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
}
}
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
SelectionDAG &DAG) const {
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported for Darwin");
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDLoc dl(Op);
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
if (Subtarget->useMovt(DAG.getMachineFunction()))
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into multiple nodes
unsigned Wrapper =
isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
if (Subtarget->isGVIndirectSymbol(GV))
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
"Windows on ARM expects to use movw/movt");
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported for Windows");
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
const ARMII::TOF TargetFlags =
(GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
SDLoc DL(Op);
++NumMovwMovt;
// FIXME: Once remat is capable of dealing with instructions with register
// operands, expand this into two nodes.
Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
TargetFlags));
if (GV->hasDLLImportStorageClass())
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return Result;
}
SDValue
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Val = DAG.getConstant(0, dl, MVT::i32);
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
Op.getOperand(1), Val);
}
SDValue
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
}
SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
Op.getOperand(0));
}
SDValue
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::arm_rbit: {
assert(Op.getOperand(1).getValueType() == MVT::i32 &&
"RBIT intrinsic must have i32 type!");
return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
}
case Intrinsic::thread_pointer: {
EVT PtrVT = getPointerTy(DAG.getDataLayout());
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
}
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue CPAddr;
bool IsPositionIndependent = isPositionIndependent();
unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
ARMConstantPoolValue *CPV =
ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
ARMCP::CPLSDA, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(
PtrVT, dl, DAG.getEntryNode(), CPAddr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
if (IsPositionIndependent) {
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
return Result;
}
case Intrinsic::arm_neon_vmulls:
case Intrinsic::arm_neon_vmullu: {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
? ARMISD::VMULLs : ARMISD::VMULLu;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vminnm:
case Intrinsic::arm_neon_vmaxnm: {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
? ISD::FMINNUM : ISD::FMAXNUM;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vminu:
case Intrinsic::arm_neon_vmaxu: {
if (Op.getValueType().isFloatingPoint())
return SDValue();
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
? ISD::UMIN : ISD::UMAX;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
case Intrinsic::arm_neon_vmins:
case Intrinsic::arm_neon_vmaxs: {
// v{min,max}s is overloaded between signed integers and floats.
if (!Op.getValueType().isFloatingPoint()) {
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
? ISD::SMIN : ISD::SMAX;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
? ISD::FMINNAN : ISD::FMAXNAN;
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
}
}
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
// FIXME: handle "fence singlethread" more efficiently.
SDLoc dl(Op);
if (!Subtarget->hasDataBarrier()) {
// Some ARMv6 cpus can support data barriers with an mcr instruction.
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
// here.
assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
}
ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
ARM_MB::MemBOpt Domain = ARM_MB::ISH;
if (Subtarget->isMClass()) {
// Only a full system barrier exists in the M-class architectures.
Domain = ARM_MB::SY;
} else if (Subtarget->preferISHSTBarriers() &&
Ord == AtomicOrdering::Release) {
// Swift happens to implement ISHST barriers in a way that's compatible with
// Release semantics but weaker than ISH so we'd be fools not to use
// it. Beware: other processors probably don't!
Domain = ARM_MB::ISHST;
}
return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
DAG.getConstant(Domain, dl, MVT::i32));
}
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
// ARM pre v5TE and Thumb1 does not have preload instructions.
if (!(Subtarget->isThumb2() ||
(!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
// Just preserve the chain.
return Op.getOperand(0);
SDLoc dl(Op);
unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
if (!isRead &&
(!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
// ARMv7 with MP extension has PLDW.
return Op.getOperand(0);
unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
if (Subtarget->isThumb()) {
// Invert the bits.
isRead = ~isRead & 1;
isData = ~isData & 1;
}
return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
DAG.getConstant(isData, dl, MVT::i32));
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDLoc dl(Op);
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
CCValAssign &NextVA,
SDValue &Root,
SelectionDAG &DAG,
const SDLoc &dl) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
const TargetRegisterClass *RC;
if (AFI->isThumb1OnlyFunction())
RC = &ARM::tGPRRegClass;
else
RC = &ARM::GPRRegClass;
// Transform the arguments stored in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
SDValue ArgValue2;
if (NextVA.isMemLoc()) {
MachineFrameInfo &MFI = MF.getFrameInfo();
int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
// Create load node to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
ArgValue2 = DAG.getLoad(
MVT::i32, dl, Root, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
} else {
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
}
if (!Subtarget->isLittle())
std::swap (ArgValue, ArgValue2);
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
}
// The remaining GPRs hold either the beginning of variable-argument
// data, or the beginning of an aggregate passed by value (usually
// byval). Either way, we allocate stack slots adjacent to the data
// provided by our caller, and store the unallocated registers there.
// If this is a variadic function, the va_list pointer will begin with
// these values; otherwise, this reassembles a (byval) structure that
// was split between registers and memory.
// Return: The frame index registers were stored into.
int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain,
const Value *OrigArg,
unsigned InRegsParamRecordIdx,
int ArgOffset, unsigned ArgSize) const {
// Currently, two use-cases possible:
// Case #1. Non-var-args function, and we meet first byval parameter.
// Setup first unallocated register as first byval register;
// eat all remained registers
// (these two actions are performed by HandleByVal method).
// Then, here, we initialize stack frame with
// "store-reg" instructions.
// Case #2. Var-args function, that doesn't contain byval parameters.
// The same: eat all remained unallocated registers,
// initialize stack frame.
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned RBegin, REnd;
if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
} else {
unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
REnd = ARM::R4;
}
if (REnd != RBegin)
ArgOffset = -4 * (ARM::R4 - RBegin);
auto PtrVT = getPointerTy(DAG.getDataLayout());
int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
SmallVector<SDValue, 4> MemOps;
const TargetRegisterClass *RC =
AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
unsigned VReg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo(OrigArg, 4 * i));
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
return FrameIndex;
}
// Setup stack frame, the va_list pointer will start from.
void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
const SDLoc &dl, SDValue &Chain,
unsigned ArgOffset,
unsigned TotalArgRegsSaveSize,
bool ForceMutable) const {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Try to store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by dereferencing
// the result of va_next.
// If there is no regs to be stored, just point address after last
// argument passed via stack.
int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
CCInfo.getInRegsParamsCount(),
CCInfo.getNextStackOffset(), 4);
AFI->setVarArgsFrameIndex(FrameIndex);
}
SDValue ARMTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext(), Prologue);
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
SmallVector<SDValue, 16> ArgValues;
SDValue ArgValue;
Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
unsigned CurArgIdx = 0;
// Initially ArgRegsSaveSize is zero.
// Then we increase this value each time we meet byval parameter.
// We also increase this value in case of varargs function.
AFI->setArgRegsSaveSize(0);
// Calculate the amount of stack space that we need to allocate to store
// byval and variadic arguments that are passed in registers.
// We need to know this before we allocate the first byval or variadic
// argument, as they will be allocated a stack slot below the CFA (Canonical
// Frame Address, the stack pointer at entry to the function).
unsigned ArgRegBegin = ARM::R4;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
break;
CCValAssign &VA = ArgLocs[i];
unsigned Index = VA.getValNo();
ISD::ArgFlagsTy Flags = Ins[Index].Flags;
if (!Flags.isByVal())
continue;
assert(VA.isMemLoc() && "unexpected byval pointer in reg");
unsigned RBegin, REnd;
CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
ArgRegBegin = std::min(ArgRegBegin, RBegin);
CCInfo.nextInRegsParam();
}
CCInfo.rewindByValRegsInfo();
int lastInsIndex = -1;
if (isVarArg && MFI.hasVAStart()) {
unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
if (RegIdx != array_lengthof(GPRArgRegs))
ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
}
unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
auto PtrVT = getPointerTy(DAG.getDataLayout());
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (Ins[VA.getValNo()].isOrigArg()) {
std::advance(CurOrigArg,
Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
}
// Arguments stored in registers.
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
if (VA.needsCustom()) {
// f64 and vector types are split up into multiple registers or
// combinations of registers and stack slots.
if (VA.getLocVT() == MVT::v2f64) {
SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
Chain, DAG, dl);
VA = ArgLocs[++i]; // skip ahead to next loc
SDValue ArgValue2;
if (VA.isMemLoc()) {
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FI));
} else {
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
Chain, DAG, dl);
}
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue1,
DAG.getIntPtrConstant(0, dl));
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue2,
DAG.getIntPtrConstant(1, dl));
} else
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
} else {
const TargetRegisterClass *RC;
if (RegVT == MVT::f32)
RC = &ARM::SPRRegClass;
else if (RegVT == MVT::f64)
RC = &ARM::DPRRegClass;
else if (RegVT == MVT::v2f64)
RC = &ARM::QPRRegClass;
else if (RegVT == MVT::i32)
RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass;
else
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
}
// If this is an 8 or 16-bit value, it is really passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::SExt:
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::ZExt:
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
}
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
// sanity check
assert(VA.isMemLoc());
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
int index = VA.getValNo();
// Some Ins[] entries become multiple ArgLoc[] entries.
// Process them only once.
if (index != lastInsIndex)
{
ISD::ArgFlagsTy Flags = Ins[index].Flags;
// FIXME: For now, all byval parameter objects are marked mutable.
// This can be changed with more analysis.
// In case of tail call optimization mark all arguments mutable.
// Since they could be overwritten by lowering of arguments in case of
// a tail call.
if (Flags.isByVal()) {
assert(Ins[index].isOrigArg() &&
"Byval arguments cannot be implicit");
unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
int FrameIndex = StoreByValRegs(
CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
VA.getLocMemOffset(), Flags.getByValSize());
InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
CCInfo.nextInRegsParam();
} else {
unsigned FIOffset = VA.getLocMemOffset();
int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
FIOffset, true);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), FI)));
}
lastInsIndex = index;
}
}
}
// varargs
if (isVarArg && MFI.hasVAStart())
VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
CCInfo.getNextStackOffset(),
TotalArgRegsSaveSize);
AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
return Chain;
}
/// isFloatingPointZero - Return true if this is +0.0.
static bool isFloatingPointZero(SDValue Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->getValueAPF().isPosZero();
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
// Maybe this has already been legalized into the constant pool?
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isPosZero();
}
} else if (Op->getOpcode() == ISD::BITCAST &&
Op->getValueType(0) == MVT::f64) {
// Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
// created by LowerConstantFP().
SDValue BitcastOp = Op->getOperand(0);
if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
isNullConstant(BitcastOp->getOperand(0)))
return true;
}
return false;
}
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &ARMcc, SelectionDAG &DAG,
const SDLoc &dl) const {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
unsigned C = RHSC->getZExtValue();
if (!isLegalICmpImmediate(C)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGE:
if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if (C != 0 && isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
}
break;
}
}
}
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMISD::NodeType CompareType;
switch (CondCode) {
default:
CompareType = ARMISD::CMP;
break;
case ARMCC::EQ:
case ARMCC::NE:
// Uses only Z Flag
CompareType = ARMISD::CMPZ;
break;
}
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
}
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
SelectionDAG &DAG, const SDLoc &dl) const {
assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
SDValue Cmp;
if (!isFloatingPointZero(RHS))
Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
else
Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
}
/// duplicateCmp - Glue values can have only one use, so this function
/// duplicates a comparison node.
SDValue
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
unsigned Opc = Cmp.getOpcode();
SDLoc DL(Cmp);
if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
Cmp = Cmp.getOperand(0);
Opc = Cmp.getOpcode();
if (Opc == ARMISD::CMPFP)
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
else {
assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
}
return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
}
std::pair<SDValue, SDValue>
ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
SDValue &ARMcc) const {
assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
SDValue Value, OverflowCmp;
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDLoc dl(Op);
// FIXME: We are currently always generating CMPs because we don't support
// generating CMN through the backend. This is not as good as the natural
// CMP case because it causes a register dependency and cannot be folded
// later.
switch (Op.getOpcode()) {
default:
llvm_unreachable("Unknown overflow instruction!");
case ISD::SADDO:
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
break;
case ISD::UADDO:
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
break;
case ISD::SSUBO:
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
break;
case ISD::USUBO:
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
break;
} // switch (...)
return std::make_pair(Value, OverflowCmp);
}
SDValue
ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
return SDValue();
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDLoc dl(Op);
// We use 0 and 1 as false and true values.
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
EVT VT = Op.getValueType();
SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
ARMcc, CCR, OverflowCmp);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
}
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond = Op.getOperand(0);
SDValue SelectTrue = Op.getOperand(1);
SDValue SelectFalse = Op.getOperand(2);
SDLoc dl(Op);
unsigned Opc = Cond.getOpcode();
if (Cond.getResNo() == 1 &&
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
Opc == ISD::USUBO)) {
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
return SDValue();
SDValue Value, OverflowCmp;
SDValue ARMcc;
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
EVT VT = Op.getValueType();
return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
OverflowCmp, DAG);
}
// Convert:
//
// (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
// (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
//
if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
const ConstantSDNode *CMOVTrue =
dyn_cast<ConstantSDNode>(Cond.getOperand(0));
const ConstantSDNode *CMOVFalse =
dyn_cast<ConstantSDNode>(Cond.getOperand(1));
if (CMOVTrue && CMOVFalse) {
unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
SDValue True;
SDValue False;
if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
True = SelectTrue;
False = SelectFalse;
} else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
True = SelectFalse;
False = SelectTrue;
}
if (True.getNode() && False.getNode()) {
EVT VT = Op.getValueType();
SDValue ARMcc = Cond.getOperand(2);
SDValue CCR = Cond.getOperand(3);
SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
assert(True.getValueType() == VT);
return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
}
}
}
// ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
// undefined bits before doing a full-word comparison with zero.
Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
DAG.getConstant(1, dl, Cond.getValueType()));
return DAG.getSelectCC(dl, Cond,
DAG.getConstant(0, dl, Cond.getValueType()),
SelectTrue, SelectFalse, ISD::SETNE);
}
static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
bool &swpCmpOps, bool &swpVselOps) {
// Start by selecting the GE condition code for opcodes that return true for
// 'equality'
if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
CC == ISD::SETULE)
CondCode = ARMCC::GE;
// and GT for opcodes that return false for 'equality'.
else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
CC == ISD::SETULT)
CondCode = ARMCC::GT;
// Since we are constrained to GE/GT, if the opcode contains 'less', we need
// to swap the compare operands.
if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
CC == ISD::SETULT)
swpCmpOps = true;
// Both GT and GE are ordered comparisons, and return false for 'unordered'.
// If we have an unordered opcode, we need to swap the operands to the VSEL
// instruction (effectively negating the condition).
//
// This also has the effect of swapping which one of 'less' or 'greater'
// returns true, so we also swap the compare operands. It also switches
// whether we return true for 'equality', so we compensate by picking the
// opposite condition code to our original choice.
if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
CC == ISD::SETUGT) {
swpCmpOps = !swpCmpOps;
swpVselOps = !swpVselOps;
CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
}
// 'ordered' is 'anything but unordered', so use the VS condition code and
// swap the VSEL operands.
if (CC == ISD::SETO) {
CondCode = ARMCC::VS;
swpVselOps = true;
}
// 'unordered or not equal' is 'anything but equal', so use the EQ condition
// code and swap the VSEL operands.
if (CC == ISD::SETUNE) {
CondCode = ARMCC::EQ;
swpVselOps = true;
}
}
SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
SDValue TrueVal, SDValue ARMcc, SDValue CCR,
SDValue Cmp, SelectionDAG &DAG) const {
if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
SDValue TrueLow = TrueVal.getValue(0);
SDValue TrueHigh = TrueVal.getValue(1);
SDValue FalseLow = FalseVal.getValue(0);
SDValue FalseHigh = FalseVal.getValue(1);
SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
ARMcc, CCR, Cmp);
SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
ARMcc, CCR, duplicateCmp(Cmp, DAG));
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
} else {
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
Cmp);
}
}
static bool isGTorGE(ISD::CondCode CC) {
return CC == ISD::SETGT || CC == ISD::SETGE;
}
static bool isLTorLE(ISD::CondCode CC) {
return CC == ISD::SETLT || CC == ISD::SETLE;
}
// See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
// All of these conditions (and their <= and >= counterparts) will do:
// x < k ? k : x
// x > k ? x : k
// k < x ? x : k
// k > x ? k : x
static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
const SDValue TrueVal, const SDValue FalseVal,
const ISD::CondCode CC, const SDValue K) {
return (isGTorGE(CC) &&
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
(isLTorLE(CC) &&
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
}
// Similar to isLowerSaturate(), but checks for upper-saturating conditions.
static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
const SDValue TrueVal, const SDValue FalseVal,
const ISD::CondCode CC, const SDValue K) {
return (isGTorGE(CC) &&
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
(isLTorLE(CC) &&
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
}
// Check if two chained conditionals could be converted into SSAT.
//
// SSAT can replace a set of two conditional selectors that bound a number to an
// interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
//
// x < -k ? -k : (x > k ? k : x)
// x < -k ? -k : (x < k ? x : k)
// x > -k ? (x > k ? k : x) : -k
// x < k ? (x < -k ? -k : x) : k
// etc.
//
// It returns true if the conversion can be done, false otherwise.
// Additionally, the variable is returned in parameter V and the constant in K.
static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
uint64_t &K) {
SDValue LHS1 = Op.getOperand(0);
SDValue RHS1 = Op.getOperand(1);
SDValue TrueVal1 = Op.getOperand(2);
SDValue FalseVal1 = Op.getOperand(3);
ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
if (Op2.getOpcode() != ISD::SELECT_CC)
return false;
SDValue LHS2 = Op2.getOperand(0);
SDValue RHS2 = Op2.getOperand(1);
SDValue TrueVal2 = Op2.getOperand(2);
SDValue FalseVal2 = Op2.getOperand(3);
ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
// Find out which are the constants and which are the variables
// in each conditional
SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
? &RHS1
: NULL;
SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
? &RHS2
: NULL;
SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
// We must detect cases where the original operations worked with 16- or
// 8-bit values. In such case, V2Tmp != V2 because the comparison operations
// must work with sign-extended values but the select operations return
// the original non-extended value.
SDValue V2TmpReg = V2Tmp;
if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
V2TmpReg = V2Tmp->getOperand(0);
// Check that the registers and the constants have the correct values
// in both conditionals
if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
V2TmpReg != V2)
return false;
// Figure out which conditional is saturating the lower/upper bound.
const SDValue *LowerCheckOp =
isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
? &Op
: isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
: NULL;
const SDValue *UpperCheckOp =
isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
? &Op
: isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
: NULL;
if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
return false;
// Check that the constant in the lower-bound check is
// the opposite of the constant in the upper-bound check
// in 1's complement.
int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
int64_t PosVal = std::max(Val1, Val2);
if (((Val1 > Val2 && UpperCheckOp == &Op) ||
(Val1 < Val2 && UpperCheckOp == &Op2)) &&
Val1 == ~Val2 && isPowerOf2_64(PosVal + 1)) {
V = V2;
K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
return true;
}
return false;
}
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc dl(Op);
// Try to convert two saturating conditional selects into a single SSAT
SDValue SatValue;
uint64_t SatConstant;
if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
isSaturatingConditional(Op, SatValue, SatConstant))
return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
dl);
// If softenSetCCOperands only returned one value, we should compare it to
// zero.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType() == MVT::i32) {
// Try to generate VSEL on ARMv8.
// The VSEL instruction can't use all the usual ARM condition
// codes: it only has two bits to select the condition code, so it's
// constrained to use only GE, GT, VS and EQ.
//
// To implement all the various ISD::SETXXX opcodes, we sometimes need to
// swap the operands of the previous compare instruction (effectively
// inverting the compare condition, swapping 'less' and 'greater') and
// sometimes need to swap the operands to the VSEL (which inverts the
// condition in the sense of firing whenever the previous condition didn't)
if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
TrueVal.getValueType() == MVT::f64)) {
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
CC = ISD::getSetCCInverse(CC, true);
std::swap(TrueVal, FalseVal);
}
}
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
// Try to generate VMAXNM/VMINNM on ARMv8.
if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
TrueVal.getValueType() == MVT::f64)) {
bool swpCmpOps = false;
bool swpVselOps = false;
checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
if (swpCmpOps)
std::swap(LHS, RHS);
if (swpVselOps)
std::swap(TrueVal, FalseVal);
}
}
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
if (CondCode2 != ARMCC::AL) {
SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
// FIXME: Needs another CMP because flag can have but one use.
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
}
return Result;
}
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
/// to morph to an integer compare sequence.
static bool canChangeToInt(SDValue Op, bool &SeenZero,
const ARMSubtarget *Subtarget) {
SDNode *N = Op.getNode();
if (!N->hasOneUse())
// Otherwise it requires moving the value from fp to integer registers.
return false;
if (!N->getNumValues())
return false;
EVT VT = Op.getValueType();
if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
// f32 case is generally profitable. f64 case only makes sense when vcmpe +
// vmrs are very slow, e.g. cortex-a8.
return false;
if (isFloatingPointZero(Op)) {
SeenZero = true;
return true;
}
return ISD::isNormalLoad(N);
}
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
if (isFloatingPointZero(Op))
return DAG.getConstant(0, SDLoc(Op), MVT::i32);
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
llvm_unreachable("Unknown VFP cmp argument!");
}
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
SDValue &RetVal1, SDValue &RetVal2) {
SDLoc dl(Op);
if (isFloatingPointZero(Op)) {
RetVal1 = DAG.getConstant(0, dl, MVT::i32);
RetVal2 = DAG.getConstant(0, dl, MVT::i32);
return;
}
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
SDValue Ptr = Ld->getBasePtr();
RetVal1 =
DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
Ld->getAlignment(), Ld->getMemOperand()->getFlags());
EVT PtrType = Ptr.getValueType();
unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
Ld->getPointerInfo().getWithOffset(4), NewAlign,
Ld->getMemOperand()->getFlags());
return;
}
llvm_unreachable("Unknown VFP cmp argument!");
}
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
/// f32 and even f64 comparisons to integer ones.
SDValue
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
bool LHSSeenZero = false;
bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
bool RHSSeenZero = false;
bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
// If unsafe fp math optimization is enabled and there are no other uses of
// the CMP operands, and the condition code is EQ or NE, we can optimize it
// to an integer comparison.
if (CC == ISD::SETOEQ)
CC = ISD::SETEQ;
else if (CC == ISD::SETUNE)
CC = ISD::SETNE;
SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
SDValue ARMcc;
if (LHS.getValueType() == MVT::f32) {
LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
bitcastf32Toi32(LHS, DAG), Mask);
RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
bitcastf32Toi32(RHS, DAG), Mask);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMcc, CCR, Cmp);
}
SDValue LHS1, LHS2;
SDValue RHS1, RHS2;
expandf64Toi32(LHS, DAG, LHS1, LHS2);
expandf64Toi32(RHS, DAG, RHS1, RHS2);
LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
}
return SDValue();
}
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
dl);
// If softenSetCCOperands only returned one value, we should compare it to
// zero.
if (!RHS.getNode()) {
RHS = DAG.getConstant(0, dl, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType() == MVT::i32) {
SDValue ARMcc;
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMcc, CCR, Cmp);
}
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
if (getTargetMachine().Options.UnsafeFPMath &&
(CC == ISD::SETEQ || CC == ISD::SETOEQ ||
CC == ISD::SETNE || CC == ISD::SETUNE)) {
if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
return Result;
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
if (CondCode2 != ARMCC::AL) {
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
}
return Res;
}
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc dl(Op);
EVT PTy = getPointerTy(DAG.getDataLayout());
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
// Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
// which does another jump to the destination. This also makes it easier
// to translate it to TBB / TBH later (Thumb2 only).
// FIXME: This might not work if the function is extremely large.
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
Addr, Op.getOperand(2), JTI);
}
if (isPositionIndependent() || Subtarget->isROPI()) {
Addr =
DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
Chain = Addr.getValue(1);
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
} else {
Addr =
DAG.getLoad(PTy, dl, Chain, Addr,
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
Chain = Addr.getValue(1);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
}
}
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDLoc dl(Op);
if (Op.getValueType().getVectorElementType() == MVT::i32) {
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
"Invalid type for custom lowering!");
if (VT != MVT::v4i16)
return DAG.UnrollVectorOp(Op.getNode());
Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
}
SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorFP_TO_INT(Op, DAG);
if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::FP_TO_SINT)
LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
Op.getValueType());
else
LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
Op.getValueType());
return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
/*isSigned*/ false, SDLoc(Op)).first;
}
return Op;
}
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDLoc dl(Op);
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
if (VT.getVectorElementType() == MVT::f32)
return Op;
return DAG.UnrollVectorOp(Op.getNode());
}
assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
"Invalid type for custom lowering!");
if (VT != MVT::v4f32)
return DAG.UnrollVectorOp(Op.getNode());
unsigned CastOpc;
unsigned Opc;
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid opcode!");
case ISD::SINT_TO_FP:
CastOpc = ISD::SIGN_EXTEND;
Opc = ISD::SINT_TO_FP;
break;
case ISD::UINT_TO_FP:
CastOpc = ISD::ZERO_EXTEND;
Opc = ISD::UINT_TO_FP;
break;
}
Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
return DAG.getNode(Opc, dl, VT, Op);
}
SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT.isVector())
return LowerVectorINT_TO_FP(Op, DAG);
if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
RTLIB::Libcall LC;
if (Op.getOpcode() == ISD::SINT_TO_FP)
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
Op.getValueType());
else
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
Op.getValueType());
return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
/*isSigned*/ false, SDLoc(Op)).first;
}
return Op;
}
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
// Implement fcopysign with a fabs and a conditional fneg.
SDValue Tmp0 = Op.getOperand(0);
SDValue Tmp1 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
EVT SrcVT = Tmp1.getValueType();
bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
Tmp0.getOpcode() == ARMISD::VMOVDRR;
bool UseNEON = !InGPR && Subtarget->hasNEON();
if (UseNEON) {
// Use VBSL to copy the sign bit.
unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
if (VT == MVT::f64)
Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
DAG.getConstant(32, dl, MVT::i32));
else /*if (VT == MVT::f32)*/
Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
if (SrcVT == MVT::f32) {
Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
if (VT == MVT::f64)
Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
DAG.getConstant(32, dl, MVT::i32));
} else if (VT == MVT::f32)
Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
DAG.getConstant(32, dl, MVT::i32));
Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
dl, MVT::i32);
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
if (VT == MVT::f32) {
Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
DAG.getConstant(0, dl, MVT::i32));
} else {
Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
}
return Res;
}
// Bitcast operand 1 to i32.
if (SrcVT == MVT::f64)
Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
Tmp1).getValue(1);
Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
// Or in the signbit with integer operations.
SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
if (VT == MVT::f32) {
Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
}
// f64: Or the high part with signbit and then combine two parts.
Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
Tmp0);
SDValue Lo = Tmp0.getValue(0);
SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
}
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return LR, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
const ARMBaseRegisterInfo &ARI =
*static_cast<const ARMBaseRegisterInfo*>(RegInfo);
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned FrameReg = ARI.getFrameRegister(MF);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("sp", ARM::SP)
.Default(0);
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
+ StringRef(RegName) + "\"."));
}
// Result is 64 bit value so split into two 32 bit values and return as a
// pair of values.
static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
SDLoc DL(N);
// This function is only supposed to be called for i64 type destination.
assert(N->getValueType(0) == MVT::i64
&& "ExpandREAD_REGISTER called for non-i64 type result.");
SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
N->getOperand(0),
N->getOperand(1));
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
Read.getValue(1)));
Results.push_back(Read.getOperand(0));
}
/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
/// When \p DstVT, the destination type of \p BC, is on the vector
/// register bank and the source of bitcast, \p Op, operates on the same bank,
/// it might be possible to combine them, such that everything stays on the
/// vector register bank.
/// \p return The node that would replace \p BT, if the combine
/// is possible.
static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
SelectionDAG &DAG) {
SDValue Op = BC->getOperand(0);
EVT DstVT = BC->getValueType(0);
// The only vector instruction that can produce a scalar (remember,
// since the bitcast was about to be turned into VMOVDRR, the source
// type is i64) from a vector is EXTRACT_VECTOR_ELT.
// Moreover, we can do this combine only if there is one use.
// Finally, if the destination type is not a vector, there is not
// much point on forcing everything on the vector bank.
if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!Op.hasOneUse())
return SDValue();
// If the index is not constant, we will introduce an additional
// multiply that will stick.
// Give up in that case.
ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!Index)
return SDValue();
unsigned DstNumElt = DstVT.getVectorNumElements();
// Compute the new index.
const APInt &APIntIndex = Index->getAPIntValue();
APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
NewIndex *= APIntIndex;
// Check if the new constant index fits into i32.
if (NewIndex.getBitWidth() > 32)
return SDValue();
// vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
// vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
SDLoc dl(Op);
SDValue ExtractSrc = Op.getOperand(0);
EVT VecVT = EVT::getVectorVT(
*DAG.getContext(), DstVT.getScalarType(),
ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
}
/// ExpandBITCAST - If the target supports VFP, this function is called to
/// expand a bit convert where either the source or destination type is i64 to
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
/// vectors), since the legalizer won't know what to do with that.
static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(N);
SDValue Op = N->getOperand(0);
// This function is only supposed to be called for i64 types, either as the
// source or destination of the bit convert.
EVT SrcVT = Op.getValueType();
EVT DstVT = N->getValueType(0);
assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
"ExpandBITCAST called for non-i64 type");
// Turn i64->f64 into VMOVDRR.
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
// Do not force values to GPRs (this is what VMOVDRR does for the inputs)
// if we can combine the bitcast with its source.
if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
return Val;
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(1, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, DstVT,
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
}
// Turn f64->i64 into VMOVRRD.
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
SDValue Cvt;
if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
SrcVT.getVectorNumElements() > 1)
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32),
DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
else
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Op);
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
}
return SDValue();
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
/// Zero vectors are used to represent vector negation and in those cases
/// will be implemented with the NEON VNEG instruction. However, VNEG does
/// not support i64 elements, so sometimes the zero vectors will need to be
/// explicitly constructed. Regardless, use a canonical VMOV to create the
/// zero vector.
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
assert(VT.isVector() && "Expected a vector type");
// The canonical modified immediate encoding of a zero vector is....0!
SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
ARMcc, CCR, CmpLo);
SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue HiBigShift = Opc == ISD::SRA
? DAG.getNode(Opc, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, dl, VT))
: DAG.getConstant(0, dl, VT);
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
ARMcc, CCR, CmpHi);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMcc;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
assert(Op.getOpcode() == ISD::SHL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i32));
SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
ARMcc, CCR, CmpHi);
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
ISD::SETGE, ARMcc, DAG, dl);
SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
// The rounding mode is in bits 23:22 of the FPSCR.
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
// so that the shift + and get folded into a bitfield extract.
SDLoc dl(Op);
SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
MVT::i32));
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
DAG.getConstant(1U << 22, dl, MVT::i32));
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
DAG.getConstant(22, dl, MVT::i32));
return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
DAG.getConstant(3, dl, MVT::i32));
}
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
if (VT.isVector()) {
assert(ST->hasNEON());
// Compute the least significant set bit: LSB = X & -X
SDValue X = N->getOperand(0);
SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
EVT ElemTy = VT.getVectorElementType();
if (ElemTy == MVT::i8) {
// Compute with: cttz(x) = ctpop(lsb - 1)
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(1, dl, ElemTy));
SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
}
if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
(N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
// Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
unsigned NumBits = ElemTy.getSizeInBits();
SDValue WidthMinus1 =
DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
}
// Compute with: cttz(x) = ctpop(lsb - 1)
// Since we can only compute the number of bits in a byte with vcnt.8, we
// have to gather the result with pairwise addition (vpaddl) for i16, i32,
// and i64.
// Compute LSB - 1.
SDValue Bits;
if (ElemTy == MVT::i64) {
// Load constant 0xffff'ffff'ffff'ffff to register.
SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(0x1eff, dl, MVT::i32));
Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
} else {
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
DAG.getTargetConstant(1, dl, ElemTy));
Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
}
// Count #bits with vcnt.8.
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
// Gather the #bits with vpaddl (pairwise add.)
EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
Cnt8);
if (ElemTy == MVT::i16)
return Cnt16;
EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
Cnt16);
if (ElemTy == MVT::i32)
return Cnt32;
assert(ElemTy == MVT::i64);
SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
Cnt32);
return Cnt64;
}
if (!ST->hasV6T2Ops())
return SDValue();
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
}
/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
/// for each 16-bit element from operand, repeated. The basic idea is to
/// leverage vcnt to get the 8-bit counts, gather and add the results.
///
/// Trace for v4i16:
/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
/// [b0 b1 b2 b3 b4 b5 b6 b7]
/// +[b1 b0 b3 b2 b5 b4 b7 b6]
/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDLoc DL(N);
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
}
/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
/// bit-count for each 16-bit element from the operand. We need slightly
/// different sequencing for v4i16 and v8i16 to stay within NEON's available
/// 64/128-bit registers.
///
/// Trace for v4i16:
/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
/// v4i16:Extracted = [k0 k1 k2 k3 ]
static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDLoc DL(N);
SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
if (VT.is64BitVector()) {
SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
DAG.getIntPtrConstant(0, DL));
} else {
SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
BitCounts, DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
}
}
/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
/// bit-count for each 32-bit element from the operand. The idea here is
/// to split the vector into 16-bit elements, leverage the 16-bit count
/// routine, and then combine the results.
///
/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
/// input = [v0 v1 ] (vi: 32-bit elements)
/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
/// vrev: N0 = [k1 k0 k3 k2 ]
/// [k0 k1 k2 k3 ]
/// N1 =+[k1 k0 k3 k2 ]
/// [k0 k2 k1 k3 ]
/// N2 =+[k1 k3 k0 k2 ]
/// [k0 k2 k1 k3 ]
/// Extended =+[k1 k3 k0 k2 ]
/// [k0 k2 ]
/// Extracted=+[k1 k3 ]
///
static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDLoc DL(N);
EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
if (VT.is64BitVector()) {
SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
DAG.getIntPtrConstant(0, DL));
} else {
SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
}
}
static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
VT == MVT::v4i16 || VT == MVT::v8i16) &&
"Unexpected type for custom ctpop lowering");
if (VT.getVectorElementType() == MVT::i32)
return lowerCTPOP32BitElements(N, DAG);
else
return lowerCTPOP16BitElements(N, DAG);
}
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
if (!VT.isVector())
return SDValue();
// Lower vector shifts on NEON to use VSHL.
assert(ST->hasNEON() && "unexpected vector shift");
// Left shifts translate directly to the vshiftu intrinsic.
if (N->getOpcode() == ISD::SHL)
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
MVT::i32),
N->getOperand(0), N->getOperand(1));
assert((N->getOpcode() == ISD::SRA ||
N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
// NEON uses the same intrinsics for both left and right shifts. For
// right shifts, the shift amounts are negative, so negate the vector of
// shift amounts.
EVT ShiftVT = N->getOperand(1).getValueType();
SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
getZeroVector(ShiftVT, DAG, dl),
N->getOperand(1));
Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
Intrinsic::arm_neon_vshifts :
Intrinsic::arm_neon_vshiftu);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(vshiftInt, dl, MVT::i32),
N->getOperand(0), NegatedCount);
}
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
SDLoc dl(N);
// We can get here for a node like i32 = ISD::SHL i32, i64
if (VT != MVT::i64)
return SDValue();
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
"Unknown shift to lower!");
// We only lower SRA, SRL of 1 here, all others use generic lowering.
if (!isOneConstant(N->getOperand(1)))
return SDValue();
// If we are in thumb mode, we don't have RRX.
if (ST->isThumb1Only()) return SDValue();
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(1, dl, MVT::i32));
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
// captures the result into a carry flag.
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
// The low part is an ARMISD::RRX operand, which shifts the carry in.
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
SDValue TmpOp0, TmpOp1;
bool Invert = false;
bool Swap = false;
unsigned Opc = 0;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
EVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
SDLoc dl(Op);
if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
(SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
// Special-case integer 64-bit equality comparisons. They aren't legal,
// but they can be lowered with a few vector instructions.
unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
DAG.getCondCode(ISD::SETEQ));
SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
if (SetCCOpcode == ISD::SETNE)
Merged = DAG.getNOT(dl, Merged, CmpVT);
Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
return Merged;
}
if (CmpVT.getVectorElementType() == MVT::i64)
// 64-bit comparisons are not legal in general.
return SDValue();
if (Op1.getValueType().isFloatingPoint()) {
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal FP comparison");
case ISD::SETUNE:
case ISD::SETNE: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETOEQ:
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
case ISD::SETOLT:
case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETGT: Opc = ARMISD::VCGT; break;
case ISD::SETOLE:
case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETOGE:
case ISD::SETGE: Opc = ARMISD::VCGE; break;
case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETONE:
// Expand this to (OLT | OGT).
TmpOp0 = Op0;
TmpOp1 = Op1;
Opc = ISD::OR;
Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
break;
case ISD::SETUO:
Invert = true;
LLVM_FALLTHROUGH;
case ISD::SETO:
// Expand this to (OLT | OGE).
TmpOp0 = Op0;
TmpOp1 = Op1;
Opc = ISD::OR;
Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
break;
}
} else {
// Integer comparisons.
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal integer comparison");
case ISD::SETNE: Invert = true;
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
case ISD::SETLT: Swap = true;
case ISD::SETGT: Opc = ARMISD::VCGT; break;
case ISD::SETLE: Swap = true;
case ISD::SETGE: Opc = ARMISD::VCGE; break;
case ISD::SETULT: Swap = true;
case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
case ISD::SETULE: Swap = true;
case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
}
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
if (Opc == ARMISD::VCEQ) {
SDValue AndOp;
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
AndOp = Op0;
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
AndOp = Op1;
// Ignore bitconvert.
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
AndOp = AndOp.getOperand(0);
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
Opc = ARMISD::VTST;
Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
Invert = !Invert;
}
}
}
if (Swap)
std::swap(Op0, Op1);
// If one of the operands is a constant vector zero, attempt to fold the
// comparison to a specialized compare-against-zero form.
SDValue SingleOp;
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
SingleOp = Op0;
else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
if (Opc == ARMISD::VCGE)
Opc = ARMISD::VCLEZ;
else if (Opc == ARMISD::VCGT)
Opc = ARMISD::VCLTZ;
SingleOp = Op1;
}
SDValue Result;
if (SingleOp.getNode()) {
switch (Opc) {
case ARMISD::VCEQ:
Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
case ARMISD::VCGE:
Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
case ARMISD::VCLEZ:
Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
case ARMISD::VCGT:
Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
case ARMISD::VCLTZ:
Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
default:
Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
}
} else {
Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
}
Result = DAG.getSExtOrTrunc(Result, dl, VT);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Carry = Op.getOperand(2);
SDValue Cond = Op.getOperand(3);
SDLoc DL(Op);
assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
assert(Carry.getOpcode() != ISD::CARRY_FALSE);
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
SDValue ARMcc = DAG.getConstant(
IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
Cmp.getValue(1), SDValue());
return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
CCR, Chain.getValue(1));
}
/// isNEONModifiedImm - Check if the specified splat value corresponds to a
/// valid vector constant for a NEON instruction with a "modified immediate"
/// operand (e.g., VMOV). If so, return the encoded value.
static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
unsigned SplatBitSize, SelectionDAG &DAG,
const SDLoc &dl, EVT &VT, bool is128Bits,
NEONModImmType type) {
unsigned OpCmode, Imm;
// SplatBitSize is set to the smallest size that splats the vector, so a
// zero vector will always have SplatBitSize == 8. However, NEON modified
// immediate instructions others than VMOV do not support the 8-bit encoding
// of a zero vector, and the default encoding of zero is supposed to be the
// 32-bit version.
if (SplatBits == 0)
SplatBitSize = 32;
switch (SplatBitSize) {
case 8:
if (type != VMOVModImm)
return SDValue();
// Any 1-byte value is OK. Op=0, Cmode=1110.
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
OpCmode = 0xe;
Imm = SplatBits;
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
break;
case 16:
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x00nn: Op=x, Cmode=100x.
OpCmode = 0x8;
Imm = SplatBits;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0xnn00: Op=x, Cmode=101x.
OpCmode = 0xa;
Imm = SplatBits >> 8;
break;
}
return SDValue();
case 32:
// NEON's 32-bit VMOV supports splat values where:
// * only one byte is nonzero, or
// * the least significant byte is 0xff and the second byte is nonzero, or
// * the least significant 2 bytes are 0xff and the third is nonzero.
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
if ((SplatBits & ~0xff) == 0) {
// Value = 0x000000nn: Op=x, Cmode=000x.
OpCmode = 0;
Imm = SplatBits;
break;
}
if ((SplatBits & ~0xff00) == 0) {
// Value = 0x0000nn00: Op=x, Cmode=001x.
OpCmode = 0x2;
Imm = SplatBits >> 8;
break;
}
if ((SplatBits & ~0xff0000) == 0) {
// Value = 0x00nn0000: Op=x, Cmode=010x.
OpCmode = 0x4;
Imm = SplatBits >> 16;
break;
}
if ((SplatBits & ~0xff000000) == 0) {
// Value = 0xnn000000: Op=x, Cmode=011x.
OpCmode = 0x6;
Imm = SplatBits >> 24;
break;
}
// cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
if (type == OtherModImm) return SDValue();
if ((SplatBits & ~0xffff) == 0 &&
((SplatBits | SplatUndef) & 0xff) == 0xff) {
// Value = 0x0000nnff: Op=x, Cmode=1100.
OpCmode = 0xc;
Imm = SplatBits >> 8;
break;
}
if ((SplatBits & ~0xffffff) == 0 &&
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
// Value = 0x00nnffff: Op=x, Cmode=1101.
OpCmode = 0xd;
Imm = SplatBits >> 16;
break;
}
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
// VMOV.I32. A (very) minor optimization would be to replicate the value
// and fall through here to test for a valid 64-bit splat. But, then the
// caller would also need to check and handle the change in size.
return SDValue();
case 64: {
if (type != VMOVModImm)
return SDValue();
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
uint64_t BitMask = 0xff;
uint64_t Val = 0;
unsigned ImmMask = 1;
Imm = 0;
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
Val |= BitMask;
Imm |= ImmMask;
} else if ((SplatBits & BitMask) != 0) {
return SDValue();
}
BitMask <<= 8;
ImmMask <<= 1;
}
if (DAG.getDataLayout().isBigEndian())
// swap higher and lower 32 bit word
Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
// Op=1, Cmode=1110.
OpCmode = 0x1e;
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
break;
}
default:
llvm_unreachable("unexpected size for isNEONModifiedImm");
}
unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
}
SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const {
bool IsDouble = Op.getValueType() == MVT::f64;
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
const APFloat &FPVal = CFP->getValueAPF();
// Prevent floating-point constants from using literal loads
// when execute-only is enabled.
if (ST->genExecuteOnly()) {
APInt INTVal = FPVal.bitcastToAPInt();
SDLoc DL(CFP);
if (IsDouble) {
SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
if (!ST->isLittle())
std::swap(Lo, Hi);
return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
} else {
return DAG.getConstant(INTVal, DL, MVT::i32);
}
}
if (!ST->hasVFP3())
return SDValue();
// Use the default (constant pool) lowering for double constants when we have
// an SP-only FPU
if (IsDouble && Subtarget->isFPOnlySP())
return SDValue();
// Try splatting with a VMOV.f32...
int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
if (ImmVal != -1) {
if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
// We have code in place to select a valid ConstantFP already, no need to
// do any mangling.
return Op;
}
// It's a float and we are trying to use NEON operations where
// possible. Lower it to a splat followed by an extract.
SDLoc DL(Op);
SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
NewVal);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
DAG.getConstant(0, DL, MVT::i32));
}
// The rest of our options are NEON only, make sure that's allowed before
// proceeding..
if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
return SDValue();
EVT VMovVT;
uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
// It wouldn't really be worth bothering for doubles except for one very
// important value, which does happen to match: 0.0. So make sure we don't do
// anything stupid.
if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
return SDValue();
// Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
VMovVT, false, VMOVModImm);
if (NewVal != SDValue()) {
SDLoc DL(Op);
SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
NewVal);
if (IsDouble)
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
// It's a float: cast and extract a vector element.
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
VecConstant);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
DAG.getConstant(0, DL, MVT::i32));
}
// Finally, try a VMVN.i32
NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
false, VMVNModImm);
if (NewVal != SDValue()) {
SDLoc DL(Op);
SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
if (IsDouble)
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
// It's a float: cast and extract a vector element.
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
VecConstant);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
DAG.getConstant(0, DL, MVT::i32));
}
return SDValue();
}
// check if an VEXT instruction can handle the shuffle mask when the
// vector sources of the shuffle are the same.
static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, just follow it
// back to index zero and keep going.
++ExpectedElt;
if (ExpectedElt == NumElts)
ExpectedElt = 0;
if (M[i] < 0) continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
return true;
}
static bool isVEXTMask(ArrayRef<int> M, EVT VT,
bool &ReverseVEXT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
ReverseVEXT = false;
// Assume that the first shuffle index is not UNDEF. Fail if it is.
if (M[0] < 0)
return false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, it may still be
// a VEXT but the source vectors must be swapped.
ExpectedElt += 1;
if (ExpectedElt == NumElts * 2) {
ExpectedElt = 0;
ReverseVEXT = true;
}
if (M[i] < 0) continue; // ignore UNDEF indices
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
// Adjust the index value if the source operands will be swapped.
if (ReverseVEXT)
Imm -= NumElts;
return true;
}
/// isVREVMask - Check if a vector shuffle corresponds to a VREV
/// instruction with the specified blocksize. (The order of the elements
/// within each block of the vector is reversed.)
static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
"Only possible block sizes for VREV are: 16, 32, 64");
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
unsigned BlockElts = M[0] + 1;
// If the first shuffle index is UNDEF, be optimistic.
if (M[0] < 0)
BlockElts = BlockSize / EltSz;
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
return false;
for (unsigned i = 0; i < NumElts; ++i) {
if (M[i] < 0) continue; // ignore UNDEF indices
if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
return false;
}
return true;
}
static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
// We can handle <8 x i8> vector shuffles. If the index in the mask is out of
// range, then 0 is placed into the resulting vector. So pretty much any mask
// of 8 elements can work here.
return VT == MVT::v8i8 && M.size() == 8;
}
// Checks whether the shuffle mask represents a vector transpose (VTRN) by
// checking that pairs of elements in the shuffle mask represent the same index
// in each vector, incrementing the expected index by 2 at each step.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
// v2={e,f,g,h}
// WhichResult gives the offset for each element in the mask based on which
// of the two results it belongs to.
//
// The transpose can be represented either as:
// result1 = shufflevector v1, v2, result1_shuffle_mask
// result2 = shufflevector v1, v2, result2_shuffle_mask
// where v1/v2 and the shuffle masks have the same number of elements
// (here WhichResult (see below) indicates which result is being checked)
//
// or as:
// results = shufflevector v1, v2, shuffle_mask
// where both results are returned in one vector and the shuffle mask has twice
// as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
// want to check the low half and high half of the shuffle mask as if it were
// the other case
static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
// If the mask is twice as long as the input vector then we need to check the
// upper and lower parts of the mask with a matching value for WhichResult
// FIXME: A mask with only even values will be rejected in case the first
// element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
// M[0] is used to determine WhichResult
for (unsigned i = 0; i < M.size(); i += NumElts) {
if (M.size() == NumElts * 2)
WhichResult = i / NumElts;
else
WhichResult = M[i] == 0 ? 0 : 1;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
return true;
}
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
if (M.size() == NumElts * 2)
WhichResult = i / NumElts;
else
WhichResult = M[i] == 0 ? 0 : 1;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
return true;
}
// Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
// that the mask elements are either all even and in steps of size 2 or all odd
// and in steps of size 2.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
// v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with
// respect the how results are returned.
static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = M[i] == 0 ? 0 : 1;
for (unsigned j = 0; j < NumElts; ++j) {
if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
return false;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
unsigned Half = NumElts / 2;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = M[i] == 0 ? 0 : 1;
for (unsigned j = 0; j < NumElts; j += Half) {
unsigned Idx = WhichResult;
for (unsigned k = 0; k < Half; ++k) {
int MIdx = M[i + j + k];
if (MIdx >= 0 && (unsigned) MIdx != Idx)
return false;
Idx += 2;
}
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
// Checks whether the shuffle mask represents a vector zip (VZIP) by checking
// that pairs of elements of the shufflemask represent the same index in each
// vector incrementing sequentially through the vectors.
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
// v2={e,f,g,h}
// Requires similar checks to that of isVTRNMask with respect the how results
// are returned.
static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = M[i] == 0 ? 0 : 1;
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
return false;
Idx += 1;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
unsigned EltSz = VT.getScalarSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (M.size() != NumElts && M.size() != NumElts*2)
return false;
for (unsigned i = 0; i < M.size(); i += NumElts) {
WhichResult = M[i] == 0 ? 0 : 1;
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned j = 0; j < NumElts; j += 2) {
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
return false;
Idx += 1;
}
}
if (M.size() == NumElts*2)
WhichResult = 0;
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
/// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
unsigned &WhichResult,
bool &isV_UNDEF) {
isV_UNDEF = false;
if (isVTRNMask(ShuffleMask, VT, WhichResult))
return ARMISD::VTRN;
if (isVUZPMask(ShuffleMask, VT, WhichResult))
return ARMISD::VUZP;
if (isVZIPMask(ShuffleMask, VT, WhichResult))
return ARMISD::VZIP;
isV_UNDEF = true;
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VTRN;
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VUZP;
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return ARMISD::VZIP;
return 0;
}
/// \return true if this is a reverse operation on an vector.
static bool isReverseMask(ArrayRef<int> M, EVT VT) {
unsigned NumElts = VT.getVectorNumElements();
// Make sure the mask has the right size.
if (NumElts != M.size())
return false;
// Look for <15, ..., 3, -1, 1, 0>.
for (unsigned i = 0; i != NumElts; ++i)
if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
return false;
return true;
}
// If N is an integer constant that can be moved into a register in one
// instruction, return an SDValue of such a constant (will become a MOV
// instruction). Otherwise return null.
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
const ARMSubtarget *ST, const SDLoc &dl) {
uint64_t Val;
if (!isa<ConstantSDNode>(N))
return SDValue();
Val = cast<ConstantSDNode>(N)->getZExtValue();
if (ST->isThumb1Only()) {
if (Val <= 255 || ~Val <= 255)
return DAG.getConstant(Val, dl, MVT::i32);
} else {
if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
return DAG.getConstant(Val, dl, MVT::i32);
}
return SDValue();
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const {
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
SDLoc dl(Op);
EVT VT = Op.getValueType();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatUndef.isAllOnesValue())
return DAG.getUNDEF(VT);
if (SplatBitSize <= 64) {
// Check if an immediate VMOV works.
EVT VmovVT;
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VmovVT, VT.is128BitVector(),
VMOVModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
// Try an immediate VMVN.
uint64_t NegatedImm = (~SplatBits).getZExtValue();
Val = isNEONModifiedImm(NegatedImm,
SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VmovVT, VT.is128BitVector(),
VMVNModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
// Use vmov.f32 to materialize other v2f32 and v4f32 splats.
if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
int ImmVal = ARM_AM::getFP32Imm(SplatBits);
if (ImmVal != -1) {
SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
}
}
}
}
// Scan through the operands to see if only one value is used.
//
// As an optimisation, even if more than one value is used it may be more
// profitable to splat with one value then change some lanes.
//
// Heuristically we decide to do this if the vector has a "dominant" value,
// defined as splatted to more than half of the lanes.
unsigned NumElts = VT.getVectorNumElements();
bool isOnlyLowElement = true;
bool usesOnlyOneValue = true;
bool hasDominantValue = false;
bool isConstant = true;
// Map of the number of times a particular SDValue appears in the
// element list.
DenseMap<SDValue, unsigned> ValueCounts;
SDValue Value;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
if (i > 0)
isOnlyLowElement = false;
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
isConstant = false;
ValueCounts.insert(std::make_pair(V, 0));
unsigned &Count = ValueCounts[V];
// Is this value dominant? (takes up more than half of the lanes)
if (++Count > (NumElts / 2)) {
hasDominantValue = true;
Value = V;
}
}
if (ValueCounts.size() != 1)
usesOnlyOneValue = false;
if (!Value.getNode() && ValueCounts.size() > 0)
Value = ValueCounts.begin()->first;
if (ValueCounts.size() == 0)
return DAG.getUNDEF(VT);
// Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
// Keep going if we are hitting this case.
if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
unsigned EltSize = VT.getScalarSizeInBits();
// Use VDUP for non-constant splats. For f32 constant splats, reduce to
// i32 and try again.
if (hasDominantValue && EltSize <= 32) {
if (!isConstant) {
SDValue N;
// If we are VDUPing a value that comes directly from a vector, that will
// cause an unnecessary move to and from a GPR, where instead we could
// just use VDUPLANE. We can only do this if the lane being extracted
// is at a constant index, as the VDUP from lane instructions only have
// constant-index forms.
ConstantSDNode *constIndex;
if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
(constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
// We need to create a new undef vector to use for the VDUPLANE if the
// size of the vector from which we get the value is different than the
// size of the vector that we need to create. We will insert the element
// such that the register coalescer will remove unnecessary copies.
if (VT != Value->getOperand(0).getValueType()) {
unsigned index = constIndex->getAPIntValue().getLimitedValue() %
VT.getVectorNumElements();
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
Value, DAG.getConstant(index, dl, MVT::i32)),
DAG.getConstant(index, dl, MVT::i32));
} else
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
Value->getOperand(0), Value->getOperand(1));
} else
N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
if (!usesOnlyOneValue) {
// The dominant value was splatted as 'N', but we now have to insert
// all differing elements.
for (unsigned I = 0; I < NumElts; ++I) {
if (Op.getOperand(I) == Value)
continue;
SmallVector<SDValue, 3> Ops;
Ops.push_back(N);
Ops.push_back(Op.getOperand(I));
Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
}
}
return N;
}
if (VT.getVectorElementType().isFloatingPoint()) {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
Op.getOperand(i)));
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
Val = LowerBUILD_VECTOR(Val, DAG, ST);
if (Val.getNode())
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
if (usesOnlyOneValue) {
SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
if (isConstant && Val.getNode())
return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
}
}
// If all elements are constants and the case above didn't get hit, fall back
// to the default expansion, which will generate a load from the constant
// pool.
if (isConstant)
return SDValue();
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
if (NumElts >= 4) {
SDValue shuffle = ReconstructShuffle(Op, DAG);
if (shuffle != SDValue())
return shuffle;
}
if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
// If we haven't found an efficient lowering, try splitting a 128-bit vector
// into two 64-bit vectors; we might discover a better way to lower it.
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
EVT ExtVT = VT.getVectorElementType();
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
SDValue Lower =
DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
if (Lower.getOpcode() == ISD::BUILD_VECTOR)
Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
SDValue Upper = DAG.getBuildVector(
HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
if (Upper.getOpcode() == ISD::BUILD_VECTOR)
Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
if (Lower && Upper)
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
}
// Vectors with 32- or 64-bit elements can be built by directly assigning
// the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
// will be legalized.
if (EltSize >= 32) {
// Do the expansion with floating-point types, since that is what the VFP
// registers are defined to use, and since i64 is not legal.
EVT EltVT = EVT::getFloatingPointVT(EltSize);
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
// know the default expansion would otherwise fall back on something even
// worse. For a vector with one or two non-undef values, that's
// scalar_to_vector for the elements followed by a shuffle (provided the
// shuffle is valid for the target) and materialization element by element
// on the stack followed by a load for everything else.
if (!isConstant && !usesOnlyOneValue) {
SDValue Vec = DAG.getUNDEF(VT);
for (unsigned i = 0 ; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
}
return Vec;
}
return SDValue();
}
// Gather data to see if the operation can be modelled as a
// shuffle in combination with VEXTs.
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
SDLoc dl(Op);
EVT VT = Op.getValueType();
unsigned NumElts = VT.getVectorNumElements();
struct ShuffleSourceInfo {
SDValue Vec;
unsigned MinElt;
unsigned MaxElt;
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
// be compatible with the shuffle we intend to construct. As a result
// ShuffleVec will be some sliding window into the original Vec.
SDValue ShuffleVec;
// Code should guarantee that element i in Vec starts at element "WindowBase
// + i * WindowScale in ShuffleVec".
int WindowBase;
int WindowScale;
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
ShuffleSourceInfo(SDValue Vec)
: Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
WindowScale(1) {}
};
// First gather all vectors used as an immediate source for this BUILD_VECTOR
// node.
SmallVector<ShuffleSourceInfo, 2> Sources;
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = Op.getOperand(i);
if (V.isUndef())
continue;
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
// A shuffle can only come from building a vector from various
// elements of other vectors.
return SDValue();
} else if (!isa<ConstantSDNode>(V.getOperand(1))) {
// Furthermore, shuffles require a constant mask, whereas extractelts
// accept variable indices.
return SDValue();
}
// Add this element source to the list if it's not already there.
SDValue SourceVec = V.getOperand(0);
auto Source = find(Sources, SourceVec);
if (Source == Sources.end())
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
// Update the minimum and maximum lane number seen.
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
Source->MinElt = std::min(Source->MinElt, EltNo);
Source->MaxElt = std::max(Source->MaxElt, EltNo);
}
// Currently only do something sane when at most two source vectors
// are involved.
if (Sources.size() > 2)
return SDValue();
// Find out the smallest element size among result and two sources, and use
// it as element size to build the shuffle_vector.
EVT SmallestEltTy = VT.getVectorElementType();
for (auto &Source : Sources) {
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
if (SrcEltTy.bitsLT(SmallestEltTy))
SmallestEltTy = SrcEltTy;
}
unsigned ResMultiplier =
VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
// If the source vector is too wide or too narrow, we may nevertheless be able
// to construct a compatible shuffle either by concatenating it with UNDEF or
// extracting a suitable range of elements.
for (auto &Src : Sources) {
EVT SrcVT = Src.ShuffleVec.getValueType();
if (SrcVT.getSizeInBits() == VT.getSizeInBits())
continue;
// This stage of the search produces a source with the same element type as
// the original, but with a total width matching the BUILD_VECTOR output.
EVT EltVT = SrcVT.getVectorElementType();
unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
return SDValue();
// We can pad out the smaller vector for free, so if it's part of a
// shuffle...
Src.ShuffleVec =
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
continue;
}
if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
return SDValue();
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
// Span too large for a VEXT to cope
return SDValue();
}
if (Src.MinElt >= NumSrcElts) {
// The extraction can just take the second half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i32));
Src.WindowBase = -NumSrcElts;
} else if (Src.MaxElt < NumSrcElts) {
// The extraction can just take the first half
Src.ShuffleVec =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i32));
} else {
// An actual VEXT is needed
SDValue VEXTSrc1 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(0, dl, MVT::i32));
SDValue VEXTSrc2 =
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
DAG.getConstant(NumSrcElts, dl, MVT::i32));
Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
VEXTSrc2,
DAG.getConstant(Src.MinElt, dl, MVT::i32));
Src.WindowBase = -Src.MinElt;
}
}
// Another possible incompatibility occurs from the vector element types. We
// can fix this by bitcasting the source vectors to the same type we intend
// for the shuffle.
for (auto &Src : Sources) {
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
if (SrcEltTy == SmallestEltTy)
continue;
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
Src.WindowBase *= Src.WindowScale;
}
// Final sanity check before we try to actually produce a shuffle.
DEBUG(
for (auto Src : Sources)
assert(Src.ShuffleVec.getValueType() == ShuffleVT);
);
// The stars all align, our next step is to produce the mask for the shuffle.
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
SDValue Entry = Op.getOperand(i);
if (Entry.isUndef())
continue;
auto Src = find(Sources, Entry.getOperand(0));
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
// segment.
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
VT.getScalarSizeInBits());
int LanesDefined = BitsDefined / BitsPerShuffleLane;
// This source is expected to fill ResMultiplier lanes of the final shuffle,
// starting at the appropriate offset.
int *LaneMask = &Mask[i * ResMultiplier];
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
ExtractBase += NumElts * (Src - Sources.begin());
for (int j = 0; j < LanesDefined; ++j)
LaneMask[j] = ExtractBase + j;
}
// Final check before we try to produce nonsense...
if (!isShuffleMaskLegal(Mask, ShuffleVT))
return SDValue();
// We can't handle more than two sources. This should have already
// been checked before this point.
assert(Sources.size() <= 2 && "Too many sources!");
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
for (unsigned i = 0; i < Sources.size(); ++i)
ShuffleOps[i] = Sources[i].ShuffleVec;
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
ShuffleOps[1], Mask);
return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
EVT VT) const {
if (VT.getVectorNumElements() == 4 &&
(VT.is128BitVector() || VT.is64BitVector())) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (M[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = M[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4)
return true;
}
bool ReverseVEXT, isV_UNDEF;
unsigned Imm, WhichResult;
unsigned EltSize = VT.getScalarSizeInBits();
return (EltSize >= 32 ||
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
isVREVMask(M, VT, 64) ||
isVREVMask(M, VT, 32) ||
isVREVMask(M, VT, 16) ||
isVEXTMask(M, VT, ReverseVEXT, Imm) ||
isVTBLMask(M, VT) ||
isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
const SDLoc &dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VREV,
OP_VDUP0,
OP_VDUP1,
OP_VDUP2,
OP_VDUP3,
OP_VEXT1,
OP_VEXT2,
OP_VEXT3,
OP_VUZPL, // VUZP, left result
OP_VUZPR, // VUZP, right result
OP_VZIPL, // VZIP, left result
OP_VZIPR, // VZIP, right result
OP_VTRNL, // VTRN, left result
OP_VTRNR // VTRN, right result
};
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
EVT VT = OpLHS.getValueType();
switch (OpNum) {
default: llvm_unreachable("Unknown shuffle opcode!");
case OP_VREV:
// VREV divides the vector in half and swaps within the half.
if (VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::f32)
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
// vrev <4 x i16> -> VREV32
if (VT.getVectorElementType() == MVT::i16)
return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
// vrev <4 x i8> -> VREV16
assert(VT.getVectorElementType() == MVT::i8);
return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3:
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
case OP_VEXT1:
case OP_VEXT2:
case OP_VEXT3:
return DAG.getNode(ARMISD::VEXT, dl, VT,
OpLHS, OpRHS,
DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
case OP_VUZPL:
case OP_VUZPR:
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
case OP_VZIPL:
case OP_VZIPR:
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
case OP_VTRNL:
case OP_VTRNR:
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
}
}
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
ArrayRef<int> ShuffleMask,
SelectionDAG &DAG) {
// Check to see if we can use the VTBL instruction.
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc DL(Op);
SmallVector<SDValue, 8> VTBLMask;
for (ArrayRef<int>::iterator
I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
if (V2.getNode()->isUndef())
return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
}
static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
SelectionDAG &DAG) {
SDLoc DL(Op);
SDValue OpLHS = Op.getOperand(0);
EVT VT = OpLHS.getValueType();
assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
"Expect an v8i16/v16i8 type");
OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
// For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
// extract the first 8 bytes into the top double word and the last 8 bytes
// into the bottom double word. The v8i16 case is similar.
unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
DAG.getConstant(ExtractNum, DL, MVT::i32));
}
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
SDLoc dl(Op);
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
// Convert shuffles that are directly supported on NEON to target-specific
// DAG nodes, instead of keeping them as shuffles and matching them again
// during code selection. This is more efficient and avoids the possibility
// of inconsistencies between legalization and selection.
// FIXME: floating-point vectors should be canonicalized to integer vectors
// of the same time so that they get CSEd properly.
ArrayRef<int> ShuffleMask = SVN->getMask();
unsigned EltSize = VT.getScalarSizeInBits();
if (EltSize <= 32) {
if (SVN->isSplat()) {
int Lane = SVN->getSplatIndex();
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane == -1) Lane = 0;
// Test if V1 is a SCALAR_TO_VECTOR.
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
}
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
// (and probably will turn into a SCALAR_TO_VECTOR once legalization
// reaches it).
if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
!isa<ConstantSDNode>(V1.getOperand(0))) {
bool IsScalarToVector = true;
for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
if (!V1.getOperand(i).isUndef()) {
IsScalarToVector = false;
break;
}
if (IsScalarToVector)
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
}
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
DAG.getConstant(Lane, dl, MVT::i32));
}
bool ReverseVEXT;
unsigned Imm;
if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
if (ReverseVEXT)
std::swap(V1, V2);
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
DAG.getConstant(Imm, dl, MVT::i32));
}
if (isVREVMask(ShuffleMask, VT, 64))
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 32))
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 16))
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
DAG.getConstant(Imm, dl, MVT::i32));
}
// Check for Neon shuffles that modify both input vectors in place.
// If both results are used, i.e., if there are two shuffles with the same
// source operands and with masks corresponding to both results of one of
// these operations, DAG memoization will ensure that a single node is
// used for both shuffles.
unsigned WhichResult;
bool isV_UNDEF;
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
ShuffleMask, VT, WhichResult, isV_UNDEF)) {
if (isV_UNDEF)
V2 = V1;
return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
.getValue(WhichResult);
}
// Also check for these shuffles through CONCAT_VECTORS: we canonicalize
// shuffles that produce a result larger than their operands with:
// shuffle(concat(v1, undef), concat(v2, undef))
// ->
// shuffle(concat(v1, v2), undef)
// because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
//
// This is useful in the general case, but there are special cases where
// native shuffles produce larger results: the two-result ops.
//
// Look through the concat when lowering them:
// shuffle(concat(v1, v2), undef)
// ->
// concat(VZIP(v1, v2):0, :1)
//
if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
SDValue SubV1 = V1->getOperand(0);
SDValue SubV2 = V1->getOperand(1);
EVT SubVT = SubV1.getValueType();
// We expect these to have been canonicalized to -1.
assert(all_of(ShuffleMask, [&](int i) {
return i < (int)VT.getVectorNumElements();
}) && "Unexpected shuffle index into UNDEF operand!");
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
if (isV_UNDEF)
SubV2 = SubV1;
assert((WhichResult == 0) &&
"In-place shuffle of concat can only have one result!");
SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
SubV1, SubV2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
Res.getValue(1));
}
}
}
// If the shuffle is not directly supported and it has 4 elements, use
// the PerfectShuffle-generated table to synthesize it from other shuffles.
unsigned NumElts = VT.getVectorNumElements();
if (NumElts == 4) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (ShuffleMask[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = ShuffleMask[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
// Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
if (EltSize >= 32) {
// Do the expansion with floating-point types, since that is what the VFP
// registers are defined to use, and since i64 is not legal.
EVT EltVT = EVT::getFloatingPointVT(EltSize);
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i) {
if (ShuffleMask[i] < 0)
Ops.push_back(DAG.getUNDEF(EltVT));
else
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
ShuffleMask[i] < (int)NumElts ? V1 : V2,
DAG.getConstant(ShuffleMask[i] & (NumElts-1),
dl, MVT::i32)));
}
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
if (VT == MVT::v8i8)
if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
return NewOp;
return SDValue();
}
static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
// INSERT_VECTOR_ELT is legal only for immediate indexes.
SDValue Lane = Op.getOperand(2);
if (!isa<ConstantSDNode>(Lane))
return SDValue();
return Op;
}
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
// EXTRACT_VECTOR_ELT is legal only for immediate indexes.
SDValue Lane = Op.getOperand(1);
if (!isa<ConstantSDNode>(Lane))
return SDValue();
SDValue Vec = Op.getOperand(0);
if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
SDLoc dl(Op);
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
}
return Op;
}
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
// The only time a CONCAT_VECTORS operation can have legal types is when
// two 64-bit vectors are concatenated to a 128-bit vector.
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
"unexpected CONCAT_VECTORS");
SDLoc dl(Op);
SDValue Val = DAG.getUNDEF(MVT::v2f64);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (!Op0.isUndef())
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
DAG.getIntPtrConstant(0, dl));
if (!Op1.isUndef())
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
DAG.getIntPtrConstant(1, dl));
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
}
/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
/// element has been zero/sign-extended, depending on the isSigned parameter,
/// from an integer type half its size.
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
bool isSigned) {
// A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
EVT VT = N->getValueType(0);
if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
SDNode *BVN = N->getOperand(0).getNode();
if (BVN->getValueType(0) != MVT::v4i32 ||
BVN->getOpcode() != ISD::BUILD_VECTOR)
return false;
unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
unsigned HiElt = 1 - LoElt;
ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
return false;
if (isSigned) {
if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
return true;
} else {
if (Hi0->isNullValue() && Hi1->isNullValue())
return true;
}
return false;
}
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDNode *Elt = N->getOperand(i).getNode();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
unsigned EltSize = VT.getScalarSizeInBits();
unsigned HalfSize = EltSize / 2;
if (isSigned) {
if (!isIntN(HalfSize, C->getSExtValue()))
return false;
} else {
if (!isUIntN(HalfSize, C->getZExtValue()))
return false;
}
continue;
}
return false;
}
return true;
}
/// isSignExtended - Check if a node is a vector value that is sign-extended
/// or a constant BUILD_VECTOR with sign-extended elements.
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
return true;
if (isExtendedBUILD_VECTOR(N, DAG, true))
return true;
return false;
}
/// isZeroExtended - Check if a node is a vector value that is zero-extended
/// or a constant BUILD_VECTOR with zero-extended elements.
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
return true;
if (isExtendedBUILD_VECTOR(N, DAG, false))
return true;
return false;
}
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
if (OrigVT.getSizeInBits() >= 64)
return OrigVT;
assert(OrigVT.isSimple() && "Expecting a simple value type");
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
switch (OrigSimpleTy) {
default: llvm_unreachable("Unexpected Vector Type");
case MVT::v2i8:
case MVT::v2i16:
return MVT::v2i32;
case MVT::v4i8:
return MVT::v4i16;
}
}
/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
/// We insert the required extension here to get the vector to fill a D register.
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
const EVT &OrigTy,
const EVT &ExtTy,
unsigned ExtOpcode) {
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
// 64-bits we need to insert a new extension so that it will be 64-bits.
assert(ExtTy.is128BitVector() && "Unexpected extension size");
if (OrigTy.getSizeInBits() >= 64)
return N;
// Must extend size to at least 64 bits to be used as an operand for VMULL.
EVT NewVT = getExtensionTo64Bits(OrigTy);
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
}
/// SkipLoadExtensionForVMULL - return a load of the original vector size that
/// does not do any sign/zero extension. If the original vector is less
/// than 64 bits, an appropriate extension will be added after the load to
/// reach a total size of 64 bits. We have to add the extension separately
/// because ARM does not have a sign/zero extending load for vectors.
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
// The load already has the right type.
if (ExtendedTy == LD->getMemoryVT())
return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
LD->getBasePtr(), LD->getPointerInfo(),
LD->getAlignment(), LD->getMemOperand()->getFlags());
// We need to create a zextload/sextload. We cannot just create a load
// followed by a zext/zext node because LowerMUL is also run during normal
// operation legalization where we can't create illegal types.
return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
LD->getMemoryVT(), LD->getAlignment(),
LD->getMemOperand()->getFlags());
}
/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
/// extending load, or BUILD_VECTOR with extended elements, return the
/// unextended value. The unextended vector should be 64 bits so that it can
/// be used as an operand to a VMULL instruction. If the original vector size
/// before extension is less than 64 bits we add a an extension to resize
/// the vector to 64 bits.
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
N->getOperand(0)->getValueType(0),
N->getValueType(0),
N->getOpcode());
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return SkipLoadExtensionForVMULL(LD, DAG);
// Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
// have been legalized as a BITCAST from v4i32.
if (N->getOpcode() == ISD::BITCAST) {
SDNode *BVN = N->getOperand(0).getNode();
assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
return DAG.getBuildVector(
MVT::v2i32, SDLoc(N),
{BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
}
// Construct a new BUILD_VECTOR with elements truncated to half the size.
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
EVT VT = N->getValueType(0);
unsigned EltSize = VT.getScalarSizeInBits() / 2;
unsigned NumElts = VT.getVectorNumElements();
MVT TruncVT = MVT::getIntegerVT(EltSize);
SmallVector<SDValue, 8> Ops;
SDLoc dl(N);
for (unsigned i = 0; i != NumElts; ++i) {
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
const APInt &CInt = C->getAPIntValue();
// Element types smaller than 32 bits are not legal, so use i32 elements.
// The values are implicitly truncated so sext vs. zext doesn't matter.
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
}
return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
}
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
}
return false;
}
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
SDNode *N0 = N->getOperand(0).getNode();
SDNode *N1 = N->getOperand(1).getNode();
return N0->hasOneUse() && N1->hasOneUse() &&
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
}
return false;
}
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
// Multiplications are only custom-lowered for 128-bit vectors so that
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
EVT VT = Op.getValueType();
assert(VT.is128BitVector() && VT.isInteger() &&
"unexpected type for custom-lowering ISD::MUL");
SDNode *N0 = Op.getOperand(0).getNode();
SDNode *N1 = Op.getOperand(1).getNode();
unsigned NewOpc = 0;
bool isMLA = false;
bool isN0SExt = isSignExtended(N0, DAG);
bool isN1SExt = isSignExtended(N1, DAG);
if (isN0SExt && isN1SExt)
NewOpc = ARMISD::VMULLs;
else {
bool isN0ZExt = isZeroExtended(N0, DAG);
bool isN1ZExt = isZeroExtended(N1, DAG);
if (isN0ZExt && isN1ZExt)
NewOpc = ARMISD::VMULLu;
else if (isN1SExt || isN1ZExt) {
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
if (isN1SExt && isAddSubSExt(N0, DAG)) {
NewOpc = ARMISD::VMULLs;
isMLA = true;
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
NewOpc = ARMISD::VMULLu;
isMLA = true;
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
std::swap(N0, N1);
NewOpc = ARMISD::VMULLu;
isMLA = true;
}
}
if (!NewOpc) {
if (VT == MVT::v2i64)
// Fall through to expand this. It is not legal.
return SDValue();
else
// Other vector multiplications are legal.
return Op;
}
}
// Legalize to a VMULL instruction.
SDLoc DL(Op);
SDValue Op0;
SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
if (!isMLA) {
Op0 = SkipExtensionForVMULL(N0, DAG);
assert(Op0.getValueType().is64BitVector() &&
Op1.getValueType().is64BitVector() &&
"unexpected types for extended operands to VMULL");
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
}
// Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
// isel lowering to take advantage of no-stall back to back vmul + vmla.
// vmull q0, d4, d6
// vmlal q0, d5, d6
// is faster than
// vaddl q0, d4, d5
// vmovl q1, d6
// vmul q0, q0, q1
SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
EVT Op1VT = Op1.getValueType();
return DAG.getNode(N0->getOpcode(), DL, VT,
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
DAG.getNode(NewOpc, DL, VT,
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
}
static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
SelectionDAG &DAG) {
// TODO: Should this propagate fast-math-flags?
// Convert to float
// float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
// float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
// Get reciprocal estimate.
// float4 recip = vrecpeq_f32(yf);
Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
Y);
// Because char has a smaller range than uchar, we can actually get away
// without any newton steps. This requires that we use a weird bias
// of 0xb000, however (again, this has been exhaustively tested).
// float4 result = as_float4(as_int4(xf*recip) + 0xb000);
X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
// Convert back to short.
X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
return X;
}
static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
SelectionDAG &DAG) {
// TODO: Should this propagate fast-math-flags?
SDValue N2;
// Convert to float.
// float4 yf = vcvt_f32_s32(vmovl_s16(y));
// float4 xf = vcvt_f32_s32(vmovl_s16(x));
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
// Use reciprocal estimate and one refinement step.
// float4 recip = vrecpeq_f32(yf);
// recip *= vrecpsq_f32(yf, recip);
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
N1);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
N1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
// Because short has a smaller range than ushort, we can actually get away
// with only a single newton step. This requires that we use a weird bias
// of 89, however (again, this has been exhaustively tested).
// float4 result = as_float4(as_int4(xf*recip) + 0x89);
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
// Convert back to integer and return.
// return vmovn_s32(vcvt_s32_f32(result));
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
return N0;
}
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
"unexpected type for custom-lowering ISD::SDIV");
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2, N3;
if (VT == MVT::v8i8) {
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(4, dl));
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(4, dl));
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(0, dl));
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(0, dl));
N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
N0 = LowerCONCAT_VECTORS(N0, DAG);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
return N0;
}
return LowerSDIV_v4i16(N0, N1, dl, DAG);
}
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
// TODO: Should this propagate fast-math-flags?
EVT VT = Op.getValueType();
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
"unexpected type for custom-lowering ISD::UDIV");
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2, N3;
if (VT == MVT::v8i8) {
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(4, dl));
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(4, dl));
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
DAG.getIntPtrConstant(0, dl));
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
DAG.getIntPtrConstant(0, dl));
N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
N0 = LowerCONCAT_VECTORS(N0, DAG);
N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
MVT::i32),
N0);
return N0;
}
// v4i16 sdiv ... Convert to float.
// float4 yf = vcvt_f32_s32(vmovl_u16(y));
// float4 xf = vcvt_f32_s32(vmovl_u16(x));
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
// Use reciprocal estimate and two refinement steps.
// float4 recip = vrecpeq_f32(yf);
// recip *= vrecpsq_f32(yf, recip);
// recip *= vrecpsq_f32(yf, recip);
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
BN1);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
BN1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
BN1, N2);
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
// Simply multiplying by the reciprocal estimate can leave us a few ulps
// too low, so we add 2 ulps (exhaustive testing shows that this is enough,
// and that it will never cause us to return an answer too large).
// float4 result = as_float4(as_int4(xf*recip) + 2);
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
N1 = DAG.getConstant(2, dl, MVT::v4i32);
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
// Convert back to integer and return.
// return vmovn_u32(vcvt_s32_f32(result));
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
return N0;
}
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getNode()->getValueType(0);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
unsigned Opc;
bool ExtraOp = false;
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid code");
case ISD::ADDC: Opc = ARMISD::ADDC; break;
case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
case ISD::SUBC: Opc = ARMISD::SUBC; break;
case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
}
if (!ExtraOp)
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
Op.getOperand(1));
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
Op.getOperand(1), Op.getOperand(2));
}
SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetDarwin());
// For iOS, we want to call an alternative entry point: __sincos_stret,
// return values are passed via sret.
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
auto PtrVT = getPointerTy(DAG.getDataLayout());
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Pair of floats / doubles used to pass the result.
Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
auto &DL = DAG.getDataLayout();
ArgListTy Args;
bool ShouldUseSRet = Subtarget->isAPCS_ABI();
SDValue SRet;
if (ShouldUseSRet) {
// Create stack object for sret.
const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
ArgListEntry Entry;
Entry.Node = SRet;
Entry.Ty = RetTy->getPointerTo();
Entry.isSExt = false;
Entry.isZExt = false;
Entry.isSRet = true;
Args.push_back(Entry);
RetTy = Type::getVoidTy(*DAG.getContext());
}
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
const char *LibcallName =
(ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
RTLIB::Libcall LC =
(ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
CallingConv::ID CC = getLibcallCallingConv(LC);
SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setCallee(CC, RetTy, Callee, std::move(Args))
.setDiscardResult(ShouldUseSRet);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
if (!ShouldUseSRet)
return CallResult.first;
SDValue LoadSin =
DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
// Address of cos field.
SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
SDValue LoadCos =
DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
LoadSin.getValue(0), LoadCos.getValue(0));
}
SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
bool Signed,
SDValue &Chain) const {
EVT VT = Op.getValueType();
assert((VT == MVT::i32 || VT == MVT::i64) &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
const auto &DL = DAG.getDataLayout();
const auto &TLI = DAG.getTargetLoweringInfo();
const char *Name = nullptr;
if (Signed)
Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
else
Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
ARMTargetLowering::ArgListTy Args;
for (auto AI : {1, 0}) {
ArgListEntry Arg;
Arg.Node = Op.getOperand(AI);
Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
Args.push_back(Arg);
}
CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
ES, std::move(Args));
return LowerCallTo(CLI).first;
}
SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
assert(Op.getValueType() == MVT::i32 &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
DAG.getEntryNode(), Op.getOperand(1));
return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
}
static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
SDLoc DL(N);
SDValue Op = N->getOperand(1);
if (N->getValueType(0) == MVT::i32)
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
DAG.getConstant(1, DL, MVT::i32));
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
}
void ARMTargetLowering::ExpandDIV_Windows(
SDValue Op, SelectionDAG &DAG, bool Signed,
SmallVectorImpl<SDValue> &Results) const {
const auto &DL = DAG.getDataLayout();
const auto &TLI = DAG.getTargetLoweringInfo();
assert(Op.getValueType() == MVT::i64 &&
"unexpected type for custom lowering DIV");
SDLoc dl(Op);
SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
Results.push_back(Lower);
Results.push_back(Upper);
}
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
// Acquire/Release load/store is not legal for targets without a dmb or
// equivalent available.
return SDValue();
// Monotonic load/store is legal for all targets.
return Op;
}
static void ReplaceREADCYCLECOUNTER(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
SDLoc DL(N);
// Under Power Management extensions, the cycle-count is:
// mrc p15, #0, <Rt>, c9, c13, #0
SDValue Ops[] = { N->getOperand(0), // Chain
DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
DAG.getConstant(15, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(9, DL, MVT::i32),
DAG.getConstant(13, DL, MVT::i32),
DAG.getConstant(0, DL, MVT::i32)
};
SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
DAG.getVTList(MVT::i32, MVT::Other), Ops);
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
DAG.getConstant(0, DL, MVT::i32)));
Results.push_back(Cycles32.getValue(1));
}
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
SDLoc dl(V.getNode());
SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
SDValue VHi = DAG.getAnyExtOrTrunc(
DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
dl, MVT::i32);
SDValue RegClass =
DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
return SDValue(
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
}
static void ReplaceCMP_SWAP_64Results(SDNode *N,
SmallVectorImpl<SDValue> & Results,
SelectionDAG &DAG) {
assert(N->getValueType(0) == MVT::i64 &&
"AtomicCmpSwap on types less than 64 should be legal");
SDValue Ops[] = {N->getOperand(1),
createGPRPairNode(DAG, N->getOperand(2)),
createGPRPairNode(DAG, N->getOperand(3)),
N->getOperand(0)};
SDNode *CmpSwap = DAG.getMachineNode(
ARM::CMP_SWAP_64, SDLoc(N),
DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
MachineFunction &MF = DAG.getMachineFunction();
MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_0, SDLoc(N), MVT::i32,
SDValue(CmpSwap, 0)));
Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_1, SDLoc(N), MVT::i32,
SDValue(CmpSwap, 0)));
Results.push_back(SDValue(CmpSwap, 2));
}
static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
SelectionDAG &DAG) {
const auto &TLI = DAG.getTargetLoweringInfo();
assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
"Custom lowering is MSVCRT specific!");
SDLoc dl(Op);
SDValue Val = Op.getOperand(0);
MVT Ty = Val->getSimpleValueType(0);
SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
TLI.getPointerTy(DAG.getDataLayout()));
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Val;
Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
Entry.isZExt = true;
Args.push_back(Entry);
Entry.Node = Exponent;
Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
Entry.isZExt = true;
Args.push_back(Entry);
Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
// In the in-chain to the call is the entry node If we are emitting a
// tailcall, the chain will be mutated if the node has a non-entry input
// chain.
SDValue InChain = DAG.getEntryNode();
SDValue TCChain = InChain;
const auto *F = DAG.getMachineFunction().getFunction();
bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
F->getReturnType() == LCRTy;
if (IsTC)
InChain = TCChain;
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(InChain)
.setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
.setTailCall(IsTC);
std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
// Return the chain (the DAG root) if it is a tail call
return !CI.second.getNode() ? DAG.getRoot() : CI.first;
}
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
case ISD::ConstantPool:
if (Subtarget->genExecuteOnly())
llvm_unreachable("execute-only should not generate constant pools");
return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress:
switch (Subtarget->getTargetTriple().getObjectFormat()) {
default: llvm_unreachable("unknown object format");
case Triple::COFF:
return LowerGlobalAddressWindows(Op, DAG);
case Triple::ELF:
return LowerGlobalAddressELF(Op, DAG);
case Triple::MachO:
return LowerGlobalAddressDarwin(Op, DAG);
}
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
Subtarget);
case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
case ISD::SHL:
case ISD::SRL:
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
case ISD::SREM: return LowerREM(Op.getNode(), DAG);
case ISD::UREM: return LowerREM(Op.getNode(), DAG);
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
case ISD::SRL_PARTS:
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
case ISD::SETCC: return LowerVSETCC(Op, DAG);
case ISD::SETCCE: return LowerSETCCE(Op, DAG);
case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
case ISD::SDIV:
if (Subtarget->isTargetWindows())
return LowerDIV_Windows(Op, DAG, /* Signed */ true);
return LowerSDIV(Op, DAG);
case ISD::UDIV:
if (Subtarget->isTargetWindows())
return LowerDIV_Windows(Op, DAG, /* Signed */ false);
return LowerUDIV(Op, DAG);
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
return LowerXALUO(Op, DAG);
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
case ISD::SDIVREM:
case ISD::UDIVREM: return LowerDivRem(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
return LowerDYNAMIC_STACKALLOC(Op, DAG);
llvm_unreachable("Don't know how to custom lower this!");
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
case ARMISD::WIN__DBZCHK: return SDValue();
}
}
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res;
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
case ISD::READ_REGISTER:
ExpandREAD_REGISTER(N, Results, DAG);
break;
case ISD::BITCAST:
Res = ExpandBITCAST(N, DAG);
break;
case ISD::SRL:
case ISD::SRA:
Res = Expand64BitShift(N, DAG, Subtarget);
break;
case ISD::SREM:
case ISD::UREM:
Res = LowerREM(N, DAG);
break;
case ISD::SDIVREM:
case ISD::UDIVREM:
Res = LowerDivRem(SDValue(N, 0), DAG);
assert(Res.getNumOperands() == 2 && "DivRem needs two values");
Results.push_back(Res.getValue(0));
Results.push_back(Res.getValue(1));
return;
case ISD::READCYCLECOUNTER:
ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
return;
case ISD::UDIV:
case ISD::SDIV:
assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
Results);
case ISD::ATOMIC_CMP_SWAP:
ReplaceCMP_SWAP_64Results(N, Results, DAG);
return;
}
if (Res.getNode())
Results.push_back(Res);
}
//===----------------------------------------------------------------------===//
// ARM Scheduler Hooks
//===----------------------------------------------------------------------===//
/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
/// registers the function context.
void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB,
int FI) const {
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
"ROPI/RWPI not currently supported with SjLj");
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
MachineConstantPool *MCP = MF->getConstantPool();
ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
const Function *F = MF->getFunction();
bool isThumb = Subtarget->isThumb();
bool isThumb2 = Subtarget->isThumb2();
unsigned PCLabelId = AFI->createPICLabelUId();
unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
ARMConstantPoolValue *CPV =
ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
: &ARM::GPRRegClass;
// Grab constant pool and fixed stack memory operands.
MachineMemOperand *CPMMO =
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
MachineMemOperand::MOLoad, 4, 4);
MachineMemOperand *FIMMOSt =
MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOStore, 4, 4);
// Load the address of the dispatch MBB into the jump buffer.
if (isThumb2) {
// Incoming value: jbuf
// ldr.n r5, LCPI1_1
// orr r5, r5, #1
// add r5, pc
// str r5, [$jbuf, #+4] ; &jbuf[1]
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
.addConstantPoolIndex(CPI)
.addMemOperand(CPMMO));
// Set the low bit because of thumb mode.
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
AddDefaultCC(
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(0x01)));
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
.addReg(NewVReg2, RegState::Kill)
.addImm(PCLabelId);
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
.addReg(NewVReg3, RegState::Kill)
.addFrameIndex(FI)
.addImm(36) // &jbuf[1] :: pc
.addMemOperand(FIMMOSt));
} else if (isThumb) {
// Incoming value: jbuf
// ldr.n r1, LCPI1_4
// add r1, pc
// mov r2, #1
// orrs r1, r2
// add r2, $jbuf, #+4 ; &jbuf[1]
// str r1, [r2]
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
.addConstantPoolIndex(CPI)
.addMemOperand(CPMMO));
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(PCLabelId);
// Set the low bit because of thumb mode.
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
.addReg(ARM::CPSR, RegState::Define)
.addImm(1));
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg2, RegState::Kill)
.addReg(NewVReg3, RegState::Kill));
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
.addFrameIndex(FI)
.addImm(36); // &jbuf[1] :: pc
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
.addReg(NewVReg4, RegState::Kill)
.addReg(NewVReg5, RegState::Kill)
.addImm(0)
.addMemOperand(FIMMOSt));
} else {
// Incoming value: jbuf
// ldr r1, LCPI1_1
// add r1, pc, r1
// str r1, [$jbuf, #+4] ; &jbuf[1]
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
.addConstantPoolIndex(CPI)
.addImm(0)
.addMemOperand(CPMMO));
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
.addReg(NewVReg1, RegState::Kill)
.addImm(PCLabelId));
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
.addReg(NewVReg2, RegState::Kill)
.addFrameIndex(FI)
.addImm(36) // &jbuf[1] :: pc
.addMemOperand(FIMMOSt));
}
}
void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
MachineFrameInfo &MFI = MF->getFrameInfo();
int FI = MFI.getFunctionContextIndex();
const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
: &ARM::GPRnopcRegClass;
// Get a mapping of the call site numbers to all of the landing pads they're
// associated with.
DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
unsigned MaxCSNum = 0;
for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
++BB) {
if (!BB->isEHPad()) continue;
// FIXME: We should assert that the EH_LABEL is the first MI in the landing
// pad.
for (MachineBasicBlock::iterator
II = BB->begin(), IE = BB->end(); II != IE; ++II) {
if (!II->isEHLabel()) continue;
MCSymbol *Sym = II->getOperand(0).getMCSymbol();
if (!MF->hasCallSiteLandingPad(Sym)) continue;
SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
for (SmallVectorImpl<unsigned>::iterator
CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
CSI != CSE; ++CSI) {
CallSiteNumToLPad[*CSI].push_back(&*BB);
MaxCSNum = std::max(MaxCSNum, *CSI);
}
break;
}
}
// Get an ordered list of the machine basic blocks for the jump table.
std::vector<MachineBasicBlock*> LPadList;
SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
LPadList.reserve(CallSiteNumToLPad.size());
for (unsigned I = 1; I <= MaxCSNum; ++I) {
SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
for (SmallVectorImpl<MachineBasicBlock*>::iterator
II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
LPadList.push_back(*II);
InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
}
}
assert(!LPadList.empty() &&
"No landing pad destinations for the dispatch jump table!");
// Create the jump table and associated information.
MachineJumpTableInfo *JTI =
MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
// Create the MBBs for the dispatch code.
// Shove the dispatch's address into the return slot in the function context.
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
DispatchBB->setIsEHPad();
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
unsigned trap_opcode;
if (Subtarget->isThumb())
trap_opcode = ARM::tTRAP;
else
trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
BuildMI(TrapBB, dl, TII->get(trap_opcode));
DispatchBB->addSuccessor(TrapBB);
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
DispatchBB->addSuccessor(DispContBB);
// Insert and MBBs.
MF->insert(MF->end(), DispatchBB);
MF->insert(MF->end(), DispContBB);
MF->insert(MF->end(), TrapBB);
// Insert code into the entry block that creates and registers the function
// context.
SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI),
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
MachineInstrBuilder MIB;
MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
// Add a register mask with no preserved registers. This results in all
// registers being marked as clobbered. This can't work if the dispatch block
// is in a Thumb1 function and is linked with ARM code which uses the FP
// registers, as there is no way to preserve the FP registers in Thumb1 mode.
MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
bool IsPositionIndependent = isPositionIndependent();
unsigned NumLPads = LPadList.size();
if (Subtarget->isThumb2()) {
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(FIMMOLd));
if (NumLPads < 256) {
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
.addReg(NewVReg1)
.addImm(LPadList.size()));
} else {
unsigned VReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
.addImm(NumLPads & 0xFFFF));
unsigned VReg2 = VReg1;
if ((NumLPads & 0xFFFF0000) != 0) {
VReg2 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
.addReg(VReg1)
.addImm(NumLPads >> 16));
}
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
.addReg(NewVReg1)
.addReg(VReg2));
}
BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
.addJumpTableIndex(MJTI));
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
AddDefaultCC(
AddDefaultPred(
BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
.addReg(NewVReg3, RegState::Kill)
.addReg(NewVReg1)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
.addReg(NewVReg4, RegState::Kill)
.addReg(NewVReg1)
.addJumpTableIndex(MJTI);
} else if (Subtarget->isThumb()) {
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
.addFrameIndex(FI)
.addImm(1)
.addMemOperand(FIMMOLd));
if (NumLPads < 256) {
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
.addReg(NewVReg1)
.addImm(NumLPads));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
if (Align == 0)
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
unsigned VReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
.addReg(VReg1, RegState::Define)
.addConstantPoolIndex(Idx));
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
.addReg(NewVReg1)
.addReg(VReg1));
}
BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg1)
.addImm(2));
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
.addJumpTableIndex(MJTI));
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg2, RegState::Kill)
.addReg(NewVReg3));
MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
.addReg(NewVReg4, RegState::Kill)
.addImm(0)
.addMemOperand(JTMMOLd));
unsigned NewVReg6 = NewVReg5;
if (IsPositionIndependent) {
NewVReg6 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
.addReg(ARM::CPSR, RegState::Define)
.addReg(NewVReg5, RegState::Kill)
.addReg(NewVReg3));
}
BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
.addReg(NewVReg6, RegState::Kill)
.addJumpTableIndex(MJTI);
} else {
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(FIMMOLd));
if (NumLPads < 256) {
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
.addReg(NewVReg1)
.addImm(NumLPads));
} else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
unsigned VReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
.addImm(NumLPads & 0xFFFF));
unsigned VReg2 = VReg1;
if ((NumLPads & 0xFFFF0000) != 0) {
VReg2 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
.addReg(VReg1)
.addImm(NumLPads >> 16));
}
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
.addReg(NewVReg1)
.addReg(VReg2));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
// MachineConstantPool wants an explicit alignment.
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
if (Align == 0)
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
unsigned VReg1 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
.addReg(VReg1, RegState::Define)
.addConstantPoolIndex(Idx)
.addImm(0));
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
.addReg(NewVReg1)
.addReg(VReg1, RegState::Kill));
}
BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::HI)
.addReg(ARM::CPSR);
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
AddDefaultCC(
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
.addReg(NewVReg1)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
.addJumpTableIndex(MJTI));
MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
AddDefaultPred(
BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
.addReg(NewVReg3, RegState::Kill)
.addReg(NewVReg4)
.addImm(0)
.addMemOperand(JTMMOLd));
if (IsPositionIndependent) {
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
.addReg(NewVReg5, RegState::Kill)
.addReg(NewVReg4)
.addJumpTableIndex(MJTI);
} else {
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
.addReg(NewVReg5, RegState::Kill)
.addJumpTableIndex(MJTI);
}
}
// Add the jump table entries as successors to the MBB.
SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
for (std::vector<MachineBasicBlock*>::iterator
I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
MachineBasicBlock *CurMBB = *I;
if (SeenMBBs.insert(CurMBB).second)
DispContBB->addSuccessor(CurMBB);
}
// N.B. the order the invoke BBs are processed in doesn't matter here.
const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
SmallVector<MachineBasicBlock*, 64> MBBLPads;
for (MachineBasicBlock *BB : InvokeBBs) {
// Remove the landing pad successor from the invoke block and replace it
// with the new dispatch block.
SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
BB->succ_end());
while (!Successors.empty()) {
MachineBasicBlock *SMBB = Successors.pop_back_val();
if (SMBB->isEHPad()) {
BB->removeSuccessor(SMBB);
MBBLPads.push_back(SMBB);
}
}
BB->addSuccessor(DispatchBB, BranchProbability::getZero());
BB->normalizeSuccProbs();
// Find the invoke call and mark all of the callee-saved registers as
// 'implicit defined' so that they're spilled. This prevents code from
// moving instructions to before the EH block, where they will never be
// executed.
for (MachineBasicBlock::reverse_iterator
II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
if (!II->isCall()) continue;
DenseMap<unsigned, bool> DefRegs;
for (MachineInstr::mop_iterator
OI = II->operands_begin(), OE = II->operands_end();
OI != OE; ++OI) {
if (!OI->isReg()) continue;
DefRegs[OI->getReg()] = true;
}
MachineInstrBuilder MIB(*MF, &*II);
for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
unsigned Reg = SavedRegs[i];
if (Subtarget->isThumb2() &&
!ARM::tGPRRegClass.contains(Reg) &&
!ARM::hGPRRegClass.contains(Reg))
continue;
if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
continue;
if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
continue;
if (!DefRegs[Reg])
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
}
break;
}
}
// Mark all former landing pads as non-landing pads. The dispatch is the only
// landing pad now.
for (SmallVectorImpl<MachineBasicBlock*>::iterator
I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
(*I)->setIsEHPad(false);
// The instruction is gone now.
MI.eraseFromParent();
}
static
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
E = MBB->succ_end(); I != E; ++I)
if (*I != Succ)
return *I;
llvm_unreachable("Expecting a BB with two successors!");
}
/// Return the load opcode for a given load size. If load size >= 8,
/// neon opcode will be returned.
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
if (LdSize >= 8)
return LdSize == 16 ? ARM::VLD1q32wb_fixed
: LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
if (IsThumb1)
return LdSize == 4 ? ARM::tLDRi
: LdSize == 2 ? ARM::tLDRHi
: LdSize == 1 ? ARM::tLDRBi : 0;
if (IsThumb2)
return LdSize == 4 ? ARM::t2LDR_POST
: LdSize == 2 ? ARM::t2LDRH_POST
: LdSize == 1 ? ARM::t2LDRB_POST : 0;
return LdSize == 4 ? ARM::LDR_POST_IMM
: LdSize == 2 ? ARM::LDRH_POST
: LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
}
/// Return the store opcode for a given store size. If store size >= 8,
/// neon opcode will be returned.
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
if (StSize >= 8)
return StSize == 16 ? ARM::VST1q32wb_fixed
: StSize == 8 ? ARM::VST1d32wb_fixed : 0;
if (IsThumb1)
return StSize == 4 ? ARM::tSTRi
: StSize == 2 ? ARM::tSTRHi
: StSize == 1 ? ARM::tSTRBi : 0;
if (IsThumb2)
return StSize == 4 ? ARM::t2STR_POST
: StSize == 2 ? ARM::t2STRH_POST
: StSize == 1 ? ARM::t2STRB_POST : 0;
return StSize == 4 ? ARM::STR_POST_IMM
: StSize == 2 ? ARM::STRH_POST
: StSize == 1 ? ARM::STRB_POST_IMM : 0;
}
/// Emit a post-increment load operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
const TargetInstrInfo *TII, const DebugLoc &dl,
unsigned LdSize, unsigned Data, unsigned AddrIn,
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
assert(LdOpc != 0 && "Should have a load opcode");
if (LdSize >= 8) {
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define).addReg(AddrIn)
.addImm(0));
} else if (IsThumb1) {
// load + update AddrIn
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrIn).addImm(0));
MachineInstrBuilder MIB =
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
MIB = AddDefaultT1CC(MIB);
MIB.addReg(AddrIn).addImm(LdSize);
AddDefaultPred(MIB);
} else if (IsThumb2) {
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define).addReg(AddrIn)
.addImm(LdSize));
} else { // arm
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
.addReg(AddrOut, RegState::Define).addReg(AddrIn)
.addReg(0).addImm(LdSize));
}
}
/// Emit a post-increment store operation with given size. The instructions
/// will be added to BB at Pos.
static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
const TargetInstrInfo *TII, const DebugLoc &dl,
unsigned StSize, unsigned Data, unsigned AddrIn,
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
assert(StOpc != 0 && "Should have a store opcode");
if (StSize >= 8) {
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(AddrIn).addImm(0).addReg(Data));
} else if (IsThumb1) {
// store + update AddrIn
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
.addReg(AddrIn).addImm(0));
MachineInstrBuilder MIB =
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
MIB = AddDefaultT1CC(MIB);
MIB.addReg(AddrIn).addImm(StSize);
AddDefaultPred(MIB);
} else if (IsThumb2) {
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(Data).addReg(AddrIn).addImm(StSize));
} else { // arm
AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
.addReg(Data).addReg(AddrIn).addReg(0)
.addImm(StSize));
}
}
MachineBasicBlock *
ARMTargetLowering::EmitStructByval(MachineInstr &MI,
MachineBasicBlock *BB) const {
// This pseudo instruction has 3 operands: dst, src, size
// We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
// Otherwise, we will generate unrolled scalar copies.
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
unsigned dest = MI.getOperand(0).getReg();
unsigned src = MI.getOperand(1).getReg();
unsigned SizeVal = MI.getOperand(2).getImm();
unsigned Align = MI.getOperand(3).getImm();
DebugLoc dl = MI.getDebugLoc();
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
unsigned UnitSize = 0;
const TargetRegisterClass *TRC = nullptr;
const TargetRegisterClass *VecTRC = nullptr;
bool IsThumb1 = Subtarget->isThumb1Only();
bool IsThumb2 = Subtarget->isThumb2();
bool IsThumb = Subtarget->isThumb();
if (Align & 1) {
UnitSize = 1;
} else if (Align & 2) {
UnitSize = 2;
} else {
// Check whether we can use NEON instructions.
if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
Subtarget->hasNEON()) {
if ((Align % 16 == 0) && SizeVal >= 16)
UnitSize = 16;
else if ((Align % 8 == 0) && SizeVal >= 8)
UnitSize = 8;
}
// Can't use NEON instructions.
if (UnitSize == 0)
UnitSize = 4;
}
// Select the correct opcode and register class for unit size load/store
bool IsNeon = UnitSize >= 8;
TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
if (IsNeon)
VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
: UnitSize == 8 ? &ARM::DPRRegClass
: nullptr;
unsigned BytesLeft = SizeVal % UnitSize;
unsigned LoopSize = SizeVal - BytesLeft;
if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
// Use LDR and STR to copy.
// [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
// [destOut] = STR_POST(scratch, destIn, UnitSize)
unsigned srcIn = src;
unsigned destIn = dest;
for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
unsigned srcOut = MRI.createVirtualRegister(TRC);
unsigned destOut = MRI.createVirtualRegister(TRC);
unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
// Handle the leftover bytes with LDRB and STRB.
// [scratch, srcOut] = LDRB_POST(srcIn, 1)
// [destOut] = STRB_POST(scratch, destIn, 1)
for (unsigned i = 0; i < BytesLeft; i++) {
unsigned srcOut = MRI.createVirtualRegister(TRC);
unsigned destOut = MRI.createVirtualRegister(TRC);
unsigned scratch = MRI.createVirtualRegister(TRC);
emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
MI.eraseFromParent(); // The instruction is gone now.
return BB;
}
// Expand the pseudo op to a loop.
// thisMBB:
// ...
// movw varEnd, # --> with thumb2
// movt varEnd, #
// ldrcp varEnd, idx --> without thumb2
// fallthrough --> loopMBB
// loopMBB:
// PHI varPhi, varEnd, varLoop
// PHI srcPhi, src, srcLoop
// PHI destPhi, dst, destLoop
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
// [destLoop] = STR_POST(scratch, destPhi, UnitSize)
// subs varLoop, varPhi, #UnitSize
// bne loopMBB
// fallthrough --> exitMBB
// exitMBB:
// epilogue to handle left-over bytes
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
// [destOut] = STRB_POST(scratch, destLoop, 1)
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// Load an immediate to varEnd.
unsigned varEnd = MRI.createVirtualRegister(TRC);
if (Subtarget->useMovt(*MF)) {
unsigned Vtmp = varEnd;
if ((LoopSize & 0xFFFF0000) != 0)
Vtmp = MRI.createVirtualRegister(TRC);
AddDefaultPred(BuildMI(BB, dl,
TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16),
Vtmp).addImm(LoopSize & 0xFFFF));
if ((LoopSize & 0xFFFF0000) != 0)
AddDefaultPred(BuildMI(BB, dl,
TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16),
varEnd)
.addReg(Vtmp)
.addImm(LoopSize >> 16));
} else {
MachineConstantPool *ConstantPool = MF->getConstantPool();
Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
// MachineConstantPool wants an explicit alignment.
unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
if (Align == 0)
Align = MF->getDataLayout().getTypeAllocSize(C->getType());
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
if (IsThumb)
AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
varEnd, RegState::Define).addConstantPoolIndex(Idx));
else
AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
}
BB->addSuccessor(loopMBB);
// Generate the loop body:
// varPhi = PHI(varLoop, varEnd)
// srcPhi = PHI(srcLoop, src)
// destPhi = PHI(destLoop, dst)
MachineBasicBlock *entryBB = BB;
BB = loopMBB;
unsigned varLoop = MRI.createVirtualRegister(TRC);
unsigned varPhi = MRI.createVirtualRegister(TRC);
unsigned srcLoop = MRI.createVirtualRegister(TRC);
unsigned srcPhi = MRI.createVirtualRegister(TRC);
unsigned destLoop = MRI.createVirtualRegister(TRC);
unsigned destPhi = MRI.createVirtualRegister(TRC);
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
.addReg(varLoop).addMBB(loopMBB)
.addReg(varEnd).addMBB(entryBB);
BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
.addReg(srcLoop).addMBB(loopMBB)
.addReg(src).addMBB(entryBB);
BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
.addReg(destLoop).addMBB(loopMBB)
.addReg(dest).addMBB(entryBB);
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
// [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
IsThumb1, IsThumb2);
emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
IsThumb1, IsThumb2);
// Decrement loop variable by UnitSize.
if (IsThumb1) {
MachineInstrBuilder MIB =
BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
MIB = AddDefaultT1CC(MIB);
MIB.addReg(varPhi).addImm(UnitSize);
AddDefaultPred(MIB);
} else {
MachineInstrBuilder MIB =
BuildMI(*BB, BB->end(), dl,
TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
MIB->getOperand(5).setReg(ARM::CPSR);
MIB->getOperand(5).setIsDef(true);
}
BuildMI(*BB, BB->end(), dl,
TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
// loopMBB can loop back to loopMBB or fall through to exitMBB.
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// Add epilogue to handle BytesLeft.
BB = exitMBB;
auto StartOfExit = exitMBB->begin();
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
// [destOut] = STRB_POST(scratch, destLoop, 1)
unsigned srcIn = srcLoop;
unsigned destIn = destLoop;
for (unsigned i = 0; i < BytesLeft; i++) {
unsigned srcOut = MRI.createVirtualRegister(TRC);
unsigned destOut = MRI.createVirtualRegister(TRC);
unsigned scratch = MRI.createVirtualRegister(TRC);
emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
IsThumb1, IsThumb2);
emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
IsThumb1, IsThumb2);
srcIn = srcOut;
destIn = destOut;
}
MI.eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
MachineBasicBlock *MBB) const {
const TargetMachine &TM = getTargetMachine();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
assert(Subtarget->isTargetWindows() &&
"__chkstk is only supported on Windows");
assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
// __chkstk takes the number of words to allocate on the stack in R4, and
// returns the stack adjustment in number of bytes in R4. This will not
// clober any other registers (other than the obvious lr).
//
// Although, technically, IP should be considered a register which may be
// clobbered, the call itself will not touch it. Windows on ARM is a pure
// thumb-2 environment, so there is no interworking required. As a result, we
// do not expect a veneer to be emitted by the linker, clobbering IP.
//
// Each module receives its own copy of __chkstk, so no import thunk is
// required, again, ensuring that IP is not clobbered.
//
// Finally, although some linkers may theoretically provide a trampoline for
// out of range calls (which is quite common due to a 32M range limitation of
// branches for Thumb), we can generate the long-call version via
// -mcmodel=large, alleviating the need for the trampoline which may clobber
// IP.
switch (TM.getCodeModel()) {
case CodeModel::Small:
case CodeModel::Medium:
case CodeModel::Default:
case CodeModel::Kernel:
BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
.addImm((unsigned)ARMCC::AL).addReg(0)
.addExternalSymbol("__chkstk")
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
.addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
break;
case CodeModel::Large:
case CodeModel::JITDefault: {
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
.addExternalSymbol("__chkstk");
BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
.addImm((unsigned)ARMCC::AL).addReg(0)
.addReg(Reg, RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
.addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
break;
}
}
AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
ARM::SP)
.addReg(ARM::SP, RegState::Kill)
.addReg(ARM::R4, RegState::Kill)
.setMIFlags(MachineInstr::FrameSetup)));
MI.eraseFromParent();
return MBB;
}
MachineBasicBlock *
ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
MF->insert(++MBB->getIterator(), ContBB);
ContBB->splice(ContBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
ContBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(ContBB);
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
MF->push_back(TrapBB);
MBB->addSuccessor(TrapBB);
AddDefaultPred(BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
.addReg(MI.getOperand(0).getReg())
.addImm(0));
BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
.addMBB(TrapBB)
.addImm(ARMCC::EQ)
.addReg(ARM::CPSR);
MI.eraseFromParent();
return ContBB;
}
MachineBasicBlock *
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool isThumb2 = Subtarget->isThumb2();
switch (MI.getOpcode()) {
default: {
MI.dump();
llvm_unreachable("Unexpected instr type to insert");
}
// Thumb1 post-indexed loads are really just single-register LDMs.
case ARM::tLDR_postidx: {
BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
.addOperand(MI.getOperand(1)) // Rn_wb
.addOperand(MI.getOperand(2)) // Rn
.addOperand(MI.getOperand(3)) // PredImm
.addOperand(MI.getOperand(4)) // PredReg
.addOperand(MI.getOperand(0)); // Rt
MI.eraseFromParent();
return BB;
}
// The Thumb2 pre-indexed stores have the same MI operands, they just
// define them differently in the .td files from the isel patterns, so
// they need pseudos.
case ARM::t2STR_preidx:
MI.setDesc(TII->get(ARM::t2STR_PRE));
return BB;
case ARM::t2STRB_preidx:
MI.setDesc(TII->get(ARM::t2STRB_PRE));
return BB;
case ARM::t2STRH_preidx:
MI.setDesc(TII->get(ARM::t2STRH_PRE));
return BB;
case ARM::STRi_preidx:
case ARM::STRBi_preidx: {
unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
: ARM::STRB_PRE_IMM;
// Decode the offset.
unsigned Offset = MI.getOperand(4).getImm();
bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
Offset = ARM_AM::getAM2Offset(Offset);
if (isSub)
Offset = -Offset;
MachineMemOperand *MMO = *MI.memoperands_begin();
BuildMI(*BB, MI, dl, TII->get(NewOpc))
.addOperand(MI.getOperand(0)) // Rn_wb
.addOperand(MI.getOperand(1)) // Rt
.addOperand(MI.getOperand(2)) // Rn
.addImm(Offset) // offset (skip GPR==zero_reg)
.addOperand(MI.getOperand(5)) // pred
.addOperand(MI.getOperand(6))
.addMemOperand(MMO);
MI.eraseFromParent();
return BB;
}
case ARM::STRr_preidx:
case ARM::STRBr_preidx:
case ARM::STRH_preidx: {
unsigned NewOpc;
switch (MI.getOpcode()) {
default: llvm_unreachable("unexpected opcode!");
case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
}
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
for (unsigned i = 0; i < MI.getNumOperands(); ++i)
MIB.addOperand(MI.getOperand(i));
MI.eraseFromParent();
return BB;
}
case ARM::tMOVCCr_pseudo: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII->get(ARM::tBcc))
.addMBB(sinkMBB)
.addImm(MI.getOperand(3).getImm())
.addReg(MI.getOperand(4).getReg());
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(1).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(2).getReg())
.addMBB(thisMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
case ARM::BCCi64:
case ARM::BCCZi64: {
// If there is an unconditional branch to the other successor, remove it.
BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
// Compare both parts that make up the double comparison separately for
// equality.
bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
unsigned LHS1 = MI.getOperand(1).getReg();
unsigned LHS2 = MI.getOperand(2).getReg();
if (RHSisZero) {
AddDefaultPred(BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(LHS1).addImm(0));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(LHS2).addImm(0)
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
} else {
unsigned RHS1 = MI.getOperand(3).getReg();
unsigned RHS2 = MI.getOperand(4).getReg();
AddDefaultPred(BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
.addReg(LHS1).addReg(RHS1));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
.addReg(LHS2).addReg(RHS2)
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
}
MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
if (MI.getOperand(0).getImm() == ARMCC::NE)
std::swap(destMBB, exitMBB);
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
if (isThumb2)
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
else
BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
case ARM::Int_eh_sjlj_setjmp:
case ARM::Int_eh_sjlj_setjmp_nofp:
case ARM::tInt_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
return BB;
case ARM::Int_eh_sjlj_setup_dispatch:
EmitSjLjDispatchBlock(MI, BB);
return BB;
case ARM::ABS:
case ARM::t2ABS: {
// To insert an ABS instruction, we have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// source vreg to test against 0, the destination vreg to set,
// the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
// It transforms
// V1 = ABS V0
// into
// V2 = MOVS V0
// BCC (branch to SinkBB if V0 >= 0)
// RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
// SinkBB: V1 = PHI(V2, V3)
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator BBI = ++BB->getIterator();
MachineFunction *Fn = BB->getParent();
MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
Fn->insert(BBI, RSBBB);
Fn->insert(BBI, SinkBB);
unsigned int ABSSrcReg = MI.getOperand(1).getReg();
unsigned int ABSDstReg = MI.getOperand(0).getReg();
bool ABSSrcKIll = MI.getOperand(1).isKill();
bool isThumb2 = Subtarget->isThumb2();
MachineRegisterInfo &MRI = Fn->getRegInfo();
// In Thumb mode S must not be specified if source register is the SP or
// PC and if destination register is the SP, so restrict register class
unsigned NewRsbDstReg =
MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
// Transfer the remainder of BB and its successor edges to sinkMBB.
SinkBB->splice(SinkBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
SinkBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(RSBBB);
BB->addSuccessor(SinkBB);
// fall through to SinkMBB
RSBBB->addSuccessor(SinkBB);
// insert a cmp at the end of BB
AddDefaultPred(BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(ABSSrcReg).addImm(0));
// insert a bcc with opposite CC to ARMCC::MI at the end of BB
BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
.addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
// insert rsbri in RSBBB
// Note: BCC and rsbri will be converted into predicated rsbmi
// by if-conversion pass
BuildMI(*RSBBB, RSBBB->begin(), dl,
TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
.addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
.addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
// insert PHI in SinkBB,
// reuse ABSDstReg to not change uses of ABS instruction
BuildMI(*SinkBB, SinkBB->begin(), dl,
TII->get(ARM::PHI), ABSDstReg)
.addReg(NewRsbDstReg).addMBB(RSBBB)
.addReg(ABSSrcReg).addMBB(BB);
// remove ABS instruction
MI.eraseFromParent();
// return last added BB
return SinkBB;
}
case ARM::COPY_STRUCT_BYVAL_I32:
++NumLoopByVals;
return EmitStructByval(MI, BB);
case ARM::WIN__CHKSTK:
return EmitLowered__chkstk(MI, BB);
case ARM::WIN__DBZCHK:
return EmitLowered__dbzchk(MI, BB);
}
}
/// \brief Attaches vregs to MEMCPY that it will use as scratch registers
/// when it is expanded into LDM/STM. This is done as a post-isel lowering
/// instead of as a custom inserter because we need the use list from the SDNode.
static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
MachineInstr &MI, const SDNode *Node) {
bool isThumb1 = Subtarget->isThumb1Only();
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MI.getParent()->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineInstrBuilder MIB(*MF, MI);
// If the new dst/src is unused mark it as dead.
if (!Node->hasAnyUseOfValue(0)) {
MI.getOperand(0).setIsDead(true);
}
if (!Node->hasAnyUseOfValue(1)) {
MI.getOperand(1).setIsDead(true);
}
// The MEMCPY both defines and kills the scratch registers.
for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
: &ARM::GPRRegClass);
MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
}
}
void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
if (MI.getOpcode() == ARM::MEMCPY) {
attachMEMCPYScratchRegs(Subtarget, MI, Node);
return;
}
const MCInstrDesc *MCID = &MI.getDesc();
// Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
// RSC. Coming out of isel, they have an implicit CPSR def, but the optional
// operand is still set to noreg. If needed, set the optional operand's
// register to CPSR, and remove the redundant implicit def.
//
// e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
// Rename pseudo opcodes.
unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
if (NewOpc) {
const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
MCID = &TII->get(NewOpc);
assert(MCID->getNumOperands() == MI.getDesc().getNumOperands() + 1 &&
"converted opcode should be the same except for cc_out");
MI.setDesc(*MCID);
// Add the optional cc_out operand
MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
}
unsigned ccOutIdx = MCID->getNumOperands() - 1;
// Any ARM instruction that sets the 's' bit should specify an optional
// "cc_out" operand in the last operand position.
if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
assert(!NewOpc && "Optional cc_out operand required");
return;
}
// Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
// since we already have an optional CPSR def.
bool definesCPSR = false;
bool deadCPSR = false;
for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
definesCPSR = true;
if (MO.isDead())
deadCPSR = true;
MI.RemoveOperand(i);
break;
}
}
if (!definesCPSR) {
assert(!NewOpc && "Optional cc_out operand required");
return;
}
assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
if (deadCPSR) {
assert(!MI.getOperand(ccOutIdx).getReg() &&
"expect uninitialized optional cc_out operand");
return;
}
// If this instruction was defined with an optional CPSR def and its dag node
// had a live implicit CPSR def, then activate the optional CPSR def.
MachineOperand &MO = MI.getOperand(ccOutIdx);
MO.setReg(ARM::CPSR);
MO.setIsDef(true);
}
//===----------------------------------------------------------------------===//
// ARM Optimization Hooks
//===----------------------------------------------------------------------===//
// Helper function that checks if N is a null or all ones constant.
static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
}
// Return true if N is conditionally 0 or all ones.
// Detects these expressions where cc is an i1 value:
//
// (select cc 0, y) [AllOnes=0]
// (select cc y, 0) [AllOnes=0]
// (zext cc) [AllOnes=0]
// (sext cc) [AllOnes=0/1]
// (select cc -1, y) [AllOnes=1]
// (select cc y, -1) [AllOnes=1]
//
// Invert is set when N is the null/all ones constant when CC is false.
// OtherOp is set to the alternative value of N.
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
SDValue &CC, bool &Invert,
SDValue &OtherOp,
SelectionDAG &DAG) {
switch (N->getOpcode()) {
default: return false;
case ISD::SELECT: {
CC = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
if (isZeroOrAllOnes(N1, AllOnes)) {
Invert = false;
OtherOp = N2;
return true;
}
if (isZeroOrAllOnes(N2, AllOnes)) {
Invert = true;
OtherOp = N1;
return true;
}
return false;
}
case ISD::ZERO_EXTEND:
// (zext cc) can never be the all ones value.
if (AllOnes)
return false;
LLVM_FALLTHROUGH;
case ISD::SIGN_EXTEND: {
SDLoc dl(N);
EVT VT = N->getValueType(0);
CC = N->getOperand(0);
if (CC.getValueType() != MVT::i1)
return false;
Invert = !AllOnes;
if (AllOnes)
// When looking for an AllOnes constant, N is an sext, and the 'other'
// value is 0.
OtherOp = DAG.getConstant(0, dl, VT);
else if (N->getOpcode() == ISD::ZERO_EXTEND)
// When looking for a 0 constant, N can be zext or sext.
OtherOp = DAG.getConstant(1, dl, VT);
else
OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
VT);
return true;
}
}
}
// Combine a constant select operand into its use:
//
// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
//
// The transform is rejected if the select doesn't have a constant operand that
// is null, or all ones when AllOnes is set.
//
// Also recognize sext/zext from i1:
//
// (add (zext cc), x) -> (select cc (add x, 1), x)
// (add (sext cc), x) -> (select cc (add x, -1), x)
//
// These transformations eventually create predicated instructions.
//
// @param N The node to transform.
// @param Slct The N operand that is a select.
// @param OtherOp The other N operand (x above).
// @param DCI Context.
// @param AllOnes Require the select constant to be all ones instead of null.
// @returns The new node, or SDValue() on failure.
static
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
TargetLowering::DAGCombinerInfo &DCI,
bool AllOnes = false) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDValue NonConstantVal;
SDValue CCOp;
bool SwapSelectOps;
if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
NonConstantVal, DAG))
return SDValue();
// Slct is now know to be the desired identity constant when CC is true.
SDValue TrueVal = OtherOp;
SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
OtherOp, NonConstantVal);
// Unless SwapSelectOps says CC should be false.
if (SwapSelectOps)
std::swap(TrueVal, FalseVal);
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
CCOp, TrueVal, FalseVal);
}
// Attempt combineSelectAndUse on each operand of a commutative operator N.
static
SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (N0.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
return Result;
if (N1.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
return Result;
return SDValue();
}
// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
// (only after legalization).
static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Only perform optimization if after legalize, and if NEON is available. We
// also expected both operands to be BUILD_VECTORs.
if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
|| N0.getOpcode() != ISD::BUILD_VECTOR
|| N1.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// Check output type since VPADDL operand elements can only be 8, 16, or 32.
EVT VT = N->getValueType(0);
if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
return SDValue();
// Check that the vector operands are of the right form.
// N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
// operands, where N is the size of the formed vector.
// Each EXTRACT_VECTOR should have the same input vector and odd or even
// index such that we have a pair wise add pattern.
// Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
SDValue Vec = N0->getOperand(0)->getOperand(0);
SDNode *V = Vec.getNode();
unsigned nextIndex = 0;
// For each operands to the ADD which are BUILD_VECTORs,
// check to see if each of their operands are an EXTRACT_VECTOR with
// the same vector and appropriate index.
for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&& N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue ExtVec0 = N0->getOperand(i);
SDValue ExtVec1 = N1->getOperand(i);
// First operand is the vector, verify its the same.
if (V != ExtVec0->getOperand(0).getNode() ||
V != ExtVec1->getOperand(0).getNode())
return SDValue();
// Second is the constant, verify its correct.
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
// For the constant, we want to see all the even or all the odd.
if (!C0 || !C1 || C0->getZExtValue() != nextIndex
|| C1->getZExtValue() != nextIndex+1)
return SDValue();
// Increment index.
nextIndex+=2;
} else
return SDValue();
}
// Create VPADDL node.
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDLoc dl(N);
// Build operand list.
SmallVector<SDValue, 8> Ops;
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
TLI.getPointerTy(DAG.getDataLayout())));
// Input is the vector.
Ops.push_back(Vec);
// Get widened type and narrowed type.
MVT widenType;
unsigned numElem = VT.getVectorNumElements();
EVT inputLaneType = Vec.getValueType().getVectorElementType();
switch (inputLaneType.getSimpleVT().SimpleTy) {
case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
default:
llvm_unreachable("Invalid vector element type for padd optimization.");
}
SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
return DAG.getNode(ExtOp, dl, VT, tmp);
}
static SDValue findMUL_LOHI(SDValue V) {
if (V->getOpcode() == ISD::UMUL_LOHI ||
V->getOpcode() == ISD::SMUL_LOHI)
return V;
return SDValue();
}
static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Look for multiply add opportunities.
// The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
// each add nodes consumes a value from ISD::UMUL_LOHI and there is
// a glue link from the first add to the second add.
// If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
// a S/UMLAL instruction.
// UMUL_LOHI
// / :lo \ :hi
// / \ [no multiline comment]
// loAdd -> ADDE |
// \ :glue /
// \ /
// ADDC <- hiAdd
//
assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
SDValue AddcOp0 = AddcNode->getOperand(0);
SDValue AddcOp1 = AddcNode->getOperand(1);
// Check if the two operands are from the same mul_lohi node.
if (AddcOp0.getNode() == AddcOp1.getNode())
return SDValue();
assert(AddcNode->getNumValues() == 2 &&
AddcNode->getValueType(0) == MVT::i32 &&
"Expect ADDC with two result values. First: i32");
// Check that we have a glued ADDC node.
if (AddcNode->getValueType(1) != MVT::Glue)
return SDValue();
// Check that the ADDC adds the low result of the S/UMUL_LOHI.
if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
AddcOp1->getOpcode() != ISD::SMUL_LOHI)
return SDValue();
// Look for the glued ADDE.
SDNode* AddeNode = AddcNode->getGluedUser();
if (!AddeNode)
return SDValue();
// Make sure it is really an ADDE.
if (AddeNode->getOpcode() != ISD::ADDE)
return SDValue();
assert(AddeNode->getNumOperands() == 3 &&
AddeNode->getOperand(2).getValueType() == MVT::Glue &&
"ADDE node has the wrong inputs");
// Check for the triangle shape.
SDValue AddeOp0 = AddeNode->getOperand(0);
SDValue AddeOp1 = AddeNode->getOperand(1);
// Make sure that the ADDE operands are not coming from the same node.
if (AddeOp0.getNode() == AddeOp1.getNode())
return SDValue();
// Find the MUL_LOHI node walking up ADDE's operands.
bool IsLeftOperandMUL = false;
SDValue MULOp = findMUL_LOHI(AddeOp0);
if (MULOp == SDValue())
MULOp = findMUL_LOHI(AddeOp1);
else
IsLeftOperandMUL = true;
if (MULOp == SDValue())
return SDValue();
// Figure out the right opcode.
unsigned Opc = MULOp->getOpcode();
unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
// Figure out the high and low input values to the MLAL node.
SDValue* HiAdd = nullptr;
SDValue* LoMul = nullptr;
SDValue* LowAdd = nullptr;
// Ensure that ADDE is from high result of ISD::SMUL_LOHI.
if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
return SDValue();
if (IsLeftOperandMUL)
HiAdd = &AddeOp1;
else
HiAdd = &AddeOp0;
// Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
// whose low result is fed to the ADDC we are checking.
if (AddcOp0 == MULOp.getValue(0)) {
LoMul = &AddcOp0;
LowAdd = &AddcOp1;
}
if (AddcOp1 == MULOp.getValue(0)) {
LoMul = &AddcOp1;
LowAdd = &AddcOp0;
}
if (!LoMul)
return SDValue();
// Create the merged node.
SelectionDAG &DAG = DCI.DAG;
// Build operand list.
SmallVector<SDValue, 8> Ops;
Ops.push_back(LoMul->getOperand(0));
Ops.push_back(LoMul->getOperand(1));
Ops.push_back(*LowAdd);
Ops.push_back(*HiAdd);
SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode),
DAG.getVTList(MVT::i32, MVT::i32), Ops);
// Replace the ADDs' nodes uses by the MLA node's values.
SDValue HiMLALResult(MLALNode.getNode(), 1);
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
SDValue LoMLALResult(MLALNode.getNode(), 0);
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
// Return original node to notify the driver to stop replacing.
SDValue resNode(AddcNode, 0);
return resNode;
}
static SDValue AddCombineTo64bitUMAAL(SDNode *AddcNode,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// UMAAL is similar to UMLAL except that it adds two unsigned values.
// While trying to combine for the other MLAL nodes, first search for the
// chance to use UMAAL. Check if Addc uses another addc node which can first
// be combined into a UMLAL. The other pattern is AddcNode being combined
// into an UMLAL and then using another addc is handled in ISelDAGToDAG.
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP() ||
(Subtarget->isThumb() && !Subtarget->hasThumb2()))
return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
SDNode *PrevAddc = nullptr;
if (AddcNode->getOperand(0).getOpcode() == ISD::ADDC)
PrevAddc = AddcNode->getOperand(0).getNode();
else if (AddcNode->getOperand(1).getOpcode() == ISD::ADDC)
PrevAddc = AddcNode->getOperand(1).getNode();
// If there's no addc chains, just return a search for any MLAL.
if (PrevAddc == nullptr)
return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
// Try to convert the addc operand to an MLAL and if that fails try to
// combine AddcNode.
SDValue MLAL = AddCombineTo64bitMLAL(PrevAddc, DCI, Subtarget);
if (MLAL != SDValue(PrevAddc, 0))
return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
// Find the converted UMAAL or quit if it doesn't exist.
SDNode *UmlalNode = nullptr;
SDValue AddHi;
if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
UmlalNode = AddcNode->getOperand(0).getNode();
AddHi = AddcNode->getOperand(1);
} else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
UmlalNode = AddcNode->getOperand(1).getNode();
AddHi = AddcNode->getOperand(0);
} else {
return SDValue();
}
// The ADDC should be glued to an ADDE node, which uses the same UMLAL as
// the ADDC as well as Zero.
auto *Zero = dyn_cast<ConstantSDNode>(UmlalNode->getOperand(3));
if (!Zero || Zero->getZExtValue() != 0)
return SDValue();
// Check that we have a glued ADDC node.
if (AddcNode->getValueType(1) != MVT::Glue)
return SDValue();
// Look for the glued ADDE.
SDNode* AddeNode = AddcNode->getGluedUser();
if (!AddeNode)
return SDValue();
if ((AddeNode->getOperand(0).getNode() == Zero &&
AddeNode->getOperand(1).getNode() == UmlalNode) ||
(AddeNode->getOperand(0).getNode() == UmlalNode &&
AddeNode->getOperand(1).getNode() == Zero)) {
SelectionDAG &DAG = DCI.DAG;
SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
UmlalNode->getOperand(2), AddHi };
SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
DAG.getVTList(MVT::i32, MVT::i32), Ops);
// Replace the ADDs' nodes uses by the UMAAL node's values.
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
// Return original node to notify the driver to stop replacing.
return SDValue(AddcNode, 0);
}
return SDValue();
}
/// PerformADDCCombine - Target-specific dag combine transform from
/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL or
/// ISD::ADDC, ISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
static SDValue PerformADDCCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
if (Subtarget->isThumb1Only()) return SDValue();
// Only perform the checks after legalize when the pattern is available.
if (DCI.isBeforeLegalize()) return SDValue();
return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
}
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
/// operands N0 and N1. This is a helper for PerformADDCombine that is
/// called with the default operands, and if that fails, with commuted
/// operands.
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget){
// Attempt to create vpaddl for this add.
if (SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget))
return Result;
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
if (N0.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
return Result;
return SDValue();
}
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
///
static SDValue PerformADDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// First try with the default operand order.
if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
return Result;
// If that didn't work, try again with the operands commuted.
return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
}
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
///
static SDValue PerformSUBCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
if (N1.getNode()->hasOneUse())
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
return Result;
return SDValue();
}
/// PerformVMULCombine
/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
/// special multiplier accumulator forwarding.
/// vmul d3, d0, d2
/// vmla d3, d1, d2
/// is faster than
/// vadd d3, d0, d1
/// vmul d3, d3, d2
// However, for (A + B) * (A + B),
// vadd d2, d0, d1
// vmul d3, d0, d2
// vmla d3, d1, d2
// is slower than
// vadd d2, d0, d1
// vmul d3, d2, d2
static SDValue PerformVMULCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasVMLxForwarding())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
unsigned Opcode = N0.getOpcode();
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
Opcode != ISD::FADD && Opcode != ISD::FSUB) {
Opcode = N1.getOpcode();
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
Opcode != ISD::FADD && Opcode != ISD::FSUB)
return SDValue();
std::swap(N0, N1);
}
if (N0 == N1)
return SDValue();
EVT VT = N->getValueType(0);
SDLoc DL(N);
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
return DAG.getNode(Opcode, DL, VT,
DAG.getNode(ISD::MUL, DL, VT, N00, N1),
DAG.getNode(ISD::MUL, DL, VT, N01, N1));
}
static SDValue PerformMULCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
if (Subtarget->isThumb1Only())
return SDValue();
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
EVT VT = N->getValueType(0);
if (VT.is64BitVector() || VT.is128BitVector())
return PerformVMULCombine(N, DCI, Subtarget);
if (VT != MVT::i32)
return SDValue();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
int64_t MulAmt = C->getSExtValue();
unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
ShiftAmt = ShiftAmt & (32 - 1);
SDValue V = N->getOperand(0);
SDLoc DL(N);
SDValue Res;
MulAmt >>= ShiftAmt;
if (MulAmt >= 0) {
if (isPowerOf2_32(MulAmt - 1)) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
Res = DAG.getNode(ISD::ADD, DL, VT,
V,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmt - 1), DL,
MVT::i32)));
} else if (isPowerOf2_32(MulAmt + 1)) {
// (mul x, 2^N - 1) => (sub (shl x, N), x)
Res = DAG.getNode(ISD::SUB, DL, VT,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmt + 1), DL,
MVT::i32)),
V);
} else
return SDValue();
} else {
uint64_t MulAmtAbs = -MulAmt;
if (isPowerOf2_32(MulAmtAbs + 1)) {
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
Res = DAG.getNode(ISD::SUB, DL, VT,
V,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
MVT::i32)));
} else if (isPowerOf2_32(MulAmtAbs - 1)) {
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
Res = DAG.getNode(ISD::ADD, DL, VT,
V,
DAG.getNode(ISD::SHL, DL, VT,
V,
DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
MVT::i32)));
Res = DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, MVT::i32), Res);
} else
return SDValue();
}
if (ShiftAmt != 0)
Res = DAG.getNode(ISD::SHL, DL, VT,
Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
return SDValue();
}
static SDValue PerformANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Attempt to use immediate-form VBIC
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
SDLoc dl(N);
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN &&
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatBitSize <= 64) {
EVT VbicVT;
SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VbicVT, VT.is128BitVector(),
OtherModImm);
if (Val.getNode()) {
SDValue Input =
DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
}
}
}
if (!Subtarget->isThumb1Only()) {
// fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
return Result;
}
return SDValue();
}
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
static SDValue PerformORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// Attempt to use immediate-form VORR
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
SDLoc dl(N);
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN && Subtarget->hasNEON() &&
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatBitSize <= 64) {
EVT VorrVT;
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize,
DAG, dl, VorrVT, VT.is128BitVector(),
OtherModImm);
if (Val.getNode()) {
SDValue Input =
DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
}
}
}
if (!Subtarget->isThumb1Only()) {
// fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
return Result;
}
// The code below optimizes (or (and X, Y), Z).
// The AND operand needs to have a single user to make these optimizations
// profitable.
SDValue N0 = N->getOperand(0);
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
return SDValue();
SDValue N1 = N->getOperand(1);
// (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
APInt SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
APInt SplatBits0, SplatBits1;
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
// Ensure that the second operand of both ands are constants
if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
HasAnyUndefs) && !HasAnyUndefs) {
if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
HasAnyUndefs) && !HasAnyUndefs) {
// Ensure that the bit width of the constants are the same and that
// the splat arguments are logical inverses as per the pattern we
// are trying to simplify.
if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
SplatBits0 == ~SplatBits1) {
// Canonicalize the vector type to make instruction selection
// simpler.
EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
N0->getOperand(1),
N0->getOperand(0),
N1->getOperand(0));
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
}
}
}
}
// Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
// reasonable.
// BFI is only available on V6T2+
if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
return SDValue();
SDLoc DL(N);
// 1) or (and A, mask), val => ARMbfi A, val, mask
// iff (val & mask) == val
//
// 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
// 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
// && mask == ~mask2
// 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
// && ~mask == mask2
// (i.e., copy a bitfield value into another bitfield of the same width)
if (VT != MVT::i32)
return SDValue();
SDValue N00 = N0.getOperand(0);
// The value and the mask need to be constants so we can verify this is
// actually a bitfield set. If the mask is 0xffff, we can do better
// via a movt instruction, so don't use BFI in that case.
SDValue MaskOp = N0.getOperand(1);
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
if (!MaskC)
return SDValue();
unsigned Mask = MaskC->getZExtValue();
if (Mask == 0xffff)
return SDValue();
SDValue Res;
// Case (1): or (and A, mask), val => ARMbfi A, val, mask
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
if (N1C) {
unsigned Val = N1C->getZExtValue();
if ((Val & ~Mask) != Val)
return SDValue();
if (ARM::isBitFieldInvertedMask(Mask)) {
Val >>= countTrailingZeros(~Mask);
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
DAG.getConstant(Val, DL, MVT::i32),
DAG.getConstant(Mask, DL, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
return SDValue();
}
} else if (N1.getOpcode() == ISD::AND) {
// case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C)
return SDValue();
unsigned Mask2 = N11C->getZExtValue();
// Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
// as is to match.
if (ARM::isBitFieldInvertedMask(Mask) &&
(Mask == ~Mask2)) {
// The pack halfword instruction works better for masks that fit it,
// so use that when it's available.
if (Subtarget->hasT2ExtractPack() &&
(Mask == 0xffff || Mask == 0xffff0000))
return SDValue();
// 2a
unsigned amt = countTrailingZeros(Mask2);
Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
DAG.getConstant(amt, DL, MVT::i32));
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
DAG.getConstant(Mask, DL, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
return SDValue();
} else if (ARM::isBitFieldInvertedMask(~Mask) &&
(~Mask == Mask2)) {
// The pack halfword instruction works better for masks that fit it,
// so use that when it's available.
if (Subtarget->hasT2ExtractPack() &&
(Mask2 == 0xffff || Mask2 == 0xffff0000))
return SDValue();
// 2b
unsigned lsb = countTrailingZeros(Mask);
Res = DAG.getNode(ISD::SRL, DL, VT, N00,
DAG.getConstant(lsb, DL, MVT::i32));
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
DAG.getConstant(Mask2, DL, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
return SDValue();
}
}
if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
ARM::isBitFieldInvertedMask(~Mask)) {
// Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
// where lsb(mask) == #shamt and masked bits of B are known zero.
SDValue ShAmt = N00.getOperand(1);
unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
unsigned LSB = countTrailingZeros(Mask);
if (ShAmtC != LSB)
return SDValue();
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
DAG.getConstant(~Mask, DL, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
}
return SDValue();
}
static SDValue PerformXORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
EVT VT = N->getValueType(0);
SelectionDAG &DAG = DCI.DAG;
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
if (!Subtarget->isThumb1Only()) {
// fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
return Result;
}
return SDValue();
}
// ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
// and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
// their position in "to" (Rd).
static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
assert(N->getOpcode() == ARMISD::BFI);
SDValue From = N->getOperand(1);
ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
// If the Base came from a SHR #C, we can deduce that it is really testing bit
// #C in the base of the SHR.
if (From->getOpcode() == ISD::SRL &&
isa<ConstantSDNode>(From->getOperand(1))) {
APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
assert(Shift.getLimitedValue() < 32 && "Shift too large!");
FromMask <<= Shift.getLimitedValue(31);
From = From->getOperand(0);
}
return From;
}
// If A and B contain one contiguous set of bits, does A | B == A . B?
//
// Neither A nor B must be zero.
static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
unsigned LastActiveBitInA = A.countTrailingZeros();
unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
return LastActiveBitInA - 1 == FirstActiveBitInB;
}
static SDValue FindBFIToCombineWith(SDNode *N) {
// We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
// if one exists.
APInt ToMask, FromMask;
SDValue From = ParseBFI(N, ToMask, FromMask);
SDValue To = N->getOperand(0);
// Now check for a compatible BFI to merge with. We can pass through BFIs that
// aren't compatible, but not if they set the same bit in their destination as
// we do (or that of any BFI we're going to combine with).
SDValue V = To;
APInt CombinedToMask = ToMask;
while (V.getOpcode() == ARMISD::BFI) {
APInt NewToMask, NewFromMask;
SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
if (NewFrom != From) {
// This BFI has a different base. Keep going.
CombinedToMask |= NewToMask;
V = V.getOperand(0);
continue;
}
// Do the written bits conflict with any we've seen so far?
if ((NewToMask & CombinedToMask).getBoolValue())
// Conflicting bits - bail out because going further is unsafe.
return SDValue();
// Are the new bits contiguous when combined with the old bits?
if (BitsProperlyConcatenate(ToMask, NewToMask) &&
BitsProperlyConcatenate(FromMask, NewFromMask))
return V;
if (BitsProperlyConcatenate(NewToMask, ToMask) &&
BitsProperlyConcatenate(NewFromMask, FromMask))
return V;
// We've seen a write to some bits, so track it.
CombinedToMask |= NewToMask;
// Keep going...
V = V.getOperand(0);
}
return SDValue();
}
static SDValue PerformBFICombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N1 = N->getOperand(1);
if (N1.getOpcode() == ISD::AND) {
// (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
// the bits being cleared by the AND are not demanded by the BFI.
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
if (!N11C)
return SDValue();
unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
unsigned LSB = countTrailingZeros(~InvMask);
unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
assert(Width <
static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
"undefined behavior");
unsigned Mask = (1u << Width) - 1;
unsigned Mask2 = N11C->getZExtValue();
if ((Mask & (~Mask2)) == 0)
return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
N->getOperand(0), N1.getOperand(0),
N->getOperand(2));
} else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
// We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
// Keep track of any consecutive bits set that all come from the same base
// value. We can combine these together into a single BFI.
SDValue CombineBFI = FindBFIToCombineWith(N);
if (CombineBFI == SDValue())
return SDValue();
// We've found a BFI.
APInt ToMask1, FromMask1;
SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
APInt ToMask2, FromMask2;
SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
assert(From1 == From2);
(void)From2;
// First, unlink CombineBFI.
DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
// Then create a new BFI, combining the two together.
APInt NewFromMask = FromMask1 | FromMask2;
APInt NewToMask = ToMask1 | ToMask2;
EVT VT = N->getValueType(0);
SDLoc dl(N);
if (NewFromMask[0] == 0)
From1 = DCI.DAG.getNode(
ISD::SRL, dl, VT, From1,
DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
DCI.DAG.getConstant(~NewToMask, dl, VT));
}
return SDValue();
}
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVRRD.
static SDValue PerformVMOVRRDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// vmovrrd(vmovdrr x, y) -> x,y
SDValue InDouble = N->getOperand(0);
if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
// vmovrrd(load f64) -> (load i32), (load i32)
SDNode *InNode = InDouble.getNode();
if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
InNode->getValueType(0) == MVT::f64 &&
InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
!cast<LoadSDNode>(InNode)->isVolatile()) {
// TODO: Should this be done for non-FrameIndex operands?
LoadSDNode *LD = cast<LoadSDNode>(InNode);
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(LD);
SDValue BasePtr = LD->getBasePtr();
SDValue NewLD1 =
DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
LD->getAlignment(), LD->getMemOperand()->getFlags());
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
DAG.getConstant(4, DL, MVT::i32));
SDValue NewLD2 = DAG.getLoad(
MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
if (DCI.DAG.getDataLayout().isBigEndian())
std::swap (NewLD1, NewLD2);
SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
return Result;
}
return SDValue();
}
/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
// N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0.getOpcode() == ISD::BITCAST)
Op0 = Op0.getOperand(0);
if (Op1.getOpcode() == ISD::BITCAST)
Op1 = Op1.getOperand(0);
if (Op0.getOpcode() == ARMISD::VMOVRRD &&
Op0.getNode() == Op1.getNode() &&
Op0.getResNo() == 0 && Op1.getResNo() == 1)
return DAG.getNode(ISD::BITCAST, SDLoc(N),
N->getValueType(0), Op0.getOperand(0));
return SDValue();
}
/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
/// are normal, non-volatile loads. If so, it is profitable to bitcast an
/// i64 vector to have f64 elements, since the value can then be loaded
/// directly into a VFP register.
static bool hasNormalLoadOperand(SDNode *N) {
unsigned NumElts = N->getValueType(0).getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
SDNode *Elt = N->getOperand(i).getNode();
if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
return true;
}
return false;
}
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
/// ISD::BUILD_VECTOR.
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
// build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
// VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
// into a pair of GPRs, which is fine when the value is used as a scalar,
// but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
SelectionDAG &DAG = DCI.DAG;
if (N->getNumOperands() == 2)
if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
return RV;
// Load i64 elements as f64 values so that type legalization does not split
// them up into i32 values.
EVT VT = N->getValueType(0);
if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
return SDValue();
SDLoc dl(N);
SmallVector<SDValue, 8> Ops;
unsigned NumElts = VT.getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
Ops.push_back(V);
// Make the DAGCombiner fold the bitcast.
DCI.AddToWorklist(V.getNode());
}
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
return DAG.getNode(ISD::BITCAST, dl, VT, BV);
}
/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
static SDValue
PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
// ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
// At that time, we may have inserted bitcasts from integer to float.
// If these bitcasts have survived DAGCombine, change the lowering of this
// BUILD_VECTOR in something more vector friendly, i.e., that does not
// force to use floating point types.
// Make sure we can change the type of the vector.
// This is possible iff:
// 1. The vector is only used in a bitcast to a integer type. I.e.,
// 1.1. Vector is used only once.
// 1.2. Use is a bit convert to an integer type.
// 2. The size of its operands are 32-bits (64-bits are not legal).
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
// Check 1.1. and 2.
if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
return SDValue();
// By construction, the input type must be float.
assert(EltVT == MVT::f32 && "Unexpected type!");
// Check 1.2.
SDNode *Use = *N->use_begin();
if (Use->getOpcode() != ISD::BITCAST ||
Use->getValueType(0).isFloatingPoint())
return SDValue();
// Check profitability.
// Model is, if more than half of the relevant operands are bitcast from
// i32, turn the build_vector into a sequence of insert_vector_elt.
// Relevant operands are everything that is not statically
// (i.e., at compile time) bitcasted.
unsigned NumOfBitCastedElts = 0;
unsigned NumElts = VT.getVectorNumElements();
unsigned NumOfRelevantElts = NumElts;
for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
SDValue Elt = N->getOperand(Idx);
if (Elt->getOpcode() == ISD::BITCAST) {
// Assume only bit cast to i32 will go away.
if (Elt->getOperand(0).getValueType() == MVT::i32)
++NumOfBitCastedElts;
} else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
// Constants are statically casted, thus do not count them as
// relevant operands.
--NumOfRelevantElts;
}
// Check if more than half of the elements require a non-free bitcast.
if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
// Create the new vector type.
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
// Check if the type is legal.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(VecVT))
return SDValue();
// Combine:
// ARMISD::BUILD_VECTOR E1, E2, ..., EN.
// => BITCAST INSERT_VECTOR_ELT
// (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
// (BITCAST EN), N.
SDValue Vec = DAG.getUNDEF(VecVT);
SDLoc dl(N);
for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
SDValue V = N->getOperand(Idx);
if (V.isUndef())
continue;
if (V.getOpcode() == ISD::BITCAST &&
V->getOperand(0).getValueType() == MVT::i32)
// Fold obvious case.
V = V.getOperand(0);
else {
V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(V.getNode());
}
SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
}
Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(Vec.getNode());
return Vec;
}
/// PerformInsertEltCombine - Target-specific dag combine xforms for
/// ISD::INSERT_VECTOR_ELT.
static SDValue PerformInsertEltCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// Bitcast an i64 load inserted into a vector to f64.
// Otherwise, the i64 value will be legalized to a pair of i32 values.
EVT VT = N->getValueType(0);
SDNode *Elt = N->getOperand(1).getNode();
if (VT.getVectorElementType() != MVT::i64 ||
!ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(N);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
VT.getVectorNumElements());
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(Vec.getNode());
DCI.AddToWorklist(V.getNode());
SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
Vec, V, N->getOperand(2));
return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
}
/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
/// ISD::VECTOR_SHUFFLE.
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
// The LLVM shufflevector instruction does not require the shuffle mask
// length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
// have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
// operands do not match the mask length, they are extended by concatenating
// them with undef vectors. That is probably the right thing for other
// targets, but for NEON it is better to concatenate two double-register
// size vector operands into a single quad-register size vector. Do that
// transformation here:
// shuffle(concat(v1, undef), concat(v2, undef)) ->
// shuffle(concat(v1, v2), undef)
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
Op1.getOpcode() != ISD::CONCAT_VECTORS ||
Op0.getNumOperands() != 2 ||
Op1.getNumOperands() != 2)
return SDValue();
SDValue Concat0Op1 = Op0.getOperand(1);
SDValue Concat1Op1 = Op1.getOperand(1);
if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
return SDValue();
// Skip the transformation if any of the types are illegal.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
if (!TLI.isTypeLegal(VT) ||
!TLI.isTypeLegal(Concat0Op1.getValueType()) ||
!TLI.isTypeLegal(Concat1Op1.getValueType()))
return SDValue();
SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
Op0.getOperand(0), Op1.getOperand(0));
// Translate the shuffle mask.
SmallVector<int, 16> NewMask;
unsigned NumElts = VT.getVectorNumElements();
unsigned HalfElts = NumElts/2;
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
for (unsigned n = 0; n < NumElts; ++n) {
int MaskElt = SVN->getMaskElt(n);
int NewElt = -1;
if (MaskElt < (int)HalfElts)
NewElt = MaskElt;
else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
NewElt = HalfElts + MaskElt - NumElts;
NewMask.push_back(NewElt);
}
return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
DAG.getUNDEF(VT), NewMask);
}
/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
/// NEON load/store intrinsics, and generic vector load/stores, to merge
/// base address updates.
/// For generic load/stores, the memory type is assumed to be a vector.
/// The caller is assumed to have checked legality.
static SDValue CombineBaseUpdate(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
const bool isStore = N->getOpcode() == ISD::STORE;
const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
SDValue Addr = N->getOperand(AddrOpIdx);
MemSDNode *MemN = cast<MemSDNode>(N);
SDLoc dl(N);
// Search for a use of the address operand that is an increment.
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
if (User->getOpcode() != ISD::ADD ||
UI.getUse().getResNo() != Addr.getResNo())
continue;
// Check that the add is independent of the load/store. Otherwise, folding
// it would create a cycle.
if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
continue;
// Find the new opcode for the updating load/store.
bool isLoadOp = true;
bool isLaneOp = false;
unsigned NewOpc = 0;
unsigned NumVecs = 0;
if (isIntrinsic) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default: llvm_unreachable("unexpected intrinsic for Neon base update");
case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
NumVecs = 1; break;
case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
NumVecs = 2; break;
case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
NumVecs = 3; break;
case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
NumVecs = 4; break;
case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
NumVecs = 2; isLaneOp = true; break;
case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
NumVecs = 3; isLaneOp = true; break;
case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
NumVecs = 4; isLaneOp = true; break;
case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
NumVecs = 1; isLoadOp = false; break;
case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
NumVecs = 2; isLoadOp = false; break;
case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
NumVecs = 3; isLoadOp = false; break;
case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
NumVecs = 4; isLoadOp = false; break;
case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
}
} else {
isLaneOp = true;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected opcode for Neon base update");
case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
NumVecs = 1; isLaneOp = false; break;
case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
}
}
// Find the size of memory referenced by the load/store.
EVT VecTy;
if (isLoadOp) {
VecTy = N->getValueType(0);
} else if (isIntrinsic) {
VecTy = N->getOperand(AddrOpIdx+1).getValueType();
} else {
assert(isStore && "Node has to be a load, a store, or an intrinsic!");
VecTy = N->getOperand(1).getValueType();
}
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
if (isLaneOp)
NumBytes /= VecTy.getVectorNumElements();
// If the increment is a constant, it must match the memory ref size.
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
uint64_t IncVal = CInc->getZExtValue();
if (IncVal != NumBytes)
continue;
} else if (NumBytes >= 3 * 16) {
// VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
// separate instructions that make it harder to use a non-constant update.
continue;
}
// OK, we found an ADD we can fold into the base update.
// Now, create a _UPD node, taking care of not breaking alignment.
EVT AlignedVecTy = VecTy;
unsigned Alignment = MemN->getAlignment();
// If this is a less-than-standard-aligned load/store, change the type to
// match the standard alignment.
// The alignment is overlooked when selecting _UPD variants; and it's
// easier to introduce bitcasts here than fix that.
// There are 3 ways to get to this base-update combine:
// - intrinsics: they are assumed to be properly aligned (to the standard
// alignment of the memory type), so we don't need to do anything.
// - ARMISD::VLDx nodes: they are only generated from the aforementioned
// intrinsics, so, likewise, there's nothing to do.
// - generic load/store instructions: the alignment is specified as an
// explicit operand, rather than implicitly as the standard alignment
// of the memory type (like the intrisics). We need to change the
// memory type to match the explicit alignment. That way, we don't
// generate non-standard-aligned ARMISD::VLDx nodes.
if (isa<LSBaseSDNode>(N)) {
if (Alignment == 0)
Alignment = 1;
if (Alignment < VecTy.getScalarSizeInBits() / 8) {
MVT EltTy = MVT::getIntegerVT(Alignment * 8);
assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
assert(!isLaneOp && "Unexpected generic load/store lane.");
unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
}
// Don't set an explicit alignment on regular load/stores that we want
// to transform to VLD/VST 1_UPD nodes.
// This matches the behavior of regular load/stores, which only get an
// explicit alignment if the MMO alignment is larger than the standard
// alignment of the memory type.
// Intrinsics, however, always get an explicit alignment, set to the
// alignment of the MMO.
Alignment = 1;
}
// Create the new updating load/store node.
// First, create an SDVTList for the new updating node's results.
EVT Tys[6];
unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
unsigned n;
for (n = 0; n < NumResultVecs; ++n)
Tys[n] = AlignedVecTy;
Tys[n++] = MVT::i32;
Tys[n] = MVT::Other;
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
// Then, gather the new node's operands.
SmallVector<SDValue, 8> Ops;
Ops.push_back(N->getOperand(0)); // incoming chain
Ops.push_back(N->getOperand(AddrOpIdx));
Ops.push_back(Inc);
if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
// Try to match the intrinsic's signature
Ops.push_back(StN->getValue());
} else {
// Loads (and of course intrinsics) match the intrinsics' signature,
// so just add all but the alignment operand.
for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
Ops.push_back(N->getOperand(i));
}
// For all node types, the alignment operand is always the last one.
Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
// If this is a non-standard-aligned STORE, the penultimate operand is the
// stored value. Bitcast it to the aligned type.
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
SDValue &StVal = Ops[Ops.size()-2];
StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
}
EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
MemN->getMemOperand());
// Update the uses.
SmallVector<SDValue, 5> NewResults;
for (unsigned i = 0; i < NumResultVecs; ++i)
NewResults.push_back(SDValue(UpdN.getNode(), i));
// If this is an non-standard-aligned LOAD, the first result is the loaded
// value. Bitcast it to the expected result type.
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
SDValue &LdVal = NewResults[0];
LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
}
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
DCI.CombineTo(N, NewResults);
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
break;
}
return SDValue();
}
static SDValue PerformVLDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
return CombineBaseUpdate(N, DCI);
}
/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
/// return true.
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
// vldN-dup instructions only support 64-bit vectors for N > 1.
if (!VT.is64BitVector())
return false;
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
SDNode *VLD = N->getOperand(0).getNode();
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
unsigned NumVecs = 0;
unsigned NewOpc = 0;
unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
if (IntNo == Intrinsic::arm_neon_vld2lane) {
NumVecs = 2;
NewOpc = ARMISD::VLD2DUP;
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
NumVecs = 3;
NewOpc = ARMISD::VLD3DUP;
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
NumVecs = 4;
NewOpc = ARMISD::VLD4DUP;
} else {
return false;
}
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
// numbers match the load.
unsigned VLDLaneNo =
cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
// Ignore uses of the chain result.
if (UI.getUse().getResNo() == NumVecs)
continue;
SDNode *User = *UI;
if (User->getOpcode() != ARMISD::VDUPLANE ||
VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
return false;
}
// Create the vldN-dup node.
EVT Tys[5];
unsigned n;
for (n = 0; n < NumVecs; ++n)
Tys[n] = VT;
Tys[n] = MVT::Other;
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
Ops, VLDMemInt->getMemoryVT(),
VLDMemInt->getMemOperand());
// Update the uses.
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
UI != UE; ++UI) {
unsigned ResNo = UI.getUse().getResNo();
// Ignore uses of the chain result.
if (ResNo == NumVecs)
continue;
SDNode *User = *UI;
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
}
// Now the vldN-lane intrinsic is dead except for its chain result.
// Update uses of the chain.
std::vector<SDValue> VLDDupResults;
for (unsigned n = 0; n < NumVecs; ++n)
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
DCI.CombineTo(VLD, VLDDupResults);
return true;
}
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
/// ARMISD::VDUPLANE.
static SDValue PerformVDUPLANECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue Op = N->getOperand(0);
// If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
// of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
if (CombineVLDDUP(N, DCI))
return SDValue(N, 0);
// If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
// redundant. Ignore bit_converts for now; element sizes are checked below.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
return SDValue();
// Make sure the VMOV element size is not bigger than the VDUPLANE elements.
unsigned EltSize = Op.getScalarValueSizeInBits();
// The canonical VMOV for a zero vector uses a 32-bit element size.
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned EltBits;
if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
EltSize = 8;
EVT VT = N->getValueType(0);
if (EltSize > VT.getScalarSizeInBits())
return SDValue();
return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
}
/// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
static SDValue PerformVDUPCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue Op = N->getOperand(0);
// Match VDUP(LOAD) -> VLD1DUP.
// We match this pattern here rather than waiting for isel because the
// transform is only legal for unindexed loads.
LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
if (LD && Op.hasOneUse() && LD->isUnindexed() &&
LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
Ops, LD->getMemoryVT(),
LD->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
return VLDDup;
}
return SDValue();
}
static SDValue PerformLOADCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
// If this is a legal vector load, try to combine it into a VLD1_UPD.
if (ISD::isNormalLoad(N) && VT.isVector() &&
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
return CombineBaseUpdate(N, DCI);
return SDValue();
}
/// PerformSTORECombine - Target-specific dag combine xforms for
/// ISD::STORE.
static SDValue PerformSTORECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
StoreSDNode *St = cast<StoreSDNode>(N);
if (St->isVolatile())
return SDValue();
// Optimize trunc store (of multiple scalars) to shuffle and store. First,
// pack all of the elements in one place. Next, store to memory in fewer
// chunks.
SDValue StVal = St->getValue();
EVT VT = StVal.getValueType();
if (St->isTruncatingStore() && VT.isVector()) {
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT StVT = St->getMemoryVT();
unsigned NumElems = VT.getVectorNumElements();
assert(StVT != VT && "Cannot truncate to the same type");
unsigned FromEltSz = VT.getScalarSizeInBits();
unsigned ToEltSz = StVT.getScalarSizeInBits();
// From, To sizes and ElemCount must be pow of two
if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
// We are going to use the original vector elt for storing.
// Accumulated smaller vector elements must be a multiple of the store size.
if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
unsigned SizeRatio = FromEltSz / ToEltSz;
assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle.
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
SDLoc DL(St);
SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i < NumElems; ++i)
ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
? (i + 1) * SizeRatio - 1
: i * SizeRatio;
// Can't shuffle using an illegal type.
if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
DAG.getUNDEF(WideVec.getValueType()),
ShuffleVec);
// At this point all of the data is stored at the bottom of the
// register. We now need to save it to mem.
// Find the largest store unit
MVT StoreType = MVT::i8;
for (MVT Tp : MVT::integer_valuetypes()) {
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
StoreType = Tp;
}
// Didn't find a legal store type.
if (!TLI.isTypeLegal(StoreType))
return SDValue();
// Bitcast the original vector into a vector of store-size units
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
SmallVector<SDValue, 8> Chains;
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
TLI.getPointerTy(DAG.getDataLayout()));
SDValue BasePtr = St->getBasePtr();
// Perform one or more big stores into memory.
unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
for (unsigned I = 0; I < E; I++) {
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
StoreType, ShuffWide,
DAG.getIntPtrConstant(I, DL));
SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
Increment);
Chains.push_back(Ch);
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
if (!ISD::isNormalStore(St))
return SDValue();
// Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
// ARM stores of arguments in the same cache line.
if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
StVal.getNode()->hasOneUse()) {
SelectionDAG &DAG = DCI.DAG;
bool isBigEndian = DAG.getDataLayout().isBigEndian();
SDLoc DL(St);
SDValue BasePtr = St->getBasePtr();
SDValue NewST1 = DAG.getStore(
St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
BasePtr, St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
DAG.getConstant(4, DL, MVT::i32));
return DAG.getStore(NewST1.getValue(0), DL,
StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
OffsetPtr, St->getPointerInfo(),
std::min(4U, St->getAlignment() / 2),
St->getMemOperand()->getFlags());
}
if (StVal.getValueType() == MVT::i64 &&
StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
// Bitcast an i64 store extracted from a vector to f64.
// Otherwise, the i64 value will be legalized to a pair of i32 values.
SelectionDAG &DAG = DCI.DAG;
SDLoc dl(StVal);
SDValue IntVec = StVal.getOperand(0);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
IntVec.getValueType().getVectorNumElements());
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
Vec, StVal.getOperand(1));
dl = SDLoc(N);
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
// Make the DAGCombiner fold the bitcasts.
DCI.AddToWorklist(Vec.getNode());
DCI.AddToWorklist(ExtElt.getNode());
DCI.AddToWorklist(V.getNode());
return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags(), St->getAAInfo());
}
// If this is a legal vector store, try to combine it into a VST1_UPD.
if (ISD::isNormalStore(N) && VT.isVector() &&
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
return CombineBaseUpdate(N, DCI);
return SDValue();
}
/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
/// can replace combinations of VMUL and VCVT (floating-point to integer)
/// when the VMUL has a constant operand that is a power of 2.
///
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
/// vmul.f32 d16, d17, d16
/// vcvt.s32.f32 d16, d16
/// becomes:
/// vcvt.s32.f32 d16, d16, #3
static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasNEON())
return SDValue();
SDValue Op = N->getOperand(0);
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
Op.getOpcode() != ISD::FMUL)
return SDValue();
SDValue ConstVec = Op->getOperand(1);
if (!isa<BuildVectorSDNode>(ConstVec))
return SDValue();
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
uint32_t FloatBits = FloatTy.getSizeInBits();
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
uint32_t IntBits = IntTy.getSizeInBits();
unsigned NumLanes = Op.getValueType().getVectorNumElements();
if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
// These instructions only exist converting from f32 to i32. We can handle
// smaller integers by generating an extra truncate, but larger ones would
// be lossy. We also can't handle more then 4 lanes, since these intructions
// only support v2i32/v4i32 types.
return SDValue();
}
BitVector UndefElements;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
if (C == -1 || C == 0 || C > 32)
return SDValue();
SDLoc dl(N);
bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
Intrinsic::arm_neon_vcvtfp2fxu;
SDValue FixConv = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
DAG.getConstant(C, dl, MVT::i32));
if (IntBits < FloatBits)
FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
return FixConv;
}
/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
/// can replace combinations of VCVT (integer to floating-point) and VDIV
/// when the VDIV has a constant operand that is a power of 2.
///
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
/// vcvt.f32.s32 d16, d16
/// vdiv.f32 d16, d17, d16
/// becomes:
/// vcvt.f32.s32 d16, d16, #3
static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
if (!Subtarget->hasNEON())
return SDValue();
SDValue Op = N->getOperand(0);
unsigned OpOpcode = Op.getNode()->getOpcode();
if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
(OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
return SDValue();
SDValue ConstVec = N->getOperand(1);
if (!isa<BuildVectorSDNode>(ConstVec))
return SDValue();
MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
uint32_t FloatBits = FloatTy.getSizeInBits();
MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
uint32_t IntBits = IntTy.getSizeInBits();
unsigned NumLanes = Op.getValueType().getVectorNumElements();
if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
// These instructions only exist converting from i32 to f32. We can handle
// smaller integers by generating an extra extend, but larger ones would
// be lossy. We also can't handle more then 4 lanes, since these intructions
// only support v2i32/v4i32 types.
return SDValue();
}
BitVector UndefElements;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
if (C == -1 || C == 0 || C > 32)
return SDValue();
SDLoc dl(N);
bool isSigned = OpOpcode == ISD::SINT_TO_FP;
SDValue ConvInput = Op.getOperand(0);
if (IntBits < FloatBits)
ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
ConvInput);
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
Intrinsic::arm_neon_vcvtfxu2fp;
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
Op.getValueType(),
DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
ConvInput, DAG.getConstant(C, dl, MVT::i32));
}
/// Getvshiftimm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
HasAnyUndefs, ElementBits) ||
SplatBitSize > ElementBits)
return false;
Cnt = SplatBits.getSExtValue();
return true;
}
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits for a left shift; or
/// 0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (! getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
}
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. For a shift opcode, the value
/// is positive, but for an intrinsic the value count must be negative. The
/// absolute value must be in the range:
/// 1 <= |Value| <= ElementBits for a right shift; or
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
int64_t ElementBits = VT.getScalarSizeInBits();
if (! getVShiftImm(Op, ElementBits, Cnt))
return false;
if (!isIntrinsic)
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
Cnt = -Cnt;
return true;
}
return false;
}
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IntNo) {
default:
// Don't do anything for most intrinsics.
break;
// Vector shifts: check for immediate versions and lower them.
// Note: This is done during DAG combining instead of DAG legalizing because
// the build_vectors for 64-bit vector element shift counts are generally
// not legal, and it is hard to see their values after they get legalized to
// loads from a constant pool.
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
case Intrinsic::arm_neon_vrshifts:
case Intrinsic::arm_neon_vrshiftu:
case Intrinsic::arm_neon_vrshiftn:
case Intrinsic::arm_neon_vqshifts:
case Intrinsic::arm_neon_vqshiftu:
case Intrinsic::arm_neon_vqshiftsu:
case Intrinsic::arm_neon_vqshiftns:
case Intrinsic::arm_neon_vqshiftnu:
case Intrinsic::arm_neon_vqshiftnsu:
case Intrinsic::arm_neon_vqrshiftns:
case Intrinsic::arm_neon_vqrshiftnu:
case Intrinsic::arm_neon_vqrshiftnsu: {
EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
switch (IntNo) {
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
VShiftOpc = ARMISD::VSHL;
break;
}
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
ARMISD::VSHRs : ARMISD::VSHRu);
break;
}
return SDValue();
case Intrinsic::arm_neon_vrshifts:
case Intrinsic::arm_neon_vrshiftu:
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
break;
return SDValue();
case Intrinsic::arm_neon_vqshifts:
case Intrinsic::arm_neon_vqshiftu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
break;
return SDValue();
case Intrinsic::arm_neon_vqshiftsu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
break;
llvm_unreachable("invalid shift count for vqshlu intrinsic");
case Intrinsic::arm_neon_vrshiftn:
case Intrinsic::arm_neon_vqshiftns:
case Intrinsic::arm_neon_vqshiftnu:
case Intrinsic::arm_neon_vqshiftnsu:
case Intrinsic::arm_neon_vqrshiftns:
case Intrinsic::arm_neon_vqrshiftnu:
case Intrinsic::arm_neon_vqrshiftnsu:
// Narrowing shifts require an immediate right shift.
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
break;
llvm_unreachable("invalid shift count for narrowing vector shift "
"intrinsic");
default:
llvm_unreachable("unhandled vector shift");
}
switch (IntNo) {
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
// Opcode already set above.
break;
case Intrinsic::arm_neon_vrshifts:
VShiftOpc = ARMISD::VRSHRs; break;
case Intrinsic::arm_neon_vrshiftu:
VShiftOpc = ARMISD::VRSHRu; break;
case Intrinsic::arm_neon_vrshiftn:
VShiftOpc = ARMISD::VRSHRN; break;
case Intrinsic::arm_neon_vqshifts:
VShiftOpc = ARMISD::VQSHLs; break;
case Intrinsic::arm_neon_vqshiftu:
VShiftOpc = ARMISD::VQSHLu; break;
case Intrinsic::arm_neon_vqshiftsu:
VShiftOpc = ARMISD::VQSHLsu; break;
case Intrinsic::arm_neon_vqshiftns:
VShiftOpc = ARMISD::VQSHRNs; break;
case Intrinsic::arm_neon_vqshiftnu:
VShiftOpc = ARMISD::VQSHRNu; break;
case Intrinsic::arm_neon_vqshiftnsu:
VShiftOpc = ARMISD::VQSHRNsu; break;
case Intrinsic::arm_neon_vqrshiftns:
VShiftOpc = ARMISD::VQRSHRNs; break;
case Intrinsic::arm_neon_vqrshiftnu:
VShiftOpc = ARMISD::VQRSHRNu; break;
case Intrinsic::arm_neon_vqrshiftnsu:
VShiftOpc = ARMISD::VQRSHRNsu; break;
}
SDLoc dl(N);
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
}
case Intrinsic::arm_neon_vshiftins: {
EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
VShiftOpc = ARMISD::VSLI;
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
VShiftOpc = ARMISD::VSRI;
else {
llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
}
SDLoc dl(N);
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
N->getOperand(1), N->getOperand(2),
DAG.getConstant(Cnt, dl, MVT::i32));
}
case Intrinsic::arm_neon_vqrshifts:
case Intrinsic::arm_neon_vqrshiftu:
// No immediate versions of these to check for.
break;
}
return SDValue();
}
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
/// lowers them. As with the vector shift intrinsics, this is done during DAG
/// combining instead of DAG legalizing because the build_vectors for 64-bit
/// vector element shift counts are generally not legal, and it is hard to see
/// their values after they get legalized to loads from a constant pool.
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
// Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
// 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
SDValue N1 = N->getOperand(1);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
SDValue N0 = N->getOperand(0);
if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
DAG.MaskedValueIsZero(N0.getOperand(0),
APInt::getHighBitsSet(32, 16)))
return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
}
}
// Nothing to be done for scalar shifts.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!VT.isVector() || !TLI.isTypeLegal(VT))
return SDValue();
assert(ST->hasNEON() && "unexpected vector shift");
int64_t Cnt;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected shift opcode");
case ISD::SHL:
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
SDLoc dl(N);
return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
}
break;
case ISD::SRA:
case ISD::SRL:
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
ARMISD::VSHRs : ARMISD::VSHRu);
SDLoc dl(N);
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
DAG.getConstant(Cnt, dl, MVT::i32));
}
}
return SDValue();
}
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue N0 = N->getOperand(0);
// Check for sign- and zero-extensions of vector extract operations of 8-
// and 16-bit vector elements. NEON supports these directly. They are
// handled during DAG combining because type legalization will promote them
// to 32-bit types and it is messy to recognize the operations after that.
if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue Vec = N0.getOperand(0);
SDValue Lane = N0.getOperand(1);
EVT VT = N->getValueType(0);
EVT EltVT = N0.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (VT == MVT::i32 &&
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
TLI.isTypeLegal(Vec.getValueType()) &&
isa<ConstantSDNode>(Lane)) {
unsigned Opc = 0;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case ISD::SIGN_EXTEND:
Opc = ARMISD::VGETLANEs;
break;
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
Opc = ARMISD::VGETLANEu;
break;
}
return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
}
}
return SDValue();
}
static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
APInt &KnownOne) {
if (Op.getOpcode() == ARMISD::BFI) {
// Conservatively, we can recurse down the first operand
// and just mask out all affected bits.
computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
// The operand to BFI is already a mask suitable for removing the bits it
// sets.
ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
const APInt &Mask = CI->getAPIntValue();
KnownZero &= Mask;
KnownOne &= Mask;
return;
}
if (Op.getOpcode() == ARMISD::CMOV) {
APInt KZ2(KnownZero.getBitWidth(), 0);
APInt KO2(KnownOne.getBitWidth(), 0);
computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
KnownZero &= KZ2;
KnownOne &= KO2;
return;
}
return DAG.computeKnownBits(Op, KnownZero, KnownOne);
}
SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
// If we have a CMOV, OR and AND combination such as:
// if (x & CN)
// y |= CM;
//
// And:
// * CN is a single bit;
// * All bits covered by CM are known zero in y
//
// Then we can convert this into a sequence of BFI instructions. This will
// always be a win if CM is a single bit, will always be no worse than the
// TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
// three bits (due to the extra IT instruction).
SDValue Op0 = CMOV->getOperand(0);
SDValue Op1 = CMOV->getOperand(1);
auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
auto CC = CCNode->getAPIntValue().getLimitedValue();
SDValue CmpZ = CMOV->getOperand(4);
// The compare must be against zero.
if (!isNullConstant(CmpZ->getOperand(1)))
return SDValue();
assert(CmpZ->getOpcode() == ARMISD::CMPZ);
SDValue And = CmpZ->getOperand(0);
if (And->getOpcode() != ISD::AND)
return SDValue();
ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
if (!AndC || !AndC->getAPIntValue().isPowerOf2())
return SDValue();
SDValue X = And->getOperand(0);
if (CC == ARMCC::EQ) {
// We're performing an "equal to zero" compare. Swap the operands so we
// canonicalize on a "not equal to zero" compare.
std::swap(Op0, Op1);
} else {
assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
}
if (Op1->getOpcode() != ISD::OR)
return SDValue();
ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
if (!OrC)
return SDValue();
SDValue Y = Op1->getOperand(0);
if (Op0 != Y)
return SDValue();
// Now, is it profitable to continue?
APInt OrCI = OrC->getAPIntValue();
unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
if (OrCI.countPopulation() > Heuristic)
return SDValue();
// Lastly, can we determine that the bits defined by OrCI
// are zero in Y?
APInt KnownZero, KnownOne;
computeKnownBits(DAG, Y, KnownZero, KnownOne);
if ((OrCI & KnownZero) != OrCI)
return SDValue();
// OK, we can do the combine.
SDValue V = Y;
SDLoc dl(X);
EVT VT = X.getValueType();
unsigned BitInX = AndC->getAPIntValue().logBase2();
if (BitInX != 0) {
// We must shift X first.
X = DAG.getNode(ISD::SRL, dl, VT, X,
DAG.getConstant(BitInX, dl, VT));
}
for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
BitInY < NumActiveBits; ++BitInY) {
if (OrCI[BitInY] == 0)
continue;
APInt Mask(VT.getSizeInBits(), 0);
Mask.setBit(BitInY);
V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
// Confusingly, the operand is an *inverted* mask.
DAG.getConstant(~Mask, dl, VT));
}
return V;
}
/// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
SDValue
ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
SDValue Cmp = N->getOperand(4);
if (Cmp.getOpcode() != ARMISD::CMPZ)
// Only looking at NE cases.
return SDValue();
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue LHS = Cmp.getOperand(0);
SDValue RHS = Cmp.getOperand(1);
SDValue Chain = N->getOperand(0);
SDValue BB = N->getOperand(1);
SDValue ARMcc = N->getOperand(2);
ARMCC::CondCodes CC =
(ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
// (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
// -> (brcond Chain BB CC CPSR Cmp)
if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
LHS->getOperand(0)->hasOneUse()) {
auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
if ((LHS00C && LHS00C->getZExtValue() == 0) &&
(LHS01C && LHS01C->getZExtValue() == 1) &&
(LHS1C && LHS1C->getZExtValue() == 1) &&
(RHSC && RHSC->getZExtValue() == 0)) {
return DAG.getNode(
ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
}
}
return SDValue();
}
/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
SDValue
ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
SDValue Cmp = N->getOperand(4);
if (Cmp.getOpcode() != ARMISD::CMPZ)
// Only looking at EQ and NE cases.
return SDValue();
EVT VT = N->getValueType(0);
SDLoc dl(N);
SDValue LHS = Cmp.getOperand(0);
SDValue RHS = Cmp.getOperand(1);
SDValue FalseVal = N->getOperand(0);
SDValue TrueVal = N->getOperand(1);
SDValue ARMcc = N->getOperand(2);
ARMCC::CondCodes CC =
(ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
// BFI is only available on V6T2+.
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
SDValue R = PerformCMOVToBFICombine(N, DAG);
if (R)
return R;
}
// Simplify
// mov r1, r0
// cmp r1, x
// mov r0, y
// moveq r0, x
// to
// cmp r0, x
// movne r0, y
//
// mov r1, r0
// cmp r1, x
// mov r0, x
// movne r0, y
// to
// cmp r0, x
// movne r0, y
/// FIXME: Turn this into a target neutral optimization?
SDValue Res;
if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
N->getOperand(3), Cmp);
} else if (CC == ARMCC::EQ && TrueVal == RHS) {
SDValue ARMcc;
SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
N->getOperand(3), NewCmp);
}
// (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
// -> (cmov F T CC CPSR Cmp)
if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
if ((LHS0C && LHS0C->getZExtValue() == 0) &&
(LHS1C && LHS1C->getZExtValue() == 1) &&
(RHSC && RHSC->getZExtValue() == 0)) {
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
LHS->getOperand(2), LHS->getOperand(3),
LHS->getOperand(4));
}
}
if (Res.getNode()) {
APInt KnownZero, KnownOne;
DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
// Capture demanded bits information that would be otherwise lost.
if (KnownZero == 0xfffffffe)
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
DAG.getValueType(MVT::i1));
else if (KnownZero == 0xffffff00)
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
DAG.getValueType(MVT::i8));
else if (KnownZero == 0xffff0000)
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
DAG.getValueType(MVT::i16));
}
return Res;
}
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default: break;
case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
case ISD::SUB: return PerformSUBCombine(N, DCI);
case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
case ARMISD::BFI: return PerformBFICombine(N, DCI);
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
case ISD::STORE: return PerformSTORECombine(N, DCI);
case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
return PerformVCVTCombine(N, DCI.DAG, Subtarget);
case ISD::FDIV:
return PerformVDIVCombine(N, DCI.DAG, Subtarget);
case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
case ISD::LOAD: return PerformLOADCombine(N, DCI);
case ARMISD::VLD1DUP:
case ARMISD::VLD2DUP:
case ARMISD::VLD3DUP:
case ARMISD::VLD4DUP:
return PerformVLDCombine(N, DCI);
case ARMISD::BUILD_VECTOR:
return PerformARMBUILD_VECTORCombine(N, DCI);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN:
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
case Intrinsic::arm_neon_vld1:
case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane:
case Intrinsic::arm_neon_vst1:
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane:
return PerformVLDCombine(N, DCI);
default: break;
}
break;
}
return SDValue();
}
bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
EVT VT) const {
return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
}
bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
bool *Fast) const {
// The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
switch (VT.getSimpleVT().SimpleTy) {
default:
return false;
case MVT::i8:
case MVT::i16:
case MVT::i32: {
// Unaligned access can use (for example) LRDB, LRDH, LDR
if (AllowsUnaligned) {
if (Fast)
*Fast = Subtarget->hasV7Ops();
return true;
}
return false;
}
case MVT::f64:
case MVT::v2f64: {
// For any little-endian targets with neon, we can support unaligned ld/st
// of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
// A big-endian target may also explicitly support unaligned accesses
if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
if (Fast)
*Fast = true;
return true;
}
return false;
}
}
}
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
unsigned AlignCheck) {
return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
(DstAlign == 0 || DstAlign % AlignCheck == 0));
}
EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
const Function *F = MF.getFunction();
// See if we can use NEON instructions for this...
if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
!F->hasFnAttribute(Attribute::NoImplicitFloat)) {
bool Fast;
if (Size >= 16 &&
(memOpAlign(SrcAlign, DstAlign, 16) ||
(allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
return MVT::v2f64;
} else if (Size >= 8 &&
(memOpAlign(SrcAlign, DstAlign, 8) ||
(allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
Fast))) {
return MVT::f64;
}
}
// Lowering to i32/i16 if the size permits.
if (Size >= 4)
return MVT::i32;
else if (Size >= 2)
return MVT::i16;
// Let the target-independent logic figure it out.
return MVT::Other;
}
bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
if (Val.getOpcode() != ISD::LOAD)
return false;
EVT VT1 = Val.getValueType();
if (!VT1.isSimple() || !VT1.isInteger() ||
!VT2.isSimple() || !VT2.isInteger())
return false;
switch (VT1.getSimpleVT().SimpleTy) {
default: break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
// 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
return true;
}
return false;
}
bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
EVT VT = ExtVal.getValueType();
if (!isTypeLegal(VT))
return false;
// Don't create a loadext if we can fold the extension into a wide/long
// instruction.
// If there's more than one user instruction, the loadext is desirable no
// matter what. There can be two uses by the same instruction.
if (ExtVal->use_empty() ||
!ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
return true;
SDNode *U = *ExtVal->use_begin();
if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
return false;
return true;
}
bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
if (!isTypeLegal(EVT::getEVT(Ty1)))
return false;
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
// Assuming the caller doesn't have a zeroext or signext return parameter,
// truncation all the way down to i1 is valid.
return true;
}
int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
if (isLegalAddressingMode(DL, AM, Ty, AS)) {
if (Subtarget->hasFPAO())
return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
return 0;
}
return -1;
}
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
if (V < 0)
return false;
unsigned Scale = 1;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
// Scale == 1;
break;
case MVT::i16:
// Scale == 2;
Scale = 2;
break;
case MVT::i32:
// Scale == 4;
Scale = 4;
break;
}
if ((V & (Scale - 1)) != 0)
return false;
V /= Scale;
return V == (V & ((1LL << 5) - 1));
}
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
const ARMSubtarget *Subtarget) {
bool isNeg = false;
if (V < 0) {
isNeg = true;
V = - V;
}
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
// + imm12 or - imm8
if (isNeg)
return V == (V & ((1LL << 8) - 1));
return V == (V & ((1LL << 12) - 1));
case MVT::f32:
case MVT::f64:
// Same as ARM mode. FIXME: NEON?
if (!Subtarget->hasVFP2())
return false;
if ((V & 3) != 0)
return false;
V >>= 2;
return V == (V & ((1LL << 8) - 1));
}
}
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
static bool isLegalAddressImmediate(int64_t V, EVT VT,
const ARMSubtarget *Subtarget) {
if (V == 0)
return true;
if (!VT.isSimple())
return false;
if (Subtarget->isThumb1Only())
return isLegalT1AddressImmediate(V, VT);
else if (Subtarget->isThumb2())
return isLegalT2AddressImmediate(V, VT, Subtarget);
// ARM mode.
if (V < 0)
V = - V;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i32:
// +- imm12
return V == (V & ((1LL << 12) - 1));
case MVT::i16:
// +- imm8
return V == (V & ((1LL << 8) - 1));
case MVT::f32:
case MVT::f64:
if (!Subtarget->hasVFP2()) // FIXME: NEON?
return false;
if ((V & 3) != 0)
return false;
V >>= 2;
return V == (V & ((1LL << 8) - 1));
}
}
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
EVT VT) const {
int Scale = AM.Scale;
if (Scale < 0)
return false;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
if (Scale == 1)
return true;
// r + r << imm
Scale = Scale & ~1;
return Scale == 2 || Scale == 4 || Scale == 8;
case MVT::i64:
// r + r
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
return true;
return false;
case MVT::isVoid:
// Note, we allow "void" uses (basically, uses that aren't loads or
// stores), because arm allows folding a scale into many arithmetic
// operations. This should be made more precise and revisited later.
// Allow r << imm, but the imm has to be a multiple of two.
if (Scale & 1) return false;
return isPowerOf2_32(Scale);
}
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
EVT VT = getValueType(DL, Ty, true);
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
return false;
// Can never fold addr of global into load/store.
if (AM.BaseGV)
return false;
switch (AM.Scale) {
case 0: // no scale reg, must be "r+i" or "r", or "i".
break;
case 1:
if (Subtarget->isThumb1Only())
return false;
LLVM_FALLTHROUGH;
default:
// ARM doesn't support any R+R*scale+imm addr modes.
if (AM.BaseOffs)
return false;
if (!VT.isSimple())
return false;
if (Subtarget->isThumb2())
return isLegalT2ScaledAddressingMode(AM, VT);
int Scale = AM.Scale;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i32:
if (Scale < 0) Scale = -Scale;
if (Scale == 1)
return true;
// r + r << imm
return isPowerOf2_32(Scale & ~1);
case MVT::i16:
case MVT::i64:
// r + r
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
return true;
return false;
case MVT::isVoid:
// Note, we allow "void" uses (basically, uses that aren't loads or
// stores), because arm allows folding a scale into many arithmetic
// operations. This should be made more precise and revisited later.
// Allow r << imm, but the imm has to be a multiple of two.
if (Scale & 1) return false;
return isPowerOf2_32(Scale);
}
}
return true;
}
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
// Thumb2 and ARM modes can use cmn for negative immediates.
if (!Subtarget->isThumb())
return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
if (Subtarget->isThumb2())
return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
// Thumb1 doesn't have cmn, and only 8-bit immediates.
return Imm >= 0 && Imm <= 255;
}
/// isLegalAddImmediate - Return true if the specified immediate is a legal add
/// *or sub* immediate, that is the target has add or sub instructions which can
/// add a register with the immediate without having to materialize the
/// immediate into a register.
bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
// Same encoding for add/sub, just flip the sign.
int64_t AbsImm = std::abs(Imm);
if (!Subtarget->isThumb())
return ARM_AM::getSOImmVal(AbsImm) != -1;
if (Subtarget->isThumb2())
return ARM_AM::getT2SOImmVal(AbsImm) != -1;
// Thumb1 only has 8-bit unsigned immediate.
return AbsImm >= 0 && AbsImm <= 255;
}
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
// AddressingMode 3
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -256) {
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
}
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Offset = Ptr->getOperand(1);
return true;
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
// AddressingMode 2
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -0x1000) {
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
Base = Ptr->getOperand(0);
return true;
}
}
if (Ptr->getOpcode() == ISD::ADD) {
isInc = true;
ARM_AM::ShiftOpc ShOpcVal=
ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
if (ShOpcVal != ARM_AM::no_shift) {
Base = Ptr->getOperand(1);
Offset = Ptr->getOperand(0);
} else {
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
}
return true;
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
return true;
}
// FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
return false;
}
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
} else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
isInc = Ptr->getOpcode() == ISD::ADD;
Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
return true;
}
}
return false;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
if (Subtarget->isThumb1Only())
return false;
EVT VT;
SDValue Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
} else
return false;
bool isInc;
bool isLegal = false;
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
else
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
if (!isLegal)
return false;
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
return true;
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
EVT VT;
SDValue Ptr;
bool isSEXTLoad = false, isNonExt;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
Ptr = LD->getBasePtr();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
Ptr = ST->getBasePtr();
isNonExt = !ST->isTruncatingStore();
} else
return false;
if (Subtarget->isThumb1Only()) {
// Thumb-1 can do a limited post-inc load or store as an updating LDM. It
// must be non-extending/truncating, i32, with an offset of 4.
assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
if (Op->getOpcode() != ISD::ADD || !isNonExt)
return false;
auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
if (!RHS || RHS->getZExtValue() != 4)
return false;
Offset = Op->getOperand(1);
Base = Op->getOperand(0);
AM = ISD::POST_INC;
return true;
}
bool isInc;
bool isLegal = false;
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
else
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
if (!isLegal)
return false;
if (Ptr != Base) {
// Swap base ptr and offset to catch more post-index load / store when
// it's legal. In Thumb2 mode, offset must be an immediate.
if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
!Subtarget->isThumb2())
std::swap(Base, Offset);
// Post-indexed load / store update the base pointer.
if (Ptr != Base)
return false;
}
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
return true;
}
void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned BitWidth = KnownOne.getBitWidth();
KnownZero = KnownOne = APInt(BitWidth, 0);
switch (Op.getOpcode()) {
default: break;
case ARMISD::ADDC:
case ARMISD::ADDE:
case ARMISD::SUBC:
case ARMISD::SUBE:
// These nodes' second result is a boolean
if (Op.getResNo() == 0)
break;
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
break;
case ARMISD::CMOV: {
// Bits are known zero/one if known on the LHS and RHS.
DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
if (KnownZero == 0 && KnownOne == 0) return;
APInt KnownZeroRHS, KnownOneRHS;
DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
KnownZero &= KnownZeroRHS;
KnownOne &= KnownOneRHS;
return;
}
case ISD::INTRINSIC_W_CHAIN: {
ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
switch (IntID) {
default: return;
case Intrinsic::arm_ldaex:
case Intrinsic::arm_ldrex: {
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
return;
}
}
}
}
}
//===----------------------------------------------------------------------===//
// ARM Inline Assembly Support
//===----------------------------------------------------------------------===//
bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
// Looking for "rev" which is V6+.
if (!Subtarget->hasV6Ops())
return false;
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
std::string AsmStr = IA->getAsmString();
SmallVector<StringRef, 4> AsmPieces;
SplitString(AsmStr, AsmPieces, ";\n");
switch (AsmPieces.size()) {
default: return false;
case 1:
AsmStr = AsmPieces[0];
AsmPieces.clear();
SplitString(AsmStr, AsmPieces, " \t,");
// rev $0, $1
if (AsmPieces.size() == 3 &&
AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
if (Ty && Ty->getBitWidth() == 32)
return IntrinsicLowering::LowerToByteSwap(CI);
}
break;
}
return false;
}
const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
// At this point, we have to lower this constraint to something else, so we
// lower it to an "r" or "w". However, by doing this we will force the result
// to be in register, while the X constraint is much more permissive.
//
// Although we are correct (we are free to emit anything, without
// constraints), we might break use cases that would expect us to be more
// efficient and emit something else.
if (!Subtarget->hasVFP2())
return "r";
if (ConstraintVT.isFloatingPoint())
return "w";
if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
(ConstraintVT.getSizeInBits() == 64 ||
ConstraintVT.getSizeInBits() == 128))
return "w";
return "r";
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
ARMTargetLowering::ConstraintType
ARMTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'l': return C_RegisterClass;
case 'w': return C_RegisterClass;
case 'h': return C_RegisterClass;
case 'x': return C_RegisterClass;
case 't': return C_RegisterClass;
case 'j': return C_Other; // Constant for movw.
// An address with a single base register. Due to the way we
// currently handle addresses it is the same as an 'r' memory constraint.
case 'Q': return C_Memory;
}
} else if (Constraint.size() == 2) {
switch (Constraint[0]) {
default: break;
// All 'U+' constraints are addresses.
case 'U': return C_Memory;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
ARMTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'l':
if (type->isIntegerTy()) {
if (Subtarget->isThumb())
weight = CW_SpecificReg;
else
weight = CW_Register;
}
break;
case 'w':
if (type->isFloatingPointTy())
weight = CW_Register;
break;
}
return weight;
}
typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC ARM Constraint Letters
switch (Constraint[0]) {
case 'l': // Low regs or general regs.
if (Subtarget->isThumb())
return RCPair(0U, &ARM::tGPRRegClass);
return RCPair(0U, &ARM::GPRRegClass);
case 'h': // High regs or no regs.
if (Subtarget->isThumb())
return RCPair(0U, &ARM::hGPRRegClass);
break;
case 'r':
if (Subtarget->isThumb1Only())
return RCPair(0U, &ARM::tGPRRegClass);
return RCPair(0U, &ARM::GPRRegClass);
case 'w':
if (VT == MVT::Other)
break;
if (VT == MVT::f32)
return RCPair(0U, &ARM::SPRRegClass);
if (VT.getSizeInBits() == 64)
return RCPair(0U, &ARM::DPRRegClass);
if (VT.getSizeInBits() == 128)
return RCPair(0U, &ARM::QPRRegClass);
break;
case 'x':
if (VT == MVT::Other)
break;
if (VT == MVT::f32)
return RCPair(0U, &ARM::SPR_8RegClass);
if (VT.getSizeInBits() == 64)
return RCPair(0U, &ARM::DPR_8RegClass);
if (VT.getSizeInBits() == 128)
return RCPair(0U, &ARM::QPR_8RegClass);
break;
case 't':
if (VT == MVT::f32)
return RCPair(0U, &ARM::SPRRegClass);
break;
}
}
if (StringRef("{cc}").equals_lower(Constraint))
return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Currently only support length 1 constraints.
if (Constraint.length() != 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'j':
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O':
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return;
int64_t CVal64 = C->getSExtValue();
int CVal = (int) CVal64;
// None of these constraints allow values larger than 32 bits. Check
// that the value fits in an int.
if (CVal != CVal64)
return;
switch (ConstraintLetter) {
case 'j':
// Constant suitable for movw, must be between 0 and
// 65535.
if (Subtarget->hasV6T2Ops())
if (CVal >= 0 && CVal <= 65535)
break;
return;
case 'I':
if (Subtarget->isThumb1Only()) {
// This must be a constant between 0 and 255, for ADD
// immediates.
if (CVal >= 0 && CVal <= 255)
break;
} else if (Subtarget->isThumb2()) {
// A constant that can be used as an immediate value in a
// data-processing instruction.
if (ARM_AM::getT2SOImmVal(CVal) != -1)
break;
} else {
// A constant that can be used as an immediate value in a
// data-processing instruction.
if (ARM_AM::getSOImmVal(CVal) != -1)
break;
}
return;
case 'J':
if (Subtarget->isThumb1Only()) {
// This must be a constant between -255 and -1, for negated ADD
// immediates. This can be used in GCC with an "n" modifier that
// prints the negated value, for use with SUB instructions. It is
// not useful otherwise but is implemented for compatibility.
if (CVal >= -255 && CVal <= -1)
break;
} else {
// This must be a constant between -4095 and 4095. It is not clear
// what this constraint is intended for. Implemented for
// compatibility with GCC.
if (CVal >= -4095 && CVal <= 4095)
break;
}
return;
case 'K':
if (Subtarget->isThumb1Only()) {
// A 32-bit value where only one byte has a nonzero value. Exclude
// zero to match GCC. This constraint is used by GCC internally for
// constants that can be loaded with a move/shift combination.
// It is not useful otherwise but is implemented for compatibility.
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
break;
} else if (Subtarget->isThumb2()) {
// A constant whose bitwise inverse can be used as an immediate
// value in a data-processing instruction. This can be used in GCC
// with a "B" modifier that prints the inverted value, for use with
// BIC and MVN instructions. It is not useful otherwise but is
// implemented for compatibility.
if (ARM_AM::getT2SOImmVal(~CVal) != -1)
break;
} else {
// A constant whose bitwise inverse can be used as an immediate
// value in a data-processing instruction. This can be used in GCC
// with a "B" modifier that prints the inverted value, for use with
// BIC and MVN instructions. It is not useful otherwise but is
// implemented for compatibility.
if (ARM_AM::getSOImmVal(~CVal) != -1)
break;
}
return;
case 'L':
if (Subtarget->isThumb1Only()) {
// This must be a constant between -7 and 7,
// for 3-operand ADD/SUB immediate instructions.
if (CVal >= -7 && CVal < 7)
break;
} else if (Subtarget->isThumb2()) {
// A constant whose negation can be used as an immediate value in a
// data-processing instruction. This can be used in GCC with an "n"
// modifier that prints the negated value, for use with SUB
// instructions. It is not useful otherwise but is implemented for
// compatibility.
if (ARM_AM::getT2SOImmVal(-CVal) != -1)
break;
} else {
// A constant whose negation can be used as an immediate value in a
// data-processing instruction. This can be used in GCC with an "n"
// modifier that prints the negated value, for use with SUB
// instructions. It is not useful otherwise but is implemented for
// compatibility.
if (ARM_AM::getSOImmVal(-CVal) != -1)
break;
}
return;
case 'M':
if (Subtarget->isThumb1Only()) {
// This must be a multiple of 4 between 0 and 1020, for
// ADD sp + immediate.
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
break;
} else {
// A power of two or a constant between 0 and 32. This is used in
// GCC for the shift amount on shifted register operands, but it is
// useful in general for any shift amounts.
if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
break;
}
return;
case 'N':
if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a constant between 0 and 31, for shift amounts.
if (CVal >= 0 && CVal <= 31)
break;
}
return;
case 'O':
if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a multiple of 4 between -508 and 508, for
// ADD/SUB sp = sp + immediate.
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
break;
}
return;
}
Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
break;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
static RTLIB::Libcall getDivRemLibcall(
const SDNode *N, MVT::SimpleValueType SVT) {
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
"Unhandled Opcode in getDivRemLibcall");
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
N->getOpcode() == ISD::SREM;
RTLIB::Libcall LC;
switch (SVT) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
}
return LC;
}
static TargetLowering::ArgListTy getDivRemArgList(
const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
"Unhandled Opcode in getDivRemArgList");
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
N->getOpcode() == ISD::SREM;
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
EVT ArgVT = N->getOperand(i).getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*Context);
Entry.Node = N->getOperand(i);
Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
if (Subtarget->isTargetWindows() && Args.size() >= 2)
std::swap(Args[0], Args[1]);
return Args;
}
SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
Subtarget->isTargetWindows()) &&
"Register-based DivRem lowering only");
unsigned Opcode = Op->getOpcode();
assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
"Invalid opcode for Div/Rem lowering");
bool isSigned = (Opcode == ISD::SDIVREM);
EVT VT = Op->getValueType(0);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
SDLoc dl(Op);
// If the target has hardware divide, use divide + multiply + subtract:
// div = a / b
// rem = a - b * div
// return {div, rem}
// This should be lowered into UDIV/SDIV + MLS later on.
if (Subtarget->hasDivide() && Op->getValueType(0).isSimple() &&
Op->getSimpleValueType(0) == MVT::i32) {
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
const SDValue Dividend = Op->getOperand(0);
const SDValue Divisor = Op->getOperand(1);
SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
SDValue Values[2] = {Div, Rem};
return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
}
RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
VT.getSimpleVT().SimpleTy);
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
DAG.getContext(),
Subtarget);
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
if (Subtarget->isTargetWindows())
InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(InChain)
.setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
.setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
return CallInfo.first;
}
// Lowers REM using divmod helpers
// see RTABI section 4.2/4.3
SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
// Build return types (div and rem)
std::vector<Type*> RetTyParams;
Type *RetTyElement;
switch (N->getValueType(0).getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unexpected request for libcall!");
case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
}
RetTyParams.push_back(RetTyElement);
RetTyParams.push_back(RetTyElement);
ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
Type *RetTy = StructType::get(*DAG.getContext(), ret);
RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
SimpleTy);
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
Subtarget);
bool isSigned = N->getOpcode() == ISD::SREM;
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
if (Subtarget->isTargetWindows())
InChain = WinDBZCheckDenominator(DAG, N, InChain);
// Lower call
CallLoweringInfo CLI(DAG);
CLI.setChain(InChain)
.setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
.setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
// Return second (rem) result operand (first contains div)
SDNode *ResNode = CallResult.first.getNode();
assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
return ResNode->getOperand(1);
}
SDValue
ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->isTargetWindows() && "unsupported target platform");
SDLoc DL(Op);
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
DAG.getConstant(2, DL, MVT::i32));
SDValue Flag;
Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
Flag = Chain.getValue(1);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
Chain = NewSP.getValue(1);
SDValue Ops[2] = { NewSP, Chain };
return DAG.getMergeValues(Ops, DL);
}
SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
"Unexpected type for custom-lowering FP_EXTEND");
RTLIB::Libcall LC;
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
SDValue SrcVal = Op.getOperand(0);
return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
SDLoc(Op)).first;
}
SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getOperand(0).getValueType() == MVT::f64 &&
Subtarget->isFPOnlySP() &&
"Unexpected type for custom-lowering FP_ROUND");
RTLIB::Libcall LC;
LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
SDValue SrcVal = Op.getOperand(0);
return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
SDLoc(Op)).first;
}
bool
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The ARM target isn't yet aware of offsets.
return false;
}
bool ARM::isBitFieldInvertedMask(unsigned v) {
if (v == 0xffffffff)
return false;
// there can be 1's on either or both "outsides", all the "inside"
// bits must be 0's
return isShiftedMask_32(~v);
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (!Subtarget->hasVFP3())
return false;
if (VT == MVT::f32)
return ARM_AM::getFP32Imm(Imm) != -1;
if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
return ARM_AM::getFP64Imm(Imm) != -1;
return false;
}
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
/// specified in the intrinsic calls.
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
unsigned Intrinsic) const {
switch (Intrinsic) {
case Intrinsic::arm_neon_vld1:
case Intrinsic::arm_neon_vld2:
case Intrinsic::arm_neon_vld3:
case Intrinsic::arm_neon_vld4:
case Intrinsic::arm_neon_vld2lane:
case Intrinsic::arm_neon_vld3lane:
case Intrinsic::arm_neon_vld4lane: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
Info.vol = false; // volatile loads with NEON intrinsics not supported
Info.readMem = true;
Info.writeMem = false;
return true;
}
case Intrinsic::arm_neon_vst1:
case Intrinsic::arm_neon_vst2:
case Intrinsic::arm_neon_vst3:
case Intrinsic::arm_neon_vst4:
case Intrinsic::arm_neon_vst2lane:
case Intrinsic::arm_neon_vst3lane:
case Intrinsic::arm_neon_vst4lane: {
Info.opc = ISD::INTRINSIC_VOID;
// Conservatively set memVT to the entire set of vectors stored.
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
unsigned NumElts = 0;
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
Type *ArgTy = I.getArgOperand(ArgI)->getType();
if (!ArgTy->isVectorTy())
break;
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
}
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
Info.vol = false; // volatile stores with NEON intrinsics not supported
Info.readMem = false;
Info.writeMem = true;
return true;
}
case Intrinsic::arm_ldaex:
case Intrinsic::arm_ldrex: {
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Info.vol = true;
Info.readMem = true;
Info.writeMem = false;
return true;
}
case Intrinsic::arm_stlex:
case Intrinsic::arm_strex: {
auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(PtrTy->getElementType());
Info.ptrVal = I.getArgOperand(1);
Info.offset = 0;
Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Info.vol = true;
Info.readMem = false;
Info.writeMem = true;
return true;
}
case Intrinsic::arm_stlexd:
case Intrinsic::arm_strexd: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i64;
Info.ptrVal = I.getArgOperand(2);
Info.offset = 0;
Info.align = 8;
Info.vol = true;
Info.readMem = false;
Info.writeMem = true;
return true;
}
case Intrinsic::arm_ldaexd:
case Intrinsic::arm_ldrexd: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::i64;
Info.ptrVal = I.getArgOperand(0);
Info.offset = 0;
Info.align = 8;
Info.vol = true;
Info.readMem = true;
Info.writeMem = false;
return true;
}
default:
break;
}
return false;
}
/// \brief Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned Bits = Ty->getPrimitiveSizeInBits();
if (Bits == 0 || Bits > 32)
return false;
return true;
}
bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
return (Index == 0 || Index == ResVT.getVectorNumElements());
}
Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
ARM_MB::MemBOpt Domain) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
// First, if the target has no DMB, see what fallback we can use.
if (!Subtarget->hasDataBarrier()) {
// Some ARMv6 cpus can support data barriers with an mcr instruction.
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
// here.
if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
Builder.getInt32(0), Builder.getInt32(7),
Builder.getInt32(10), Builder.getInt32(5)};
return Builder.CreateCall(MCR, args);
} else {
// Instead of using barriers, atomic accesses on these subtargets use
// libcalls.
llvm_unreachable("makeDMB on a target so old that it has no barriers");
}
} else {
Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
// Only a full system barrier exists in the M-class architectures.
Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
Constant *CDomain = Builder.getInt32(Domain);
return Builder.CreateCall(DMB, CDomain);
}
}
// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
AtomicOrdering Ord, bool IsStore,
bool IsLoad) const {
switch (Ord) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
llvm_unreachable("Invalid fence: unordered/non-atomic");
case AtomicOrdering::Monotonic:
case AtomicOrdering::Acquire:
return nullptr; // Nothing to do
case AtomicOrdering::SequentiallyConsistent:
if (!IsStore)
return nullptr; // Nothing to do
/*FALLTHROUGH*/
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
if (Subtarget->preferISHSTBarriers())
return makeDMB(Builder, ARM_MB::ISHST);
// FIXME: add a comment with a link to documentation justifying this.
else
return makeDMB(Builder, ARM_MB::ISH);
}
llvm_unreachable("Unknown fence ordering in emitLeadingFence");
}
Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
AtomicOrdering Ord, bool IsStore,
bool IsLoad) const {
switch (Ord) {
case AtomicOrdering::NotAtomic:
case AtomicOrdering::Unordered:
llvm_unreachable("Invalid fence: unordered/not-atomic");
case AtomicOrdering::Monotonic:
case AtomicOrdering::Release:
return nullptr; // Nothing to do
case AtomicOrdering::Acquire:
case AtomicOrdering::AcquireRelease:
case AtomicOrdering::SequentiallyConsistent:
return makeDMB(Builder, ARM_MB::ISH);
}
llvm_unreachable("Unknown fence ordering in emitTrailingFence");
}
// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
return (Size == 64) && !Subtarget->isMClass();
}
// Loads and stores less than 64-bits are already atomic; ones above that
// are doomed anyway, so defer to the default libcall and blame the OS when
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
// anything for those.
// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
// guarantee, see DDI0406C ARM architecture reference manual,
// sections A8.8.72-74 LDRD)
TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
: AtomicExpansionKind::None;
}
// For the real atomic operations, we have ldrex/strex up to 32 bits,
// and up to 64 bits on the non-M profiles
TargetLowering::AtomicExpansionKind
ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
? AtomicExpansionKind::LLSC
: AtomicExpansionKind::None;
}
bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
AtomicCmpXchgInst *AI) const {
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
// implement cmpxchg without spilling. If the address being exchanged is also
// on the stack and close enough to the spill slot, this can lead to a
// situation where the monitor always gets cleared and the atomic operation
// can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
bool hasAtomicCmpXchg =
!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
return getTargetMachine().getOptLevel() != 0 && hasAtomicCmpXchg;
}
bool ARMTargetLowering::shouldInsertFencesForAtomic(
const Instruction *I) const {
return InsertFencesForAtomic;
}
// This has so far only been implemented for MachO.
bool ARMTargetLowering::useLoadStackGuardNode() const {
return Subtarget->isTargetMachO();
}
bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
unsigned &Cost) const {
// If we do not have NEON, vector types are not natively supported.
if (!Subtarget->hasNEON())
return false;
// Floating point values and vector values map to the same register file.
// Therefore, although we could do a store extract of a vector type, this is
// better to leave at float as we have more freedom in the addressing mode for
// those.
if (VectorTy->isFPOrFPVectorTy())
return false;
// If the index is unknown at compile time, this is very expensive to lower
// and it is not possible to combine the store with the extract.
if (!isa<ConstantInt>(Idx))
return false;
assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
// We can do a store + vector extract on any vector that fits perfectly in a D
// or Q register.
if (BitWidth == 64 || BitWidth == 128) {
Cost = 0;
return true;
}
return false;
}
bool ARMTargetLowering::isCheapToSpeculateCttz() const {
return Subtarget->hasV6T2Ops();
}
bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
return Subtarget->hasV6T2Ops();
}
Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
bool IsAcquire = isAcquireOrStronger(Ord);
// Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
// intrinsic must return {i32, i32} and we have to recombine them into a
// single i64 here.
if (ValTy->getPrimitiveSizeInBits() == 64) {
Intrinsic::ID Int =
IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
return Builder.CreateOr(
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
}
Type *Tys[] = { Addr->getType() };
Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
return Builder.CreateTruncOrBitCast(
Builder.CreateCall(Ldrex, Addr),
cast<PointerType>(Addr->getType())->getElementType());
}
void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
IRBuilder<> &Builder) const {
if (!Subtarget->hasV7Ops())
return;
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
}
Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
Value *Addr,
AtomicOrdering Ord) const {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
bool IsRelease = isReleaseOrStronger(Ord);
// Since the intrinsics must have legal type, the i64 intrinsics take two
// parameters: "i32, i32". We must marshal Val into the appropriate form
// before the call.
if (Val->getType()->getPrimitiveSizeInBits() == 64) {
Intrinsic::ID Int =
IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
Function *Strex = Intrinsic::getDeclaration(M, Int);
Type *Int32Ty = Type::getInt32Ty(M->getContext());
Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
if (!Subtarget->isLittle())
std::swap (Lo, Hi);
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
return Builder.CreateCall(Strex, {Lo, Hi, Addr});
}
Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
Type *Tys[] = { Addr->getType() };
Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
return Builder.CreateCall(
Strex, {Builder.CreateZExtOrBitCast(
Val, Strex->getFunctionType()->getParamType(0)),
Addr});
}
/// \brief Lower an interleaved load into a vldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
///
/// Into:
/// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
bool ARMTargetLowering::lowerInterleavedLoad(
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices, unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
assert(!Shuffles.empty() && "Empty shufflevector input");
assert(Shuffles.size() == Indices.size() &&
"Unmatched number of shufflevectors and indices");
VectorType *VecTy = Shuffles[0]->getType();
Type *EltTy = VecTy->getVectorElementType();
const DataLayout &DL = LI->getModule()->getDataLayout();
unsigned VecSize = DL.getTypeSizeInBits(VecTy);
bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
// Skip if we do not have NEON and skip illegal vector types and vector types
// with i64/f64 elements (vldN doesn't support i64/f64 elements).
if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
return false;
// A pointer vector can not be the return type of the ldN intrinsics. Need to
// load integer vectors first and then convert to pointer vectors.
if (EltTy->isPointerTy())
VecTy =
VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
Intrinsic::arm_neon_vld3,
Intrinsic::arm_neon_vld4};
IRBuilder<> Builder(LI);
SmallVector<Value *, 2> Ops;
Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
Ops.push_back(Builder.getInt32(LI->getAlignment()));
Type *Tys[] = { VecTy, Int8Ptr };
Function *VldnFunc =
Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
// Replace uses of each shufflevector with the corresponding vector loaded
// by ldN.
for (unsigned i = 0; i < Shuffles.size(); i++) {
ShuffleVectorInst *SV = Shuffles[i];
unsigned Index = Indices[i];
Value *SubVec = Builder.CreateExtractValue(VldN, Index);
// Convert the integer vector to pointer vector if the element is pointer.
if (EltTy->isPointerTy())
SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
SV->replaceAllUsesWith(SubVec);
}
return true;
}
/// \brief Get a mask consisting of sequential integers starting from \p Start.
///
/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
unsigned NumElts) {
SmallVector<Constant *, 16> Mask;
for (unsigned i = 0; i < NumElts; i++)
Mask.push_back(Builder.getInt32(Start + i));
return ConstantVector::get(Mask);
}
/// \brief Lower an interleaved store into a vstN intrinsic.
///
/// E.g. Lower an interleaved store (Factor = 3):
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
///
/// Into:
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
///
/// Note that the new shufflevectors will be removed and we'll only generate one
/// vst3 instruction in CodeGen.
///
/// Example for a more general valid mask (Factor 3). Lower:
/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
///
/// Into:
/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
ShuffleVectorInst *SVI,
unsigned Factor) const {
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
"Invalid interleave factor");
VectorType *VecTy = SVI->getType();
assert(VecTy->getVectorNumElements() % Factor == 0 &&
"Invalid interleaved store");
unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
Type *EltTy = VecTy->getVectorElementType();
VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
const DataLayout &DL = SI->getModule()->getDataLayout();
unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
// Skip if we do not have NEON and skip illegal vector types and vector types
// with i64/f64 elements (vstN doesn't support i64/f64 elements).
if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
EltIs64Bits)
return false;
Value *Op0 = SVI->getOperand(0);
Value *Op1 = SVI->getOperand(1);
IRBuilder<> Builder(SI);
// StN intrinsics don't support pointer vectors as arguments. Convert pointer
// vectors to integer vectors.
if (EltTy->isPointerTy()) {
Type *IntTy = DL.getIntPtrType(EltTy);
// Convert to the corresponding integer vector.
Type *IntVecTy =
VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
SubVecTy = VectorType::get(IntTy, LaneLen);
}
static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
Intrinsic::arm_neon_vst3,
Intrinsic::arm_neon_vst4};
SmallVector<Value *, 6> Ops;
Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
Type *Tys[] = { Int8Ptr, SubVecTy };
Function *VstNFunc = Intrinsic::getDeclaration(
SI->getModule(), StoreInts[Factor - 2], Tys);
// Split the shufflevector operands into sub vectors for the new vstN call.
auto Mask = SVI->getShuffleMask();
for (unsigned i = 0; i < Factor; i++) {
if (Mask[i] >= 0) {
Ops.push_back(Builder.CreateShuffleVector(
Op0, Op1, getSequentialMask(Builder, Mask[i], LaneLen)));
} else {
unsigned StartMask = 0;
for (unsigned j = 1; j < LaneLen; j++) {
if (Mask[j*Factor + i] >= 0) {
StartMask = Mask[j*Factor + i] - j;
break;
}
}
// Note: If all elements in a chunk are undefs, StartMask=0!
// Note: Filling undef gaps with random elements is ok, since
// those elements were being written anyway (with undefs).
// In the case of all undefs we're defaulting to using elems from 0
// Note: StartMask cannot be negative, it's checked in isReInterleaveMask
Ops.push_back(Builder.CreateShuffleVector(
Op0, Op1, getSequentialMask(Builder, StartMask, LaneLen)));
}
}
Ops.push_back(Builder.getInt32(SI->getAlignment()));
Builder.CreateCall(VstNFunc, Ops);
return true;
}
enum HABaseType {
HA_UNKNOWN = 0,
HA_FLOAT,
HA_DOUBLE,
HA_VECT64,
HA_VECT128
};
static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
uint64_t &Members) {
if (auto *ST = dyn_cast<StructType>(Ty)) {
for (unsigned i = 0; i < ST->getNumElements(); ++i) {
uint64_t SubMembers = 0;
if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
return false;
Members += SubMembers;
}
} else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t SubMembers = 0;
if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
return false;
Members += SubMembers * AT->getNumElements();
} else if (Ty->isFloatTy()) {
if (Base != HA_UNKNOWN && Base != HA_FLOAT)
return false;
Members = 1;
Base = HA_FLOAT;
} else if (Ty->isDoubleTy()) {
if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
return false;
Members = 1;
Base = HA_DOUBLE;
} else if (auto *VT = dyn_cast<VectorType>(Ty)) {
Members = 1;
switch (Base) {
case HA_FLOAT:
case HA_DOUBLE:
return false;
case HA_VECT64:
return VT->getBitWidth() == 64;
case HA_VECT128:
return VT->getBitWidth() == 128;
case HA_UNKNOWN:
switch (VT->getBitWidth()) {
case 64:
Base = HA_VECT64;
return true;
case 128:
Base = HA_VECT128;
return true;
default:
return false;
}
}
}
return (Members > 0 && Members <= 4);
}
/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
/// passing according to AAPCS rules.
bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
if (getEffectiveCallingConv(CallConv, isVarArg) !=
CallingConv::ARM_AAPCS_VFP)
return false;
HABaseType Base = HA_UNKNOWN;
uint64_t Members = 0;
bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
return IsHA || IsIntArray;
}
unsigned ARMTargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
// Platforms which do not use SjLj EH may return values in these registers
// via the personality function.
return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
}
unsigned ARMTargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
// Platforms which do not use SjLj EH may return values in these registers
// via the personality function.
return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
}
void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
// Update IsSplitCSR in ARMFunctionInfo.
ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
AFI->setIsSplitCSR(true);
}
void ARMTargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (ARM::GPRRegClass.contains(*I))
RC = &ARM::GPRRegClass;
else if (ARM::DPRRegClass.contains(*I))
RC = &ARM::DPRRegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
unsigned NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
// FIXME: this currently does not emit CFI pseudo-instructions, it works
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
// nounwind. If we want to generalize this later, we may need to emit
// CFI pseudo-instructions.
assert(Entry->getParent()->getFunction()->hasFnAttribute(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}