forked from OSchip/llvm-project
820 lines
32 KiB
C++
820 lines
32 KiB
C++
//===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements loop unroll and jam as a routine, much like
|
|
// LoopUnroll.cpp implements loop unroll.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/DependenceAnalysis.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopAnalysisManager.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/Utils/Local.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/LoopSimplify.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-unroll-and-jam"
|
|
|
|
STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
|
|
STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");
|
|
|
|
typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet;
|
|
|
|
// Partition blocks in an outer/inner loop pair into blocks before and after
|
|
// the loop
|
|
static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
|
|
BasicBlockSet &ForeBlocks,
|
|
BasicBlockSet &SubLoopBlocks,
|
|
BasicBlockSet &AftBlocks,
|
|
DominatorTree *DT) {
|
|
BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
|
|
SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
|
|
|
|
for (BasicBlock *BB : L->blocks()) {
|
|
if (!SubLoop->contains(BB)) {
|
|
if (DT->dominates(SubLoopLatch, BB))
|
|
AftBlocks.insert(BB);
|
|
else
|
|
ForeBlocks.insert(BB);
|
|
}
|
|
}
|
|
|
|
// Check that all blocks in ForeBlocks together dominate the subloop
|
|
// TODO: This might ideally be done better with a dominator/postdominators.
|
|
BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
|
|
for (BasicBlock *BB : ForeBlocks) {
|
|
if (BB == SubLoopPreHeader)
|
|
continue;
|
|
Instruction *TI = BB->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (!ForeBlocks.count(TI->getSuccessor(i)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Looks at the phi nodes in Header for values coming from Latch. For these
|
|
// instructions and all their operands calls Visit on them, keeping going for
|
|
// all the operands in AftBlocks. Returns false if Visit returns false,
|
|
// otherwise returns true. This is used to process the instructions in the
|
|
// Aft blocks that need to be moved before the subloop. It is used in two
|
|
// places. One to check that the required set of instructions can be moved
|
|
// before the loop. Then to collect the instructions to actually move in
|
|
// moveHeaderPhiOperandsToForeBlocks.
|
|
template <typename T>
|
|
static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch,
|
|
BasicBlockSet &AftBlocks, T Visit) {
|
|
SmallVector<Instruction *, 8> Worklist;
|
|
for (auto &Phi : Header->phis()) {
|
|
Value *V = Phi.getIncomingValueForBlock(Latch);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
Worklist.push_back(I);
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
Instruction *I = Worklist.back();
|
|
Worklist.pop_back();
|
|
if (!Visit(I))
|
|
return false;
|
|
|
|
if (AftBlocks.count(I->getParent()))
|
|
for (auto &U : I->operands())
|
|
if (Instruction *II = dyn_cast<Instruction>(U))
|
|
Worklist.push_back(II);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
|
|
static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header,
|
|
BasicBlock *Latch,
|
|
Instruction *InsertLoc,
|
|
BasicBlockSet &AftBlocks) {
|
|
// We need to ensure we move the instructions in the correct order,
|
|
// starting with the earliest required instruction and moving forward.
|
|
std::vector<Instruction *> Visited;
|
|
processHeaderPhiOperands(Header, Latch, AftBlocks,
|
|
[&Visited, &AftBlocks](Instruction *I) {
|
|
if (AftBlocks.count(I->getParent()))
|
|
Visited.push_back(I);
|
|
return true;
|
|
});
|
|
|
|
// Move all instructions in program order to before the InsertLoc
|
|
BasicBlock *InsertLocBB = InsertLoc->getParent();
|
|
for (Instruction *I : reverse(Visited)) {
|
|
if (I->getParent() != InsertLocBB)
|
|
I->moveBefore(InsertLoc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
This method performs Unroll and Jam. For a simple loop like:
|
|
for (i = ..)
|
|
Fore(i)
|
|
for (j = ..)
|
|
SubLoop(i, j)
|
|
Aft(i)
|
|
|
|
Instead of doing normal inner or outer unrolling, we do:
|
|
for (i = .., i+=2)
|
|
Fore(i)
|
|
Fore(i+1)
|
|
for (j = ..)
|
|
SubLoop(i, j)
|
|
SubLoop(i+1, j)
|
|
Aft(i)
|
|
Aft(i+1)
|
|
|
|
So the outer loop is essetially unrolled and then the inner loops are fused
|
|
("jammed") together into a single loop. This can increase speed when there
|
|
are loads in SubLoop that are invariant to i, as they become shared between
|
|
the now jammed inner loops.
|
|
|
|
We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
|
|
Fore blocks are those before the inner loop, Aft are those after. Normal
|
|
Unroll code is used to copy each of these sets of blocks and the results are
|
|
combined together into the final form above.
|
|
|
|
isSafeToUnrollAndJam should be used prior to calling this to make sure the
|
|
unrolling will be valid. Checking profitablility is also advisable.
|
|
|
|
If EpilogueLoop is non-null, it receives the epilogue loop (if it was
|
|
necessary to create one and not fully unrolled).
|
|
*/
|
|
LoopUnrollResult llvm::UnrollAndJamLoop(
|
|
Loop *L, unsigned Count, unsigned TripCount, unsigned TripMultiple,
|
|
bool UnrollRemainder, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
|
|
AssumptionCache *AC, OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) {
|
|
|
|
// When we enter here we should have already checked that it is safe
|
|
BasicBlock *Header = L->getHeader();
|
|
assert(L->getSubLoops().size() == 1);
|
|
Loop *SubLoop = *L->begin();
|
|
|
|
// Don't enter the unroll code if there is nothing to do.
|
|
if (TripCount == 0 && Count < 2) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
assert(Count > 0);
|
|
assert(TripMultiple > 0);
|
|
assert(TripCount == 0 || TripCount % TripMultiple == 0);
|
|
|
|
// Are we eliminating the loop control altogether?
|
|
bool CompletelyUnroll = (Count == TripCount);
|
|
|
|
// We use the runtime remainder in cases where we don't know trip multiple
|
|
if (TripMultiple == 1 || TripMultiple % Count != 0) {
|
|
if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
|
|
/*UseEpilogRemainder*/ true,
|
|
UnrollRemainder, LI, SE, DT, AC, true,
|
|
EpilogueLoop)) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
|
|
"generated when assuming runtime trip count\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
}
|
|
|
|
// Notify ScalarEvolution that the loop will be substantially changed,
|
|
// if not outright eliminated.
|
|
if (SE) {
|
|
SE->forgetLoop(L);
|
|
SE->forgetLoop(SubLoop);
|
|
}
|
|
|
|
using namespace ore;
|
|
// Report the unrolling decision.
|
|
if (CompletelyUnroll) {
|
|
LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
|
|
<< Header->getName() << " with trip count " << TripCount
|
|
<< "!\n");
|
|
ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "completely unroll and jammed loop with "
|
|
<< NV("UnrollCount", TripCount) << " iterations");
|
|
} else {
|
|
auto DiagBuilder = [&]() {
|
|
OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
|
|
L->getHeader());
|
|
return Diag << "unroll and jammed loop by a factor of "
|
|
<< NV("UnrollCount", Count);
|
|
};
|
|
|
|
LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
|
|
<< " by " << Count);
|
|
if (TripMultiple != 1) {
|
|
LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
|
|
ORE->emit([&]() {
|
|
return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
|
|
<< " trips per branch";
|
|
});
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << " with run-time trip count");
|
|
ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
|
|
}
|
|
LLVM_DEBUG(dbgs() << "!\n");
|
|
}
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
|
|
assert(Preheader && LatchBlock && Header);
|
|
assert(BI && !BI->isUnconditional());
|
|
bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
|
|
BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
|
|
bool SubLoopContinueOnTrue = SubLoop->contains(
|
|
SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));
|
|
|
|
// Partition blocks in an outer/inner loop pair into blocks before and after
|
|
// the loop
|
|
BasicBlockSet SubLoopBlocks;
|
|
BasicBlockSet ForeBlocks;
|
|
BasicBlockSet AftBlocks;
|
|
partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
|
|
DT);
|
|
|
|
// We keep track of the entering/first and exiting/last block of each of
|
|
// Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
|
|
// blocks easier.
|
|
std::vector<BasicBlock *> ForeBlocksFirst;
|
|
std::vector<BasicBlock *> ForeBlocksLast;
|
|
std::vector<BasicBlock *> SubLoopBlocksFirst;
|
|
std::vector<BasicBlock *> SubLoopBlocksLast;
|
|
std::vector<BasicBlock *> AftBlocksFirst;
|
|
std::vector<BasicBlock *> AftBlocksLast;
|
|
ForeBlocksFirst.push_back(Header);
|
|
ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
|
|
SubLoopBlocksFirst.push_back(SubLoop->getHeader());
|
|
SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
|
|
AftBlocksFirst.push_back(SubLoop->getExitBlock());
|
|
AftBlocksLast.push_back(L->getExitingBlock());
|
|
// Maps Blocks[0] -> Blocks[It]
|
|
ValueToValueMapTy LastValueMap;
|
|
|
|
// Move any instructions from fore phi operands from AftBlocks into Fore.
|
|
moveHeaderPhiOperandsToForeBlocks(
|
|
Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(),
|
|
AftBlocks);
|
|
|
|
// The current on-the-fly SSA update requires blocks to be processed in
|
|
// reverse postorder so that LastValueMap contains the correct value at each
|
|
// exit.
|
|
LoopBlocksDFS DFS(L);
|
|
DFS.perform(LI);
|
|
// Stash the DFS iterators before adding blocks to the loop.
|
|
LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
|
|
LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
|
|
|
|
if (Header->getParent()->isDebugInfoForProfiling())
|
|
for (BasicBlock *BB : L->getBlocks())
|
|
for (Instruction &I : *BB)
|
|
if (!isa<DbgInfoIntrinsic>(&I))
|
|
if (const DILocation *DIL = I.getDebugLoc()) {
|
|
auto NewDIL = DIL->cloneWithDuplicationFactor(Count);
|
|
if (NewDIL)
|
|
I.setDebugLoc(NewDIL.getValue());
|
|
else
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Failed to create new discriminator: "
|
|
<< DIL->getFilename() << " Line: " << DIL->getLine());
|
|
}
|
|
|
|
// Copy all blocks
|
|
for (unsigned It = 1; It != Count; ++It) {
|
|
std::vector<BasicBlock *> NewBlocks;
|
|
// Maps Blocks[It] -> Blocks[It-1]
|
|
DenseMap<Value *, Value *> PrevItValueMap;
|
|
|
|
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
|
|
ValueToValueMapTy VMap;
|
|
BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
|
|
Header->getParent()->getBasicBlockList().push_back(New);
|
|
|
|
if (ForeBlocks.count(*BB)) {
|
|
L->addBasicBlockToLoop(New, *LI);
|
|
|
|
if (*BB == ForeBlocksFirst[0])
|
|
ForeBlocksFirst.push_back(New);
|
|
if (*BB == ForeBlocksLast[0])
|
|
ForeBlocksLast.push_back(New);
|
|
} else if (SubLoopBlocks.count(*BB)) {
|
|
SubLoop->addBasicBlockToLoop(New, *LI);
|
|
|
|
if (*BB == SubLoopBlocksFirst[0])
|
|
SubLoopBlocksFirst.push_back(New);
|
|
if (*BB == SubLoopBlocksLast[0])
|
|
SubLoopBlocksLast.push_back(New);
|
|
} else if (AftBlocks.count(*BB)) {
|
|
L->addBasicBlockToLoop(New, *LI);
|
|
|
|
if (*BB == AftBlocksFirst[0])
|
|
AftBlocksFirst.push_back(New);
|
|
if (*BB == AftBlocksLast[0])
|
|
AftBlocksLast.push_back(New);
|
|
} else {
|
|
llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
|
|
}
|
|
|
|
// Update our running maps of newest clones
|
|
PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
|
|
LastValueMap[*BB] = New;
|
|
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
|
|
VI != VE; ++VI) {
|
|
PrevItValueMap[VI->second] =
|
|
const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
|
|
LastValueMap[VI->first] = VI->second;
|
|
}
|
|
|
|
NewBlocks.push_back(New);
|
|
|
|
// Update DomTree:
|
|
if (*BB == ForeBlocksFirst[0])
|
|
DT->addNewBlock(New, ForeBlocksLast[It - 1]);
|
|
else if (*BB == SubLoopBlocksFirst[0])
|
|
DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
|
|
else if (*BB == AftBlocksFirst[0])
|
|
DT->addNewBlock(New, AftBlocksLast[It - 1]);
|
|
else {
|
|
// Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
|
|
// structure.
|
|
auto BBDomNode = DT->getNode(*BB);
|
|
auto BBIDom = BBDomNode->getIDom();
|
|
BasicBlock *OriginalBBIDom = BBIDom->getBlock();
|
|
assert(OriginalBBIDom);
|
|
assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
|
|
DT->addNewBlock(
|
|
New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
|
|
}
|
|
}
|
|
|
|
// Remap all instructions in the most recent iteration
|
|
for (BasicBlock *NewBlock : NewBlocks) {
|
|
for (Instruction &I : *NewBlock) {
|
|
::remapInstruction(&I, LastValueMap);
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
if (II->getIntrinsicID() == Intrinsic::assume)
|
|
AC->registerAssumption(II);
|
|
}
|
|
}
|
|
|
|
// Alter the ForeBlocks phi's, pointing them at the latest version of the
|
|
// value from the previous iteration's phis
|
|
for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
|
|
Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
|
|
assert(OldValue && "should have incoming edge from Aft[It]");
|
|
Value *NewValue = OldValue;
|
|
if (Value *PrevValue = PrevItValueMap[OldValue])
|
|
NewValue = PrevValue;
|
|
|
|
assert(Phi.getNumOperands() == 2);
|
|
Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
|
|
Phi.setIncomingValue(0, NewValue);
|
|
Phi.removeIncomingValue(1);
|
|
}
|
|
}
|
|
|
|
// Now that all the basic blocks for the unrolled iterations are in place,
|
|
// finish up connecting the blocks and phi nodes. At this point LastValueMap
|
|
// is the last unrolled iterations values.
|
|
|
|
// Update Phis in BB from OldBB to point to NewBB
|
|
auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB,
|
|
BasicBlock *NewBB) {
|
|
for (PHINode &Phi : BB->phis()) {
|
|
int I = Phi.getBasicBlockIndex(OldBB);
|
|
Phi.setIncomingBlock(I, NewBB);
|
|
}
|
|
};
|
|
// Update Phis in BB from OldBB to point to NewBB and use the latest value
|
|
// from LastValueMap
|
|
auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
|
|
BasicBlock *NewBB,
|
|
ValueToValueMapTy &LastValueMap) {
|
|
for (PHINode &Phi : BB->phis()) {
|
|
for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
|
|
if (Phi.getIncomingBlock(b) == OldBB) {
|
|
Value *OldValue = Phi.getIncomingValue(b);
|
|
if (Value *LastValue = LastValueMap[OldValue])
|
|
Phi.setIncomingValue(b, LastValue);
|
|
Phi.setIncomingBlock(b, NewBB);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
// Move all the phis from Src into Dest
|
|
auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
|
|
Instruction *insertPoint = Dest->getFirstNonPHI();
|
|
while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
|
|
Phi->moveBefore(insertPoint);
|
|
};
|
|
|
|
// Update the PHI values outside the loop to point to the last block
|
|
updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
|
|
LastValueMap);
|
|
|
|
// Update ForeBlocks successors and phi nodes
|
|
BranchInst *ForeTerm =
|
|
cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
|
|
BasicBlock *Dest = SubLoopBlocksFirst[0];
|
|
ForeTerm->setSuccessor(0, Dest);
|
|
|
|
if (CompletelyUnroll) {
|
|
while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
|
|
Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
|
|
Phi->getParent()->getInstList().erase(Phi);
|
|
}
|
|
} else {
|
|
// Update the PHI values to point to the last aft block
|
|
updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
|
|
AftBlocksLast.back(), LastValueMap);
|
|
}
|
|
|
|
for (unsigned It = 1; It != Count; It++) {
|
|
// Remap ForeBlock successors from previous iteration to this
|
|
BranchInst *ForeTerm =
|
|
cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
|
|
BasicBlock *Dest = ForeBlocksFirst[It];
|
|
ForeTerm->setSuccessor(0, Dest);
|
|
}
|
|
|
|
// Subloop successors and phis
|
|
BranchInst *SubTerm =
|
|
cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
|
|
SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
|
|
SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
|
|
updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0],
|
|
ForeBlocksLast.back());
|
|
updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0],
|
|
SubLoopBlocksLast.back());
|
|
|
|
for (unsigned It = 1; It != Count; It++) {
|
|
// Replace the conditional branch of the previous iteration subloop with an
|
|
// unconditional one to this one
|
|
BranchInst *SubTerm =
|
|
cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
|
|
BranchInst::Create(SubLoopBlocksFirst[It], SubTerm);
|
|
SubTerm->eraseFromParent();
|
|
|
|
updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It],
|
|
ForeBlocksLast.back());
|
|
updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It],
|
|
SubLoopBlocksLast.back());
|
|
movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
|
|
}
|
|
|
|
// Aft blocks successors and phis
|
|
BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
|
|
if (CompletelyUnroll) {
|
|
BranchInst::Create(LoopExit, Term);
|
|
Term->eraseFromParent();
|
|
} else {
|
|
Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
|
|
}
|
|
updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0],
|
|
SubLoopBlocksLast.back());
|
|
|
|
for (unsigned It = 1; It != Count; It++) {
|
|
// Replace the conditional branch of the previous iteration subloop with an
|
|
// unconditional one to this one
|
|
BranchInst *AftTerm =
|
|
cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
|
|
BranchInst::Create(AftBlocksFirst[It], AftTerm);
|
|
AftTerm->eraseFromParent();
|
|
|
|
updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It],
|
|
SubLoopBlocksLast.back());
|
|
movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
|
|
}
|
|
|
|
// Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
|
|
// new ones required.
|
|
if (Count != 1) {
|
|
SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
|
|
DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
|
|
SubLoopBlocksFirst[0]);
|
|
DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
|
|
SubLoopBlocksLast[0], AftBlocksFirst[0]);
|
|
|
|
DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
|
|
ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
|
|
DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
|
|
SubLoopBlocksLast.back(), AftBlocksFirst[0]);
|
|
DT->applyUpdates(DTUpdates);
|
|
}
|
|
|
|
// Merge adjacent basic blocks, if possible.
|
|
SmallPtrSet<BasicBlock *, 16> MergeBlocks;
|
|
MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
|
|
MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
|
|
MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
|
|
while (!MergeBlocks.empty()) {
|
|
BasicBlock *BB = *MergeBlocks.begin();
|
|
BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) {
|
|
BasicBlock *Dest = Term->getSuccessor(0);
|
|
if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) {
|
|
// Don't remove BB and add Fold as they are the same BB
|
|
assert(Fold == BB);
|
|
(void)Fold;
|
|
MergeBlocks.erase(Dest);
|
|
} else
|
|
MergeBlocks.erase(BB);
|
|
} else
|
|
MergeBlocks.erase(BB);
|
|
}
|
|
|
|
// At this point, the code is well formed. We now do a quick sweep over the
|
|
// inserted code, doing constant propagation and dead code elimination as we
|
|
// go.
|
|
simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC);
|
|
simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC);
|
|
|
|
NumCompletelyUnrolledAndJammed += CompletelyUnroll;
|
|
++NumUnrolledAndJammed;
|
|
|
|
#ifndef NDEBUG
|
|
// We shouldn't have done anything to break loop simplify form or LCSSA.
|
|
Loop *OuterL = L->getParentLoop();
|
|
Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop);
|
|
assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
|
|
if (!CompletelyUnroll)
|
|
assert(L->isLoopSimplifyForm());
|
|
assert(SubLoop->isLoopSimplifyForm());
|
|
assert(DT->verify());
|
|
#endif
|
|
|
|
// Update LoopInfo if the loop is completely removed.
|
|
if (CompletelyUnroll)
|
|
LI->erase(L);
|
|
|
|
return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
|
|
: LoopUnrollResult::PartiallyUnrolled;
|
|
}
|
|
|
|
static bool getLoadsAndStores(BasicBlockSet &Blocks,
|
|
SmallVector<Value *, 4> &MemInstr) {
|
|
// Scan the BBs and collect legal loads and stores.
|
|
// Returns false if non-simple loads/stores are found.
|
|
for (BasicBlock *BB : Blocks) {
|
|
for (Instruction &I : *BB) {
|
|
if (auto *Ld = dyn_cast<LoadInst>(&I)) {
|
|
if (!Ld->isSimple())
|
|
return false;
|
|
MemInstr.push_back(&I);
|
|
} else if (auto *St = dyn_cast<StoreInst>(&I)) {
|
|
if (!St->isSimple())
|
|
return false;
|
|
MemInstr.push_back(&I);
|
|
} else if (I.mayReadOrWriteMemory()) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool checkDependencies(SmallVector<Value *, 4> &Earlier,
|
|
SmallVector<Value *, 4> &Later,
|
|
unsigned LoopDepth, bool InnerLoop,
|
|
DependenceInfo &DI) {
|
|
// Use DA to check for dependencies between loads and stores that make unroll
|
|
// and jam invalid
|
|
for (Value *I : Earlier) {
|
|
for (Value *J : Later) {
|
|
Instruction *Src = cast<Instruction>(I);
|
|
Instruction *Dst = cast<Instruction>(J);
|
|
if (Src == Dst)
|
|
continue;
|
|
// Ignore Input dependencies.
|
|
if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
|
|
continue;
|
|
|
|
// Track dependencies, and if we find them take a conservative approach
|
|
// by allowing only = or < (not >), altough some > would be safe
|
|
// (depending upon unroll width).
|
|
// For the inner loop, we need to disallow any (> <) dependencies
|
|
// FIXME: Allow > so long as distance is less than unroll width
|
|
if (auto D = DI.depends(Src, Dst, true)) {
|
|
assert(D->isOrdered() && "Expected an output, flow or anti dep.");
|
|
|
|
if (D->isConfused()) {
|
|
LLVM_DEBUG(dbgs() << " Confused dependency between:\n"
|
|
<< " " << *Src << "\n"
|
|
<< " " << *Dst << "\n");
|
|
return false;
|
|
}
|
|
if (!InnerLoop) {
|
|
if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT) {
|
|
LLVM_DEBUG(dbgs() << " > dependency between:\n"
|
|
<< " " << *Src << "\n"
|
|
<< " " << *Dst << "\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
assert(LoopDepth + 1 <= D->getLevels());
|
|
if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT &&
|
|
D->getDirection(LoopDepth + 1) & Dependence::DVEntry::LT) {
|
|
LLVM_DEBUG(dbgs() << " < > dependency between:\n"
|
|
<< " " << *Src << "\n"
|
|
<< " " << *Dst << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool checkDependencies(Loop *L, BasicBlockSet &ForeBlocks,
|
|
BasicBlockSet &SubLoopBlocks,
|
|
BasicBlockSet &AftBlocks, DependenceInfo &DI) {
|
|
// Get all loads/store pairs for each blocks
|
|
SmallVector<Value *, 4> ForeMemInstr;
|
|
SmallVector<Value *, 4> SubLoopMemInstr;
|
|
SmallVector<Value *, 4> AftMemInstr;
|
|
if (!getLoadsAndStores(ForeBlocks, ForeMemInstr) ||
|
|
!getLoadsAndStores(SubLoopBlocks, SubLoopMemInstr) ||
|
|
!getLoadsAndStores(AftBlocks, AftMemInstr))
|
|
return false;
|
|
|
|
// Check for dependencies between any blocks that may change order
|
|
unsigned LoopDepth = L->getLoopDepth();
|
|
return checkDependencies(ForeMemInstr, SubLoopMemInstr, LoopDepth, false,
|
|
DI) &&
|
|
checkDependencies(ForeMemInstr, AftMemInstr, LoopDepth, false, DI) &&
|
|
checkDependencies(SubLoopMemInstr, AftMemInstr, LoopDepth, false,
|
|
DI) &&
|
|
checkDependencies(SubLoopMemInstr, SubLoopMemInstr, LoopDepth, true,
|
|
DI);
|
|
}
|
|
|
|
bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
|
|
DependenceInfo &DI) {
|
|
/* We currently handle outer loops like this:
|
|
|
|
|
ForeFirst <----\ }
|
|
Blocks | } ForeBlocks
|
|
ForeLast | }
|
|
| |
|
|
SubLoopFirst <\ | }
|
|
Blocks | | } SubLoopBlocks
|
|
SubLoopLast -/ | }
|
|
| |
|
|
AftFirst | }
|
|
Blocks | } AftBlocks
|
|
AftLast ------/ }
|
|
|
|
|
|
|
There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
|
|
and AftBlocks, providing that there is one edge from Fores to SubLoops,
|
|
one edge from SubLoops to Afts and a single outer loop exit (from Afts).
|
|
In practice we currently limit Aft blocks to a single block, and limit
|
|
things further in the profitablility checks of the unroll and jam pass.
|
|
|
|
Because of the way we rearrange basic blocks, we also require that
|
|
the Fore blocks on all unrolled iterations are safe to move before the
|
|
SubLoop blocks of all iterations. So we require that the phi node looping
|
|
operands of ForeHeader can be moved to at least the end of ForeEnd, so that
|
|
we can arrange cloned Fore Blocks before the subloop and match up Phi's
|
|
correctly.
|
|
|
|
i.e. The old order of blocks used to be F1 S1_1 S1_2 A1 F2 S2_1 S2_2 A2.
|
|
It needs to be safe to tranform this to F1 F2 S1_1 S2_1 S1_2 S2_2 A1 A2.
|
|
|
|
There are then a number of checks along the lines of no calls, no
|
|
exceptions, inner loop IV is consistent, etc. Note that for loops requiring
|
|
runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
|
|
UnrollAndJamLoop if the trip count cannot be easily calculated.
|
|
*/
|
|
|
|
if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1)
|
|
return false;
|
|
Loop *SubLoop = L->getSubLoops()[0];
|
|
if (!SubLoop->isLoopSimplifyForm())
|
|
return false;
|
|
|
|
BasicBlock *Header = L->getHeader();
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
BasicBlock *Exit = L->getExitingBlock();
|
|
BasicBlock *SubLoopHeader = SubLoop->getHeader();
|
|
BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
|
|
BasicBlock *SubLoopExit = SubLoop->getExitingBlock();
|
|
|
|
if (Latch != Exit)
|
|
return false;
|
|
if (SubLoopLatch != SubLoopExit)
|
|
return false;
|
|
|
|
if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken()) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
|
|
return false;
|
|
}
|
|
|
|
// Split blocks into Fore/SubLoop/Aft based on dominators
|
|
BasicBlockSet SubLoopBlocks;
|
|
BasicBlockSet ForeBlocks;
|
|
BasicBlockSet AftBlocks;
|
|
if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks,
|
|
AftBlocks, &DT)) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
|
|
return false;
|
|
}
|
|
|
|
// Aft blocks may need to move instructions to fore blocks, which becomes more
|
|
// difficult if there are multiple (potentially conditionally executed)
|
|
// blocks. For now we just exclude loops with multiple aft blocks.
|
|
if (AftBlocks.size() != 1) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
|
|
"multiple blocks after the loop\n");
|
|
return false;
|
|
}
|
|
|
|
// Check inner loop backedge count is consistent on all iterations of the
|
|
// outer loop
|
|
if (!hasIterationCountInvariantInParent(SubLoop, SE)) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
|
|
"not consistent on each iteration\n");
|
|
return false;
|
|
}
|
|
|
|
// Check the loop safety info for exceptions.
|
|
SimpleLoopSafetyInfo LSI;
|
|
LSI.computeLoopSafetyInfo(L);
|
|
if (LSI.anyBlockMayThrow()) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
|
|
return false;
|
|
}
|
|
|
|
// We've ruled out the easy stuff and now need to check that there are no
|
|
// interdependencies which may prevent us from moving the:
|
|
// ForeBlocks before Subloop and AftBlocks.
|
|
// Subloop before AftBlocks.
|
|
// ForeBlock phi operands before the subloop
|
|
|
|
// Make sure we can move all instructions we need to before the subloop
|
|
if (!processHeaderPhiOperands(
|
|
Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
|
|
if (SubLoop->contains(I->getParent()))
|
|
return false;
|
|
if (AftBlocks.count(I->getParent())) {
|
|
// If we hit a phi node in afts we know we are done (probably
|
|
// LCSSA)
|
|
if (isa<PHINode>(I))
|
|
return false;
|
|
// Can't move instructions with side effects or memory
|
|
// reads/writes
|
|
if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
|
|
return false;
|
|
}
|
|
// Keep going
|
|
return true;
|
|
})) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
|
|
"instructions after subloop to before it\n");
|
|
return false;
|
|
}
|
|
|
|
// Check for memory dependencies which prohibit the unrolling we are doing.
|
|
// Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
|
|
// there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
|
|
if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI)) {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|