forked from OSchip/llvm-project
2380 lines
99 KiB
C++
2380 lines
99 KiB
C++
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements inlining of a function into a call site, resolving
|
|
// parameters and the return value as appropriate.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using ProfileCount = Function::ProfileCount;
|
|
|
|
static cl::opt<bool>
|
|
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
|
|
cl::Hidden,
|
|
cl::desc("Convert noalias attributes to metadata during inlining."));
|
|
|
|
static cl::opt<bool>
|
|
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
|
|
cl::init(true), cl::Hidden,
|
|
cl::desc("Convert align attributes to assumptions during inlining."));
|
|
|
|
llvm::InlineResult llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
|
|
AAResults *CalleeAAR,
|
|
bool InsertLifetime) {
|
|
return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
|
|
}
|
|
|
|
llvm::InlineResult llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
|
|
AAResults *CalleeAAR,
|
|
bool InsertLifetime) {
|
|
return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A class for recording information about inlining a landing pad.
|
|
class LandingPadInliningInfo {
|
|
/// Destination of the invoke's unwind.
|
|
BasicBlock *OuterResumeDest;
|
|
|
|
/// Destination for the callee's resume.
|
|
BasicBlock *InnerResumeDest = nullptr;
|
|
|
|
/// LandingPadInst associated with the invoke.
|
|
LandingPadInst *CallerLPad = nullptr;
|
|
|
|
/// PHI for EH values from landingpad insts.
|
|
PHINode *InnerEHValuesPHI = nullptr;
|
|
|
|
SmallVector<Value*, 8> UnwindDestPHIValues;
|
|
|
|
public:
|
|
LandingPadInliningInfo(InvokeInst *II)
|
|
: OuterResumeDest(II->getUnwindDest()) {
|
|
// If there are PHI nodes in the unwind destination block, we need to keep
|
|
// track of which values came into them from the invoke before removing
|
|
// the edge from this block.
|
|
BasicBlock *InvokeBB = II->getParent();
|
|
BasicBlock::iterator I = OuterResumeDest->begin();
|
|
for (; isa<PHINode>(I); ++I) {
|
|
// Save the value to use for this edge.
|
|
PHINode *PHI = cast<PHINode>(I);
|
|
UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
|
|
}
|
|
|
|
CallerLPad = cast<LandingPadInst>(I);
|
|
}
|
|
|
|
/// The outer unwind destination is the target of
|
|
/// unwind edges introduced for calls within the inlined function.
|
|
BasicBlock *getOuterResumeDest() const {
|
|
return OuterResumeDest;
|
|
}
|
|
|
|
BasicBlock *getInnerResumeDest();
|
|
|
|
LandingPadInst *getLandingPadInst() const { return CallerLPad; }
|
|
|
|
/// Forward the 'resume' instruction to the caller's landing pad block.
|
|
/// When the landing pad block has only one predecessor, this is
|
|
/// a simple branch. When there is more than one predecessor, we need to
|
|
/// split the landing pad block after the landingpad instruction and jump
|
|
/// to there.
|
|
void forwardResume(ResumeInst *RI,
|
|
SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
|
|
|
|
/// Add incoming-PHI values to the unwind destination block for the given
|
|
/// basic block, using the values for the original invoke's source block.
|
|
void addIncomingPHIValuesFor(BasicBlock *BB) const {
|
|
addIncomingPHIValuesForInto(BB, OuterResumeDest);
|
|
}
|
|
|
|
void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
|
|
BasicBlock::iterator I = dest->begin();
|
|
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
|
|
PHINode *phi = cast<PHINode>(I);
|
|
phi->addIncoming(UnwindDestPHIValues[i], src);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Get or create a target for the branch from ResumeInsts.
|
|
BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
|
|
if (InnerResumeDest) return InnerResumeDest;
|
|
|
|
// Split the landing pad.
|
|
BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
|
|
InnerResumeDest =
|
|
OuterResumeDest->splitBasicBlock(SplitPoint,
|
|
OuterResumeDest->getName() + ".body");
|
|
|
|
// The number of incoming edges we expect to the inner landing pad.
|
|
const unsigned PHICapacity = 2;
|
|
|
|
// Create corresponding new PHIs for all the PHIs in the outer landing pad.
|
|
Instruction *InsertPoint = &InnerResumeDest->front();
|
|
BasicBlock::iterator I = OuterResumeDest->begin();
|
|
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
|
|
PHINode *OuterPHI = cast<PHINode>(I);
|
|
PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
|
|
OuterPHI->getName() + ".lpad-body",
|
|
InsertPoint);
|
|
OuterPHI->replaceAllUsesWith(InnerPHI);
|
|
InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
|
|
}
|
|
|
|
// Create a PHI for the exception values.
|
|
InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
|
|
"eh.lpad-body", InsertPoint);
|
|
CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
|
|
InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
|
|
|
|
// All done.
|
|
return InnerResumeDest;
|
|
}
|
|
|
|
/// Forward the 'resume' instruction to the caller's landing pad block.
|
|
/// When the landing pad block has only one predecessor, this is a simple
|
|
/// branch. When there is more than one predecessor, we need to split the
|
|
/// landing pad block after the landingpad instruction and jump to there.
|
|
void LandingPadInliningInfo::forwardResume(
|
|
ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
|
|
BasicBlock *Dest = getInnerResumeDest();
|
|
BasicBlock *Src = RI->getParent();
|
|
|
|
BranchInst::Create(Dest, Src);
|
|
|
|
// Update the PHIs in the destination. They were inserted in an order which
|
|
// makes this work.
|
|
addIncomingPHIValuesForInto(Src, Dest);
|
|
|
|
InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
|
|
RI->eraseFromParent();
|
|
}
|
|
|
|
/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
|
|
static Value *getParentPad(Value *EHPad) {
|
|
if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
|
|
return FPI->getParentPad();
|
|
return cast<CatchSwitchInst>(EHPad)->getParentPad();
|
|
}
|
|
|
|
using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
|
|
|
|
/// Helper for getUnwindDestToken that does the descendant-ward part of
|
|
/// the search.
|
|
static Value *getUnwindDestTokenHelper(Instruction *EHPad,
|
|
UnwindDestMemoTy &MemoMap) {
|
|
SmallVector<Instruction *, 8> Worklist(1, EHPad);
|
|
|
|
while (!Worklist.empty()) {
|
|
Instruction *CurrentPad = Worklist.pop_back_val();
|
|
// We only put pads on the worklist that aren't in the MemoMap. When
|
|
// we find an unwind dest for a pad we may update its ancestors, but
|
|
// the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
|
|
// so they should never get updated while queued on the worklist.
|
|
assert(!MemoMap.count(CurrentPad));
|
|
Value *UnwindDestToken = nullptr;
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
|
|
if (CatchSwitch->hasUnwindDest()) {
|
|
UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
|
|
} else {
|
|
// Catchswitch doesn't have a 'nounwind' variant, and one might be
|
|
// annotated as "unwinds to caller" when really it's nounwind (see
|
|
// e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
|
|
// parent's unwind dest from this. We can check its catchpads'
|
|
// descendants, since they might include a cleanuppad with an
|
|
// "unwinds to caller" cleanupret, which can be trusted.
|
|
for (auto HI = CatchSwitch->handler_begin(),
|
|
HE = CatchSwitch->handler_end();
|
|
HI != HE && !UnwindDestToken; ++HI) {
|
|
BasicBlock *HandlerBlock = *HI;
|
|
auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
|
|
for (User *Child : CatchPad->users()) {
|
|
// Intentionally ignore invokes here -- since the catchswitch is
|
|
// marked "unwind to caller", it would be a verifier error if it
|
|
// contained an invoke which unwinds out of it, so any invoke we'd
|
|
// encounter must unwind to some child of the catch.
|
|
if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
|
|
continue;
|
|
|
|
Instruction *ChildPad = cast<Instruction>(Child);
|
|
auto Memo = MemoMap.find(ChildPad);
|
|
if (Memo == MemoMap.end()) {
|
|
// Haven't figured out this child pad yet; queue it.
|
|
Worklist.push_back(ChildPad);
|
|
continue;
|
|
}
|
|
// We've already checked this child, but might have found that
|
|
// it offers no proof either way.
|
|
Value *ChildUnwindDestToken = Memo->second;
|
|
if (!ChildUnwindDestToken)
|
|
continue;
|
|
// We already know the child's unwind dest, which can either
|
|
// be ConstantTokenNone to indicate unwind to caller, or can
|
|
// be another child of the catchpad. Only the former indicates
|
|
// the unwind dest of the catchswitch.
|
|
if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
|
|
UnwindDestToken = ChildUnwindDestToken;
|
|
break;
|
|
}
|
|
assert(getParentPad(ChildUnwindDestToken) == CatchPad);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
|
|
for (User *U : CleanupPad->users()) {
|
|
if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
|
|
if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
|
|
UnwindDestToken = RetUnwindDest->getFirstNonPHI();
|
|
else
|
|
UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
|
|
break;
|
|
}
|
|
Value *ChildUnwindDestToken;
|
|
if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
|
|
ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
|
|
} else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
|
|
Instruction *ChildPad = cast<Instruction>(U);
|
|
auto Memo = MemoMap.find(ChildPad);
|
|
if (Memo == MemoMap.end()) {
|
|
// Haven't resolved this child yet; queue it and keep searching.
|
|
Worklist.push_back(ChildPad);
|
|
continue;
|
|
}
|
|
// We've checked this child, but still need to ignore it if it
|
|
// had no proof either way.
|
|
ChildUnwindDestToken = Memo->second;
|
|
if (!ChildUnwindDestToken)
|
|
continue;
|
|
} else {
|
|
// Not a relevant user of the cleanuppad
|
|
continue;
|
|
}
|
|
// In a well-formed program, the child/invoke must either unwind to
|
|
// an(other) child of the cleanup, or exit the cleanup. In the
|
|
// first case, continue searching.
|
|
if (isa<Instruction>(ChildUnwindDestToken) &&
|
|
getParentPad(ChildUnwindDestToken) == CleanupPad)
|
|
continue;
|
|
UnwindDestToken = ChildUnwindDestToken;
|
|
break;
|
|
}
|
|
}
|
|
// If we haven't found an unwind dest for CurrentPad, we may have queued its
|
|
// children, so move on to the next in the worklist.
|
|
if (!UnwindDestToken)
|
|
continue;
|
|
|
|
// Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
|
|
// any ancestors of CurrentPad up to but not including UnwindDestToken's
|
|
// parent pad. Record this in the memo map, and check to see if the
|
|
// original EHPad being queried is one of the ones exited.
|
|
Value *UnwindParent;
|
|
if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
|
|
UnwindParent = getParentPad(UnwindPad);
|
|
else
|
|
UnwindParent = nullptr;
|
|
bool ExitedOriginalPad = false;
|
|
for (Instruction *ExitedPad = CurrentPad;
|
|
ExitedPad && ExitedPad != UnwindParent;
|
|
ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
|
|
// Skip over catchpads since they just follow their catchswitches.
|
|
if (isa<CatchPadInst>(ExitedPad))
|
|
continue;
|
|
MemoMap[ExitedPad] = UnwindDestToken;
|
|
ExitedOriginalPad |= (ExitedPad == EHPad);
|
|
}
|
|
|
|
if (ExitedOriginalPad)
|
|
return UnwindDestToken;
|
|
|
|
// Continue the search.
|
|
}
|
|
|
|
// No definitive information is contained within this funclet.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
|
|
/// return that pad instruction. If it unwinds to caller, return
|
|
/// ConstantTokenNone. If it does not have a definitive unwind destination,
|
|
/// return nullptr.
|
|
///
|
|
/// This routine gets invoked for calls in funclets in inlinees when inlining
|
|
/// an invoke. Since many funclets don't have calls inside them, it's queried
|
|
/// on-demand rather than building a map of pads to unwind dests up front.
|
|
/// Determining a funclet's unwind dest may require recursively searching its
|
|
/// descendants, and also ancestors and cousins if the descendants don't provide
|
|
/// an answer. Since most funclets will have their unwind dest immediately
|
|
/// available as the unwind dest of a catchswitch or cleanupret, this routine
|
|
/// searches top-down from the given pad and then up. To avoid worst-case
|
|
/// quadratic run-time given that approach, it uses a memo map to avoid
|
|
/// re-processing funclet trees. The callers that rewrite the IR as they go
|
|
/// take advantage of this, for correctness, by checking/forcing rewritten
|
|
/// pads' entries to match the original callee view.
|
|
static Value *getUnwindDestToken(Instruction *EHPad,
|
|
UnwindDestMemoTy &MemoMap) {
|
|
// Catchpads unwind to the same place as their catchswitch;
|
|
// redirct any queries on catchpads so the code below can
|
|
// deal with just catchswitches and cleanuppads.
|
|
if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
|
|
EHPad = CPI->getCatchSwitch();
|
|
|
|
// Check if we've already determined the unwind dest for this pad.
|
|
auto Memo = MemoMap.find(EHPad);
|
|
if (Memo != MemoMap.end())
|
|
return Memo->second;
|
|
|
|
// Search EHPad and, if necessary, its descendants.
|
|
Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
|
|
assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
|
|
if (UnwindDestToken)
|
|
return UnwindDestToken;
|
|
|
|
// No information is available for this EHPad from itself or any of its
|
|
// descendants. An unwind all the way out to a pad in the caller would
|
|
// need also to agree with the unwind dest of the parent funclet, so
|
|
// search up the chain to try to find a funclet with information. Put
|
|
// null entries in the memo map to avoid re-processing as we go up.
|
|
MemoMap[EHPad] = nullptr;
|
|
#ifndef NDEBUG
|
|
SmallPtrSet<Instruction *, 4> TempMemos;
|
|
TempMemos.insert(EHPad);
|
|
#endif
|
|
Instruction *LastUselessPad = EHPad;
|
|
Value *AncestorToken;
|
|
for (AncestorToken = getParentPad(EHPad);
|
|
auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
|
|
AncestorToken = getParentPad(AncestorToken)) {
|
|
// Skip over catchpads since they just follow their catchswitches.
|
|
if (isa<CatchPadInst>(AncestorPad))
|
|
continue;
|
|
// If the MemoMap had an entry mapping AncestorPad to nullptr, since we
|
|
// haven't yet called getUnwindDestTokenHelper for AncestorPad in this
|
|
// call to getUnwindDestToken, that would mean that AncestorPad had no
|
|
// information in itself, its descendants, or its ancestors. If that
|
|
// were the case, then we should also have recorded the lack of information
|
|
// for the descendant that we're coming from. So assert that we don't
|
|
// find a null entry in the MemoMap for AncestorPad.
|
|
assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
|
|
auto AncestorMemo = MemoMap.find(AncestorPad);
|
|
if (AncestorMemo == MemoMap.end()) {
|
|
UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
|
|
} else {
|
|
UnwindDestToken = AncestorMemo->second;
|
|
}
|
|
if (UnwindDestToken)
|
|
break;
|
|
LastUselessPad = AncestorPad;
|
|
MemoMap[LastUselessPad] = nullptr;
|
|
#ifndef NDEBUG
|
|
TempMemos.insert(LastUselessPad);
|
|
#endif
|
|
}
|
|
|
|
// We know that getUnwindDestTokenHelper was called on LastUselessPad and
|
|
// returned nullptr (and likewise for EHPad and any of its ancestors up to
|
|
// LastUselessPad), so LastUselessPad has no information from below. Since
|
|
// getUnwindDestTokenHelper must investigate all downward paths through
|
|
// no-information nodes to prove that a node has no information like this,
|
|
// and since any time it finds information it records it in the MemoMap for
|
|
// not just the immediately-containing funclet but also any ancestors also
|
|
// exited, it must be the case that, walking downward from LastUselessPad,
|
|
// visiting just those nodes which have not been mapped to an unwind dest
|
|
// by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
|
|
// they are just used to keep getUnwindDestTokenHelper from repeating work),
|
|
// any node visited must have been exhaustively searched with no information
|
|
// for it found.
|
|
SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
|
|
while (!Worklist.empty()) {
|
|
Instruction *UselessPad = Worklist.pop_back_val();
|
|
auto Memo = MemoMap.find(UselessPad);
|
|
if (Memo != MemoMap.end() && Memo->second) {
|
|
// Here the name 'UselessPad' is a bit of a misnomer, because we've found
|
|
// that it is a funclet that does have information about unwinding to
|
|
// a particular destination; its parent was a useless pad.
|
|
// Since its parent has no information, the unwind edge must not escape
|
|
// the parent, and must target a sibling of this pad. This local unwind
|
|
// gives us no information about EHPad. Leave it and the subtree rooted
|
|
// at it alone.
|
|
assert(getParentPad(Memo->second) == getParentPad(UselessPad));
|
|
continue;
|
|
}
|
|
// We know we don't have information for UselesPad. If it has an entry in
|
|
// the MemoMap (mapping it to nullptr), it must be one of the TempMemos
|
|
// added on this invocation of getUnwindDestToken; if a previous invocation
|
|
// recorded nullptr, it would have had to prove that the ancestors of
|
|
// UselessPad, which include LastUselessPad, had no information, and that
|
|
// in turn would have required proving that the descendants of
|
|
// LastUselesPad, which include EHPad, have no information about
|
|
// LastUselessPad, which would imply that EHPad was mapped to nullptr in
|
|
// the MemoMap on that invocation, which isn't the case if we got here.
|
|
assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
|
|
// Assert as we enumerate users that 'UselessPad' doesn't have any unwind
|
|
// information that we'd be contradicting by making a map entry for it
|
|
// (which is something that getUnwindDestTokenHelper must have proved for
|
|
// us to get here). Just assert on is direct users here; the checks in
|
|
// this downward walk at its descendants will verify that they don't have
|
|
// any unwind edges that exit 'UselessPad' either (i.e. they either have no
|
|
// unwind edges or unwind to a sibling).
|
|
MemoMap[UselessPad] = UnwindDestToken;
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
|
|
assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
|
|
for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
|
|
auto *CatchPad = HandlerBlock->getFirstNonPHI();
|
|
for (User *U : CatchPad->users()) {
|
|
assert(
|
|
(!isa<InvokeInst>(U) ||
|
|
(getParentPad(
|
|
cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
|
|
CatchPad)) &&
|
|
"Expected useless pad");
|
|
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
|
|
Worklist.push_back(cast<Instruction>(U));
|
|
}
|
|
}
|
|
} else {
|
|
assert(isa<CleanupPadInst>(UselessPad));
|
|
for (User *U : UselessPad->users()) {
|
|
assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
|
|
assert((!isa<InvokeInst>(U) ||
|
|
(getParentPad(
|
|
cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
|
|
UselessPad)) &&
|
|
"Expected useless pad");
|
|
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
|
|
Worklist.push_back(cast<Instruction>(U));
|
|
}
|
|
}
|
|
}
|
|
|
|
return UnwindDestToken;
|
|
}
|
|
|
|
/// When we inline a basic block into an invoke,
|
|
/// we have to turn all of the calls that can throw into invokes.
|
|
/// This function analyze BB to see if there are any calls, and if so,
|
|
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
|
|
/// nodes in that block with the values specified in InvokeDestPHIValues.
|
|
static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
|
|
BasicBlock *BB, BasicBlock *UnwindEdge,
|
|
UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
|
|
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
|
|
Instruction *I = &*BBI++;
|
|
|
|
// We only need to check for function calls: inlined invoke
|
|
// instructions require no special handling.
|
|
CallInst *CI = dyn_cast<CallInst>(I);
|
|
|
|
if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
|
|
continue;
|
|
|
|
// We do not need to (and in fact, cannot) convert possibly throwing calls
|
|
// to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
|
|
// invokes. The caller's "segment" of the deoptimization continuation
|
|
// attached to the newly inlined @llvm.experimental_deoptimize
|
|
// (resp. @llvm.experimental.guard) call should contain the exception
|
|
// handling logic, if any.
|
|
if (auto *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_guard)
|
|
continue;
|
|
|
|
if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
|
|
// This call is nested inside a funclet. If that funclet has an unwind
|
|
// destination within the inlinee, then unwinding out of this call would
|
|
// be UB. Rewriting this call to an invoke which targets the inlined
|
|
// invoke's unwind dest would give the call's parent funclet multiple
|
|
// unwind destinations, which is something that subsequent EH table
|
|
// generation can't handle and that the veirifer rejects. So when we
|
|
// see such a call, leave it as a call.
|
|
auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
|
|
Value *UnwindDestToken =
|
|
getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
|
|
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
|
|
continue;
|
|
#ifndef NDEBUG
|
|
Instruction *MemoKey;
|
|
if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
|
|
MemoKey = CatchPad->getCatchSwitch();
|
|
else
|
|
MemoKey = FuncletPad;
|
|
assert(FuncletUnwindMap->count(MemoKey) &&
|
|
(*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
|
|
"must get memoized to avoid confusing later searches");
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
|
|
return BB;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// If we inlined an invoke site, we need to convert calls
|
|
/// in the body of the inlined function into invokes.
|
|
///
|
|
/// II is the invoke instruction being inlined. FirstNewBlock is the first
|
|
/// block of the inlined code (the last block is the end of the function),
|
|
/// and InlineCodeInfo is information about the code that got inlined.
|
|
static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
|
|
ClonedCodeInfo &InlinedCodeInfo) {
|
|
BasicBlock *InvokeDest = II->getUnwindDest();
|
|
|
|
Function *Caller = FirstNewBlock->getParent();
|
|
|
|
// The inlined code is currently at the end of the function, scan from the
|
|
// start of the inlined code to its end, checking for stuff we need to
|
|
// rewrite.
|
|
LandingPadInliningInfo Invoke(II);
|
|
|
|
// Get all of the inlined landing pad instructions.
|
|
SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
|
|
for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
|
|
I != E; ++I)
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
|
|
InlinedLPads.insert(II->getLandingPadInst());
|
|
|
|
// Append the clauses from the outer landing pad instruction into the inlined
|
|
// landing pad instructions.
|
|
LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
|
|
for (LandingPadInst *InlinedLPad : InlinedLPads) {
|
|
unsigned OuterNum = OuterLPad->getNumClauses();
|
|
InlinedLPad->reserveClauses(OuterNum);
|
|
for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
|
|
InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
|
|
if (OuterLPad->isCleanup())
|
|
InlinedLPad->setCleanup(true);
|
|
}
|
|
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
|
|
BB != E; ++BB) {
|
|
if (InlinedCodeInfo.ContainsCalls)
|
|
if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
|
|
&*BB, Invoke.getOuterResumeDest()))
|
|
// Update any PHI nodes in the exceptional block to indicate that there
|
|
// is now a new entry in them.
|
|
Invoke.addIncomingPHIValuesFor(NewBB);
|
|
|
|
// Forward any resumes that are remaining here.
|
|
if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
|
|
Invoke.forwardResume(RI, InlinedLPads);
|
|
}
|
|
|
|
// Now that everything is happy, we have one final detail. The PHI nodes in
|
|
// the exception destination block still have entries due to the original
|
|
// invoke instruction. Eliminate these entries (which might even delete the
|
|
// PHI node) now.
|
|
InvokeDest->removePredecessor(II->getParent());
|
|
}
|
|
|
|
/// If we inlined an invoke site, we need to convert calls
|
|
/// in the body of the inlined function into invokes.
|
|
///
|
|
/// II is the invoke instruction being inlined. FirstNewBlock is the first
|
|
/// block of the inlined code (the last block is the end of the function),
|
|
/// and InlineCodeInfo is information about the code that got inlined.
|
|
static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
|
|
ClonedCodeInfo &InlinedCodeInfo) {
|
|
BasicBlock *UnwindDest = II->getUnwindDest();
|
|
Function *Caller = FirstNewBlock->getParent();
|
|
|
|
assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
|
|
|
|
// If there are PHI nodes in the unwind destination block, we need to keep
|
|
// track of which values came into them from the invoke before removing the
|
|
// edge from this block.
|
|
SmallVector<Value *, 8> UnwindDestPHIValues;
|
|
BasicBlock *InvokeBB = II->getParent();
|
|
for (Instruction &I : *UnwindDest) {
|
|
// Save the value to use for this edge.
|
|
PHINode *PHI = dyn_cast<PHINode>(&I);
|
|
if (!PHI)
|
|
break;
|
|
UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
|
|
}
|
|
|
|
// Add incoming-PHI values to the unwind destination block for the given basic
|
|
// block, using the values for the original invoke's source block.
|
|
auto UpdatePHINodes = [&](BasicBlock *Src) {
|
|
BasicBlock::iterator I = UnwindDest->begin();
|
|
for (Value *V : UnwindDestPHIValues) {
|
|
PHINode *PHI = cast<PHINode>(I);
|
|
PHI->addIncoming(V, Src);
|
|
++I;
|
|
}
|
|
};
|
|
|
|
// This connects all the instructions which 'unwind to caller' to the invoke
|
|
// destination.
|
|
UnwindDestMemoTy FuncletUnwindMap;
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
|
|
BB != E; ++BB) {
|
|
if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
|
|
if (CRI->unwindsToCaller()) {
|
|
auto *CleanupPad = CRI->getCleanupPad();
|
|
CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
|
|
CRI->eraseFromParent();
|
|
UpdatePHINodes(&*BB);
|
|
// Finding a cleanupret with an unwind destination would confuse
|
|
// subsequent calls to getUnwindDestToken, so map the cleanuppad
|
|
// to short-circuit any such calls and recognize this as an "unwind
|
|
// to caller" cleanup.
|
|
assert(!FuncletUnwindMap.count(CleanupPad) ||
|
|
isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
|
|
FuncletUnwindMap[CleanupPad] =
|
|
ConstantTokenNone::get(Caller->getContext());
|
|
}
|
|
}
|
|
|
|
Instruction *I = BB->getFirstNonPHI();
|
|
if (!I->isEHPad())
|
|
continue;
|
|
|
|
Instruction *Replacement = nullptr;
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
|
|
if (CatchSwitch->unwindsToCaller()) {
|
|
Value *UnwindDestToken;
|
|
if (auto *ParentPad =
|
|
dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
|
|
// This catchswitch is nested inside another funclet. If that
|
|
// funclet has an unwind destination within the inlinee, then
|
|
// unwinding out of this catchswitch would be UB. Rewriting this
|
|
// catchswitch to unwind to the inlined invoke's unwind dest would
|
|
// give the parent funclet multiple unwind destinations, which is
|
|
// something that subsequent EH table generation can't handle and
|
|
// that the veirifer rejects. So when we see such a call, leave it
|
|
// as "unwind to caller".
|
|
UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
|
|
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
|
|
continue;
|
|
} else {
|
|
// This catchswitch has no parent to inherit constraints from, and
|
|
// none of its descendants can have an unwind edge that exits it and
|
|
// targets another funclet in the inlinee. It may or may not have a
|
|
// descendant that definitively has an unwind to caller. In either
|
|
// case, we'll have to assume that any unwinds out of it may need to
|
|
// be routed to the caller, so treat it as though it has a definitive
|
|
// unwind to caller.
|
|
UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
|
|
}
|
|
auto *NewCatchSwitch = CatchSwitchInst::Create(
|
|
CatchSwitch->getParentPad(), UnwindDest,
|
|
CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
|
|
CatchSwitch);
|
|
for (BasicBlock *PadBB : CatchSwitch->handlers())
|
|
NewCatchSwitch->addHandler(PadBB);
|
|
// Propagate info for the old catchswitch over to the new one in
|
|
// the unwind map. This also serves to short-circuit any subsequent
|
|
// checks for the unwind dest of this catchswitch, which would get
|
|
// confused if they found the outer handler in the callee.
|
|
FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
|
|
Replacement = NewCatchSwitch;
|
|
}
|
|
} else if (!isa<FuncletPadInst>(I)) {
|
|
llvm_unreachable("unexpected EHPad!");
|
|
}
|
|
|
|
if (Replacement) {
|
|
Replacement->takeName(I);
|
|
I->replaceAllUsesWith(Replacement);
|
|
I->eraseFromParent();
|
|
UpdatePHINodes(&*BB);
|
|
}
|
|
}
|
|
|
|
if (InlinedCodeInfo.ContainsCalls)
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(),
|
|
E = Caller->end();
|
|
BB != E; ++BB)
|
|
if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
|
|
&*BB, UnwindDest, &FuncletUnwindMap))
|
|
// Update any PHI nodes in the exceptional block to indicate that there
|
|
// is now a new entry in them.
|
|
UpdatePHINodes(NewBB);
|
|
|
|
// Now that everything is happy, we have one final detail. The PHI nodes in
|
|
// the exception destination block still have entries due to the original
|
|
// invoke instruction. Eliminate these entries (which might even delete the
|
|
// PHI node) now.
|
|
UnwindDest->removePredecessor(InvokeBB);
|
|
}
|
|
|
|
/// When inlining a call site that has !llvm.mem.parallel_loop_access or
|
|
/// llvm.access.group metadata, that metadata should be propagated to all
|
|
/// memory-accessing cloned instructions.
|
|
static void PropagateParallelLoopAccessMetadata(CallSite CS,
|
|
ValueToValueMapTy &VMap) {
|
|
MDNode *M =
|
|
CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
|
|
MDNode *CallAccessGroup =
|
|
CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
|
|
if (!M && !CallAccessGroup)
|
|
return;
|
|
|
|
for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
|
|
VMI != VMIE; ++VMI) {
|
|
if (!VMI->second)
|
|
continue;
|
|
|
|
Instruction *NI = dyn_cast<Instruction>(VMI->second);
|
|
if (!NI)
|
|
continue;
|
|
|
|
if (M) {
|
|
if (MDNode *PM =
|
|
NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
|
|
M = MDNode::concatenate(PM, M);
|
|
NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
|
|
} else if (NI->mayReadOrWriteMemory()) {
|
|
NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
|
|
}
|
|
}
|
|
|
|
if (NI->mayReadOrWriteMemory()) {
|
|
MDNode *UnitedAccGroups = uniteAccessGroups(
|
|
NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
|
|
NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When inlining a function that contains noalias scope metadata,
|
|
/// this metadata needs to be cloned so that the inlined blocks
|
|
/// have different "unique scopes" at every call site. Were this not done, then
|
|
/// aliasing scopes from a function inlined into a caller multiple times could
|
|
/// not be differentiated (and this would lead to miscompiles because the
|
|
/// non-aliasing property communicated by the metadata could have
|
|
/// call-site-specific control dependencies).
|
|
static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
|
|
const Function *CalledFunc = CS.getCalledFunction();
|
|
SetVector<const MDNode *> MD;
|
|
|
|
// Note: We could only clone the metadata if it is already used in the
|
|
// caller. I'm omitting that check here because it might confuse
|
|
// inter-procedural alias analysis passes. We can revisit this if it becomes
|
|
// an efficiency or overhead problem.
|
|
|
|
for (const BasicBlock &I : *CalledFunc)
|
|
for (const Instruction &J : I) {
|
|
if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
|
|
MD.insert(M);
|
|
if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
|
|
MD.insert(M);
|
|
}
|
|
|
|
if (MD.empty())
|
|
return;
|
|
|
|
// Walk the existing metadata, adding the complete (perhaps cyclic) chain to
|
|
// the set.
|
|
SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
|
|
while (!Queue.empty()) {
|
|
const MDNode *M = cast<MDNode>(Queue.pop_back_val());
|
|
for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
|
|
if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
|
|
if (MD.insert(M1))
|
|
Queue.push_back(M1);
|
|
}
|
|
|
|
// Now we have a complete set of all metadata in the chains used to specify
|
|
// the noalias scopes and the lists of those scopes.
|
|
SmallVector<TempMDTuple, 16> DummyNodes;
|
|
DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
|
|
for (const MDNode *I : MD) {
|
|
DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
|
|
MDMap[I].reset(DummyNodes.back().get());
|
|
}
|
|
|
|
// Create new metadata nodes to replace the dummy nodes, replacing old
|
|
// metadata references with either a dummy node or an already-created new
|
|
// node.
|
|
for (const MDNode *I : MD) {
|
|
SmallVector<Metadata *, 4> NewOps;
|
|
for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
|
|
const Metadata *V = I->getOperand(i);
|
|
if (const MDNode *M = dyn_cast<MDNode>(V))
|
|
NewOps.push_back(MDMap[M]);
|
|
else
|
|
NewOps.push_back(const_cast<Metadata *>(V));
|
|
}
|
|
|
|
MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
|
|
MDTuple *TempM = cast<MDTuple>(MDMap[I]);
|
|
assert(TempM->isTemporary() && "Expected temporary node");
|
|
|
|
TempM->replaceAllUsesWith(NewM);
|
|
}
|
|
|
|
// Now replace the metadata in the new inlined instructions with the
|
|
// repacements from the map.
|
|
for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
|
|
VMI != VMIE; ++VMI) {
|
|
if (!VMI->second)
|
|
continue;
|
|
|
|
Instruction *NI = dyn_cast<Instruction>(VMI->second);
|
|
if (!NI)
|
|
continue;
|
|
|
|
if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
|
|
MDNode *NewMD = MDMap[M];
|
|
// If the call site also had alias scope metadata (a list of scopes to
|
|
// which instructions inside it might belong), propagate those scopes to
|
|
// the inlined instructions.
|
|
if (MDNode *CSM =
|
|
CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
|
|
NewMD = MDNode::concatenate(NewMD, CSM);
|
|
NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
|
|
} else if (NI->mayReadOrWriteMemory()) {
|
|
if (MDNode *M =
|
|
CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
|
|
NI->setMetadata(LLVMContext::MD_alias_scope, M);
|
|
}
|
|
|
|
if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
|
|
MDNode *NewMD = MDMap[M];
|
|
// If the call site also had noalias metadata (a list of scopes with
|
|
// which instructions inside it don't alias), propagate those scopes to
|
|
// the inlined instructions.
|
|
if (MDNode *CSM =
|
|
CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
|
|
NewMD = MDNode::concatenate(NewMD, CSM);
|
|
NI->setMetadata(LLVMContext::MD_noalias, NewMD);
|
|
} else if (NI->mayReadOrWriteMemory()) {
|
|
if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
|
|
NI->setMetadata(LLVMContext::MD_noalias, M);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If the inlined function has noalias arguments,
|
|
/// then add new alias scopes for each noalias argument, tag the mapped noalias
|
|
/// parameters with noalias metadata specifying the new scope, and tag all
|
|
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
|
|
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
|
|
const DataLayout &DL, AAResults *CalleeAAR) {
|
|
if (!EnableNoAliasConversion)
|
|
return;
|
|
|
|
const Function *CalledFunc = CS.getCalledFunction();
|
|
SmallVector<const Argument *, 4> NoAliasArgs;
|
|
|
|
for (const Argument &Arg : CalledFunc->args())
|
|
if (Arg.hasNoAliasAttr() && !Arg.use_empty())
|
|
NoAliasArgs.push_back(&Arg);
|
|
|
|
if (NoAliasArgs.empty())
|
|
return;
|
|
|
|
// To do a good job, if a noalias variable is captured, we need to know if
|
|
// the capture point dominates the particular use we're considering.
|
|
DominatorTree DT;
|
|
DT.recalculate(const_cast<Function&>(*CalledFunc));
|
|
|
|
// noalias indicates that pointer values based on the argument do not alias
|
|
// pointer values which are not based on it. So we add a new "scope" for each
|
|
// noalias function argument. Accesses using pointers based on that argument
|
|
// become part of that alias scope, accesses using pointers not based on that
|
|
// argument are tagged as noalias with that scope.
|
|
|
|
DenseMap<const Argument *, MDNode *> NewScopes;
|
|
MDBuilder MDB(CalledFunc->getContext());
|
|
|
|
// Create a new scope domain for this function.
|
|
MDNode *NewDomain =
|
|
MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
|
|
for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
|
|
const Argument *A = NoAliasArgs[i];
|
|
|
|
std::string Name = CalledFunc->getName();
|
|
if (A->hasName()) {
|
|
Name += ": %";
|
|
Name += A->getName();
|
|
} else {
|
|
Name += ": argument ";
|
|
Name += utostr(i);
|
|
}
|
|
|
|
// Note: We always create a new anonymous root here. This is true regardless
|
|
// of the linkage of the callee because the aliasing "scope" is not just a
|
|
// property of the callee, but also all control dependencies in the caller.
|
|
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
|
|
NewScopes.insert(std::make_pair(A, NewScope));
|
|
}
|
|
|
|
// Iterate over all new instructions in the map; for all memory-access
|
|
// instructions, add the alias scope metadata.
|
|
for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
|
|
VMI != VMIE; ++VMI) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
|
|
if (!VMI->second)
|
|
continue;
|
|
|
|
Instruction *NI = dyn_cast<Instruction>(VMI->second);
|
|
if (!NI)
|
|
continue;
|
|
|
|
bool IsArgMemOnlyCall = false, IsFuncCall = false;
|
|
SmallVector<const Value *, 2> PtrArgs;
|
|
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
PtrArgs.push_back(LI->getPointerOperand());
|
|
else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
PtrArgs.push_back(SI->getPointerOperand());
|
|
else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
|
|
PtrArgs.push_back(VAAI->getPointerOperand());
|
|
else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
|
|
PtrArgs.push_back(CXI->getPointerOperand());
|
|
else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
|
|
PtrArgs.push_back(RMWI->getPointerOperand());
|
|
else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
|
|
// If we know that the call does not access memory, then we'll still
|
|
// know that about the inlined clone of this call site, and we don't
|
|
// need to add metadata.
|
|
if (ICS.doesNotAccessMemory())
|
|
continue;
|
|
|
|
IsFuncCall = true;
|
|
if (CalleeAAR) {
|
|
FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
|
|
if (MRB == FMRB_OnlyAccessesArgumentPointees ||
|
|
MRB == FMRB_OnlyReadsArgumentPointees)
|
|
IsArgMemOnlyCall = true;
|
|
}
|
|
|
|
for (Value *Arg : ICS.args()) {
|
|
// We need to check the underlying objects of all arguments, not just
|
|
// the pointer arguments, because we might be passing pointers as
|
|
// integers, etc.
|
|
// However, if we know that the call only accesses pointer arguments,
|
|
// then we only need to check the pointer arguments.
|
|
if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
|
|
continue;
|
|
|
|
PtrArgs.push_back(Arg);
|
|
}
|
|
}
|
|
|
|
// If we found no pointers, then this instruction is not suitable for
|
|
// pairing with an instruction to receive aliasing metadata.
|
|
// However, if this is a call, this we might just alias with none of the
|
|
// noalias arguments.
|
|
if (PtrArgs.empty() && !IsFuncCall)
|
|
continue;
|
|
|
|
// It is possible that there is only one underlying object, but you
|
|
// need to go through several PHIs to see it, and thus could be
|
|
// repeated in the Objects list.
|
|
SmallPtrSet<const Value *, 4> ObjSet;
|
|
SmallVector<Metadata *, 4> Scopes, NoAliases;
|
|
|
|
SmallSetVector<const Argument *, 4> NAPtrArgs;
|
|
for (const Value *V : PtrArgs) {
|
|
SmallVector<Value *, 4> Objects;
|
|
GetUnderlyingObjects(const_cast<Value*>(V),
|
|
Objects, DL, /* LI = */ nullptr);
|
|
|
|
for (Value *O : Objects)
|
|
ObjSet.insert(O);
|
|
}
|
|
|
|
// Figure out if we're derived from anything that is not a noalias
|
|
// argument.
|
|
bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
|
|
for (const Value *V : ObjSet) {
|
|
// Is this value a constant that cannot be derived from any pointer
|
|
// value (we need to exclude constant expressions, for example, that
|
|
// are formed from arithmetic on global symbols).
|
|
bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
|
|
isa<ConstantPointerNull>(V) ||
|
|
isa<ConstantDataVector>(V) || isa<UndefValue>(V);
|
|
if (IsNonPtrConst)
|
|
continue;
|
|
|
|
// If this is anything other than a noalias argument, then we cannot
|
|
// completely describe the aliasing properties using alias.scope
|
|
// metadata (and, thus, won't add any).
|
|
if (const Argument *A = dyn_cast<Argument>(V)) {
|
|
if (!A->hasNoAliasAttr())
|
|
UsesAliasingPtr = true;
|
|
} else {
|
|
UsesAliasingPtr = true;
|
|
}
|
|
|
|
// If this is not some identified function-local object (which cannot
|
|
// directly alias a noalias argument), or some other argument (which,
|
|
// by definition, also cannot alias a noalias argument), then we could
|
|
// alias a noalias argument that has been captured).
|
|
if (!isa<Argument>(V) &&
|
|
!isIdentifiedFunctionLocal(const_cast<Value*>(V)))
|
|
CanDeriveViaCapture = true;
|
|
}
|
|
|
|
// A function call can always get captured noalias pointers (via other
|
|
// parameters, globals, etc.).
|
|
if (IsFuncCall && !IsArgMemOnlyCall)
|
|
CanDeriveViaCapture = true;
|
|
|
|
// First, we want to figure out all of the sets with which we definitely
|
|
// don't alias. Iterate over all noalias set, and add those for which:
|
|
// 1. The noalias argument is not in the set of objects from which we
|
|
// definitely derive.
|
|
// 2. The noalias argument has not yet been captured.
|
|
// An arbitrary function that might load pointers could see captured
|
|
// noalias arguments via other noalias arguments or globals, and so we
|
|
// must always check for prior capture.
|
|
for (const Argument *A : NoAliasArgs) {
|
|
if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
|
|
// It might be tempting to skip the
|
|
// PointerMayBeCapturedBefore check if
|
|
// A->hasNoCaptureAttr() is true, but this is
|
|
// incorrect because nocapture only guarantees
|
|
// that no copies outlive the function, not
|
|
// that the value cannot be locally captured.
|
|
!PointerMayBeCapturedBefore(A,
|
|
/* ReturnCaptures */ false,
|
|
/* StoreCaptures */ false, I, &DT)))
|
|
NoAliases.push_back(NewScopes[A]);
|
|
}
|
|
|
|
if (!NoAliases.empty())
|
|
NI->setMetadata(LLVMContext::MD_noalias,
|
|
MDNode::concatenate(
|
|
NI->getMetadata(LLVMContext::MD_noalias),
|
|
MDNode::get(CalledFunc->getContext(), NoAliases)));
|
|
|
|
// Next, we want to figure out all of the sets to which we might belong.
|
|
// We might belong to a set if the noalias argument is in the set of
|
|
// underlying objects. If there is some non-noalias argument in our list
|
|
// of underlying objects, then we cannot add a scope because the fact
|
|
// that some access does not alias with any set of our noalias arguments
|
|
// cannot itself guarantee that it does not alias with this access
|
|
// (because there is some pointer of unknown origin involved and the
|
|
// other access might also depend on this pointer). We also cannot add
|
|
// scopes to arbitrary functions unless we know they don't access any
|
|
// non-parameter pointer-values.
|
|
bool CanAddScopes = !UsesAliasingPtr;
|
|
if (CanAddScopes && IsFuncCall)
|
|
CanAddScopes = IsArgMemOnlyCall;
|
|
|
|
if (CanAddScopes)
|
|
for (const Argument *A : NoAliasArgs) {
|
|
if (ObjSet.count(A))
|
|
Scopes.push_back(NewScopes[A]);
|
|
}
|
|
|
|
if (!Scopes.empty())
|
|
NI->setMetadata(
|
|
LLVMContext::MD_alias_scope,
|
|
MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
|
|
MDNode::get(CalledFunc->getContext(), Scopes)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If the inlined function has non-byval align arguments, then
|
|
/// add @llvm.assume-based alignment assumptions to preserve this information.
|
|
static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
|
|
if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
|
|
return;
|
|
|
|
AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
|
|
auto &DL = CS.getCaller()->getParent()->getDataLayout();
|
|
|
|
// To avoid inserting redundant assumptions, we should check for assumptions
|
|
// already in the caller. To do this, we might need a DT of the caller.
|
|
DominatorTree DT;
|
|
bool DTCalculated = false;
|
|
|
|
Function *CalledFunc = CS.getCalledFunction();
|
|
for (Argument &Arg : CalledFunc->args()) {
|
|
unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
|
|
if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
|
|
if (!DTCalculated) {
|
|
DT.recalculate(*CS.getCaller());
|
|
DTCalculated = true;
|
|
}
|
|
|
|
// If we can already prove the asserted alignment in the context of the
|
|
// caller, then don't bother inserting the assumption.
|
|
Value *ArgVal = CS.getArgument(Arg.getArgNo());
|
|
if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
|
|
continue;
|
|
|
|
CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
|
|
.CreateAlignmentAssumption(DL, ArgVal, Align);
|
|
AC->registerAssumption(NewAsmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Once we have cloned code over from a callee into the caller,
|
|
/// update the specified callgraph to reflect the changes we made.
|
|
/// Note that it's possible that not all code was copied over, so only
|
|
/// some edges of the callgraph may remain.
|
|
static void UpdateCallGraphAfterInlining(CallSite CS,
|
|
Function::iterator FirstNewBlock,
|
|
ValueToValueMapTy &VMap,
|
|
InlineFunctionInfo &IFI) {
|
|
CallGraph &CG = *IFI.CG;
|
|
const Function *Caller = CS.getCaller();
|
|
const Function *Callee = CS.getCalledFunction();
|
|
CallGraphNode *CalleeNode = CG[Callee];
|
|
CallGraphNode *CallerNode = CG[Caller];
|
|
|
|
// Since we inlined some uninlined call sites in the callee into the caller,
|
|
// add edges from the caller to all of the callees of the callee.
|
|
CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
|
|
|
|
// Consider the case where CalleeNode == CallerNode.
|
|
CallGraphNode::CalledFunctionsVector CallCache;
|
|
if (CalleeNode == CallerNode) {
|
|
CallCache.assign(I, E);
|
|
I = CallCache.begin();
|
|
E = CallCache.end();
|
|
}
|
|
|
|
for (; I != E; ++I) {
|
|
const Value *OrigCall = I->first;
|
|
|
|
ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
|
|
// Only copy the edge if the call was inlined!
|
|
if (VMI == VMap.end() || VMI->second == nullptr)
|
|
continue;
|
|
|
|
// If the call was inlined, but then constant folded, there is no edge to
|
|
// add. Check for this case.
|
|
Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
|
|
if (!NewCall)
|
|
continue;
|
|
|
|
// We do not treat intrinsic calls like real function calls because we
|
|
// expect them to become inline code; do not add an edge for an intrinsic.
|
|
CallSite CS = CallSite(NewCall);
|
|
if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
|
|
continue;
|
|
|
|
// Remember that this call site got inlined for the client of
|
|
// InlineFunction.
|
|
IFI.InlinedCalls.push_back(NewCall);
|
|
|
|
// It's possible that inlining the callsite will cause it to go from an
|
|
// indirect to a direct call by resolving a function pointer. If this
|
|
// happens, set the callee of the new call site to a more precise
|
|
// destination. This can also happen if the call graph node of the caller
|
|
// was just unnecessarily imprecise.
|
|
if (!I->second->getFunction())
|
|
if (Function *F = CallSite(NewCall).getCalledFunction()) {
|
|
// Indirect call site resolved to direct call.
|
|
CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
|
|
|
|
continue;
|
|
}
|
|
|
|
CallerNode->addCalledFunction(CallSite(NewCall), I->second);
|
|
}
|
|
|
|
// Update the call graph by deleting the edge from Callee to Caller. We must
|
|
// do this after the loop above in case Caller and Callee are the same.
|
|
CallerNode->removeCallEdgeFor(CS);
|
|
}
|
|
|
|
static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
|
|
BasicBlock *InsertBlock,
|
|
InlineFunctionInfo &IFI) {
|
|
Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
|
|
IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
|
|
|
|
Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
|
|
|
|
// Always generate a memcpy of alignment 1 here because we don't know
|
|
// the alignment of the src pointer. Other optimizations can infer
|
|
// better alignment.
|
|
Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
|
|
}
|
|
|
|
/// When inlining a call site that has a byval argument,
|
|
/// we have to make the implicit memcpy explicit by adding it.
|
|
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
|
|
const Function *CalledFunc,
|
|
InlineFunctionInfo &IFI,
|
|
unsigned ByValAlignment) {
|
|
PointerType *ArgTy = cast<PointerType>(Arg->getType());
|
|
Type *AggTy = ArgTy->getElementType();
|
|
|
|
Function *Caller = TheCall->getFunction();
|
|
const DataLayout &DL = Caller->getParent()->getDataLayout();
|
|
|
|
// If the called function is readonly, then it could not mutate the caller's
|
|
// copy of the byval'd memory. In this case, it is safe to elide the copy and
|
|
// temporary.
|
|
if (CalledFunc->onlyReadsMemory()) {
|
|
// If the byval argument has a specified alignment that is greater than the
|
|
// passed in pointer, then we either have to round up the input pointer or
|
|
// give up on this transformation.
|
|
if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
|
|
return Arg;
|
|
|
|
AssumptionCache *AC =
|
|
IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
|
|
|
|
// If the pointer is already known to be sufficiently aligned, or if we can
|
|
// round it up to a larger alignment, then we don't need a temporary.
|
|
if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
|
|
ByValAlignment)
|
|
return Arg;
|
|
|
|
// Otherwise, we have to make a memcpy to get a safe alignment. This is bad
|
|
// for code quality, but rarely happens and is required for correctness.
|
|
}
|
|
|
|
// Create the alloca. If we have DataLayout, use nice alignment.
|
|
unsigned Align = DL.getPrefTypeAlignment(AggTy);
|
|
|
|
// If the byval had an alignment specified, we *must* use at least that
|
|
// alignment, as it is required by the byval argument (and uses of the
|
|
// pointer inside the callee).
|
|
Align = std::max(Align, ByValAlignment);
|
|
|
|
Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
|
|
nullptr, Align, Arg->getName(),
|
|
&*Caller->begin()->begin());
|
|
IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
|
|
|
|
// Uses of the argument in the function should use our new alloca
|
|
// instead.
|
|
return NewAlloca;
|
|
}
|
|
|
|
// Check whether this Value is used by a lifetime intrinsic.
|
|
static bool isUsedByLifetimeMarker(Value *V) {
|
|
for (User *U : V->users())
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
|
|
if (II->isLifetimeStartOrEnd())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Check whether the given alloca already has
|
|
// lifetime.start or lifetime.end intrinsics.
|
|
static bool hasLifetimeMarkers(AllocaInst *AI) {
|
|
Type *Ty = AI->getType();
|
|
Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
|
|
Ty->getPointerAddressSpace());
|
|
if (Ty == Int8PtrTy)
|
|
return isUsedByLifetimeMarker(AI);
|
|
|
|
// Do a scan to find all the casts to i8*.
|
|
for (User *U : AI->users()) {
|
|
if (U->getType() != Int8PtrTy) continue;
|
|
if (U->stripPointerCasts() != AI) continue;
|
|
if (isUsedByLifetimeMarker(U))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
|
|
/// block. Allocas used in inalloca calls and allocas of dynamic array size
|
|
/// cannot be static.
|
|
static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
|
|
return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
|
|
}
|
|
|
|
/// Update inlined instructions' line numbers to
|
|
/// to encode location where these instructions are inlined.
|
|
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
|
|
Instruction *TheCall, bool CalleeHasDebugInfo) {
|
|
const DebugLoc &TheCallDL = TheCall->getDebugLoc();
|
|
if (!TheCallDL)
|
|
return;
|
|
|
|
auto &Ctx = Fn->getContext();
|
|
DILocation *InlinedAtNode = TheCallDL;
|
|
|
|
// Create a unique call site, not to be confused with any other call from the
|
|
// same location.
|
|
InlinedAtNode = DILocation::getDistinct(
|
|
Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
|
|
InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
|
|
|
|
// Cache the inlined-at nodes as they're built so they are reused, without
|
|
// this every instruction's inlined-at chain would become distinct from each
|
|
// other.
|
|
DenseMap<const MDNode *, MDNode *> IANodes;
|
|
|
|
for (; FI != Fn->end(); ++FI) {
|
|
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
|
|
BI != BE; ++BI) {
|
|
if (DebugLoc DL = BI->getDebugLoc()) {
|
|
auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
|
|
IANodes);
|
|
auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
|
|
BI->setDebugLoc(IDL);
|
|
continue;
|
|
}
|
|
|
|
if (CalleeHasDebugInfo)
|
|
continue;
|
|
|
|
// If the inlined instruction has no line number, make it look as if it
|
|
// originates from the call location. This is important for
|
|
// ((__always_inline__, __nodebug__)) functions which must use caller
|
|
// location for all instructions in their function body.
|
|
|
|
// Don't update static allocas, as they may get moved later.
|
|
if (auto *AI = dyn_cast<AllocaInst>(BI))
|
|
if (allocaWouldBeStaticInEntry(AI))
|
|
continue;
|
|
|
|
BI->setDebugLoc(TheCallDL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Update the block frequencies of the caller after a callee has been inlined.
|
|
///
|
|
/// Each block cloned into the caller has its block frequency scaled by the
|
|
/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
|
|
/// callee's entry block gets the same frequency as the callsite block and the
|
|
/// relative frequencies of all cloned blocks remain the same after cloning.
|
|
static void updateCallerBFI(BasicBlock *CallSiteBlock,
|
|
const ValueToValueMapTy &VMap,
|
|
BlockFrequencyInfo *CallerBFI,
|
|
BlockFrequencyInfo *CalleeBFI,
|
|
const BasicBlock &CalleeEntryBlock) {
|
|
SmallPtrSet<BasicBlock *, 16> ClonedBBs;
|
|
for (auto const &Entry : VMap) {
|
|
if (!isa<BasicBlock>(Entry.first) || !Entry.second)
|
|
continue;
|
|
auto *OrigBB = cast<BasicBlock>(Entry.first);
|
|
auto *ClonedBB = cast<BasicBlock>(Entry.second);
|
|
uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
|
|
if (!ClonedBBs.insert(ClonedBB).second) {
|
|
// Multiple blocks in the callee might get mapped to one cloned block in
|
|
// the caller since we prune the callee as we clone it. When that happens,
|
|
// we want to use the maximum among the original blocks' frequencies.
|
|
uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
|
|
if (NewFreq > Freq)
|
|
Freq = NewFreq;
|
|
}
|
|
CallerBFI->setBlockFreq(ClonedBB, Freq);
|
|
}
|
|
BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
|
|
CallerBFI->setBlockFreqAndScale(
|
|
EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
|
|
ClonedBBs);
|
|
}
|
|
|
|
/// Update the branch metadata for cloned call instructions.
|
|
static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
|
|
const ProfileCount &CalleeEntryCount,
|
|
const Instruction *TheCall,
|
|
ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *CallerBFI) {
|
|
if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
|
|
CalleeEntryCount.getCount() < 1)
|
|
return;
|
|
auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
|
|
uint64_t CallCount =
|
|
std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
|
|
CalleeEntryCount.getCount());
|
|
|
|
for (auto const &Entry : VMap)
|
|
if (isa<CallInst>(Entry.first))
|
|
if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
|
|
CI->updateProfWeight(CallCount, CalleeEntryCount.getCount());
|
|
for (BasicBlock &BB : *Callee)
|
|
// No need to update the callsite if it is pruned during inlining.
|
|
if (VMap.count(&BB))
|
|
for (Instruction &I : BB)
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I))
|
|
CI->updateProfWeight(CalleeEntryCount.getCount() - CallCount,
|
|
CalleeEntryCount.getCount());
|
|
}
|
|
|
|
/// Update the entry count of callee after inlining.
|
|
///
|
|
/// The callsite's block count is subtracted from the callee's function entry
|
|
/// count.
|
|
static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB,
|
|
Instruction *CallInst, Function *Callee,
|
|
ProfileSummaryInfo *PSI) {
|
|
// If the callee has a original count of N, and the estimated count of
|
|
// callsite is M, the new callee count is set to N - M. M is estimated from
|
|
// the caller's entry count, its entry block frequency and the block frequency
|
|
// of the callsite.
|
|
auto CalleeCount = Callee->getEntryCount();
|
|
if (!CalleeCount.hasValue() || !PSI)
|
|
return;
|
|
auto CallCount = PSI->getProfileCount(CallInst, CallerBFI);
|
|
if (!CallCount.hasValue())
|
|
return;
|
|
// Since CallSiteCount is an estimate, it could exceed the original callee
|
|
// count and has to be set to 0.
|
|
if (CallCount.getValue() > CalleeCount.getCount())
|
|
CalleeCount.setCount(0);
|
|
else
|
|
CalleeCount.setCount(CalleeCount.getCount() - CallCount.getValue());
|
|
Callee->setEntryCount(CalleeCount);
|
|
}
|
|
|
|
/// This function inlines the called function into the basic block of the
|
|
/// caller. This returns false if it is not possible to inline this call.
|
|
/// The program is still in a well defined state if this occurs though.
|
|
///
|
|
/// Note that this only does one level of inlining. For example, if the
|
|
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
|
|
/// exists in the instruction stream. Similarly this will inline a recursive
|
|
/// function by one level.
|
|
llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
|
|
AAResults *CalleeAAR,
|
|
bool InsertLifetime,
|
|
Function *ForwardVarArgsTo) {
|
|
Instruction *TheCall = CS.getInstruction();
|
|
assert(TheCall->getParent() && TheCall->getFunction()
|
|
&& "Instruction not in function!");
|
|
|
|
// If IFI has any state in it, zap it before we fill it in.
|
|
IFI.reset();
|
|
|
|
Function *CalledFunc = CS.getCalledFunction();
|
|
if (!CalledFunc || // Can't inline external function or indirect
|
|
CalledFunc->isDeclaration()) // call!
|
|
return "external or indirect";
|
|
|
|
// The inliner does not know how to inline through calls with operand bundles
|
|
// in general ...
|
|
if (CS.hasOperandBundles()) {
|
|
for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
|
|
uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
|
|
// ... but it knows how to inline through "deopt" operand bundles ...
|
|
if (Tag == LLVMContext::OB_deopt)
|
|
continue;
|
|
// ... and "funclet" operand bundles.
|
|
if (Tag == LLVMContext::OB_funclet)
|
|
continue;
|
|
|
|
return "unsupported operand bundle";
|
|
}
|
|
}
|
|
|
|
// If the call to the callee cannot throw, set the 'nounwind' flag on any
|
|
// calls that we inline.
|
|
bool MarkNoUnwind = CS.doesNotThrow();
|
|
|
|
BasicBlock *OrigBB = TheCall->getParent();
|
|
Function *Caller = OrigBB->getParent();
|
|
|
|
// GC poses two hazards to inlining, which only occur when the callee has GC:
|
|
// 1. If the caller has no GC, then the callee's GC must be propagated to the
|
|
// caller.
|
|
// 2. If the caller has a differing GC, it is invalid to inline.
|
|
if (CalledFunc->hasGC()) {
|
|
if (!Caller->hasGC())
|
|
Caller->setGC(CalledFunc->getGC());
|
|
else if (CalledFunc->getGC() != Caller->getGC())
|
|
return "incompatible GC";
|
|
}
|
|
|
|
// Get the personality function from the callee if it contains a landing pad.
|
|
Constant *CalledPersonality =
|
|
CalledFunc->hasPersonalityFn()
|
|
? CalledFunc->getPersonalityFn()->stripPointerCasts()
|
|
: nullptr;
|
|
|
|
// Find the personality function used by the landing pads of the caller. If it
|
|
// exists, then check to see that it matches the personality function used in
|
|
// the callee.
|
|
Constant *CallerPersonality =
|
|
Caller->hasPersonalityFn()
|
|
? Caller->getPersonalityFn()->stripPointerCasts()
|
|
: nullptr;
|
|
if (CalledPersonality) {
|
|
if (!CallerPersonality)
|
|
Caller->setPersonalityFn(CalledPersonality);
|
|
// If the personality functions match, then we can perform the
|
|
// inlining. Otherwise, we can't inline.
|
|
// TODO: This isn't 100% true. Some personality functions are proper
|
|
// supersets of others and can be used in place of the other.
|
|
else if (CalledPersonality != CallerPersonality)
|
|
return "incompatible personality";
|
|
}
|
|
|
|
// We need to figure out which funclet the callsite was in so that we may
|
|
// properly nest the callee.
|
|
Instruction *CallSiteEHPad = nullptr;
|
|
if (CallerPersonality) {
|
|
EHPersonality Personality = classifyEHPersonality(CallerPersonality);
|
|
if (isScopedEHPersonality(Personality)) {
|
|
Optional<OperandBundleUse> ParentFunclet =
|
|
CS.getOperandBundle(LLVMContext::OB_funclet);
|
|
if (ParentFunclet)
|
|
CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
|
|
|
|
// OK, the inlining site is legal. What about the target function?
|
|
|
|
if (CallSiteEHPad) {
|
|
if (Personality == EHPersonality::MSVC_CXX) {
|
|
// The MSVC personality cannot tolerate catches getting inlined into
|
|
// cleanup funclets.
|
|
if (isa<CleanupPadInst>(CallSiteEHPad)) {
|
|
// Ok, the call site is within a cleanuppad. Let's check the callee
|
|
// for catchpads.
|
|
for (const BasicBlock &CalledBB : *CalledFunc) {
|
|
if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
|
|
return "catch in cleanup funclet";
|
|
}
|
|
}
|
|
} else if (isAsynchronousEHPersonality(Personality)) {
|
|
// SEH is even less tolerant, there may not be any sort of exceptional
|
|
// funclet in the callee.
|
|
for (const BasicBlock &CalledBB : *CalledFunc) {
|
|
if (CalledBB.isEHPad())
|
|
return "SEH in cleanup funclet";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine if we are dealing with a call in an EHPad which does not unwind
|
|
// to caller.
|
|
bool EHPadForCallUnwindsLocally = false;
|
|
if (CallSiteEHPad && CS.isCall()) {
|
|
UnwindDestMemoTy FuncletUnwindMap;
|
|
Value *CallSiteUnwindDestToken =
|
|
getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
|
|
|
|
EHPadForCallUnwindsLocally =
|
|
CallSiteUnwindDestToken &&
|
|
!isa<ConstantTokenNone>(CallSiteUnwindDestToken);
|
|
}
|
|
|
|
// Get an iterator to the last basic block in the function, which will have
|
|
// the new function inlined after it.
|
|
Function::iterator LastBlock = --Caller->end();
|
|
|
|
// Make sure to capture all of the return instructions from the cloned
|
|
// function.
|
|
SmallVector<ReturnInst*, 8> Returns;
|
|
ClonedCodeInfo InlinedFunctionInfo;
|
|
Function::iterator FirstNewBlock;
|
|
|
|
{ // Scope to destroy VMap after cloning.
|
|
ValueToValueMapTy VMap;
|
|
// Keep a list of pair (dst, src) to emit byval initializations.
|
|
SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
|
|
|
|
auto &DL = Caller->getParent()->getDataLayout();
|
|
|
|
// Calculate the vector of arguments to pass into the function cloner, which
|
|
// matches up the formal to the actual argument values.
|
|
CallSite::arg_iterator AI = CS.arg_begin();
|
|
unsigned ArgNo = 0;
|
|
for (Function::arg_iterator I = CalledFunc->arg_begin(),
|
|
E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
|
|
Value *ActualArg = *AI;
|
|
|
|
// When byval arguments actually inlined, we need to make the copy implied
|
|
// by them explicit. However, we don't do this if the callee is readonly
|
|
// or readnone, because the copy would be unneeded: the callee doesn't
|
|
// modify the struct.
|
|
if (CS.isByValArgument(ArgNo)) {
|
|
ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
|
|
CalledFunc->getParamAlignment(ArgNo));
|
|
if (ActualArg != *AI)
|
|
ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
|
|
}
|
|
|
|
VMap[&*I] = ActualArg;
|
|
}
|
|
|
|
// Add alignment assumptions if necessary. We do this before the inlined
|
|
// instructions are actually cloned into the caller so that we can easily
|
|
// check what will be known at the start of the inlined code.
|
|
AddAlignmentAssumptions(CS, IFI);
|
|
|
|
// We want the inliner to prune the code as it copies. We would LOVE to
|
|
// have no dead or constant instructions leftover after inlining occurs
|
|
// (which can happen, e.g., because an argument was constant), but we'll be
|
|
// happy with whatever the cloner can do.
|
|
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
|
|
/*ModuleLevelChanges=*/false, Returns, ".i",
|
|
&InlinedFunctionInfo, TheCall);
|
|
// Remember the first block that is newly cloned over.
|
|
FirstNewBlock = LastBlock; ++FirstNewBlock;
|
|
|
|
if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
|
|
// Update the BFI of blocks cloned into the caller.
|
|
updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
|
|
CalledFunc->front());
|
|
|
|
updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
|
|
IFI.PSI, IFI.CallerBFI);
|
|
// Update the profile count of callee.
|
|
updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI);
|
|
|
|
// Inject byval arguments initialization.
|
|
for (std::pair<Value*, Value*> &Init : ByValInit)
|
|
HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
|
|
&*FirstNewBlock, IFI);
|
|
|
|
Optional<OperandBundleUse> ParentDeopt =
|
|
CS.getOperandBundle(LLVMContext::OB_deopt);
|
|
if (ParentDeopt) {
|
|
SmallVector<OperandBundleDef, 2> OpDefs;
|
|
|
|
for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
|
|
Instruction *I = dyn_cast_or_null<Instruction>(VH);
|
|
if (!I) continue; // instruction was DCE'd or RAUW'ed to undef
|
|
|
|
OpDefs.clear();
|
|
|
|
CallSite ICS(I);
|
|
OpDefs.reserve(ICS.getNumOperandBundles());
|
|
|
|
for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
|
|
auto ChildOB = ICS.getOperandBundleAt(i);
|
|
if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
|
|
// If the inlined call has other operand bundles, let them be
|
|
OpDefs.emplace_back(ChildOB);
|
|
continue;
|
|
}
|
|
|
|
// It may be useful to separate this logic (of handling operand
|
|
// bundles) out to a separate "policy" component if this gets crowded.
|
|
// Prepend the parent's deoptimization continuation to the newly
|
|
// inlined call's deoptimization continuation.
|
|
std::vector<Value *> MergedDeoptArgs;
|
|
MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
|
|
ChildOB.Inputs.size());
|
|
|
|
MergedDeoptArgs.insert(MergedDeoptArgs.end(),
|
|
ParentDeopt->Inputs.begin(),
|
|
ParentDeopt->Inputs.end());
|
|
MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
|
|
ChildOB.Inputs.end());
|
|
|
|
OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
|
|
}
|
|
|
|
Instruction *NewI = nullptr;
|
|
if (isa<CallInst>(I))
|
|
NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
|
|
else
|
|
NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
|
|
|
|
// Note: the RAUW does the appropriate fixup in VMap, so we need to do
|
|
// this even if the call returns void.
|
|
I->replaceAllUsesWith(NewI);
|
|
|
|
VH = nullptr;
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Update the callgraph if requested.
|
|
if (IFI.CG)
|
|
UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
|
|
|
|
// For 'nodebug' functions, the associated DISubprogram is always null.
|
|
// Conservatively avoid propagating the callsite debug location to
|
|
// instructions inlined from a function whose DISubprogram is not null.
|
|
fixupLineNumbers(Caller, FirstNewBlock, TheCall,
|
|
CalledFunc->getSubprogram() != nullptr);
|
|
|
|
// Clone existing noalias metadata if necessary.
|
|
CloneAliasScopeMetadata(CS, VMap);
|
|
|
|
// Add noalias metadata if necessary.
|
|
AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
|
|
|
|
// Propagate llvm.mem.parallel_loop_access if necessary.
|
|
PropagateParallelLoopAccessMetadata(CS, VMap);
|
|
|
|
// Register any cloned assumptions.
|
|
if (IFI.GetAssumptionCache)
|
|
for (BasicBlock &NewBlock :
|
|
make_range(FirstNewBlock->getIterator(), Caller->end()))
|
|
for (Instruction &I : NewBlock) {
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I))
|
|
if (II->getIntrinsicID() == Intrinsic::assume)
|
|
(*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
|
|
}
|
|
}
|
|
|
|
// If there are any alloca instructions in the block that used to be the entry
|
|
// block for the callee, move them to the entry block of the caller. First
|
|
// calculate which instruction they should be inserted before. We insert the
|
|
// instructions at the end of the current alloca list.
|
|
{
|
|
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
|
|
for (BasicBlock::iterator I = FirstNewBlock->begin(),
|
|
E = FirstNewBlock->end(); I != E; ) {
|
|
AllocaInst *AI = dyn_cast<AllocaInst>(I++);
|
|
if (!AI) continue;
|
|
|
|
// If the alloca is now dead, remove it. This often occurs due to code
|
|
// specialization.
|
|
if (AI->use_empty()) {
|
|
AI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (!allocaWouldBeStaticInEntry(AI))
|
|
continue;
|
|
|
|
// Keep track of the static allocas that we inline into the caller.
|
|
IFI.StaticAllocas.push_back(AI);
|
|
|
|
// Scan for the block of allocas that we can move over, and move them
|
|
// all at once.
|
|
while (isa<AllocaInst>(I) &&
|
|
allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
|
|
IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
|
|
++I;
|
|
}
|
|
|
|
// Transfer all of the allocas over in a block. Using splice means
|
|
// that the instructions aren't removed from the symbol table, then
|
|
// reinserted.
|
|
Caller->getEntryBlock().getInstList().splice(
|
|
InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
|
|
}
|
|
// Move any dbg.declares describing the allocas into the entry basic block.
|
|
DIBuilder DIB(*Caller->getParent());
|
|
for (auto &AI : IFI.StaticAllocas)
|
|
replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0,
|
|
DIExpression::NoDeref);
|
|
}
|
|
|
|
SmallVector<Value*,4> VarArgsToForward;
|
|
SmallVector<AttributeSet, 4> VarArgsAttrs;
|
|
for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
|
|
i < CS.getNumArgOperands(); i++) {
|
|
VarArgsToForward.push_back(CS.getArgOperand(i));
|
|
VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
|
|
}
|
|
|
|
bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
|
|
if (InlinedFunctionInfo.ContainsCalls) {
|
|
CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
|
|
if (CallInst *CI = dyn_cast<CallInst>(TheCall))
|
|
CallSiteTailKind = CI->getTailCallKind();
|
|
|
|
// For inlining purposes, the "notail" marker is the same as no marker.
|
|
if (CallSiteTailKind == CallInst::TCK_NoTail)
|
|
CallSiteTailKind = CallInst::TCK_None;
|
|
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
|
|
++BB) {
|
|
for (auto II = BB->begin(); II != BB->end();) {
|
|
Instruction &I = *II++;
|
|
CallInst *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI)
|
|
continue;
|
|
|
|
// Forward varargs from inlined call site to calls to the
|
|
// ForwardVarArgsTo function, if requested, and to musttail calls.
|
|
if (!VarArgsToForward.empty() &&
|
|
((ForwardVarArgsTo &&
|
|
CI->getCalledFunction() == ForwardVarArgsTo) ||
|
|
CI->isMustTailCall())) {
|
|
// Collect attributes for non-vararg parameters.
|
|
AttributeList Attrs = CI->getAttributes();
|
|
SmallVector<AttributeSet, 8> ArgAttrs;
|
|
if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
|
|
for (unsigned ArgNo = 0;
|
|
ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
|
|
ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
|
|
}
|
|
|
|
// Add VarArg attributes.
|
|
ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
|
|
Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
|
|
Attrs.getRetAttributes(), ArgAttrs);
|
|
// Add VarArgs to existing parameters.
|
|
SmallVector<Value *, 6> Params(CI->arg_operands());
|
|
Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
|
|
CallInst *NewCI =
|
|
CallInst::Create(CI->getCalledFunction() ? CI->getCalledFunction()
|
|
: CI->getCalledValue(),
|
|
Params, "", CI);
|
|
NewCI->setDebugLoc(CI->getDebugLoc());
|
|
NewCI->setAttributes(Attrs);
|
|
NewCI->setCallingConv(CI->getCallingConv());
|
|
CI->replaceAllUsesWith(NewCI);
|
|
CI->eraseFromParent();
|
|
CI = NewCI;
|
|
}
|
|
|
|
if (Function *F = CI->getCalledFunction())
|
|
InlinedDeoptimizeCalls |=
|
|
F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
|
|
|
|
// We need to reduce the strength of any inlined tail calls. For
|
|
// musttail, we have to avoid introducing potential unbounded stack
|
|
// growth. For example, if functions 'f' and 'g' are mutually recursive
|
|
// with musttail, we can inline 'g' into 'f' so long as we preserve
|
|
// musttail on the cloned call to 'f'. If either the inlined call site
|
|
// or the cloned call site is *not* musttail, the program already has
|
|
// one frame of stack growth, so it's safe to remove musttail. Here is
|
|
// a table of example transformations:
|
|
//
|
|
// f -> musttail g -> musttail f ==> f -> musttail f
|
|
// f -> musttail g -> tail f ==> f -> tail f
|
|
// f -> g -> musttail f ==> f -> f
|
|
// f -> g -> tail f ==> f -> f
|
|
//
|
|
// Inlined notail calls should remain notail calls.
|
|
CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
|
|
if (ChildTCK != CallInst::TCK_NoTail)
|
|
ChildTCK = std::min(CallSiteTailKind, ChildTCK);
|
|
CI->setTailCallKind(ChildTCK);
|
|
InlinedMustTailCalls |= CI->isMustTailCall();
|
|
|
|
// Calls inlined through a 'nounwind' call site should be marked
|
|
// 'nounwind'.
|
|
if (MarkNoUnwind)
|
|
CI->setDoesNotThrow();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Leave lifetime markers for the static alloca's, scoping them to the
|
|
// function we just inlined.
|
|
if (InsertLifetime && !IFI.StaticAllocas.empty()) {
|
|
IRBuilder<> builder(&FirstNewBlock->front());
|
|
for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
|
|
AllocaInst *AI = IFI.StaticAllocas[ai];
|
|
// Don't mark swifterror allocas. They can't have bitcast uses.
|
|
if (AI->isSwiftError())
|
|
continue;
|
|
|
|
// If the alloca is already scoped to something smaller than the whole
|
|
// function then there's no need to add redundant, less accurate markers.
|
|
if (hasLifetimeMarkers(AI))
|
|
continue;
|
|
|
|
// Try to determine the size of the allocation.
|
|
ConstantInt *AllocaSize = nullptr;
|
|
if (ConstantInt *AIArraySize =
|
|
dyn_cast<ConstantInt>(AI->getArraySize())) {
|
|
auto &DL = Caller->getParent()->getDataLayout();
|
|
Type *AllocaType = AI->getAllocatedType();
|
|
uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
|
|
uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
|
|
|
|
// Don't add markers for zero-sized allocas.
|
|
if (AllocaArraySize == 0)
|
|
continue;
|
|
|
|
// Check that array size doesn't saturate uint64_t and doesn't
|
|
// overflow when it's multiplied by type size.
|
|
if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
|
|
std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
|
|
AllocaTypeSize) {
|
|
AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
|
|
AllocaArraySize * AllocaTypeSize);
|
|
}
|
|
}
|
|
|
|
builder.CreateLifetimeStart(AI, AllocaSize);
|
|
for (ReturnInst *RI : Returns) {
|
|
// Don't insert llvm.lifetime.end calls between a musttail or deoptimize
|
|
// call and a return. The return kills all local allocas.
|
|
if (InlinedMustTailCalls &&
|
|
RI->getParent()->getTerminatingMustTailCall())
|
|
continue;
|
|
if (InlinedDeoptimizeCalls &&
|
|
RI->getParent()->getTerminatingDeoptimizeCall())
|
|
continue;
|
|
IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the inlined code contained dynamic alloca instructions, wrap the inlined
|
|
// code with llvm.stacksave/llvm.stackrestore intrinsics.
|
|
if (InlinedFunctionInfo.ContainsDynamicAllocas) {
|
|
Module *M = Caller->getParent();
|
|
// Get the two intrinsics we care about.
|
|
Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
|
|
Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
|
|
|
|
// Insert the llvm.stacksave.
|
|
CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
|
|
.CreateCall(StackSave, {}, "savedstack");
|
|
|
|
// Insert a call to llvm.stackrestore before any return instructions in the
|
|
// inlined function.
|
|
for (ReturnInst *RI : Returns) {
|
|
// Don't insert llvm.stackrestore calls between a musttail or deoptimize
|
|
// call and a return. The return will restore the stack pointer.
|
|
if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
|
|
continue;
|
|
if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
|
|
continue;
|
|
IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
|
|
}
|
|
}
|
|
|
|
// If we are inlining for an invoke instruction, we must make sure to rewrite
|
|
// any call instructions into invoke instructions. This is sensitive to which
|
|
// funclet pads were top-level in the inlinee, so must be done before
|
|
// rewriting the "parent pad" links.
|
|
if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
BasicBlock *UnwindDest = II->getUnwindDest();
|
|
Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
|
|
if (isa<LandingPadInst>(FirstNonPHI)) {
|
|
HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
|
|
} else {
|
|
HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
|
|
}
|
|
}
|
|
|
|
// Update the lexical scopes of the new funclets and callsites.
|
|
// Anything that had 'none' as its parent is now nested inside the callsite's
|
|
// EHPad.
|
|
|
|
if (CallSiteEHPad) {
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(),
|
|
E = Caller->end();
|
|
BB != E; ++BB) {
|
|
// Add bundle operands to any top-level call sites.
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
|
|
Instruction *I = &*BBI++;
|
|
CallSite CS(I);
|
|
if (!CS)
|
|
continue;
|
|
|
|
// Skip call sites which are nounwind intrinsics.
|
|
auto *CalledFn =
|
|
dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
|
|
if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
|
|
continue;
|
|
|
|
// Skip call sites which already have a "funclet" bundle.
|
|
if (CS.getOperandBundle(LLVMContext::OB_funclet))
|
|
continue;
|
|
|
|
CS.getOperandBundlesAsDefs(OpBundles);
|
|
OpBundles.emplace_back("funclet", CallSiteEHPad);
|
|
|
|
Instruction *NewInst;
|
|
if (CS.isCall())
|
|
NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
|
|
else
|
|
NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
|
|
NewInst->takeName(I);
|
|
I->replaceAllUsesWith(NewInst);
|
|
I->eraseFromParent();
|
|
|
|
OpBundles.clear();
|
|
}
|
|
|
|
// It is problematic if the inlinee has a cleanupret which unwinds to
|
|
// caller and we inline it into a call site which doesn't unwind but into
|
|
// an EH pad that does. Such an edge must be dynamically unreachable.
|
|
// As such, we replace the cleanupret with unreachable.
|
|
if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
|
|
if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
|
|
changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
|
|
|
|
Instruction *I = BB->getFirstNonPHI();
|
|
if (!I->isEHPad())
|
|
continue;
|
|
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
|
|
if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
|
|
CatchSwitch->setParentPad(CallSiteEHPad);
|
|
} else {
|
|
auto *FPI = cast<FuncletPadInst>(I);
|
|
if (isa<ConstantTokenNone>(FPI->getParentPad()))
|
|
FPI->setParentPad(CallSiteEHPad);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (InlinedDeoptimizeCalls) {
|
|
// We need to at least remove the deoptimizing returns from the Return set,
|
|
// so that the control flow from those returns does not get merged into the
|
|
// caller (but terminate it instead). If the caller's return type does not
|
|
// match the callee's return type, we also need to change the return type of
|
|
// the intrinsic.
|
|
if (Caller->getReturnType() == TheCall->getType()) {
|
|
auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
|
|
return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
|
|
});
|
|
Returns.erase(NewEnd, Returns.end());
|
|
} else {
|
|
SmallVector<ReturnInst *, 8> NormalReturns;
|
|
Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
|
|
Caller->getParent(), Intrinsic::experimental_deoptimize,
|
|
{Caller->getReturnType()});
|
|
|
|
for (ReturnInst *RI : Returns) {
|
|
CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
|
|
if (!DeoptCall) {
|
|
NormalReturns.push_back(RI);
|
|
continue;
|
|
}
|
|
|
|
// The calling convention on the deoptimize call itself may be bogus,
|
|
// since the code we're inlining may have undefined behavior (and may
|
|
// never actually execute at runtime); but all
|
|
// @llvm.experimental.deoptimize declarations have to have the same
|
|
// calling convention in a well-formed module.
|
|
auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
|
|
NewDeoptIntrinsic->setCallingConv(CallingConv);
|
|
auto *CurBB = RI->getParent();
|
|
RI->eraseFromParent();
|
|
|
|
SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
|
|
DeoptCall->arg_end());
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
DeoptCall->getOperandBundlesAsDefs(OpBundles);
|
|
DeoptCall->eraseFromParent();
|
|
assert(!OpBundles.empty() &&
|
|
"Expected at least the deopt operand bundle");
|
|
|
|
IRBuilder<> Builder(CurBB);
|
|
CallInst *NewDeoptCall =
|
|
Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
|
|
NewDeoptCall->setCallingConv(CallingConv);
|
|
if (NewDeoptCall->getType()->isVoidTy())
|
|
Builder.CreateRetVoid();
|
|
else
|
|
Builder.CreateRet(NewDeoptCall);
|
|
}
|
|
|
|
// Leave behind the normal returns so we can merge control flow.
|
|
std::swap(Returns, NormalReturns);
|
|
}
|
|
}
|
|
|
|
// Handle any inlined musttail call sites. In order for a new call site to be
|
|
// musttail, the source of the clone and the inlined call site must have been
|
|
// musttail. Therefore it's safe to return without merging control into the
|
|
// phi below.
|
|
if (InlinedMustTailCalls) {
|
|
// Check if we need to bitcast the result of any musttail calls.
|
|
Type *NewRetTy = Caller->getReturnType();
|
|
bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
|
|
|
|
// Handle the returns preceded by musttail calls separately.
|
|
SmallVector<ReturnInst *, 8> NormalReturns;
|
|
for (ReturnInst *RI : Returns) {
|
|
CallInst *ReturnedMustTail =
|
|
RI->getParent()->getTerminatingMustTailCall();
|
|
if (!ReturnedMustTail) {
|
|
NormalReturns.push_back(RI);
|
|
continue;
|
|
}
|
|
if (!NeedBitCast)
|
|
continue;
|
|
|
|
// Delete the old return and any preceding bitcast.
|
|
BasicBlock *CurBB = RI->getParent();
|
|
auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
|
|
RI->eraseFromParent();
|
|
if (OldCast)
|
|
OldCast->eraseFromParent();
|
|
|
|
// Insert a new bitcast and return with the right type.
|
|
IRBuilder<> Builder(CurBB);
|
|
Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
|
|
}
|
|
|
|
// Leave behind the normal returns so we can merge control flow.
|
|
std::swap(Returns, NormalReturns);
|
|
}
|
|
|
|
// Now that all of the transforms on the inlined code have taken place but
|
|
// before we splice the inlined code into the CFG and lose track of which
|
|
// blocks were actually inlined, collect the call sites. We only do this if
|
|
// call graph updates weren't requested, as those provide value handle based
|
|
// tracking of inlined call sites instead.
|
|
if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
|
|
// Otherwise just collect the raw call sites that were inlined.
|
|
for (BasicBlock &NewBB :
|
|
make_range(FirstNewBlock->getIterator(), Caller->end()))
|
|
for (Instruction &I : NewBB)
|
|
if (auto CS = CallSite(&I))
|
|
IFI.InlinedCallSites.push_back(CS);
|
|
}
|
|
|
|
// If we cloned in _exactly one_ basic block, and if that block ends in a
|
|
// return instruction, we splice the body of the inlined callee directly into
|
|
// the calling basic block.
|
|
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
|
|
// Move all of the instructions right before the call.
|
|
OrigBB->getInstList().splice(TheCall->getIterator(),
|
|
FirstNewBlock->getInstList(),
|
|
FirstNewBlock->begin(), FirstNewBlock->end());
|
|
// Remove the cloned basic block.
|
|
Caller->getBasicBlockList().pop_back();
|
|
|
|
// If the call site was an invoke instruction, add a branch to the normal
|
|
// destination.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
|
|
NewBr->setDebugLoc(Returns[0]->getDebugLoc());
|
|
}
|
|
|
|
// If the return instruction returned a value, replace uses of the call with
|
|
// uses of the returned value.
|
|
if (!TheCall->use_empty()) {
|
|
ReturnInst *R = Returns[0];
|
|
if (TheCall == R->getReturnValue())
|
|
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
|
|
else
|
|
TheCall->replaceAllUsesWith(R->getReturnValue());
|
|
}
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
TheCall->eraseFromParent();
|
|
|
|
// Since we are now done with the return instruction, delete it also.
|
|
Returns[0]->eraseFromParent();
|
|
|
|
// We are now done with the inlining.
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we have the normal case, of more than one block to inline or
|
|
// multiple return sites.
|
|
|
|
// We want to clone the entire callee function into the hole between the
|
|
// "starter" and "ender" blocks. How we accomplish this depends on whether
|
|
// this is an invoke instruction or a call instruction.
|
|
BasicBlock *AfterCallBB;
|
|
BranchInst *CreatedBranchToNormalDest = nullptr;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
|
|
|
|
// Add an unconditional branch to make this look like the CallInst case...
|
|
CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
|
|
|
|
// Split the basic block. This guarantees that no PHI nodes will have to be
|
|
// updated due to new incoming edges, and make the invoke case more
|
|
// symmetric to the call case.
|
|
AfterCallBB =
|
|
OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
|
|
CalledFunc->getName() + ".exit");
|
|
|
|
} else { // It's a call
|
|
// If this is a call instruction, we need to split the basic block that
|
|
// the call lives in.
|
|
//
|
|
AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
|
|
CalledFunc->getName() + ".exit");
|
|
}
|
|
|
|
if (IFI.CallerBFI) {
|
|
// Copy original BB's block frequency to AfterCallBB
|
|
IFI.CallerBFI->setBlockFreq(
|
|
AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
|
|
}
|
|
|
|
// Change the branch that used to go to AfterCallBB to branch to the first
|
|
// basic block of the inlined function.
|
|
//
|
|
Instruction *Br = OrigBB->getTerminator();
|
|
assert(Br && Br->getOpcode() == Instruction::Br &&
|
|
"splitBasicBlock broken!");
|
|
Br->setOperand(0, &*FirstNewBlock);
|
|
|
|
// Now that the function is correct, make it a little bit nicer. In
|
|
// particular, move the basic blocks inserted from the end of the function
|
|
// into the space made by splitting the source basic block.
|
|
Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
|
|
Caller->getBasicBlockList(), FirstNewBlock,
|
|
Caller->end());
|
|
|
|
// Handle all of the return instructions that we just cloned in, and eliminate
|
|
// any users of the original call/invoke instruction.
|
|
Type *RTy = CalledFunc->getReturnType();
|
|
|
|
PHINode *PHI = nullptr;
|
|
if (Returns.size() > 1) {
|
|
// The PHI node should go at the front of the new basic block to merge all
|
|
// possible incoming values.
|
|
if (!TheCall->use_empty()) {
|
|
PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
|
|
&AfterCallBB->front());
|
|
// Anything that used the result of the function call should now use the
|
|
// PHI node as their operand.
|
|
TheCall->replaceAllUsesWith(PHI);
|
|
}
|
|
|
|
// Loop over all of the return instructions adding entries to the PHI node
|
|
// as appropriate.
|
|
if (PHI) {
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
|
|
ReturnInst *RI = Returns[i];
|
|
assert(RI->getReturnValue()->getType() == PHI->getType() &&
|
|
"Ret value not consistent in function!");
|
|
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
|
|
}
|
|
}
|
|
|
|
// Add a branch to the merge points and remove return instructions.
|
|
DebugLoc Loc;
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
|
|
ReturnInst *RI = Returns[i];
|
|
BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
|
|
Loc = RI->getDebugLoc();
|
|
BI->setDebugLoc(Loc);
|
|
RI->eraseFromParent();
|
|
}
|
|
// We need to set the debug location to *somewhere* inside the
|
|
// inlined function. The line number may be nonsensical, but the
|
|
// instruction will at least be associated with the right
|
|
// function.
|
|
if (CreatedBranchToNormalDest)
|
|
CreatedBranchToNormalDest->setDebugLoc(Loc);
|
|
} else if (!Returns.empty()) {
|
|
// Otherwise, if there is exactly one return value, just replace anything
|
|
// using the return value of the call with the computed value.
|
|
if (!TheCall->use_empty()) {
|
|
if (TheCall == Returns[0]->getReturnValue())
|
|
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
|
|
else
|
|
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
|
|
}
|
|
|
|
// Update PHI nodes that use the ReturnBB to use the AfterCallBB.
|
|
BasicBlock *ReturnBB = Returns[0]->getParent();
|
|
ReturnBB->replaceAllUsesWith(AfterCallBB);
|
|
|
|
// Splice the code from the return block into the block that it will return
|
|
// to, which contains the code that was after the call.
|
|
AfterCallBB->getInstList().splice(AfterCallBB->begin(),
|
|
ReturnBB->getInstList());
|
|
|
|
if (CreatedBranchToNormalDest)
|
|
CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
|
|
|
|
// Delete the return instruction now and empty ReturnBB now.
|
|
Returns[0]->eraseFromParent();
|
|
ReturnBB->eraseFromParent();
|
|
} else if (!TheCall->use_empty()) {
|
|
// No returns, but something is using the return value of the call. Just
|
|
// nuke the result.
|
|
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
|
|
}
|
|
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
TheCall->eraseFromParent();
|
|
|
|
// If we inlined any musttail calls and the original return is now
|
|
// unreachable, delete it. It can only contain a bitcast and ret.
|
|
if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
|
|
AfterCallBB->eraseFromParent();
|
|
|
|
// We should always be able to fold the entry block of the function into the
|
|
// single predecessor of the block...
|
|
assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
|
|
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
|
|
|
|
// Splice the code entry block into calling block, right before the
|
|
// unconditional branch.
|
|
CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
|
|
OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
|
|
|
|
// Remove the unconditional branch.
|
|
OrigBB->getInstList().erase(Br);
|
|
|
|
// Now we can remove the CalleeEntry block, which is now empty.
|
|
Caller->getBasicBlockList().erase(CalleeEntry);
|
|
|
|
// If we inserted a phi node, check to see if it has a single value (e.g. all
|
|
// the entries are the same or undef). If so, remove the PHI so it doesn't
|
|
// block other optimizations.
|
|
if (PHI) {
|
|
AssumptionCache *AC =
|
|
IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
|
|
auto &DL = Caller->getParent()->getDataLayout();
|
|
if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
|
|
PHI->replaceAllUsesWith(V);
|
|
PHI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|