forked from OSchip/llvm-project
2037 lines
78 KiB
C++
2037 lines
78 KiB
C++
//===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass forwards branches to unconditional branches to make them branch
|
|
// directly to the target block. This pass often results in dead MBB's, which
|
|
// it then removes.
|
|
//
|
|
// Note that this pass must be run after register allocation, it cannot handle
|
|
// SSA form. It also must handle virtual registers for targets that emit virtual
|
|
// ISA (e.g. NVPTX).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "BranchFolding.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineSizeOpts.h"
|
|
#include "llvm/CodeGen/MBFIWrapper.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/MC/LaneBitmask.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "branch-folder"
|
|
|
|
STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
|
|
STATISTIC(NumBranchOpts, "Number of branches optimized");
|
|
STATISTIC(NumTailMerge , "Number of block tails merged");
|
|
STATISTIC(NumHoist , "Number of times common instructions are hoisted");
|
|
STATISTIC(NumTailCalls, "Number of tail calls optimized");
|
|
|
|
static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
|
|
cl::init(cl::BOU_UNSET), cl::Hidden);
|
|
|
|
// Throttle for huge numbers of predecessors (compile speed problems)
|
|
static cl::opt<unsigned>
|
|
TailMergeThreshold("tail-merge-threshold",
|
|
cl::desc("Max number of predecessors to consider tail merging"),
|
|
cl::init(150), cl::Hidden);
|
|
|
|
// Heuristic for tail merging (and, inversely, tail duplication).
|
|
// TODO: This should be replaced with a target query.
|
|
static cl::opt<unsigned>
|
|
TailMergeSize("tail-merge-size",
|
|
cl::desc("Min number of instructions to consider tail merging"),
|
|
cl::init(3), cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
/// BranchFolderPass - Wrap branch folder in a machine function pass.
|
|
class BranchFolderPass : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit BranchFolderPass(): MachineFunctionPass(ID) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addRequired<MachineBranchProbabilityInfo>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char BranchFolderPass::ID = 0;
|
|
|
|
char &llvm::BranchFolderPassID = BranchFolderPass::ID;
|
|
|
|
INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
|
|
"Control Flow Optimizer", false, false)
|
|
|
|
bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
|
|
// TailMerge can create jump into if branches that make CFG irreducible for
|
|
// HW that requires structurized CFG.
|
|
bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
|
|
PassConfig->getEnableTailMerge();
|
|
MBFIWrapper MBBFreqInfo(
|
|
getAnalysis<MachineBlockFrequencyInfo>());
|
|
BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
|
|
getAnalysis<MachineBranchProbabilityInfo>(),
|
|
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
|
|
return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
|
|
MF.getSubtarget().getRegisterInfo());
|
|
}
|
|
|
|
BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
|
|
MBFIWrapper &FreqInfo,
|
|
const MachineBranchProbabilityInfo &ProbInfo,
|
|
ProfileSummaryInfo *PSI, unsigned MinTailLength)
|
|
: EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
|
|
MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
|
|
if (MinCommonTailLength == 0)
|
|
MinCommonTailLength = TailMergeSize;
|
|
switch (FlagEnableTailMerge) {
|
|
case cl::BOU_UNSET:
|
|
EnableTailMerge = DefaultEnableTailMerge;
|
|
break;
|
|
case cl::BOU_TRUE: EnableTailMerge = true; break;
|
|
case cl::BOU_FALSE: EnableTailMerge = false; break;
|
|
}
|
|
}
|
|
|
|
void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
|
|
assert(MBB->pred_empty() && "MBB must be dead!");
|
|
LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
|
|
|
|
MachineFunction *MF = MBB->getParent();
|
|
// drop all successors.
|
|
while (!MBB->succ_empty())
|
|
MBB->removeSuccessor(MBB->succ_end()-1);
|
|
|
|
// Avoid matching if this pointer gets reused.
|
|
TriedMerging.erase(MBB);
|
|
|
|
// Update call site info.
|
|
std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
|
|
if (MI.shouldUpdateCallSiteInfo())
|
|
MF->eraseCallSiteInfo(&MI);
|
|
});
|
|
// Remove the block.
|
|
MF->erase(MBB);
|
|
EHScopeMembership.erase(MBB);
|
|
if (MLI)
|
|
MLI->removeBlock(MBB);
|
|
}
|
|
|
|
bool BranchFolder::OptimizeFunction(MachineFunction &MF,
|
|
const TargetInstrInfo *tii,
|
|
const TargetRegisterInfo *tri,
|
|
MachineLoopInfo *mli, bool AfterPlacement) {
|
|
if (!tii) return false;
|
|
|
|
TriedMerging.clear();
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
AfterBlockPlacement = AfterPlacement;
|
|
TII = tii;
|
|
TRI = tri;
|
|
MLI = mli;
|
|
this->MRI = &MRI;
|
|
|
|
UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
|
|
if (!UpdateLiveIns)
|
|
MRI.invalidateLiveness();
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Recalculate EH scope membership.
|
|
EHScopeMembership = getEHScopeMembership(MF);
|
|
|
|
bool MadeChangeThisIteration = true;
|
|
while (MadeChangeThisIteration) {
|
|
MadeChangeThisIteration = TailMergeBlocks(MF);
|
|
// No need to clean up if tail merging does not change anything after the
|
|
// block placement.
|
|
if (!AfterBlockPlacement || MadeChangeThisIteration)
|
|
MadeChangeThisIteration |= OptimizeBranches(MF);
|
|
if (EnableHoistCommonCode)
|
|
MadeChangeThisIteration |= HoistCommonCode(MF);
|
|
MadeChange |= MadeChangeThisIteration;
|
|
}
|
|
|
|
// See if any jump tables have become dead as the code generator
|
|
// did its thing.
|
|
MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
|
|
if (!JTI)
|
|
return MadeChange;
|
|
|
|
// Walk the function to find jump tables that are live.
|
|
BitVector JTIsLive(JTI->getJumpTables().size());
|
|
for (const MachineBasicBlock &BB : MF) {
|
|
for (const MachineInstr &I : BB)
|
|
for (const MachineOperand &Op : I.operands()) {
|
|
if (!Op.isJTI()) continue;
|
|
|
|
// Remember that this JT is live.
|
|
JTIsLive.set(Op.getIndex());
|
|
}
|
|
}
|
|
|
|
// Finally, remove dead jump tables. This happens when the
|
|
// indirect jump was unreachable (and thus deleted).
|
|
for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
|
|
if (!JTIsLive.test(i)) {
|
|
JTI->RemoveJumpTable(i);
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Tail Merging of Blocks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// HashMachineInstr - Compute a hash value for MI and its operands.
|
|
static unsigned HashMachineInstr(const MachineInstr &MI) {
|
|
unsigned Hash = MI.getOpcode();
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &Op = MI.getOperand(i);
|
|
|
|
// Merge in bits from the operand if easy. We can't use MachineOperand's
|
|
// hash_code here because it's not deterministic and we sort by hash value
|
|
// later.
|
|
unsigned OperandHash = 0;
|
|
switch (Op.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
OperandHash = Op.getReg();
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
OperandHash = Op.getImm();
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
OperandHash = Op.getMBB()->getNumber();
|
|
break;
|
|
case MachineOperand::MO_FrameIndex:
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
OperandHash = Op.getIndex();
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
// Global address / external symbol are too hard, don't bother, but do
|
|
// pull in the offset.
|
|
OperandHash = Op.getOffset();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
|
|
}
|
|
return Hash;
|
|
}
|
|
|
|
/// HashEndOfMBB - Hash the last instruction in the MBB.
|
|
static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
|
|
MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return 0;
|
|
|
|
return HashMachineInstr(*I);
|
|
}
|
|
|
|
/// Whether MI should be counted as an instruction when calculating common tail.
|
|
static bool countsAsInstruction(const MachineInstr &MI) {
|
|
return !(MI.isDebugInstr() || MI.isCFIInstruction());
|
|
}
|
|
|
|
/// Iterate backwards from the given iterator \p I, towards the beginning of the
|
|
/// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
|
|
/// pointing to that MI. If no such MI is found, return the end iterator.
|
|
static MachineBasicBlock::iterator
|
|
skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock *MBB) {
|
|
while (I != MBB->begin()) {
|
|
--I;
|
|
if (countsAsInstruction(*I))
|
|
return I;
|
|
}
|
|
return MBB->end();
|
|
}
|
|
|
|
/// Given two machine basic blocks, return the number of instructions they
|
|
/// actually have in common together at their end. If a common tail is found (at
|
|
/// least by one instruction), then iterators for the first shared instruction
|
|
/// in each block are returned as well.
|
|
///
|
|
/// Non-instructions according to countsAsInstruction are ignored.
|
|
static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
|
|
MachineBasicBlock *MBB2,
|
|
MachineBasicBlock::iterator &I1,
|
|
MachineBasicBlock::iterator &I2) {
|
|
MachineBasicBlock::iterator MBBI1 = MBB1->end();
|
|
MachineBasicBlock::iterator MBBI2 = MBB2->end();
|
|
|
|
unsigned TailLen = 0;
|
|
while (true) {
|
|
MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
|
|
MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
|
|
if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
|
|
break;
|
|
if (!MBBI1->isIdenticalTo(*MBBI2) ||
|
|
// FIXME: This check is dubious. It's used to get around a problem where
|
|
// people incorrectly expect inline asm directives to remain in the same
|
|
// relative order. This is untenable because normal compiler
|
|
// optimizations (like this one) may reorder and/or merge these
|
|
// directives.
|
|
MBBI1->isInlineAsm()) {
|
|
break;
|
|
}
|
|
if (MBBI1->getFlag(MachineInstr::NoMerge) ||
|
|
MBBI2->getFlag(MachineInstr::NoMerge))
|
|
break;
|
|
++TailLen;
|
|
I1 = MBBI1;
|
|
I2 = MBBI2;
|
|
}
|
|
|
|
return TailLen;
|
|
}
|
|
|
|
void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
|
|
MachineBasicBlock &NewDest) {
|
|
if (UpdateLiveIns) {
|
|
// OldInst should always point to an instruction.
|
|
MachineBasicBlock &OldMBB = *OldInst->getParent();
|
|
LiveRegs.clear();
|
|
LiveRegs.addLiveOuts(OldMBB);
|
|
// Move backward to the place where will insert the jump.
|
|
MachineBasicBlock::iterator I = OldMBB.end();
|
|
do {
|
|
--I;
|
|
LiveRegs.stepBackward(*I);
|
|
} while (I != OldInst);
|
|
|
|
// Merging the tails may have switched some undef operand to non-undef ones.
|
|
// Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
|
|
// register.
|
|
for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
|
|
// We computed the liveins with computeLiveIn earlier and should only see
|
|
// full registers:
|
|
assert(P.LaneMask == LaneBitmask::getAll() &&
|
|
"Can only handle full register.");
|
|
MCPhysReg Reg = P.PhysReg;
|
|
if (!LiveRegs.available(*MRI, Reg))
|
|
continue;
|
|
DebugLoc DL;
|
|
BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
|
|
}
|
|
}
|
|
|
|
TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
|
|
++NumTailMerge;
|
|
}
|
|
|
|
MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
|
|
MachineBasicBlock::iterator BBI1,
|
|
const BasicBlock *BB) {
|
|
if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
|
|
return nullptr;
|
|
|
|
MachineFunction &MF = *CurMBB.getParent();
|
|
|
|
// Create the fall-through block.
|
|
MachineFunction::iterator MBBI = CurMBB.getIterator();
|
|
MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
|
|
CurMBB.getParent()->insert(++MBBI, NewMBB);
|
|
|
|
// Move all the successors of this block to the specified block.
|
|
NewMBB->transferSuccessors(&CurMBB);
|
|
|
|
// Add an edge from CurMBB to NewMBB for the fall-through.
|
|
CurMBB.addSuccessor(NewMBB);
|
|
|
|
// Splice the code over.
|
|
NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
|
|
|
|
// NewMBB belongs to the same loop as CurMBB.
|
|
if (MLI)
|
|
if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
|
|
ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
|
|
|
|
// NewMBB inherits CurMBB's block frequency.
|
|
MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
|
|
|
|
if (UpdateLiveIns)
|
|
computeAndAddLiveIns(LiveRegs, *NewMBB);
|
|
|
|
// Add the new block to the EH scope.
|
|
const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
|
|
if (EHScopeI != EHScopeMembership.end()) {
|
|
auto n = EHScopeI->second;
|
|
EHScopeMembership[NewMBB] = n;
|
|
}
|
|
|
|
return NewMBB;
|
|
}
|
|
|
|
/// EstimateRuntime - Make a rough estimate for how long it will take to run
|
|
/// the specified code.
|
|
static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator E) {
|
|
unsigned Time = 0;
|
|
for (; I != E; ++I) {
|
|
if (!countsAsInstruction(*I))
|
|
continue;
|
|
if (I->isCall())
|
|
Time += 10;
|
|
else if (I->mayLoadOrStore())
|
|
Time += 2;
|
|
else
|
|
++Time;
|
|
}
|
|
return Time;
|
|
}
|
|
|
|
// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
|
|
// branches temporarily for tail merging). In the case where CurMBB ends
|
|
// with a conditional branch to the next block, optimize by reversing the
|
|
// test and conditionally branching to SuccMBB instead.
|
|
static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
|
|
const TargetInstrInfo *TII) {
|
|
MachineFunction *MF = CurMBB->getParent();
|
|
MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
DebugLoc dl = CurMBB->findBranchDebugLoc();
|
|
if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
|
|
MachineBasicBlock *NextBB = &*I;
|
|
if (TBB == NextBB && !Cond.empty() && !FBB) {
|
|
if (!TII->reverseBranchCondition(Cond)) {
|
|
TII->removeBranch(*CurMBB);
|
|
TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
TII->insertBranch(*CurMBB, SuccBB, nullptr,
|
|
SmallVector<MachineOperand, 0>(), dl);
|
|
}
|
|
|
|
bool
|
|
BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
|
|
if (getHash() < o.getHash())
|
|
return true;
|
|
if (getHash() > o.getHash())
|
|
return false;
|
|
if (getBlock()->getNumber() < o.getBlock()->getNumber())
|
|
return true;
|
|
if (getBlock()->getNumber() > o.getBlock()->getNumber())
|
|
return false;
|
|
// _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
|
|
// an object with itself.
|
|
#ifndef _GLIBCXX_DEBUG
|
|
llvm_unreachable("Predecessor appears twice");
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/// CountTerminators - Count the number of terminators in the given
|
|
/// block and set I to the position of the first non-terminator, if there
|
|
/// is one, or MBB->end() otherwise.
|
|
static unsigned CountTerminators(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &I) {
|
|
I = MBB->end();
|
|
unsigned NumTerms = 0;
|
|
while (true) {
|
|
if (I == MBB->begin()) {
|
|
I = MBB->end();
|
|
break;
|
|
}
|
|
--I;
|
|
if (!I->isTerminator()) break;
|
|
++NumTerms;
|
|
}
|
|
return NumTerms;
|
|
}
|
|
|
|
/// A no successor, non-return block probably ends in unreachable and is cold.
|
|
/// Also consider a block that ends in an indirect branch to be a return block,
|
|
/// since many targets use plain indirect branches to return.
|
|
static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
|
|
if (!MBB->succ_empty())
|
|
return false;
|
|
if (MBB->empty())
|
|
return true;
|
|
return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
|
|
}
|
|
|
|
/// ProfitableToMerge - Check if two machine basic blocks have a common tail
|
|
/// and decide if it would be profitable to merge those tails. Return the
|
|
/// length of the common tail and iterators to the first common instruction
|
|
/// in each block.
|
|
/// MBB1, MBB2 The blocks to check
|
|
/// MinCommonTailLength Minimum size of tail block to be merged.
|
|
/// CommonTailLen Out parameter to record the size of the shared tail between
|
|
/// MBB1 and MBB2
|
|
/// I1, I2 Iterator references that will be changed to point to the first
|
|
/// instruction in the common tail shared by MBB1,MBB2
|
|
/// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
|
|
/// relative to SuccBB
|
|
/// PredBB The layout predecessor of SuccBB, if any.
|
|
/// EHScopeMembership map from block to EH scope #.
|
|
/// AfterPlacement True if we are merging blocks after layout. Stricter
|
|
/// thresholds apply to prevent undoing tail-duplication.
|
|
static bool
|
|
ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
|
|
unsigned MinCommonTailLength, unsigned &CommonTailLen,
|
|
MachineBasicBlock::iterator &I1,
|
|
MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
|
|
MachineBasicBlock *PredBB,
|
|
DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
|
|
bool AfterPlacement,
|
|
MBFIWrapper &MBBFreqInfo,
|
|
ProfileSummaryInfo *PSI) {
|
|
// It is never profitable to tail-merge blocks from two different EH scopes.
|
|
if (!EHScopeMembership.empty()) {
|
|
auto EHScope1 = EHScopeMembership.find(MBB1);
|
|
assert(EHScope1 != EHScopeMembership.end());
|
|
auto EHScope2 = EHScopeMembership.find(MBB2);
|
|
assert(EHScope2 != EHScopeMembership.end());
|
|
if (EHScope1->second != EHScope2->second)
|
|
return false;
|
|
}
|
|
|
|
CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
|
|
if (CommonTailLen == 0)
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
|
|
<< " and " << printMBBReference(*MBB2) << " is "
|
|
<< CommonTailLen << '\n');
|
|
|
|
// Move the iterators to the beginning of the MBB if we only got debug
|
|
// instructions before the tail. This is to avoid splitting a block when we
|
|
// only got debug instructions before the tail (to be invariant on -g).
|
|
if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end()) == I1)
|
|
I1 = MBB1->begin();
|
|
if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end()) == I2)
|
|
I2 = MBB2->begin();
|
|
|
|
bool FullBlockTail1 = I1 == MBB1->begin();
|
|
bool FullBlockTail2 = I2 == MBB2->begin();
|
|
|
|
// It's almost always profitable to merge any number of non-terminator
|
|
// instructions with the block that falls through into the common successor.
|
|
// This is true only for a single successor. For multiple successors, we are
|
|
// trading a conditional branch for an unconditional one.
|
|
// TODO: Re-visit successor size for non-layout tail merging.
|
|
if ((MBB1 == PredBB || MBB2 == PredBB) &&
|
|
(!AfterPlacement || MBB1->succ_size() == 1)) {
|
|
MachineBasicBlock::iterator I;
|
|
unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
|
|
if (CommonTailLen > NumTerms)
|
|
return true;
|
|
}
|
|
|
|
// If these are identical non-return blocks with no successors, merge them.
|
|
// Such blocks are typically cold calls to noreturn functions like abort, and
|
|
// are unlikely to become a fallthrough target after machine block placement.
|
|
// Tail merging these blocks is unlikely to create additional unconditional
|
|
// branches, and will reduce the size of this cold code.
|
|
if (FullBlockTail1 && FullBlockTail2 &&
|
|
blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
|
|
return true;
|
|
|
|
// If one of the blocks can be completely merged and happens to be in
|
|
// a position where the other could fall through into it, merge any number
|
|
// of instructions, because it can be done without a branch.
|
|
// TODO: If the blocks are not adjacent, move one of them so that they are?
|
|
if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
|
|
return true;
|
|
if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
|
|
return true;
|
|
|
|
// If both blocks are identical and end in a branch, merge them unless they
|
|
// both have a fallthrough predecessor and successor.
|
|
// We can only do this after block placement because it depends on whether
|
|
// there are fallthroughs, and we don't know until after layout.
|
|
if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
|
|
auto BothFallThrough = [](MachineBasicBlock *MBB) {
|
|
if (MBB->succ_size() != 0 && !MBB->canFallThrough())
|
|
return false;
|
|
MachineFunction::iterator I(MBB);
|
|
MachineFunction *MF = MBB->getParent();
|
|
return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
|
|
};
|
|
if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
|
|
return true;
|
|
}
|
|
|
|
// If both blocks have an unconditional branch temporarily stripped out,
|
|
// count that as an additional common instruction for the following
|
|
// heuristics. This heuristic is only accurate for single-succ blocks, so to
|
|
// make sure that during layout merging and duplicating don't crash, we check
|
|
// for that when merging during layout.
|
|
unsigned EffectiveTailLen = CommonTailLen;
|
|
if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
|
|
(MBB1->succ_size() == 1 || !AfterPlacement) &&
|
|
!MBB1->back().isBarrier() &&
|
|
!MBB2->back().isBarrier())
|
|
++EffectiveTailLen;
|
|
|
|
// Check if the common tail is long enough to be worthwhile.
|
|
if (EffectiveTailLen >= MinCommonTailLength)
|
|
return true;
|
|
|
|
// If we are optimizing for code size, 2 instructions in common is enough if
|
|
// we don't have to split a block. At worst we will be introducing 1 new
|
|
// branch instruction, which is likely to be smaller than the 2
|
|
// instructions that would be deleted in the merge.
|
|
MachineFunction *MF = MBB1->getParent();
|
|
bool OptForSize =
|
|
MF->getFunction().hasOptSize() ||
|
|
(llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
|
|
llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
|
|
return EffectiveTailLen >= 2 && OptForSize &&
|
|
(FullBlockTail1 || FullBlockTail2);
|
|
}
|
|
|
|
unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
|
|
unsigned MinCommonTailLength,
|
|
MachineBasicBlock *SuccBB,
|
|
MachineBasicBlock *PredBB) {
|
|
unsigned maxCommonTailLength = 0U;
|
|
SameTails.clear();
|
|
MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
|
|
MPIterator HighestMPIter = std::prev(MergePotentials.end());
|
|
for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
|
|
B = MergePotentials.begin();
|
|
CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
|
|
for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
|
|
unsigned CommonTailLen;
|
|
if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
|
|
MinCommonTailLength,
|
|
CommonTailLen, TrialBBI1, TrialBBI2,
|
|
SuccBB, PredBB,
|
|
EHScopeMembership,
|
|
AfterBlockPlacement, MBBFreqInfo, PSI)) {
|
|
if (CommonTailLen > maxCommonTailLength) {
|
|
SameTails.clear();
|
|
maxCommonTailLength = CommonTailLen;
|
|
HighestMPIter = CurMPIter;
|
|
SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
|
|
}
|
|
if (HighestMPIter == CurMPIter &&
|
|
CommonTailLen == maxCommonTailLength)
|
|
SameTails.push_back(SameTailElt(I, TrialBBI2));
|
|
}
|
|
if (I == B)
|
|
break;
|
|
}
|
|
}
|
|
return maxCommonTailLength;
|
|
}
|
|
|
|
void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
|
|
MachineBasicBlock *SuccBB,
|
|
MachineBasicBlock *PredBB) {
|
|
MPIterator CurMPIter, B;
|
|
for (CurMPIter = std::prev(MergePotentials.end()),
|
|
B = MergePotentials.begin();
|
|
CurMPIter->getHash() == CurHash; --CurMPIter) {
|
|
// Put the unconditional branch back, if we need one.
|
|
MachineBasicBlock *CurMBB = CurMPIter->getBlock();
|
|
if (SuccBB && CurMBB != PredBB)
|
|
FixTail(CurMBB, SuccBB, TII);
|
|
if (CurMPIter == B)
|
|
break;
|
|
}
|
|
if (CurMPIter->getHash() != CurHash)
|
|
CurMPIter++;
|
|
MergePotentials.erase(CurMPIter, MergePotentials.end());
|
|
}
|
|
|
|
bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
|
|
MachineBasicBlock *SuccBB,
|
|
unsigned maxCommonTailLength,
|
|
unsigned &commonTailIndex) {
|
|
commonTailIndex = 0;
|
|
unsigned TimeEstimate = ~0U;
|
|
for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
|
|
// Use PredBB if possible; that doesn't require a new branch.
|
|
if (SameTails[i].getBlock() == PredBB) {
|
|
commonTailIndex = i;
|
|
break;
|
|
}
|
|
// Otherwise, make a (fairly bogus) choice based on estimate of
|
|
// how long it will take the various blocks to execute.
|
|
unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
|
|
SameTails[i].getTailStartPos());
|
|
if (t <= TimeEstimate) {
|
|
TimeEstimate = t;
|
|
commonTailIndex = i;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator BBI =
|
|
SameTails[commonTailIndex].getTailStartPos();
|
|
MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
|
|
|
|
LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
|
|
<< maxCommonTailLength);
|
|
|
|
// If the split block unconditionally falls-thru to SuccBB, it will be
|
|
// merged. In control flow terms it should then take SuccBB's name. e.g. If
|
|
// SuccBB is an inner loop, the common tail is still part of the inner loop.
|
|
const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
|
|
SuccBB->getBasicBlock() : MBB->getBasicBlock();
|
|
MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
|
|
if (!newMBB) {
|
|
LLVM_DEBUG(dbgs() << "... failed!");
|
|
return false;
|
|
}
|
|
|
|
SameTails[commonTailIndex].setBlock(newMBB);
|
|
SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
|
|
|
|
// If we split PredBB, newMBB is the new predecessor.
|
|
if (PredBB == MBB)
|
|
PredBB = newMBB;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
|
|
MachineBasicBlock &MBBCommon) {
|
|
MachineBasicBlock *MBB = MBBIStartPos->getParent();
|
|
// Note CommonTailLen does not necessarily matches the size of
|
|
// the common BB nor all its instructions because of debug
|
|
// instructions differences.
|
|
unsigned CommonTailLen = 0;
|
|
for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
|
|
++CommonTailLen;
|
|
|
|
MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
|
|
MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
|
|
MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
|
|
MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
|
|
|
|
while (CommonTailLen--) {
|
|
assert(MBBI != MBBIE && "Reached BB end within common tail length!");
|
|
(void)MBBIE;
|
|
|
|
if (!countsAsInstruction(*MBBI)) {
|
|
++MBBI;
|
|
continue;
|
|
}
|
|
|
|
while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
|
|
++MBBICommon;
|
|
|
|
assert(MBBICommon != MBBIECommon &&
|
|
"Reached BB end within common tail length!");
|
|
assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
|
|
|
|
// Merge MMOs from memory operations in the common block.
|
|
if (MBBICommon->mayLoadOrStore())
|
|
MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
|
|
// Drop undef flags if they aren't present in all merged instructions.
|
|
for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
|
|
MachineOperand &MO = MBBICommon->getOperand(I);
|
|
if (MO.isReg() && MO.isUndef()) {
|
|
const MachineOperand &OtherMO = MBBI->getOperand(I);
|
|
if (!OtherMO.isUndef())
|
|
MO.setIsUndef(false);
|
|
}
|
|
}
|
|
|
|
++MBBI;
|
|
++MBBICommon;
|
|
}
|
|
}
|
|
|
|
void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
|
|
MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
|
|
|
|
std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
|
|
for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
|
|
if (i != commonTailIndex) {
|
|
NextCommonInsts[i] = SameTails[i].getTailStartPos();
|
|
mergeOperations(SameTails[i].getTailStartPos(), *MBB);
|
|
} else {
|
|
assert(SameTails[i].getTailStartPos() == MBB->begin() &&
|
|
"MBB is not a common tail only block");
|
|
}
|
|
}
|
|
|
|
for (auto &MI : *MBB) {
|
|
if (!countsAsInstruction(MI))
|
|
continue;
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
|
|
if (i == commonTailIndex)
|
|
continue;
|
|
|
|
auto &Pos = NextCommonInsts[i];
|
|
assert(Pos != SameTails[i].getBlock()->end() &&
|
|
"Reached BB end within common tail");
|
|
while (!countsAsInstruction(*Pos)) {
|
|
++Pos;
|
|
assert(Pos != SameTails[i].getBlock()->end() &&
|
|
"Reached BB end within common tail");
|
|
}
|
|
assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
|
|
DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
|
|
NextCommonInsts[i] = ++Pos;
|
|
}
|
|
MI.setDebugLoc(DL);
|
|
}
|
|
|
|
if (UpdateLiveIns) {
|
|
LivePhysRegs NewLiveIns(*TRI);
|
|
computeLiveIns(NewLiveIns, *MBB);
|
|
LiveRegs.init(*TRI);
|
|
|
|
// The flag merging may lead to some register uses no longer using the
|
|
// <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
|
|
for (MachineBasicBlock *Pred : MBB->predecessors()) {
|
|
LiveRegs.clear();
|
|
LiveRegs.addLiveOuts(*Pred);
|
|
MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
|
|
for (Register Reg : NewLiveIns) {
|
|
if (!LiveRegs.available(*MRI, Reg))
|
|
continue;
|
|
DebugLoc DL;
|
|
BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
|
|
Reg);
|
|
}
|
|
}
|
|
|
|
MBB->clearLiveIns();
|
|
addLiveIns(*MBB, NewLiveIns);
|
|
}
|
|
}
|
|
|
|
// See if any of the blocks in MergePotentials (which all have SuccBB as a
|
|
// successor, or all have no successor if it is null) can be tail-merged.
|
|
// If there is a successor, any blocks in MergePotentials that are not
|
|
// tail-merged and are not immediately before Succ must have an unconditional
|
|
// branch to Succ added (but the predecessor/successor lists need no
|
|
// adjustment). The lone predecessor of Succ that falls through into Succ,
|
|
// if any, is given in PredBB.
|
|
// MinCommonTailLength - Except for the special cases below, tail-merge if
|
|
// there are at least this many instructions in common.
|
|
bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
|
|
MachineBasicBlock *PredBB,
|
|
unsigned MinCommonTailLength) {
|
|
bool MadeChange = false;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "\nTryTailMergeBlocks: ";
|
|
for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
|
|
<< printMBBReference(*MergePotentials[i].getBlock())
|
|
<< (i == e - 1 ? "" : ", ");
|
|
dbgs() << "\n"; if (SuccBB) {
|
|
dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n';
|
|
if (PredBB)
|
|
dbgs() << " which has fall-through from "
|
|
<< printMBBReference(*PredBB) << "\n";
|
|
} dbgs() << "Looking for common tails of at least "
|
|
<< MinCommonTailLength << " instruction"
|
|
<< (MinCommonTailLength == 1 ? "" : "s") << '\n';);
|
|
|
|
// Sort by hash value so that blocks with identical end sequences sort
|
|
// together.
|
|
array_pod_sort(MergePotentials.begin(), MergePotentials.end());
|
|
|
|
// Walk through equivalence sets looking for actual exact matches.
|
|
while (MergePotentials.size() > 1) {
|
|
unsigned CurHash = MergePotentials.back().getHash();
|
|
|
|
// Build SameTails, identifying the set of blocks with this hash code
|
|
// and with the maximum number of instructions in common.
|
|
unsigned maxCommonTailLength = ComputeSameTails(CurHash,
|
|
MinCommonTailLength,
|
|
SuccBB, PredBB);
|
|
|
|
// If we didn't find any pair that has at least MinCommonTailLength
|
|
// instructions in common, remove all blocks with this hash code and retry.
|
|
if (SameTails.empty()) {
|
|
RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
|
|
continue;
|
|
}
|
|
|
|
// If one of the blocks is the entire common tail (and is not the entry
|
|
// block/an EH pad, which we can't jump to), we can treat all blocks with
|
|
// this same tail at once. Use PredBB if that is one of the possibilities,
|
|
// as that will not introduce any extra branches.
|
|
MachineBasicBlock *EntryBB =
|
|
&MergePotentials.front().getBlock()->getParent()->front();
|
|
unsigned commonTailIndex = SameTails.size();
|
|
// If there are two blocks, check to see if one can be made to fall through
|
|
// into the other.
|
|
if (SameTails.size() == 2 &&
|
|
SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
|
|
SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
|
|
commonTailIndex = 1;
|
|
else if (SameTails.size() == 2 &&
|
|
SameTails[1].getBlock()->isLayoutSuccessor(
|
|
SameTails[0].getBlock()) &&
|
|
SameTails[0].tailIsWholeBlock() &&
|
|
!SameTails[0].getBlock()->isEHPad())
|
|
commonTailIndex = 0;
|
|
else {
|
|
// Otherwise just pick one, favoring the fall-through predecessor if
|
|
// there is one.
|
|
for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
|
|
MachineBasicBlock *MBB = SameTails[i].getBlock();
|
|
if ((MBB == EntryBB || MBB->isEHPad()) &&
|
|
SameTails[i].tailIsWholeBlock())
|
|
continue;
|
|
if (MBB == PredBB) {
|
|
commonTailIndex = i;
|
|
break;
|
|
}
|
|
if (SameTails[i].tailIsWholeBlock())
|
|
commonTailIndex = i;
|
|
}
|
|
}
|
|
|
|
if (commonTailIndex == SameTails.size() ||
|
|
(SameTails[commonTailIndex].getBlock() == PredBB &&
|
|
!SameTails[commonTailIndex].tailIsWholeBlock())) {
|
|
// None of the blocks consist entirely of the common tail.
|
|
// Split a block so that one does.
|
|
if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
|
|
maxCommonTailLength, commonTailIndex)) {
|
|
RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
|
|
|
|
// Recompute common tail MBB's edge weights and block frequency.
|
|
setCommonTailEdgeWeights(*MBB);
|
|
|
|
// Merge debug locations, MMOs and undef flags across identical instructions
|
|
// for common tail.
|
|
mergeCommonTails(commonTailIndex);
|
|
|
|
// MBB is common tail. Adjust all other BB's to jump to this one.
|
|
// Traversal must be forwards so erases work.
|
|
LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
|
|
<< " for ");
|
|
for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
|
|
if (commonTailIndex == i)
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
|
|
<< (i == e - 1 ? "" : ", "));
|
|
// Hack the end off BB i, making it jump to BB commonTailIndex instead.
|
|
replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
|
|
// BB i is no longer a predecessor of SuccBB; remove it from the worklist.
|
|
MergePotentials.erase(SameTails[i].getMPIter());
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
// We leave commonTailIndex in the worklist in case there are other blocks
|
|
// that match it with a smaller number of instructions.
|
|
MadeChange = true;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
|
|
bool MadeChange = false;
|
|
if (!EnableTailMerge)
|
|
return MadeChange;
|
|
|
|
// First find blocks with no successors.
|
|
// Block placement may create new tail merging opportunities for these blocks.
|
|
MergePotentials.clear();
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
if (MergePotentials.size() == TailMergeThreshold)
|
|
break;
|
|
if (!TriedMerging.count(&MBB) && MBB.succ_empty())
|
|
MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
|
|
}
|
|
|
|
// If this is a large problem, avoid visiting the same basic blocks
|
|
// multiple times.
|
|
if (MergePotentials.size() == TailMergeThreshold)
|
|
for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
|
|
TriedMerging.insert(MergePotentials[i].getBlock());
|
|
|
|
// See if we can do any tail merging on those.
|
|
if (MergePotentials.size() >= 2)
|
|
MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
|
|
|
|
// Look at blocks (IBB) with multiple predecessors (PBB).
|
|
// We change each predecessor to a canonical form, by
|
|
// (1) temporarily removing any unconditional branch from the predecessor
|
|
// to IBB, and
|
|
// (2) alter conditional branches so they branch to the other block
|
|
// not IBB; this may require adding back an unconditional branch to IBB
|
|
// later, where there wasn't one coming in. E.g.
|
|
// Bcc IBB
|
|
// fallthrough to QBB
|
|
// here becomes
|
|
// Bncc QBB
|
|
// with a conceptual B to IBB after that, which never actually exists.
|
|
// With those changes, we see whether the predecessors' tails match,
|
|
// and merge them if so. We change things out of canonical form and
|
|
// back to the way they were later in the process. (OptimizeBranches
|
|
// would undo some of this, but we can't use it, because we'd get into
|
|
// a compile-time infinite loop repeatedly doing and undoing the same
|
|
// transformations.)
|
|
|
|
for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
|
|
I != E; ++I) {
|
|
if (I->pred_size() < 2) continue;
|
|
SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
|
|
MachineBasicBlock *IBB = &*I;
|
|
MachineBasicBlock *PredBB = &*std::prev(I);
|
|
MergePotentials.clear();
|
|
MachineLoop *ML;
|
|
|
|
// Bail if merging after placement and IBB is the loop header because
|
|
// -- If merging predecessors that belong to the same loop as IBB, the
|
|
// common tail of merged predecessors may become the loop top if block
|
|
// placement is called again and the predecessors may branch to this common
|
|
// tail and require more branches. This can be relaxed if
|
|
// MachineBlockPlacement::findBestLoopTop is more flexible.
|
|
// --If merging predecessors that do not belong to the same loop as IBB, the
|
|
// loop info of IBB's loop and the other loops may be affected. Calling the
|
|
// block placement again may make big change to the layout and eliminate the
|
|
// reason to do tail merging here.
|
|
if (AfterBlockPlacement && MLI) {
|
|
ML = MLI->getLoopFor(IBB);
|
|
if (ML && IBB == ML->getHeader())
|
|
continue;
|
|
}
|
|
|
|
for (MachineBasicBlock *PBB : I->predecessors()) {
|
|
if (MergePotentials.size() == TailMergeThreshold)
|
|
break;
|
|
|
|
if (TriedMerging.count(PBB))
|
|
continue;
|
|
|
|
// Skip blocks that loop to themselves, can't tail merge these.
|
|
if (PBB == IBB)
|
|
continue;
|
|
|
|
// Visit each predecessor only once.
|
|
if (!UniquePreds.insert(PBB).second)
|
|
continue;
|
|
|
|
// Skip blocks which may jump to a landing pad or jump from an asm blob.
|
|
// Can't tail merge these.
|
|
if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
|
|
continue;
|
|
|
|
// After block placement, only consider predecessors that belong to the
|
|
// same loop as IBB. The reason is the same as above when skipping loop
|
|
// header.
|
|
if (AfterBlockPlacement && MLI)
|
|
if (ML != MLI->getLoopFor(PBB))
|
|
continue;
|
|
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
|
|
// Failing case: IBB is the target of a cbr, and we cannot reverse the
|
|
// branch.
|
|
SmallVector<MachineOperand, 4> NewCond(Cond);
|
|
if (!Cond.empty() && TBB == IBB) {
|
|
if (TII->reverseBranchCondition(NewCond))
|
|
continue;
|
|
// This is the QBB case described above
|
|
if (!FBB) {
|
|
auto Next = ++PBB->getIterator();
|
|
if (Next != MF.end())
|
|
FBB = &*Next;
|
|
}
|
|
}
|
|
|
|
// Remove the unconditional branch at the end, if any.
|
|
if (TBB && (Cond.empty() || FBB)) {
|
|
DebugLoc dl = PBB->findBranchDebugLoc();
|
|
TII->removeBranch(*PBB);
|
|
if (!Cond.empty())
|
|
// reinsert conditional branch only, for now
|
|
TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
|
|
NewCond, dl);
|
|
}
|
|
|
|
MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
|
|
}
|
|
}
|
|
|
|
// If this is a large problem, avoid visiting the same basic blocks multiple
|
|
// times.
|
|
if (MergePotentials.size() == TailMergeThreshold)
|
|
for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
|
|
TriedMerging.insert(MergePotentials[i].getBlock());
|
|
|
|
if (MergePotentials.size() >= 2)
|
|
MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
|
|
|
|
// Reinsert an unconditional branch if needed. The 1 below can occur as a
|
|
// result of removing blocks in TryTailMergeBlocks.
|
|
PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
|
|
if (MergePotentials.size() == 1 &&
|
|
MergePotentials.begin()->getBlock() != PredBB)
|
|
FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
|
|
SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
|
|
BlockFrequency AccumulatedMBBFreq;
|
|
|
|
// Aggregate edge frequency of successor edge j:
|
|
// edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
|
|
// where bb is a basic block that is in SameTails.
|
|
for (const auto &Src : SameTails) {
|
|
const MachineBasicBlock *SrcMBB = Src.getBlock();
|
|
BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
|
|
AccumulatedMBBFreq += BlockFreq;
|
|
|
|
// It is not necessary to recompute edge weights if TailBB has less than two
|
|
// successors.
|
|
if (TailMBB.succ_size() <= 1)
|
|
continue;
|
|
|
|
auto EdgeFreq = EdgeFreqLs.begin();
|
|
|
|
for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
|
|
SuccI != SuccE; ++SuccI, ++EdgeFreq)
|
|
*EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
|
|
}
|
|
|
|
MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
|
|
|
|
if (TailMBB.succ_size() <= 1)
|
|
return;
|
|
|
|
auto SumEdgeFreq =
|
|
std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
|
|
.getFrequency();
|
|
auto EdgeFreq = EdgeFreqLs.begin();
|
|
|
|
if (SumEdgeFreq > 0) {
|
|
for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
|
|
SuccI != SuccE; ++SuccI, ++EdgeFreq) {
|
|
auto Prob = BranchProbability::getBranchProbability(
|
|
EdgeFreq->getFrequency(), SumEdgeFreq);
|
|
TailMBB.setSuccProbability(SuccI, Prob);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch Optimization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
|
|
bool MadeChange = false;
|
|
|
|
// Make sure blocks are numbered in order
|
|
MF.RenumberBlocks();
|
|
// Renumbering blocks alters EH scope membership, recalculate it.
|
|
EHScopeMembership = getEHScopeMembership(MF);
|
|
|
|
for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
|
|
I != E; ) {
|
|
MachineBasicBlock *MBB = &*I++;
|
|
MadeChange |= OptimizeBlock(MBB);
|
|
|
|
// If it is dead, remove it.
|
|
if (MBB->pred_empty()) {
|
|
RemoveDeadBlock(MBB);
|
|
MadeChange = true;
|
|
++NumDeadBlocks;
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
// Blocks should be considered empty if they contain only debug info;
|
|
// else the debug info would affect codegen.
|
|
static bool IsEmptyBlock(MachineBasicBlock *MBB) {
|
|
return MBB->getFirstNonDebugInstr() == MBB->end();
|
|
}
|
|
|
|
// Blocks with only debug info and branches should be considered the same
|
|
// as blocks with only branches.
|
|
static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
|
|
MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
|
|
assert(I != MBB->end() && "empty block!");
|
|
return I->isBranch();
|
|
}
|
|
|
|
/// IsBetterFallthrough - Return true if it would be clearly better to
|
|
/// fall-through to MBB1 than to fall through into MBB2. This has to return
|
|
/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
|
|
/// result in infinite loops.
|
|
static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
|
|
MachineBasicBlock *MBB2) {
|
|
assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
|
|
|
|
// Right now, we use a simple heuristic. If MBB2 ends with a call, and
|
|
// MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
|
|
// optimize branches that branch to either a return block or an assert block
|
|
// into a fallthrough to the return.
|
|
MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
|
|
MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
|
|
if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
|
|
return false;
|
|
|
|
// If there is a clear successor ordering we make sure that one block
|
|
// will fall through to the next
|
|
if (MBB1->isSuccessor(MBB2)) return true;
|
|
if (MBB2->isSuccessor(MBB1)) return false;
|
|
|
|
return MBB2I->isCall() && !MBB1I->isCall();
|
|
}
|
|
|
|
/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
|
|
/// instructions on the block.
|
|
static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I != MBB.end() && I->isBranch())
|
|
return I->getDebugLoc();
|
|
return DebugLoc();
|
|
}
|
|
|
|
static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock &PredMBB) {
|
|
auto InsertBefore = PredMBB.getFirstTerminator();
|
|
for (MachineInstr &MI : MBB.instrs())
|
|
if (MI.isDebugInstr()) {
|
|
TII->duplicate(PredMBB, InsertBefore, MI);
|
|
LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
|
|
<< MI);
|
|
}
|
|
}
|
|
|
|
static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock &SuccMBB) {
|
|
auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
|
|
for (MachineInstr &MI : MBB.instrs())
|
|
if (MI.isDebugInstr()) {
|
|
TII->duplicate(SuccMBB, InsertBefore, MI);
|
|
LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
|
|
<< MI);
|
|
}
|
|
}
|
|
|
|
// Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
|
|
// a basic block is removed we would lose the debug information unless we have
|
|
// copied the information to a predecessor/successor.
|
|
//
|
|
// TODO: This function only handles some simple cases. An alternative would be
|
|
// to run a heavier analysis, such as the LiveDebugValues pass, before we do
|
|
// branch folding.
|
|
static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
|
|
MachineBasicBlock &MBB) {
|
|
assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
|
|
// If this MBB is the only predecessor of a successor it is legal to copy
|
|
// DBG_VALUE instructions to the beginning of the successor.
|
|
for (MachineBasicBlock *SuccBB : MBB.successors())
|
|
if (SuccBB->pred_size() == 1)
|
|
copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
|
|
// If this MBB is the only successor of a predecessor it is legal to copy the
|
|
// DBG_VALUE instructions to the end of the predecessor (just before the
|
|
// terminators, assuming that the terminator isn't affecting the DBG_VALUE).
|
|
for (MachineBasicBlock *PredBB : MBB.predecessors())
|
|
if (PredBB->succ_size() == 1)
|
|
copyDebugInfoToPredecessor(TII, MBB, *PredBB);
|
|
}
|
|
|
|
bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
|
|
bool MadeChange = false;
|
|
MachineFunction &MF = *MBB->getParent();
|
|
ReoptimizeBlock:
|
|
|
|
MachineFunction::iterator FallThrough = MBB->getIterator();
|
|
++FallThrough;
|
|
|
|
// Make sure MBB and FallThrough belong to the same EH scope.
|
|
bool SameEHScope = true;
|
|
if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
|
|
auto MBBEHScope = EHScopeMembership.find(MBB);
|
|
assert(MBBEHScope != EHScopeMembership.end());
|
|
auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
|
|
assert(FallThroughEHScope != EHScopeMembership.end());
|
|
SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
|
|
}
|
|
|
|
// Analyze the branch in the current block. As a side-effect, this may cause
|
|
// the block to become empty.
|
|
MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
|
|
SmallVector<MachineOperand, 4> CurCond;
|
|
bool CurUnAnalyzable =
|
|
TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
|
|
|
|
// If this block is empty, make everyone use its fall-through, not the block
|
|
// explicitly. Landing pads should not do this since the landing-pad table
|
|
// points to this block. Blocks with their addresses taken shouldn't be
|
|
// optimized away.
|
|
if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
|
|
SameEHScope) {
|
|
salvageDebugInfoFromEmptyBlock(TII, *MBB);
|
|
// Dead block? Leave for cleanup later.
|
|
if (MBB->pred_empty()) return MadeChange;
|
|
|
|
if (FallThrough == MF.end()) {
|
|
// TODO: Simplify preds to not branch here if possible!
|
|
} else if (FallThrough->isEHPad()) {
|
|
// Don't rewrite to a landing pad fallthough. That could lead to the case
|
|
// where a BB jumps to more than one landing pad.
|
|
// TODO: Is it ever worth rewriting predecessors which don't already
|
|
// jump to a landing pad, and so can safely jump to the fallthrough?
|
|
} else if (MBB->isSuccessor(&*FallThrough)) {
|
|
// Rewrite all predecessors of the old block to go to the fallthrough
|
|
// instead.
|
|
while (!MBB->pred_empty()) {
|
|
MachineBasicBlock *Pred = *(MBB->pred_end()-1);
|
|
Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
|
|
}
|
|
// If MBB was the target of a jump table, update jump tables to go to the
|
|
// fallthrough instead.
|
|
if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
|
|
MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
|
|
MadeChange = true;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
// Check to see if we can simplify the terminator of the block before this
|
|
// one.
|
|
MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
|
|
|
|
MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
|
|
SmallVector<MachineOperand, 4> PriorCond;
|
|
bool PriorUnAnalyzable =
|
|
TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
|
|
if (!PriorUnAnalyzable) {
|
|
// If the previous branch is conditional and both conditions go to the same
|
|
// destination, remove the branch, replacing it with an unconditional one or
|
|
// a fall-through.
|
|
if (PriorTBB && PriorTBB == PriorFBB) {
|
|
DebugLoc dl = getBranchDebugLoc(PrevBB);
|
|
TII->removeBranch(PrevBB);
|
|
PriorCond.clear();
|
|
if (PriorTBB != MBB)
|
|
TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
|
|
MadeChange = true;
|
|
++NumBranchOpts;
|
|
goto ReoptimizeBlock;
|
|
}
|
|
|
|
// If the previous block unconditionally falls through to this block and
|
|
// this block has no other predecessors, move the contents of this block
|
|
// into the prior block. This doesn't usually happen when SimplifyCFG
|
|
// has been used, but it can happen if tail merging splits a fall-through
|
|
// predecessor of a block.
|
|
// This has to check PrevBB->succ_size() because EH edges are ignored by
|
|
// analyzeBranch.
|
|
if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
|
|
PrevBB.succ_size() == 1 &&
|
|
!MBB->hasAddressTaken() && !MBB->isEHPad()) {
|
|
LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
|
|
<< "From MBB: " << *MBB);
|
|
// Remove redundant DBG_VALUEs first.
|
|
if (PrevBB.begin() != PrevBB.end()) {
|
|
MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
|
|
--PrevBBIter;
|
|
MachineBasicBlock::iterator MBBIter = MBB->begin();
|
|
// Check if DBG_VALUE at the end of PrevBB is identical to the
|
|
// DBG_VALUE at the beginning of MBB.
|
|
while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
|
|
&& PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
|
|
if (!MBBIter->isIdenticalTo(*PrevBBIter))
|
|
break;
|
|
MachineInstr &DuplicateDbg = *MBBIter;
|
|
++MBBIter; -- PrevBBIter;
|
|
DuplicateDbg.eraseFromParent();
|
|
}
|
|
}
|
|
PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
|
|
PrevBB.removeSuccessor(PrevBB.succ_begin());
|
|
assert(PrevBB.succ_empty());
|
|
PrevBB.transferSuccessors(MBB);
|
|
MadeChange = true;
|
|
return MadeChange;
|
|
}
|
|
|
|
// If the previous branch *only* branches to *this* block (conditional or
|
|
// not) remove the branch.
|
|
if (PriorTBB == MBB && !PriorFBB) {
|
|
TII->removeBranch(PrevBB);
|
|
MadeChange = true;
|
|
++NumBranchOpts;
|
|
goto ReoptimizeBlock;
|
|
}
|
|
|
|
// If the prior block branches somewhere else on the condition and here if
|
|
// the condition is false, remove the uncond second branch.
|
|
if (PriorFBB == MBB) {
|
|
DebugLoc dl = getBranchDebugLoc(PrevBB);
|
|
TII->removeBranch(PrevBB);
|
|
TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
|
|
MadeChange = true;
|
|
++NumBranchOpts;
|
|
goto ReoptimizeBlock;
|
|
}
|
|
|
|
// If the prior block branches here on true and somewhere else on false, and
|
|
// if the branch condition is reversible, reverse the branch to create a
|
|
// fall-through.
|
|
if (PriorTBB == MBB) {
|
|
SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
|
|
if (!TII->reverseBranchCondition(NewPriorCond)) {
|
|
DebugLoc dl = getBranchDebugLoc(PrevBB);
|
|
TII->removeBranch(PrevBB);
|
|
TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
|
|
MadeChange = true;
|
|
++NumBranchOpts;
|
|
goto ReoptimizeBlock;
|
|
}
|
|
}
|
|
|
|
// If this block has no successors (e.g. it is a return block or ends with
|
|
// a call to a no-return function like abort or __cxa_throw) and if the pred
|
|
// falls through into this block, and if it would otherwise fall through
|
|
// into the block after this, move this block to the end of the function.
|
|
//
|
|
// We consider it more likely that execution will stay in the function (e.g.
|
|
// due to loops) than it is to exit it. This asserts in loops etc, moving
|
|
// the assert condition out of the loop body.
|
|
if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
|
|
MachineFunction::iterator(PriorTBB) == FallThrough &&
|
|
!MBB->canFallThrough()) {
|
|
bool DoTransform = true;
|
|
|
|
// We have to be careful that the succs of PredBB aren't both no-successor
|
|
// blocks. If neither have successors and if PredBB is the second from
|
|
// last block in the function, we'd just keep swapping the two blocks for
|
|
// last. Only do the swap if one is clearly better to fall through than
|
|
// the other.
|
|
if (FallThrough == --MF.end() &&
|
|
!IsBetterFallthrough(PriorTBB, MBB))
|
|
DoTransform = false;
|
|
|
|
if (DoTransform) {
|
|
// Reverse the branch so we will fall through on the previous true cond.
|
|
SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
|
|
if (!TII->reverseBranchCondition(NewPriorCond)) {
|
|
LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
|
|
<< "To make fallthrough to: " << *PriorTBB << "\n");
|
|
|
|
DebugLoc dl = getBranchDebugLoc(PrevBB);
|
|
TII->removeBranch(PrevBB);
|
|
TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
|
|
|
|
// Move this block to the end of the function.
|
|
MBB->moveAfter(&MF.back());
|
|
MadeChange = true;
|
|
++NumBranchOpts;
|
|
return MadeChange;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool OptForSize =
|
|
MF.getFunction().hasOptSize() ||
|
|
llvm::shouldOptimizeForSize(MBB, PSI, &MBBFreqInfo);
|
|
if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && OptForSize) {
|
|
// Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
|
|
// direction, thereby defeating careful block placement and regressing
|
|
// performance. Therefore, only consider this for optsize functions.
|
|
MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
|
|
if (TII->isUnconditionalTailCall(TailCall)) {
|
|
MachineBasicBlock *Pred = *MBB->pred_begin();
|
|
MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
|
|
SmallVector<MachineOperand, 4> PredCond;
|
|
bool PredAnalyzable =
|
|
!TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
|
|
|
|
if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
|
|
PredTBB != PredFBB) {
|
|
// The predecessor has a conditional branch to this block which consists
|
|
// of only a tail call. Try to fold the tail call into the conditional
|
|
// branch.
|
|
if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
|
|
// TODO: It would be nice if analyzeBranch() could provide a pointer
|
|
// to the branch instruction so replaceBranchWithTailCall() doesn't
|
|
// have to search for it.
|
|
TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
|
|
++NumTailCalls;
|
|
Pred->removeSuccessor(MBB);
|
|
MadeChange = true;
|
|
return MadeChange;
|
|
}
|
|
}
|
|
// If the predecessor is falling through to this block, we could reverse
|
|
// the branch condition and fold the tail call into that. However, after
|
|
// that we might have to re-arrange the CFG to fall through to the other
|
|
// block and there is a high risk of regressing code size rather than
|
|
// improving it.
|
|
}
|
|
}
|
|
|
|
if (!CurUnAnalyzable) {
|
|
// If this is a two-way branch, and the FBB branches to this block, reverse
|
|
// the condition so the single-basic-block loop is faster. Instead of:
|
|
// Loop: xxx; jcc Out; jmp Loop
|
|
// we want:
|
|
// Loop: xxx; jncc Loop; jmp Out
|
|
if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
|
|
SmallVector<MachineOperand, 4> NewCond(CurCond);
|
|
if (!TII->reverseBranchCondition(NewCond)) {
|
|
DebugLoc dl = getBranchDebugLoc(*MBB);
|
|
TII->removeBranch(*MBB);
|
|
TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
|
|
MadeChange = true;
|
|
++NumBranchOpts;
|
|
goto ReoptimizeBlock;
|
|
}
|
|
}
|
|
|
|
// If this branch is the only thing in its block, see if we can forward
|
|
// other blocks across it.
|
|
if (CurTBB && CurCond.empty() && !CurFBB &&
|
|
IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
|
|
!MBB->hasAddressTaken() && !MBB->isEHPad()) {
|
|
DebugLoc dl = getBranchDebugLoc(*MBB);
|
|
// This block may contain just an unconditional branch. Because there can
|
|
// be 'non-branch terminators' in the block, try removing the branch and
|
|
// then seeing if the block is empty.
|
|
TII->removeBranch(*MBB);
|
|
// If the only things remaining in the block are debug info, remove these
|
|
// as well, so this will behave the same as an empty block in non-debug
|
|
// mode.
|
|
if (IsEmptyBlock(MBB)) {
|
|
// Make the block empty, losing the debug info (we could probably
|
|
// improve this in some cases.)
|
|
MBB->erase(MBB->begin(), MBB->end());
|
|
}
|
|
// If this block is just an unconditional branch to CurTBB, we can
|
|
// usually completely eliminate the block. The only case we cannot
|
|
// completely eliminate the block is when the block before this one
|
|
// falls through into MBB and we can't understand the prior block's branch
|
|
// condition.
|
|
if (MBB->empty()) {
|
|
bool PredHasNoFallThrough = !PrevBB.canFallThrough();
|
|
if (PredHasNoFallThrough || !PriorUnAnalyzable ||
|
|
!PrevBB.isSuccessor(MBB)) {
|
|
// If the prior block falls through into us, turn it into an
|
|
// explicit branch to us to make updates simpler.
|
|
if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
|
|
PriorTBB != MBB && PriorFBB != MBB) {
|
|
if (!PriorTBB) {
|
|
assert(PriorCond.empty() && !PriorFBB &&
|
|
"Bad branch analysis");
|
|
PriorTBB = MBB;
|
|
} else {
|
|
assert(!PriorFBB && "Machine CFG out of date!");
|
|
PriorFBB = MBB;
|
|
}
|
|
DebugLoc pdl = getBranchDebugLoc(PrevBB);
|
|
TII->removeBranch(PrevBB);
|
|
TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
|
|
}
|
|
|
|
// Iterate through all the predecessors, revectoring each in-turn.
|
|
size_t PI = 0;
|
|
bool DidChange = false;
|
|
bool HasBranchToSelf = false;
|
|
while(PI != MBB->pred_size()) {
|
|
MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
|
|
if (PMBB == MBB) {
|
|
// If this block has an uncond branch to itself, leave it.
|
|
++PI;
|
|
HasBranchToSelf = true;
|
|
} else {
|
|
DidChange = true;
|
|
PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
|
|
// If this change resulted in PMBB ending in a conditional
|
|
// branch where both conditions go to the same destination,
|
|
// change this to an unconditional branch.
|
|
MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
|
|
SmallVector<MachineOperand, 4> NewCurCond;
|
|
bool NewCurUnAnalyzable = TII->analyzeBranch(
|
|
*PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
|
|
if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
|
|
DebugLoc pdl = getBranchDebugLoc(*PMBB);
|
|
TII->removeBranch(*PMBB);
|
|
NewCurCond.clear();
|
|
TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
|
|
MadeChange = true;
|
|
++NumBranchOpts;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Change any jumptables to go to the new MBB.
|
|
if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
|
|
MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
|
|
if (DidChange) {
|
|
++NumBranchOpts;
|
|
MadeChange = true;
|
|
if (!HasBranchToSelf) return MadeChange;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the branch back if the block is more than just an uncond branch.
|
|
TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
|
|
}
|
|
}
|
|
|
|
// If the prior block doesn't fall through into this block, and if this
|
|
// block doesn't fall through into some other block, see if we can find a
|
|
// place to move this block where a fall-through will happen.
|
|
if (!PrevBB.canFallThrough()) {
|
|
// Now we know that there was no fall-through into this block, check to
|
|
// see if it has a fall-through into its successor.
|
|
bool CurFallsThru = MBB->canFallThrough();
|
|
|
|
if (!MBB->isEHPad()) {
|
|
// Check all the predecessors of this block. If one of them has no fall
|
|
// throughs, and analyzeBranch thinks it _could_ fallthrough to this
|
|
// block, move this block right after it.
|
|
for (MachineBasicBlock *PredBB : MBB->predecessors()) {
|
|
// Analyze the branch at the end of the pred.
|
|
MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
|
|
SmallVector<MachineOperand, 4> PredCond;
|
|
if (PredBB != MBB && !PredBB->canFallThrough() &&
|
|
!TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
|
|
(PredTBB == MBB || PredFBB == MBB) &&
|
|
(!CurFallsThru || !CurTBB || !CurFBB) &&
|
|
(!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
|
|
// If the current block doesn't fall through, just move it.
|
|
// If the current block can fall through and does not end with a
|
|
// conditional branch, we need to append an unconditional jump to
|
|
// the (current) next block. To avoid a possible compile-time
|
|
// infinite loop, move blocks only backward in this case.
|
|
// Also, if there are already 2 branches here, we cannot add a third;
|
|
// this means we have the case
|
|
// Bcc next
|
|
// B elsewhere
|
|
// next:
|
|
if (CurFallsThru) {
|
|
MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
|
|
CurCond.clear();
|
|
TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
|
|
}
|
|
MBB->moveAfter(PredBB);
|
|
MadeChange = true;
|
|
goto ReoptimizeBlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!CurFallsThru) {
|
|
// Check analyzable branch-successors to see if we can move this block
|
|
// before one.
|
|
if (!CurUnAnalyzable) {
|
|
for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
|
|
if (!SuccBB)
|
|
continue;
|
|
// Analyze the branch at the end of the block before the succ.
|
|
MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
|
|
|
|
// If this block doesn't already fall-through to that successor, and
|
|
// if the succ doesn't already have a block that can fall through into
|
|
// it, we can arrange for the fallthrough to happen.
|
|
if (SuccBB != MBB && &*SuccPrev != MBB &&
|
|
!SuccPrev->canFallThrough()) {
|
|
MBB->moveBefore(SuccBB);
|
|
MadeChange = true;
|
|
goto ReoptimizeBlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Okay, there is no really great place to put this block. If, however,
|
|
// the block before this one would be a fall-through if this block were
|
|
// removed, move this block to the end of the function. There is no real
|
|
// advantage in "falling through" to an EH block, so we don't want to
|
|
// perform this transformation for that case.
|
|
//
|
|
// Also, Windows EH introduced the possibility of an arbitrary number of
|
|
// successors to a given block. The analyzeBranch call does not consider
|
|
// exception handling and so we can get in a state where a block
|
|
// containing a call is followed by multiple EH blocks that would be
|
|
// rotated infinitely at the end of the function if the transformation
|
|
// below were performed for EH "FallThrough" blocks. Therefore, even if
|
|
// that appears not to be happening anymore, we should assume that it is
|
|
// possible and not remove the "!FallThrough()->isEHPad" condition below.
|
|
MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
|
|
SmallVector<MachineOperand, 4> PrevCond;
|
|
if (FallThrough != MF.end() &&
|
|
!FallThrough->isEHPad() &&
|
|
!TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
|
|
PrevBB.isSuccessor(&*FallThrough)) {
|
|
MBB->moveAfter(&MF.back());
|
|
MadeChange = true;
|
|
return MadeChange;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Hoist Common Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
|
|
bool MadeChange = false;
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
|
|
MachineBasicBlock *MBB = &*I++;
|
|
MadeChange |= HoistCommonCodeInSuccs(MBB);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
|
|
/// its 'true' successor.
|
|
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
|
|
MachineBasicBlock *TrueBB) {
|
|
for (MachineBasicBlock *SuccBB : BB->successors())
|
|
if (SuccBB != TrueBB)
|
|
return SuccBB;
|
|
return nullptr;
|
|
}
|
|
|
|
template <class Container>
|
|
static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
|
|
Container &Set) {
|
|
if (Reg.isPhysical()) {
|
|
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
|
|
Set.insert(*AI);
|
|
} else {
|
|
Set.insert(Reg);
|
|
}
|
|
}
|
|
|
|
/// findHoistingInsertPosAndDeps - Find the location to move common instructions
|
|
/// in successors to. The location is usually just before the terminator,
|
|
/// however if the terminator is a conditional branch and its previous
|
|
/// instruction is the flag setting instruction, the previous instruction is
|
|
/// the preferred location. This function also gathers uses and defs of the
|
|
/// instructions from the insertion point to the end of the block. The data is
|
|
/// used by HoistCommonCodeInSuccs to ensure safety.
|
|
static
|
|
MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI,
|
|
SmallSet<Register, 4> &Uses,
|
|
SmallSet<Register, 4> &Defs) {
|
|
MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
|
|
if (!TII->isUnpredicatedTerminator(*Loc))
|
|
return MBB->end();
|
|
|
|
for (const MachineOperand &MO : Loc->operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (MO.isUse()) {
|
|
addRegAndItsAliases(Reg, TRI, Uses);
|
|
} else {
|
|
if (!MO.isDead())
|
|
// Don't try to hoist code in the rare case the terminator defines a
|
|
// register that is later used.
|
|
return MBB->end();
|
|
|
|
// If the terminator defines a register, make sure we don't hoist
|
|
// the instruction whose def might be clobbered by the terminator.
|
|
addRegAndItsAliases(Reg, TRI, Defs);
|
|
}
|
|
}
|
|
|
|
if (Uses.empty())
|
|
return Loc;
|
|
// If the terminator is the only instruction in the block and Uses is not
|
|
// empty (or we would have returned above), we can still safely hoist
|
|
// instructions just before the terminator as long as the Defs/Uses are not
|
|
// violated (which is checked in HoistCommonCodeInSuccs).
|
|
if (Loc == MBB->begin())
|
|
return Loc;
|
|
|
|
// The terminator is probably a conditional branch, try not to separate the
|
|
// branch from condition setting instruction.
|
|
MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
|
|
|
|
bool IsDef = false;
|
|
for (const MachineOperand &MO : PI->operands()) {
|
|
// If PI has a regmask operand, it is probably a call. Separate away.
|
|
if (MO.isRegMask())
|
|
return Loc;
|
|
if (!MO.isReg() || MO.isUse())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (Uses.count(Reg)) {
|
|
IsDef = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!IsDef)
|
|
// The condition setting instruction is not just before the conditional
|
|
// branch.
|
|
return Loc;
|
|
|
|
// Be conservative, don't insert instruction above something that may have
|
|
// side-effects. And since it's potentially bad to separate flag setting
|
|
// instruction from the conditional branch, just abort the optimization
|
|
// completely.
|
|
// Also avoid moving code above predicated instruction since it's hard to
|
|
// reason about register liveness with predicated instruction.
|
|
bool DontMoveAcrossStore = true;
|
|
if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
|
|
return MBB->end();
|
|
|
|
// Find out what registers are live. Note this routine is ignoring other live
|
|
// registers which are only used by instructions in successor blocks.
|
|
for (const MachineOperand &MO : PI->operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (MO.isUse()) {
|
|
addRegAndItsAliases(Reg, TRI, Uses);
|
|
} else {
|
|
if (Uses.erase(Reg)) {
|
|
if (Register::isPhysicalRegister(Reg)) {
|
|
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
|
|
Uses.erase(*SubRegs); // Use sub-registers to be conservative
|
|
}
|
|
}
|
|
addRegAndItsAliases(Reg, TRI, Defs);
|
|
}
|
|
}
|
|
|
|
return PI;
|
|
}
|
|
|
|
bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
|
|
return false;
|
|
|
|
if (!FBB) FBB = findFalseBlock(MBB, TBB);
|
|
if (!FBB)
|
|
// Malformed bcc? True and false blocks are the same?
|
|
return false;
|
|
|
|
// Restrict the optimization to cases where MBB is the only predecessor,
|
|
// it is an obvious win.
|
|
if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
|
|
return false;
|
|
|
|
// Find a suitable position to hoist the common instructions to. Also figure
|
|
// out which registers are used or defined by instructions from the insertion
|
|
// point to the end of the block.
|
|
SmallSet<Register, 4> Uses, Defs;
|
|
MachineBasicBlock::iterator Loc =
|
|
findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
|
|
if (Loc == MBB->end())
|
|
return false;
|
|
|
|
bool HasDups = false;
|
|
SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
|
|
MachineBasicBlock::iterator TIB = TBB->begin();
|
|
MachineBasicBlock::iterator FIB = FBB->begin();
|
|
MachineBasicBlock::iterator TIE = TBB->end();
|
|
MachineBasicBlock::iterator FIE = FBB->end();
|
|
while (TIB != TIE && FIB != FIE) {
|
|
// Skip dbg_value instructions. These do not count.
|
|
TIB = skipDebugInstructionsForward(TIB, TIE);
|
|
FIB = skipDebugInstructionsForward(FIB, FIE);
|
|
if (TIB == TIE || FIB == FIE)
|
|
break;
|
|
|
|
if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
|
|
break;
|
|
|
|
if (TII->isPredicated(*TIB))
|
|
// Hard to reason about register liveness with predicated instruction.
|
|
break;
|
|
|
|
bool IsSafe = true;
|
|
for (MachineOperand &MO : TIB->operands()) {
|
|
// Don't attempt to hoist instructions with register masks.
|
|
if (MO.isRegMask()) {
|
|
IsSafe = false;
|
|
break;
|
|
}
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (MO.isDef()) {
|
|
if (Uses.count(Reg)) {
|
|
// Avoid clobbering a register that's used by the instruction at
|
|
// the point of insertion.
|
|
IsSafe = false;
|
|
break;
|
|
}
|
|
|
|
if (Defs.count(Reg) && !MO.isDead()) {
|
|
// Don't hoist the instruction if the def would be clobber by the
|
|
// instruction at the point insertion. FIXME: This is overly
|
|
// conservative. It should be possible to hoist the instructions
|
|
// in BB2 in the following example:
|
|
// BB1:
|
|
// r1, eflag = op1 r2, r3
|
|
// brcc eflag
|
|
//
|
|
// BB2:
|
|
// r1 = op2, ...
|
|
// = op3, killed r1
|
|
IsSafe = false;
|
|
break;
|
|
}
|
|
} else if (!ActiveDefsSet.count(Reg)) {
|
|
if (Defs.count(Reg)) {
|
|
// Use is defined by the instruction at the point of insertion.
|
|
IsSafe = false;
|
|
break;
|
|
}
|
|
|
|
if (MO.isKill() && Uses.count(Reg))
|
|
// Kills a register that's read by the instruction at the point of
|
|
// insertion. Remove the kill marker.
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
if (!IsSafe)
|
|
break;
|
|
|
|
bool DontMoveAcrossStore = true;
|
|
if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
|
|
break;
|
|
|
|
// Remove kills from ActiveDefsSet, these registers had short live ranges.
|
|
for (const MachineOperand &MO : TIB->operands()) {
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isKill())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (!AllDefsSet.count(Reg)) {
|
|
continue;
|
|
}
|
|
if (Reg.isPhysical()) {
|
|
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
|
|
ActiveDefsSet.erase(*AI);
|
|
} else {
|
|
ActiveDefsSet.erase(Reg);
|
|
}
|
|
}
|
|
|
|
// Track local defs so we can update liveins.
|
|
for (const MachineOperand &MO : TIB->operands()) {
|
|
if (!MO.isReg() || !MO.isDef() || MO.isDead())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg || Reg.isVirtual())
|
|
continue;
|
|
addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
|
|
addRegAndItsAliases(Reg, TRI, AllDefsSet);
|
|
}
|
|
|
|
HasDups = true;
|
|
++TIB;
|
|
++FIB;
|
|
}
|
|
|
|
if (!HasDups)
|
|
return false;
|
|
|
|
MBB->splice(Loc, TBB, TBB->begin(), TIB);
|
|
FBB->erase(FBB->begin(), FIB);
|
|
|
|
if (UpdateLiveIns) {
|
|
recomputeLiveIns(*TBB);
|
|
recomputeLiveIns(*FBB);
|
|
}
|
|
|
|
++NumHoist;
|
|
return true;
|
|
}
|