llvm-project/clang/lib/Parse/ParseExpr.cpp

3113 lines
117 KiB
C++

//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Provides the Expression parsing implementation.
///
/// Expressions in C99 basically consist of a bunch of binary operators with
/// unary operators and other random stuff at the leaves.
///
/// In the C99 grammar, these unary operators bind tightest and are represented
/// as the 'cast-expression' production. Everything else is either a binary
/// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
/// handled by ParseCastExpression, the higher level pieces are handled by
/// ParseBinaryExpression.
///
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/TypoCorrection.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
/// \brief Simple precedence-based parser for binary/ternary operators.
///
/// Note: we diverge from the C99 grammar when parsing the assignment-expression
/// production. C99 specifies that the LHS of an assignment operator should be
/// parsed as a unary-expression, but consistency dictates that it be a
/// conditional-expession. In practice, the important thing here is that the
/// LHS of an assignment has to be an l-value, which productions between
/// unary-expression and conditional-expression don't produce. Because we want
/// consistency, we parse the LHS as a conditional-expression, then check for
/// l-value-ness in semantic analysis stages.
///
/// \verbatim
/// pm-expression: [C++ 5.5]
/// cast-expression
/// pm-expression '.*' cast-expression
/// pm-expression '->*' cast-expression
///
/// multiplicative-expression: [C99 6.5.5]
/// Note: in C++, apply pm-expression instead of cast-expression
/// cast-expression
/// multiplicative-expression '*' cast-expression
/// multiplicative-expression '/' cast-expression
/// multiplicative-expression '%' cast-expression
///
/// additive-expression: [C99 6.5.6]
/// multiplicative-expression
/// additive-expression '+' multiplicative-expression
/// additive-expression '-' multiplicative-expression
///
/// shift-expression: [C99 6.5.7]
/// additive-expression
/// shift-expression '<<' additive-expression
/// shift-expression '>>' additive-expression
///
/// compare-expression: [C++20 expr.spaceship]
/// shift-expression
/// compare-expression '<=>' shift-expression
///
/// relational-expression: [C99 6.5.8]
/// compare-expression
/// relational-expression '<' compare-expression
/// relational-expression '>' compare-expression
/// relational-expression '<=' compare-expression
/// relational-expression '>=' compare-expression
///
/// equality-expression: [C99 6.5.9]
/// relational-expression
/// equality-expression '==' relational-expression
/// equality-expression '!=' relational-expression
///
/// AND-expression: [C99 6.5.10]
/// equality-expression
/// AND-expression '&' equality-expression
///
/// exclusive-OR-expression: [C99 6.5.11]
/// AND-expression
/// exclusive-OR-expression '^' AND-expression
///
/// inclusive-OR-expression: [C99 6.5.12]
/// exclusive-OR-expression
/// inclusive-OR-expression '|' exclusive-OR-expression
///
/// logical-AND-expression: [C99 6.5.13]
/// inclusive-OR-expression
/// logical-AND-expression '&&' inclusive-OR-expression
///
/// logical-OR-expression: [C99 6.5.14]
/// logical-AND-expression
/// logical-OR-expression '||' logical-AND-expression
///
/// conditional-expression: [C99 6.5.15]
/// logical-OR-expression
/// logical-OR-expression '?' expression ':' conditional-expression
/// [GNU] logical-OR-expression '?' ':' conditional-expression
/// [C++] the third operand is an assignment-expression
///
/// assignment-expression: [C99 6.5.16]
/// conditional-expression
/// unary-expression assignment-operator assignment-expression
/// [C++] throw-expression [C++ 15]
///
/// assignment-operator: one of
/// = *= /= %= += -= <<= >>= &= ^= |=
///
/// expression: [C99 6.5.17]
/// assignment-expression ...[opt]
/// expression ',' assignment-expression ...[opt]
/// \endverbatim
ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
ExprResult LHS(ParseAssignmentExpression(isTypeCast));
return ParseRHSOfBinaryExpression(LHS, prec::Comma);
}
/// This routine is called when the '@' is seen and consumed.
/// Current token is an Identifier and is not a 'try'. This
/// routine is necessary to disambiguate \@try-statement from,
/// for example, \@encode-expression.
///
ExprResult
Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
ExprResult LHS(ParseObjCAtExpression(AtLoc));
return ParseRHSOfBinaryExpression(LHS, prec::Comma);
}
/// This routine is called when a leading '__extension__' is seen and
/// consumed. This is necessary because the token gets consumed in the
/// process of disambiguating between an expression and a declaration.
ExprResult
Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
ExprResult LHS(true);
{
// Silence extension warnings in the sub-expression
ExtensionRAIIObject O(Diags);
LHS = ParseCastExpression(false);
}
if (!LHS.isInvalid())
LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
LHS.get());
return ParseRHSOfBinaryExpression(LHS, prec::Comma);
}
/// \brief Parse an expr that doesn't include (top-level) commas.
ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
cutOffParsing();
return ExprError();
}
if (Tok.is(tok::kw_throw))
return ParseThrowExpression();
if (Tok.is(tok::kw_co_yield))
return ParseCoyieldExpression();
ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
/*isAddressOfOperand=*/false,
isTypeCast);
return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
}
/// \brief Parse an assignment expression where part of an Objective-C message
/// send has already been parsed.
///
/// In this case \p LBracLoc indicates the location of the '[' of the message
/// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
/// the receiver of the message.
///
/// Since this handles full assignment-expression's, it handles postfix
/// expressions and other binary operators for these expressions as well.
ExprResult
Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
SourceLocation SuperLoc,
ParsedType ReceiverType,
Expr *ReceiverExpr) {
ExprResult R
= ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
ReceiverType, ReceiverExpr);
R = ParsePostfixExpressionSuffix(R);
return ParseRHSOfBinaryExpression(R, prec::Assignment);
}
ExprResult
Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
assert(Actions.ExprEvalContexts.back().Context ==
Sema::ExpressionEvaluationContext::ConstantEvaluated &&
"Call this function only if your ExpressionEvaluationContext is "
"already ConstantEvaluated");
ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
return Actions.ActOnConstantExpression(Res);
}
ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
// C++03 [basic.def.odr]p2:
// An expression is potentially evaluated unless it appears where an
// integral constant expression is required (see 5.19) [...].
// C++98 and C++11 have no such rule, but this is only a defect in C++98.
EnterExpressionEvaluationContext ConstantEvaluated(
Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
return ParseConstantExpressionInExprEvalContext(isTypeCast);
}
/// \brief Parse a constraint-expression.
///
/// \verbatim
/// constraint-expression: [Concepts TS temp.constr.decl p1]
/// logical-or-expression
/// \endverbatim
ExprResult Parser::ParseConstraintExpression() {
// FIXME: this may erroneously consume a function-body as the braced
// initializer list of a compound literal
//
// FIXME: this may erroneously consume a parenthesized rvalue reference
// declarator as a parenthesized address-of-label expression
ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false));
ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
return Res;
}
bool Parser::isNotExpressionStart() {
tok::TokenKind K = Tok.getKind();
if (K == tok::l_brace || K == tok::r_brace ||
K == tok::kw_for || K == tok::kw_while ||
K == tok::kw_if || K == tok::kw_else ||
K == tok::kw_goto || K == tok::kw_try)
return true;
// If this is a decl-specifier, we can't be at the start of an expression.
return isKnownToBeDeclarationSpecifier();
}
/// We've parsed something that could plausibly be intended to be a template
/// name (\p LHS) followed by a '<' token, and the following code can't possibly
/// be an expression. Determine if this is likely to be a template-id and if so,
/// diagnose it.
bool Parser::diagnoseUnknownTemplateId(ExprResult LHS, SourceLocation Less) {
TentativeParsingAction TPA(*this);
// FIXME: We could look at the token sequence in a lot more detail here.
if (SkipUntil(tok::greater, tok::greatergreater, tok::greatergreatergreater,
StopAtSemi | StopBeforeMatch)) {
TPA.Commit();
SourceLocation Greater;
ParseGreaterThanInTemplateList(Greater, true, false);
Actions.diagnoseExprIntendedAsTemplateName(getCurScope(), LHS,
Less, Greater);
return true;
}
// There's no matching '>' token, this probably isn't supposed to be
// interpreted as a template-id. Parse it as an (ill-formed) comparison.
TPA.Revert();
return false;
}
bool Parser::isFoldOperator(prec::Level Level) const {
return Level > prec::Unknown && Level != prec::Conditional &&
Level != prec::Spaceship;
}
bool Parser::isFoldOperator(tok::TokenKind Kind) const {
return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
}
/// \brief Parse a binary expression that starts with \p LHS and has a
/// precedence of at least \p MinPrec.
ExprResult
Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
GreaterThanIsOperator,
getLangOpts().CPlusPlus11);
SourceLocation ColonLoc;
while (1) {
// If this token has a lower precedence than we are allowed to parse (e.g.
// because we are called recursively, or because the token is not a binop),
// then we are done!
if (NextTokPrec < MinPrec)
return LHS;
// Consume the operator, saving the operator token for error reporting.
Token OpToken = Tok;
ConsumeToken();
if (OpToken.is(tok::caretcaret)) {
return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
}
// Bail out when encountering a comma followed by a token which can't
// possibly be the start of an expression. For instance:
// int f() { return 1, }
// We can't do this before consuming the comma, because
// isNotExpressionStart() looks at the token stream.
if (OpToken.is(tok::comma) && isNotExpressionStart()) {
PP.EnterToken(Tok);
Tok = OpToken;
return LHS;
}
// If a '<' token is followed by a type that can be a template argument and
// cannot be an expression, then this is ill-formed, but might be intended
// to be a template-id.
if (OpToken.is(tok::less) && Actions.mightBeIntendedToBeTemplateName(LHS) &&
(isKnownToBeDeclarationSpecifier() ||
Tok.isOneOf(tok::greater, tok::greatergreater,
tok::greatergreatergreater)) &&
diagnoseUnknownTemplateId(LHS, OpToken.getLocation()))
return ExprError();
// If the next token is an ellipsis, then this is a fold-expression. Leave
// it alone so we can handle it in the paren expression.
if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
// FIXME: We can't check this via lookahead before we consume the token
// because that tickles a lexer bug.
PP.EnterToken(Tok);
Tok = OpToken;
return LHS;
}
// Special case handling for the ternary operator.
ExprResult TernaryMiddle(true);
if (NextTokPrec == prec::Conditional) {
if (Tok.isNot(tok::colon)) {
// Don't parse FOO:BAR as if it were a typo for FOO::BAR.
ColonProtectionRAIIObject X(*this);
// Handle this production specially:
// logical-OR-expression '?' expression ':' conditional-expression
// In particular, the RHS of the '?' is 'expression', not
// 'logical-OR-expression' as we might expect.
TernaryMiddle = ParseExpression();
if (TernaryMiddle.isInvalid()) {
Actions.CorrectDelayedTyposInExpr(LHS);
LHS = ExprError();
TernaryMiddle = nullptr;
}
} else {
// Special case handling of "X ? Y : Z" where Y is empty:
// logical-OR-expression '?' ':' conditional-expression [GNU]
TernaryMiddle = nullptr;
Diag(Tok, diag::ext_gnu_conditional_expr);
}
if (!TryConsumeToken(tok::colon, ColonLoc)) {
// Otherwise, we're missing a ':'. Assume that this was a typo that
// the user forgot. If we're not in a macro expansion, we can suggest
// a fixit hint. If there were two spaces before the current token,
// suggest inserting the colon in between them, otherwise insert ": ".
SourceLocation FILoc = Tok.getLocation();
const char *FIText = ": ";
const SourceManager &SM = PP.getSourceManager();
if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
assert(FILoc.isFileID());
bool IsInvalid = false;
const char *SourcePtr =
SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
if (!IsInvalid && *SourcePtr == ' ') {
SourcePtr =
SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
if (!IsInvalid && *SourcePtr == ' ') {
FILoc = FILoc.getLocWithOffset(-1);
FIText = ":";
}
}
}
Diag(Tok, diag::err_expected)
<< tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
Diag(OpToken, diag::note_matching) << tok::question;
ColonLoc = Tok.getLocation();
}
}
// Code completion for the right-hand side of an assignment expression
// goes through a special hook that takes the left-hand side into account.
if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
cutOffParsing();
return ExprError();
}
// Parse another leaf here for the RHS of the operator.
// ParseCastExpression works here because all RHS expressions in C have it
// as a prefix, at least. However, in C++, an assignment-expression could
// be a throw-expression, which is not a valid cast-expression.
// Therefore we need some special-casing here.
// Also note that the third operand of the conditional operator is
// an assignment-expression in C++, and in C++11, we can have a
// braced-init-list on the RHS of an assignment. For better diagnostics,
// parse as if we were allowed braced-init-lists everywhere, and check that
// they only appear on the RHS of assignments later.
ExprResult RHS;
bool RHSIsInitList = false;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
RHS = ParseBraceInitializer();
RHSIsInitList = true;
} else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
RHS = ParseAssignmentExpression();
else
RHS = ParseCastExpression(false);
if (RHS.isInvalid()) {
// FIXME: Errors generated by the delayed typo correction should be
// printed before errors from parsing the RHS, not after.
Actions.CorrectDelayedTyposInExpr(LHS);
if (TernaryMiddle.isUsable())
TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
LHS = ExprError();
}
// Remember the precedence of this operator and get the precedence of the
// operator immediately to the right of the RHS.
prec::Level ThisPrec = NextTokPrec;
NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
getLangOpts().CPlusPlus11);
// Assignment and conditional expressions are right-associative.
bool isRightAssoc = ThisPrec == prec::Conditional ||
ThisPrec == prec::Assignment;
// Get the precedence of the operator to the right of the RHS. If it binds
// more tightly with RHS than we do, evaluate it completely first.
if (ThisPrec < NextTokPrec ||
(ThisPrec == NextTokPrec && isRightAssoc)) {
if (!RHS.isInvalid() && RHSIsInitList) {
Diag(Tok, diag::err_init_list_bin_op)
<< /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
RHS = ExprError();
}
// If this is left-associative, only parse things on the RHS that bind
// more tightly than the current operator. If it is left-associative, it
// is okay, to bind exactly as tightly. For example, compile A=B=C=D as
// A=(B=(C=D)), where each paren is a level of recursion here.
// The function takes ownership of the RHS.
RHS = ParseRHSOfBinaryExpression(RHS,
static_cast<prec::Level>(ThisPrec + !isRightAssoc));
RHSIsInitList = false;
if (RHS.isInvalid()) {
// FIXME: Errors generated by the delayed typo correction should be
// printed before errors from ParseRHSOfBinaryExpression, not after.
Actions.CorrectDelayedTyposInExpr(LHS);
if (TernaryMiddle.isUsable())
TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
LHS = ExprError();
}
NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
getLangOpts().CPlusPlus11);
}
if (!RHS.isInvalid() && RHSIsInitList) {
if (ThisPrec == prec::Assignment) {
Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
<< Actions.getExprRange(RHS.get());
} else {
Diag(OpToken, diag::err_init_list_bin_op)
<< /*RHS*/1 << PP.getSpelling(OpToken)
<< Actions.getExprRange(RHS.get());
LHS = ExprError();
}
}
ExprResult OrigLHS = LHS;
if (!LHS.isInvalid()) {
// Combine the LHS and RHS into the LHS (e.g. build AST).
if (TernaryMiddle.isInvalid()) {
// If we're using '>>' as an operator within a template
// argument list (in C++98), suggest the addition of
// parentheses so that the code remains well-formed in C++0x.
if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
SuggestParentheses(OpToken.getLocation(),
diag::warn_cxx11_right_shift_in_template_arg,
SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
Actions.getExprRange(RHS.get()).getEnd()));
LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
OpToken.getKind(), LHS.get(), RHS.get());
} else {
LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
LHS.get(), TernaryMiddle.get(),
RHS.get());
}
// In this case, ActOnBinOp or ActOnConditionalOp performed the
// CorrectDelayedTyposInExpr check.
if (!getLangOpts().CPlusPlus)
continue;
}
// Ensure potential typos aren't left undiagnosed.
if (LHS.isInvalid()) {
Actions.CorrectDelayedTyposInExpr(OrigLHS);
Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
Actions.CorrectDelayedTyposInExpr(RHS);
}
}
}
/// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
/// parse a unary-expression.
///
/// \p isAddressOfOperand exists because an id-expression that is the
/// operand of address-of gets special treatment due to member pointers.
///
ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
bool isAddressOfOperand,
TypeCastState isTypeCast,
bool isVectorLiteral) {
bool NotCastExpr;
ExprResult Res = ParseCastExpression(isUnaryExpression,
isAddressOfOperand,
NotCastExpr,
isTypeCast,
isVectorLiteral);
if (NotCastExpr)
Diag(Tok, diag::err_expected_expression);
return Res;
}
namespace {
class CastExpressionIdValidator : public CorrectionCandidateCallback {
public:
CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
: NextToken(Next), AllowNonTypes(AllowNonTypes) {
WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
}
bool ValidateCandidate(const TypoCorrection &candidate) override {
NamedDecl *ND = candidate.getCorrectionDecl();
if (!ND)
return candidate.isKeyword();
if (isa<TypeDecl>(ND))
return WantTypeSpecifiers;
if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
return false;
if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
return true;
for (auto *C : candidate) {
NamedDecl *ND = C->getUnderlyingDecl();
if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
return true;
}
return false;
}
private:
Token NextToken;
bool AllowNonTypes;
};
}
/// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
/// a unary-expression.
///
/// \p isAddressOfOperand exists because an id-expression that is the operand
/// of address-of gets special treatment due to member pointers. NotCastExpr
/// is set to true if the token is not the start of a cast-expression, and no
/// diagnostic is emitted in this case and no tokens are consumed.
///
/// \verbatim
/// cast-expression: [C99 6.5.4]
/// unary-expression
/// '(' type-name ')' cast-expression
///
/// unary-expression: [C99 6.5.3]
/// postfix-expression
/// '++' unary-expression
/// '--' unary-expression
/// [Coro] 'co_await' cast-expression
/// unary-operator cast-expression
/// 'sizeof' unary-expression
/// 'sizeof' '(' type-name ')'
/// [C++11] 'sizeof' '...' '(' identifier ')'
/// [GNU] '__alignof' unary-expression
/// [GNU] '__alignof' '(' type-name ')'
/// [C11] '_Alignof' '(' type-name ')'
/// [C++11] 'alignof' '(' type-id ')'
/// [GNU] '&&' identifier
/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
/// [C++] new-expression
/// [C++] delete-expression
///
/// unary-operator: one of
/// '&' '*' '+' '-' '~' '!'
/// [GNU] '__extension__' '__real' '__imag'
///
/// primary-expression: [C99 6.5.1]
/// [C99] identifier
/// [C++] id-expression
/// constant
/// string-literal
/// [C++] boolean-literal [C++ 2.13.5]
/// [C++11] 'nullptr' [C++11 2.14.7]
/// [C++11] user-defined-literal
/// '(' expression ')'
/// [C11] generic-selection
/// '__func__' [C99 6.4.2.2]
/// [GNU] '__FUNCTION__'
/// [MS] '__FUNCDNAME__'
/// [MS] 'L__FUNCTION__'
/// [GNU] '__PRETTY_FUNCTION__'
/// [GNU] '(' compound-statement ')'
/// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
/// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
/// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
/// assign-expr ')'
/// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
/// [GNU] '__null'
/// [OBJC] '[' objc-message-expr ']'
/// [OBJC] '\@selector' '(' objc-selector-arg ')'
/// [OBJC] '\@protocol' '(' identifier ')'
/// [OBJC] '\@encode' '(' type-name ')'
/// [OBJC] objc-string-literal
/// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
/// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
/// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
/// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
/// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
/// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
/// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
/// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
/// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
/// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
/// [C++] 'this' [C++ 9.3.2]
/// [G++] unary-type-trait '(' type-id ')'
/// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
/// [EMBT] array-type-trait '(' type-id ',' integer ')'
/// [clang] '^' block-literal
///
/// constant: [C99 6.4.4]
/// integer-constant
/// floating-constant
/// enumeration-constant -> identifier
/// character-constant
///
/// id-expression: [C++ 5.1]
/// unqualified-id
/// qualified-id
///
/// unqualified-id: [C++ 5.1]
/// identifier
/// operator-function-id
/// conversion-function-id
/// '~' class-name
/// template-id
///
/// new-expression: [C++ 5.3.4]
/// '::'[opt] 'new' new-placement[opt] new-type-id
/// new-initializer[opt]
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// delete-expression: [C++ 5.3.5]
/// '::'[opt] 'delete' cast-expression
/// '::'[opt] 'delete' '[' ']' cast-expression
///
/// [GNU/Embarcadero] unary-type-trait:
/// '__is_arithmetic'
/// '__is_floating_point'
/// '__is_integral'
/// '__is_lvalue_expr'
/// '__is_rvalue_expr'
/// '__is_complete_type'
/// '__is_void'
/// '__is_array'
/// '__is_function'
/// '__is_reference'
/// '__is_lvalue_reference'
/// '__is_rvalue_reference'
/// '__is_fundamental'
/// '__is_object'
/// '__is_scalar'
/// '__is_compound'
/// '__is_pointer'
/// '__is_member_object_pointer'
/// '__is_member_function_pointer'
/// '__is_member_pointer'
/// '__is_const'
/// '__is_volatile'
/// '__is_trivial'
/// '__is_standard_layout'
/// '__is_signed'
/// '__is_unsigned'
///
/// [GNU] unary-type-trait:
/// '__has_nothrow_assign'
/// '__has_nothrow_copy'
/// '__has_nothrow_constructor'
/// '__has_trivial_assign' [TODO]
/// '__has_trivial_copy' [TODO]
/// '__has_trivial_constructor'
/// '__has_trivial_destructor'
/// '__has_virtual_destructor'
/// '__is_abstract' [TODO]
/// '__is_class'
/// '__is_empty' [TODO]
/// '__is_enum'
/// '__is_final'
/// '__is_pod'
/// '__is_polymorphic'
/// '__is_sealed' [MS]
/// '__is_trivial'
/// '__is_union'
/// '__has_unique_object_representations'
///
/// [Clang] unary-type-trait:
/// '__is_aggregate'
/// '__trivially_copyable'
///
/// binary-type-trait:
/// [GNU] '__is_base_of'
/// [MS] '__is_convertible_to'
/// '__is_convertible'
/// '__is_same'
///
/// [Embarcadero] array-type-trait:
/// '__array_rank'
/// '__array_extent'
///
/// [Embarcadero] expression-trait:
/// '__is_lvalue_expr'
/// '__is_rvalue_expr'
/// \endverbatim
///
ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
bool isAddressOfOperand,
bool &NotCastExpr,
TypeCastState isTypeCast,
bool isVectorLiteral) {
ExprResult Res;
tok::TokenKind SavedKind = Tok.getKind();
NotCastExpr = false;
// This handles all of cast-expression, unary-expression, postfix-expression,
// and primary-expression. We handle them together like this for efficiency
// and to simplify handling of an expression starting with a '(' token: which
// may be one of a parenthesized expression, cast-expression, compound literal
// expression, or statement expression.
//
// If the parsed tokens consist of a primary-expression, the cases below
// break out of the switch; at the end we call ParsePostfixExpressionSuffix
// to handle the postfix expression suffixes. Cases that cannot be followed
// by postfix exprs should return without invoking
// ParsePostfixExpressionSuffix.
switch (SavedKind) {
case tok::l_paren: {
// If this expression is limited to being a unary-expression, the parent can
// not start a cast expression.
ParenParseOption ParenExprType =
(isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
: CastExpr;
ParsedType CastTy;
SourceLocation RParenLoc;
Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
isTypeCast == IsTypeCast, CastTy, RParenLoc);
if (isVectorLiteral)
return Res;
switch (ParenExprType) {
case SimpleExpr: break; // Nothing else to do.
case CompoundStmt: break; // Nothing else to do.
case CompoundLiteral:
// We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
// postfix-expression exist, parse them now.
break;
case CastExpr:
// We have parsed the cast-expression and no postfix-expr pieces are
// following.
return Res;
}
break;
}
// primary-expression
case tok::numeric_constant:
// constant: integer-constant
// constant: floating-constant
Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
ConsumeToken();
break;
case tok::kw_true:
case tok::kw_false:
Res = ParseCXXBoolLiteral();
break;
case tok::kw___objc_yes:
case tok::kw___objc_no:
return ParseObjCBoolLiteral();
case tok::kw_nullptr:
Diag(Tok, diag::warn_cxx98_compat_nullptr);
return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
case tok::annot_primary_expr:
assert(Res.get() == nullptr && "Stray primary-expression annotation?");
Res = getExprAnnotation(Tok);
ConsumeAnnotationToken();
break;
case tok::kw___super:
case tok::kw_decltype:
// Annotate the token and tail recurse.
if (TryAnnotateTypeOrScopeToken())
return ExprError();
assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
case tok::identifier: { // primary-expression: identifier
// unqualified-id: identifier
// constant: enumeration-constant
// Turn a potentially qualified name into a annot_typename or
// annot_cxxscope if it would be valid. This handles things like x::y, etc.
if (getLangOpts().CPlusPlus) {
// Avoid the unnecessary parse-time lookup in the common case
// where the syntax forbids a type.
const Token &Next = NextToken();
// If this identifier was reverted from a token ID, and the next token
// is a parenthesis, this is likely to be a use of a type trait. Check
// those tokens.
if (Next.is(tok::l_paren) &&
Tok.is(tok::identifier) &&
Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
IdentifierInfo *II = Tok.getIdentifierInfo();
// Build up the mapping of revertible type traits, for future use.
if (RevertibleTypeTraits.empty()) {
#define RTT_JOIN(X,Y) X##Y
#define REVERTIBLE_TYPE_TRAIT(Name) \
RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
= RTT_JOIN(tok::kw_,Name)
REVERTIBLE_TYPE_TRAIT(__is_abstract);
REVERTIBLE_TYPE_TRAIT(__is_aggregate);
REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
REVERTIBLE_TYPE_TRAIT(__is_array);
REVERTIBLE_TYPE_TRAIT(__is_assignable);
REVERTIBLE_TYPE_TRAIT(__is_base_of);
REVERTIBLE_TYPE_TRAIT(__is_class);
REVERTIBLE_TYPE_TRAIT(__is_complete_type);
REVERTIBLE_TYPE_TRAIT(__is_compound);
REVERTIBLE_TYPE_TRAIT(__is_const);
REVERTIBLE_TYPE_TRAIT(__is_constructible);
REVERTIBLE_TYPE_TRAIT(__is_convertible);
REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
REVERTIBLE_TYPE_TRAIT(__is_destructible);
REVERTIBLE_TYPE_TRAIT(__is_empty);
REVERTIBLE_TYPE_TRAIT(__is_enum);
REVERTIBLE_TYPE_TRAIT(__is_floating_point);
REVERTIBLE_TYPE_TRAIT(__is_final);
REVERTIBLE_TYPE_TRAIT(__is_function);
REVERTIBLE_TYPE_TRAIT(__is_fundamental);
REVERTIBLE_TYPE_TRAIT(__is_integral);
REVERTIBLE_TYPE_TRAIT(__is_interface_class);
REVERTIBLE_TYPE_TRAIT(__is_literal);
REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
REVERTIBLE_TYPE_TRAIT(__is_object);
REVERTIBLE_TYPE_TRAIT(__is_pod);
REVERTIBLE_TYPE_TRAIT(__is_pointer);
REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
REVERTIBLE_TYPE_TRAIT(__is_reference);
REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
REVERTIBLE_TYPE_TRAIT(__is_same);
REVERTIBLE_TYPE_TRAIT(__is_scalar);
REVERTIBLE_TYPE_TRAIT(__is_sealed);
REVERTIBLE_TYPE_TRAIT(__is_signed);
REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
REVERTIBLE_TYPE_TRAIT(__is_trivial);
REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
REVERTIBLE_TYPE_TRAIT(__is_union);
REVERTIBLE_TYPE_TRAIT(__is_unsigned);
REVERTIBLE_TYPE_TRAIT(__is_void);
REVERTIBLE_TYPE_TRAIT(__is_volatile);
#undef REVERTIBLE_TYPE_TRAIT
#undef RTT_JOIN
}
// If we find that this is in fact the name of a type trait,
// update the token kind in place and parse again to treat it as
// the appropriate kind of type trait.
llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
= RevertibleTypeTraits.find(II);
if (Known != RevertibleTypeTraits.end()) {
Tok.setKind(Known->second);
return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
NotCastExpr, isTypeCast);
}
}
if ((!ColonIsSacred && Next.is(tok::colon)) ||
Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
tok::l_brace)) {
// If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
if (TryAnnotateTypeOrScopeToken())
return ExprError();
if (!Tok.is(tok::identifier))
return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
}
}
// Consume the identifier so that we can see if it is followed by a '(' or
// '.'.
IdentifierInfo &II = *Tok.getIdentifierInfo();
SourceLocation ILoc = ConsumeToken();
// Support 'Class.property' and 'super.property' notation.
if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
(Actions.getTypeName(II, ILoc, getCurScope()) ||
// Allow the base to be 'super' if in an objc-method.
(&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
ConsumeToken();
if (Tok.is(tok::code_completion) && &II != Ident_super) {
Actions.CodeCompleteObjCClassPropertyRefExpr(
getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
cutOffParsing();
return ExprError();
}
// Allow either an identifier or the keyword 'class' (in C++).
if (Tok.isNot(tok::identifier) &&
!(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
Diag(Tok, diag::err_expected_property_name);
return ExprError();
}
IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
SourceLocation PropertyLoc = ConsumeToken();
Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
ILoc, PropertyLoc);
break;
}
// In an Objective-C method, if we have "super" followed by an identifier,
// the token sequence is ill-formed. However, if there's a ':' or ']' after
// that identifier, this is probably a message send with a missing open
// bracket. Treat it as such.
if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
getCurScope()->isInObjcMethodScope() &&
((Tok.is(tok::identifier) &&
(NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
Tok.is(tok::code_completion))) {
Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
nullptr);
break;
}
// If we have an Objective-C class name followed by an identifier
// and either ':' or ']', this is an Objective-C class message
// send that's missing the opening '['. Recovery
// appropriately. Also take this path if we're performing code
// completion after an Objective-C class name.
if (getLangOpts().ObjC1 &&
((Tok.is(tok::identifier) && !InMessageExpression) ||
Tok.is(tok::code_completion))) {
const Token& Next = NextToken();
if (Tok.is(tok::code_completion) ||
Next.is(tok::colon) || Next.is(tok::r_square))
if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
if (Typ.get()->isObjCObjectOrInterfaceType()) {
// Fake up a Declarator to use with ActOnTypeName.
DeclSpec DS(AttrFactory);
DS.SetRangeStart(ILoc);
DS.SetRangeEnd(ILoc);
const char *PrevSpec = nullptr;
unsigned DiagID;
DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
Actions.getASTContext().getPrintingPolicy());
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
DeclaratorInfo);
if (Ty.isInvalid())
break;
Res = ParseObjCMessageExpressionBody(SourceLocation(),
SourceLocation(),
Ty.get(), nullptr);
break;
}
}
// Make sure to pass down the right value for isAddressOfOperand.
if (isAddressOfOperand && isPostfixExpressionSuffixStart())
isAddressOfOperand = false;
// Function designators are allowed to be undeclared (C99 6.5.1p2), so we
// need to know whether or not this identifier is a function designator or
// not.
UnqualifiedId Name;
CXXScopeSpec ScopeSpec;
SourceLocation TemplateKWLoc;
Token Replacement;
auto Validator = llvm::make_unique<CastExpressionIdValidator>(
Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
Validator->IsAddressOfOperand = isAddressOfOperand;
if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
Validator->WantExpressionKeywords = false;
Validator->WantRemainingKeywords = false;
} else {
Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
}
Name.setIdentifier(&II, ILoc);
Res = Actions.ActOnIdExpression(
getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
isAddressOfOperand, std::move(Validator),
/*IsInlineAsmIdentifier=*/false,
Tok.is(tok::r_paren) ? nullptr : &Replacement);
if (!Res.isInvalid() && !Res.get()) {
UnconsumeToken(Replacement);
return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
NotCastExpr, isTypeCast);
}
break;
}
case tok::char_constant: // constant: character-constant
case tok::wide_char_constant:
case tok::utf8_char_constant:
case tok::utf16_char_constant:
case tok::utf32_char_constant:
Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
ConsumeToken();
break;
case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
ConsumeToken();
break;
case tok::string_literal: // primary-expression: string-literal
case tok::wide_string_literal:
case tok::utf8_string_literal:
case tok::utf16_string_literal:
case tok::utf32_string_literal:
Res = ParseStringLiteralExpression(true);
break;
case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
Res = ParseGenericSelectionExpression();
break;
case tok::kw___builtin_available:
return ParseAvailabilityCheckExpr(Tok.getLocation());
case tok::kw___builtin_va_arg:
case tok::kw___builtin_offsetof:
case tok::kw___builtin_choose_expr:
case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
case tok::kw___builtin_convertvector:
return ParseBuiltinPrimaryExpression();
case tok::kw___null:
return Actions.ActOnGNUNullExpr(ConsumeToken());
case tok::plusplus: // unary-expression: '++' unary-expression [C99]
case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
// C++ [expr.unary] has:
// unary-expression:
// ++ cast-expression
// -- cast-expression
Token SavedTok = Tok;
ConsumeToken();
// One special case is implicitly handled here: if the preceding tokens are
// an ambiguous cast expression, such as "(T())++", then we recurse to
// determine whether the '++' is prefix or postfix.
Res = ParseCastExpression(!getLangOpts().CPlusPlus,
/*isAddressOfOperand*/false, NotCastExpr,
NotTypeCast);
if (NotCastExpr) {
// If we return with NotCastExpr = true, we must not consume any tokens,
// so put the token back where we found it.
assert(Res.isInvalid());
UnconsumeToken(SavedTok);
return ExprError();
}
if (!Res.isInvalid())
Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
SavedKind, Res.get());
return Res;
}
case tok::amp: { // unary-expression: '&' cast-expression
// Special treatment because of member pointers
SourceLocation SavedLoc = ConsumeToken();
Res = ParseCastExpression(false, true);
if (!Res.isInvalid())
Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
return Res;
}
case tok::star: // unary-expression: '*' cast-expression
case tok::plus: // unary-expression: '+' cast-expression
case tok::minus: // unary-expression: '-' cast-expression
case tok::tilde: // unary-expression: '~' cast-expression
case tok::exclaim: // unary-expression: '!' cast-expression
case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
SourceLocation SavedLoc = ConsumeToken();
Res = ParseCastExpression(false);
if (!Res.isInvalid())
Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
return Res;
}
case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
SourceLocation CoawaitLoc = ConsumeToken();
Res = ParseCastExpression(false);
if (!Res.isInvalid())
Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
return Res;
}
case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
SourceLocation SavedLoc = ConsumeToken();
Res = ParseCastExpression(false);
if (!Res.isInvalid())
Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
return Res;
}
case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
if (!getLangOpts().C11)
Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
// fallthrough
case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
// unary-expression: '__alignof' '(' type-name ')'
case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
// unary-expression: 'sizeof' '(' type-name ')'
case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
// unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
case tok::kw___builtin_omp_required_simd_align:
return ParseUnaryExprOrTypeTraitExpression();
case tok::ampamp: { // unary-expression: '&&' identifier
SourceLocation AmpAmpLoc = ConsumeToken();
if (Tok.isNot(tok::identifier))
return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
if (getCurScope()->getFnParent() == nullptr)
return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
Tok.getLocation());
Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
ConsumeToken();
return Res;
}
case tok::kw_const_cast:
case tok::kw_dynamic_cast:
case tok::kw_reinterpret_cast:
case tok::kw_static_cast:
Res = ParseCXXCasts();
break;
case tok::kw_typeid:
Res = ParseCXXTypeid();
break;
case tok::kw___uuidof:
Res = ParseCXXUuidof();
break;
case tok::kw_this:
Res = ParseCXXThis();
break;
case tok::annot_typename:
if (isStartOfObjCClassMessageMissingOpenBracket()) {
ParsedType Type = getTypeAnnotation(Tok);
// Fake up a Declarator to use with ActOnTypeName.
DeclSpec DS(AttrFactory);
DS.SetRangeStart(Tok.getLocation());
DS.SetRangeEnd(Tok.getLastLoc());
const char *PrevSpec = nullptr;
unsigned DiagID;
DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
PrevSpec, DiagID, Type,
Actions.getASTContext().getPrintingPolicy());
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
if (Ty.isInvalid())
break;
ConsumeAnnotationToken();
Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
Ty.get(), nullptr);
break;
}
// Fall through
case tok::annot_decltype:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_bool:
case tok::kw_short:
case tok::kw_int:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_half:
case tok::kw_float:
case tok::kw_double:
case tok::kw__Float16:
case tok::kw___float128:
case tok::kw_void:
case tok::kw_typename:
case tok::kw_typeof:
case tok::kw___vector:
#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
#include "clang/Basic/OpenCLImageTypes.def"
{
if (!getLangOpts().CPlusPlus) {
Diag(Tok, diag::err_expected_expression);
return ExprError();
}
if (SavedKind == tok::kw_typename) {
// postfix-expression: typename-specifier '(' expression-list[opt] ')'
// typename-specifier braced-init-list
if (TryAnnotateTypeOrScopeToken())
return ExprError();
if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
// We are trying to parse a simple-type-specifier but might not get such
// a token after error recovery.
return ExprError();
}
// postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
// simple-type-specifier braced-init-list
//
DeclSpec DS(AttrFactory);
ParseCXXSimpleTypeSpecifier(DS);
if (Tok.isNot(tok::l_paren) &&
(!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
<< DS.getSourceRange());
if (Tok.is(tok::l_brace))
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
Res = ParseCXXTypeConstructExpression(DS);
break;
}
case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
// If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
// (We can end up in this situation after tentative parsing.)
if (TryAnnotateTypeOrScopeToken())
return ExprError();
if (!Tok.is(tok::annot_cxxscope))
return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
NotCastExpr, isTypeCast);
Token Next = NextToken();
if (Next.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
if (TemplateId->Kind == TNK_Type_template) {
// We have a qualified template-id that we know refers to a
// type, translate it into a type and continue parsing as a
// cast expression.
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, nullptr,
/*EnteringContext=*/false);
AnnotateTemplateIdTokenAsType();
return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
NotCastExpr, isTypeCast);
}
}
// Parse as an id-expression.
Res = ParseCXXIdExpression(isAddressOfOperand);
break;
}
case tok::annot_template_id: { // [C++] template-id
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (TemplateId->Kind == TNK_Type_template) {
// We have a template-id that we know refers to a type,
// translate it into a type and continue parsing as a cast
// expression.
AnnotateTemplateIdTokenAsType();
return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
NotCastExpr, isTypeCast);
}
// Fall through to treat the template-id as an id-expression.
LLVM_FALLTHROUGH;
}
case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
Res = ParseCXXIdExpression(isAddressOfOperand);
break;
case tok::coloncolon: {
// ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
// annotates the token, tail recurse.
if (TryAnnotateTypeOrScopeToken())
return ExprError();
if (!Tok.is(tok::coloncolon))
return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
// ::new -> [C++] new-expression
// ::delete -> [C++] delete-expression
SourceLocation CCLoc = ConsumeToken();
if (Tok.is(tok::kw_new))
return ParseCXXNewExpression(true, CCLoc);
if (Tok.is(tok::kw_delete))
return ParseCXXDeleteExpression(true, CCLoc);
// This is not a type name or scope specifier, it is an invalid expression.
Diag(CCLoc, diag::err_expected_expression);
return ExprError();
}
case tok::kw_new: // [C++] new-expression
return ParseCXXNewExpression(false, Tok.getLocation());
case tok::kw_delete: // [C++] delete-expression
return ParseCXXDeleteExpression(false, Tok.getLocation());
case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
SourceLocation KeyLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
return ExprError();
// C++11 [expr.unary.noexcept]p1:
// The noexcept operator determines whether the evaluation of its operand,
// which is an unevaluated operand, can throw an exception.
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated);
ExprResult Result = ParseExpression();
T.consumeClose();
if (!Result.isInvalid())
Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
Result.get(), T.getCloseLocation());
return Result;
}
#define TYPE_TRAIT(N,Spelling,K) \
case tok::kw_##Spelling:
#include "clang/Basic/TokenKinds.def"
return ParseTypeTrait();
case tok::kw___array_rank:
case tok::kw___array_extent:
return ParseArrayTypeTrait();
case tok::kw___is_lvalue_expr:
case tok::kw___is_rvalue_expr:
return ParseExpressionTrait();
case tok::at: {
SourceLocation AtLoc = ConsumeToken();
return ParseObjCAtExpression(AtLoc);
}
case tok::caret:
Res = ParseBlockLiteralExpression();
break;
case tok::code_completion: {
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
cutOffParsing();
return ExprError();
}
case tok::l_square:
if (getLangOpts().CPlusPlus11) {
if (getLangOpts().ObjC1) {
// C++11 lambda expressions and Objective-C message sends both start with a
// square bracket. There are three possibilities here:
// we have a valid lambda expression, we have an invalid lambda
// expression, or we have something that doesn't appear to be a lambda.
// If we're in the last case, we fall back to ParseObjCMessageExpression.
Res = TryParseLambdaExpression();
if (!Res.isInvalid() && !Res.get())
Res = ParseObjCMessageExpression();
break;
}
Res = ParseLambdaExpression();
break;
}
if (getLangOpts().ObjC1) {
Res = ParseObjCMessageExpression();
break;
}
// FALL THROUGH.
default:
NotCastExpr = true;
return ExprError();
}
// Check to see whether Res is a function designator only. If it is and we
// are compiling for OpenCL, we need to return an error as this implies
// that the address of the function is being taken, which is illegal in CL.
// These can be followed by postfix-expr pieces.
Res = ParsePostfixExpressionSuffix(Res);
if (getLangOpts().OpenCL)
if (Expr *PostfixExpr = Res.get()) {
QualType Ty = PostfixExpr->getType();
if (!Ty.isNull() && Ty->isFunctionType()) {
Diag(PostfixExpr->getExprLoc(),
diag::err_opencl_taking_function_address_parser);
return ExprError();
}
}
return Res;
}
/// \brief Once the leading part of a postfix-expression is parsed, this
/// method parses any suffixes that apply.
///
/// \verbatim
/// postfix-expression: [C99 6.5.2]
/// primary-expression
/// postfix-expression '[' expression ']'
/// postfix-expression '[' braced-init-list ']'
/// postfix-expression '(' argument-expression-list[opt] ')'
/// postfix-expression '.' identifier
/// postfix-expression '->' identifier
/// postfix-expression '++'
/// postfix-expression '--'
/// '(' type-name ')' '{' initializer-list '}'
/// '(' type-name ')' '{' initializer-list ',' '}'
///
/// argument-expression-list: [C99 6.5.2]
/// argument-expression ...[opt]
/// argument-expression-list ',' assignment-expression ...[opt]
/// \endverbatim
ExprResult
Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
// Now that the primary-expression piece of the postfix-expression has been
// parsed, see if there are any postfix-expression pieces here.
SourceLocation Loc;
while (1) {
switch (Tok.getKind()) {
case tok::code_completion:
if (InMessageExpression)
return LHS;
Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
cutOffParsing();
return ExprError();
case tok::identifier:
// If we see identifier: after an expression, and we're not already in a
// message send, then this is probably a message send with a missing
// opening bracket '['.
if (getLangOpts().ObjC1 && !InMessageExpression &&
(NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
nullptr, LHS.get());
break;
}
// Fall through; this isn't a message send.
LLVM_FALLTHROUGH;
default: // Not a postfix-expression suffix.
return LHS;
case tok::l_square: { // postfix-expression: p-e '[' expression ']'
// If we have a array postfix expression that starts on a new line and
// Objective-C is enabled, it is highly likely that the user forgot a
// semicolon after the base expression and that the array postfix-expr is
// actually another message send. In this case, do some look-ahead to see
// if the contents of the square brackets are obviously not a valid
// expression and recover by pretending there is no suffix.
if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
isSimpleObjCMessageExpression())
return LHS;
// Reject array indices starting with a lambda-expression. '[[' is
// reserved for attributes.
if (CheckProhibitedCXX11Attribute()) {
(void)Actions.CorrectDelayedTyposInExpr(LHS);
return ExprError();
}
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
Loc = T.getOpenLocation();
ExprResult Idx, Length;
SourceLocation ColonLoc;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
Idx = ParseBraceInitializer();
} else if (getLangOpts().OpenMP) {
ColonProtectionRAIIObject RAII(*this);
// Parse [: or [ expr or [ expr :
if (!Tok.is(tok::colon)) {
// [ expr
Idx = ParseExpression();
}
if (Tok.is(tok::colon)) {
// Consume ':'
ColonLoc = ConsumeToken();
if (Tok.isNot(tok::r_square))
Length = ParseExpression();
}
} else
Idx = ParseExpression();
SourceLocation RLoc = Tok.getLocation();
ExprResult OrigLHS = LHS;
if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
Tok.is(tok::r_square)) {
if (ColonLoc.isValid()) {
LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
ColonLoc, Length.get(), RLoc);
} else {
LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
Idx.get(), RLoc);
}
} else {
LHS = ExprError();
}
if (LHS.isInvalid()) {
(void)Actions.CorrectDelayedTyposInExpr(OrigLHS);
(void)Actions.CorrectDelayedTyposInExpr(Idx);
(void)Actions.CorrectDelayedTyposInExpr(Length);
LHS = ExprError();
Idx = ExprError();
}
// Match the ']'.
T.consumeClose();
break;
}
case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
// '(' argument-expression-list[opt] ')'
tok::TokenKind OpKind = Tok.getKind();
InMessageExpressionRAIIObject InMessage(*this, false);
Expr *ExecConfig = nullptr;
BalancedDelimiterTracker PT(*this, tok::l_paren);
if (OpKind == tok::lesslessless) {
ExprVector ExecConfigExprs;
CommaLocsTy ExecConfigCommaLocs;
SourceLocation OpenLoc = ConsumeToken();
if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
(void)Actions.CorrectDelayedTyposInExpr(LHS);
LHS = ExprError();
}
SourceLocation CloseLoc;
if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
} else if (LHS.isInvalid()) {
SkipUntil(tok::greatergreatergreater, StopAtSemi);
} else {
// There was an error closing the brackets
Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
SkipUntil(tok::greatergreatergreater, StopAtSemi);
LHS = ExprError();
}
if (!LHS.isInvalid()) {
if (ExpectAndConsume(tok::l_paren))
LHS = ExprError();
else
Loc = PrevTokLocation;
}
if (!LHS.isInvalid()) {
ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
OpenLoc,
ExecConfigExprs,
CloseLoc);
if (ECResult.isInvalid())
LHS = ExprError();
else
ExecConfig = ECResult.get();
}
} else {
PT.consumeOpen();
Loc = PT.getOpenLocation();
}
ExprVector ArgExprs;
CommaLocsTy CommaLocs;
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
cutOffParsing();
return ExprError();
}
if (OpKind == tok::l_paren || !LHS.isInvalid()) {
if (Tok.isNot(tok::r_paren)) {
if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
})) {
(void)Actions.CorrectDelayedTyposInExpr(LHS);
LHS = ExprError();
} else if (LHS.isInvalid()) {
for (auto &E : ArgExprs)
Actions.CorrectDelayedTyposInExpr(E);
}
}
}
// Match the ')'.
if (LHS.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
} else if (Tok.isNot(tok::r_paren)) {
bool HadDelayedTypo = false;
if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
HadDelayedTypo = true;
for (auto &E : ArgExprs)
if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
HadDelayedTypo = true;
// If there were delayed typos in the LHS or ArgExprs, call SkipUntil
// instead of PT.consumeClose() to avoid emitting extra diagnostics for
// the unmatched l_paren.
if (HadDelayedTypo)
SkipUntil(tok::r_paren, StopAtSemi);
else
PT.consumeClose();
LHS = ExprError();
} else {
assert((ArgExprs.size() == 0 ||
ArgExprs.size()-1 == CommaLocs.size())&&
"Unexpected number of commas!");
LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
ArgExprs, Tok.getLocation(),
ExecConfig);
PT.consumeClose();
}
break;
}
case tok::arrow:
case tok::period: {
// postfix-expression: p-e '->' template[opt] id-expression
// postfix-expression: p-e '.' template[opt] id-expression
tok::TokenKind OpKind = Tok.getKind();
SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
CXXScopeSpec SS;
ParsedType ObjectType;
bool MayBePseudoDestructor = false;
if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
Expr *Base = LHS.get();
const Type* BaseType = Base->getType().getTypePtrOrNull();
if (BaseType && Tok.is(tok::l_paren) &&
(BaseType->isFunctionType() ||
BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
Diag(OpLoc, diag::err_function_is_not_record)
<< OpKind << Base->getSourceRange()
<< FixItHint::CreateRemoval(OpLoc);
return ParsePostfixExpressionSuffix(Base);
}
LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
OpLoc, OpKind, ObjectType,
MayBePseudoDestructor);
if (LHS.isInvalid())
break;
ParseOptionalCXXScopeSpecifier(SS, ObjectType,
/*EnteringContext=*/false,
&MayBePseudoDestructor);
if (SS.isNotEmpty())
ObjectType = nullptr;
}
if (Tok.is(tok::code_completion)) {
// Code completion for a member access expression.
if (Expr *Base = LHS.get())
Actions.CodeCompleteMemberReferenceExpr(
getCurScope(), Base, OpLoc, OpKind == tok::arrow,
ExprStatementTokLoc == Base->getLocStart());
cutOffParsing();
return ExprError();
}
if (MayBePseudoDestructor && !LHS.isInvalid()) {
LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
ObjectType);
break;
}
// Either the action has told us that this cannot be a
// pseudo-destructor expression (based on the type of base
// expression), or we didn't see a '~' in the right place. We
// can still parse a destructor name here, but in that case it
// names a real destructor.
// Allow explicit constructor calls in Microsoft mode.
// FIXME: Add support for explicit call of template constructor.
SourceLocation TemplateKWLoc;
UnqualifiedId Name;
if (getLangOpts().ObjC2 && OpKind == tok::period &&
Tok.is(tok::kw_class)) {
// Objective-C++:
// After a '.' in a member access expression, treat the keyword
// 'class' as if it were an identifier.
//
// This hack allows property access to the 'class' method because it is
// such a common method name. For other C++ keywords that are
// Objective-C method names, one must use the message send syntax.
IdentifierInfo *Id = Tok.getIdentifierInfo();
SourceLocation Loc = ConsumeToken();
Name.setIdentifier(Id, Loc);
} else if (ParseUnqualifiedId(SS,
/*EnteringContext=*/false,
/*AllowDestructorName=*/true,
/*AllowConstructorName=*/
getLangOpts().MicrosoftExt,
/*AllowDeductionGuide=*/false,
ObjectType, TemplateKWLoc, Name)) {
(void)Actions.CorrectDelayedTyposInExpr(LHS);
LHS = ExprError();
}
if (!LHS.isInvalid())
LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
OpKind, SS, TemplateKWLoc, Name,
CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
: nullptr);
break;
}
case tok::plusplus: // postfix-expression: postfix-expression '++'
case tok::minusminus: // postfix-expression: postfix-expression '--'
if (!LHS.isInvalid()) {
LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
Tok.getKind(), LHS.get());
}
ConsumeToken();
break;
}
}
}
/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
/// vec_step and we are at the start of an expression or a parenthesized
/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
/// expression (isCastExpr == false) or the type (isCastExpr == true).
///
/// \verbatim
/// unary-expression: [C99 6.5.3]
/// 'sizeof' unary-expression
/// 'sizeof' '(' type-name ')'
/// [GNU] '__alignof' unary-expression
/// [GNU] '__alignof' '(' type-name ')'
/// [C11] '_Alignof' '(' type-name ')'
/// [C++0x] 'alignof' '(' type-id ')'
///
/// [GNU] typeof-specifier:
/// typeof ( expressions )
/// typeof ( type-name )
/// [GNU/C++] typeof unary-expression
///
/// [OpenCL 1.1 6.11.12] vec_step built-in function:
/// vec_step ( expressions )
/// vec_step ( type-name )
/// \endverbatim
ExprResult
Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
bool &isCastExpr,
ParsedType &CastTy,
SourceRange &CastRange) {
assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
tok::kw___builtin_omp_required_simd_align) &&
"Not a typeof/sizeof/alignof/vec_step expression!");
ExprResult Operand;
// If the operand doesn't start with an '(', it must be an expression.
if (Tok.isNot(tok::l_paren)) {
// If construct allows a form without parenthesis, user may forget to put
// pathenthesis around type name.
if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
tok::kw__Alignof)) {
if (isTypeIdUnambiguously()) {
DeclSpec DS(AttrFactory);
ParseSpecifierQualifierList(DS);
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
ParseDeclarator(DeclaratorInfo);
SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
<< OpTok.getName()
<< FixItHint::CreateInsertion(LParenLoc, "(")
<< FixItHint::CreateInsertion(RParenLoc, ")");
isCastExpr = true;
return ExprEmpty();
}
}
isCastExpr = false;
if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
<< tok::l_paren;
return ExprError();
}
Operand = ParseCastExpression(true/*isUnaryExpression*/);
} else {
// If it starts with a '(', we know that it is either a parenthesized
// type-name, or it is a unary-expression that starts with a compound
// literal, or starts with a primary-expression that is a parenthesized
// expression.
ParenParseOption ExprType = CastExpr;
SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
false, CastTy, RParenLoc);
CastRange = SourceRange(LParenLoc, RParenLoc);
// If ParseParenExpression parsed a '(typename)' sequence only, then this is
// a type.
if (ExprType == CastExpr) {
isCastExpr = true;
return ExprEmpty();
}
if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
// GNU typeof in C requires the expression to be parenthesized. Not so for
// sizeof/alignof or in C++. Therefore, the parenthesized expression is
// the start of a unary-expression, but doesn't include any postfix
// pieces. Parse these now if present.
if (!Operand.isInvalid())
Operand = ParsePostfixExpressionSuffix(Operand.get());
}
}
// If we get here, the operand to the typeof/sizeof/alignof was an expression.
isCastExpr = false;
return Operand;
}
/// \brief Parse a sizeof or alignof expression.
///
/// \verbatim
/// unary-expression: [C99 6.5.3]
/// 'sizeof' unary-expression
/// 'sizeof' '(' type-name ')'
/// [C++11] 'sizeof' '...' '(' identifier ')'
/// [GNU] '__alignof' unary-expression
/// [GNU] '__alignof' '(' type-name ')'
/// [C11] '_Alignof' '(' type-name ')'
/// [C++11] 'alignof' '(' type-id ')'
/// \endverbatim
ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
tok::kw__Alignof, tok::kw_vec_step,
tok::kw___builtin_omp_required_simd_align) &&
"Not a sizeof/alignof/vec_step expression!");
Token OpTok = Tok;
ConsumeToken();
// [C++11] 'sizeof' '...' '(' identifier ')'
if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
SourceLocation EllipsisLoc = ConsumeToken();
SourceLocation LParenLoc, RParenLoc;
IdentifierInfo *Name = nullptr;
SourceLocation NameLoc;
if (Tok.is(tok::l_paren)) {
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
LParenLoc = T.getOpenLocation();
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
T.consumeClose();
RParenLoc = T.getCloseLocation();
if (RParenLoc.isInvalid())
RParenLoc = PP.getLocForEndOfToken(NameLoc);
} else {
Diag(Tok, diag::err_expected_parameter_pack);
SkipUntil(tok::r_paren, StopAtSemi);
}
} else if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
RParenLoc = PP.getLocForEndOfToken(NameLoc);
Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
<< Name
<< FixItHint::CreateInsertion(LParenLoc, "(")
<< FixItHint::CreateInsertion(RParenLoc, ")");
} else {
Diag(Tok, diag::err_sizeof_parameter_pack);
}
if (!Name)
return ExprError();
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated,
Sema::ReuseLambdaContextDecl);
return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
OpTok.getLocation(),
*Name, NameLoc,
RParenLoc);
}
if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
Diag(OpTok, diag::warn_cxx98_compat_alignof);
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated,
Sema::ReuseLambdaContextDecl);
bool isCastExpr;
ParsedType CastTy;
SourceRange CastRange;
ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
isCastExpr,
CastTy,
CastRange);
UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
if (OpTok.isOneOf(tok::kw_alignof, tok::kw___alignof, tok::kw__Alignof))
ExprKind = UETT_AlignOf;
else if (OpTok.is(tok::kw_vec_step))
ExprKind = UETT_VecStep;
else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
ExprKind = UETT_OpenMPRequiredSimdAlign;
if (isCastExpr)
return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
ExprKind,
/*isType=*/true,
CastTy.getAsOpaquePtr(),
CastRange);
if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
// If we get here, the operand to the sizeof/alignof was an expression.
if (!Operand.isInvalid())
Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
ExprKind,
/*isType=*/false,
Operand.get(),
CastRange);
return Operand;
}
/// ParseBuiltinPrimaryExpression
///
/// \verbatim
/// primary-expression: [C99 6.5.1]
/// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
/// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
/// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
/// assign-expr ')'
/// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
/// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
///
/// [GNU] offsetof-member-designator:
/// [GNU] identifier
/// [GNU] offsetof-member-designator '.' identifier
/// [GNU] offsetof-member-designator '[' expression ']'
/// \endverbatim
ExprResult Parser::ParseBuiltinPrimaryExpression() {
ExprResult Res;
const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
tok::TokenKind T = Tok.getKind();
SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
// All of these start with an open paren.
if (Tok.isNot(tok::l_paren))
return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
<< tok::l_paren);
BalancedDelimiterTracker PT(*this, tok::l_paren);
PT.consumeOpen();
// TODO: Build AST.
switch (T) {
default: llvm_unreachable("Not a builtin primary expression!");
case tok::kw___builtin_va_arg: {
ExprResult Expr(ParseAssignmentExpression());
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
Expr = ExprError();
}
TypeResult Ty = ParseTypeName();
if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << tok::r_paren;
Expr = ExprError();
}
if (Expr.isInvalid() || Ty.isInvalid())
Res = ExprError();
else
Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
break;
}
case tok::kw___builtin_offsetof: {
SourceLocation TypeLoc = Tok.getLocation();
TypeResult Ty = ParseTypeName();
if (Ty.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
// We must have at least one identifier here.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
// Keep track of the various subcomponents we see.
SmallVector<Sema::OffsetOfComponent, 4> Comps;
Comps.push_back(Sema::OffsetOfComponent());
Comps.back().isBrackets = false;
Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
// FIXME: This loop leaks the index expressions on error.
while (1) {
if (Tok.is(tok::period)) {
// offsetof-member-designator: offsetof-member-designator '.' identifier
Comps.push_back(Sema::OffsetOfComponent());
Comps.back().isBrackets = false;
Comps.back().LocStart = ConsumeToken();
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
Comps.back().LocEnd = ConsumeToken();
} else if (Tok.is(tok::l_square)) {
if (CheckProhibitedCXX11Attribute())
return ExprError();
// offsetof-member-designator: offsetof-member-design '[' expression ']'
Comps.push_back(Sema::OffsetOfComponent());
Comps.back().isBrackets = true;
BalancedDelimiterTracker ST(*this, tok::l_square);
ST.consumeOpen();
Comps.back().LocStart = ST.getOpenLocation();
Res = ParseExpression();
if (Res.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return Res;
}
Comps.back().U.E = Res.get();
ST.consumeClose();
Comps.back().LocEnd = ST.getCloseLocation();
} else {
if (Tok.isNot(tok::r_paren)) {
PT.consumeClose();
Res = ExprError();
} else if (Ty.isInvalid()) {
Res = ExprError();
} else {
PT.consumeClose();
Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
Ty.get(), Comps,
PT.getCloseLocation());
}
break;
}
}
break;
}
case tok::kw___builtin_choose_expr: {
ExprResult Cond(ParseAssignmentExpression());
if (Cond.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return Cond;
}
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
ExprResult Expr1(ParseAssignmentExpression());
if (Expr1.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return Expr1;
}
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
ExprResult Expr2(ParseAssignmentExpression());
if (Expr2.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return Expr2;
}
if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << tok::r_paren;
return ExprError();
}
Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
Expr2.get(), ConsumeParen());
break;
}
case tok::kw___builtin_astype: {
// The first argument is an expression to be converted, followed by a comma.
ExprResult Expr(ParseAssignmentExpression());
if (Expr.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
// Second argument is the type to bitcast to.
TypeResult DestTy = ParseTypeName();
if (DestTy.isInvalid())
return ExprError();
// Attempt to consume the r-paren.
if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << tok::r_paren;
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
ConsumeParen());
break;
}
case tok::kw___builtin_convertvector: {
// The first argument is an expression to be converted, followed by a comma.
ExprResult Expr(ParseAssignmentExpression());
if (Expr.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
// Second argument is the type to bitcast to.
TypeResult DestTy = ParseTypeName();
if (DestTy.isInvalid())
return ExprError();
// Attempt to consume the r-paren.
if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << tok::r_paren;
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
ConsumeParen());
break;
}
}
if (Res.isInvalid())
return ExprError();
// These can be followed by postfix-expr pieces because they are
// primary-expressions.
return ParsePostfixExpressionSuffix(Res.get());
}
/// ParseParenExpression - This parses the unit that starts with a '(' token,
/// based on what is allowed by ExprType. The actual thing parsed is returned
/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
/// not the parsed cast-expression.
///
/// \verbatim
/// primary-expression: [C99 6.5.1]
/// '(' expression ')'
/// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
/// postfix-expression: [C99 6.5.2]
/// '(' type-name ')' '{' initializer-list '}'
/// '(' type-name ')' '{' initializer-list ',' '}'
/// cast-expression: [C99 6.5.4]
/// '(' type-name ')' cast-expression
/// [ARC] bridged-cast-expression
/// [ARC] bridged-cast-expression:
/// (__bridge type-name) cast-expression
/// (__bridge_transfer type-name) cast-expression
/// (__bridge_retained type-name) cast-expression
/// fold-expression: [C++1z]
/// '(' cast-expression fold-operator '...' ')'
/// '(' '...' fold-operator cast-expression ')'
/// '(' cast-expression fold-operator '...'
/// fold-operator cast-expression ')'
/// \endverbatim
ExprResult
Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
bool isTypeCast, ParsedType &CastTy,
SourceLocation &RParenLoc) {
assert(Tok.is(tok::l_paren) && "Not a paren expr!");
ColonProtectionRAIIObject ColonProtection(*this, false);
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen())
return ExprError();
SourceLocation OpenLoc = T.getOpenLocation();
ExprResult Result(true);
bool isAmbiguousTypeId;
CastTy = nullptr;
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteOrdinaryName(getCurScope(),
ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
: Sema::PCC_Expression);
cutOffParsing();
return ExprError();
}
// Diagnose use of bridge casts in non-arc mode.
bool BridgeCast = (getLangOpts().ObjC2 &&
Tok.isOneOf(tok::kw___bridge,
tok::kw___bridge_transfer,
tok::kw___bridge_retained,
tok::kw___bridge_retain));
if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
if (!TryConsumeToken(tok::kw___bridge)) {
StringRef BridgeCastName = Tok.getName();
SourceLocation BridgeKeywordLoc = ConsumeToken();
if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
<< BridgeCastName
<< FixItHint::CreateReplacement(BridgeKeywordLoc, "");
}
BridgeCast = false;
}
// None of these cases should fall through with an invalid Result
// unless they've already reported an error.
if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
Diag(Tok, diag::ext_gnu_statement_expr);
if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
} else {
// Find the nearest non-record decl context. Variables declared in a
// statement expression behave as if they were declared in the enclosing
// function, block, or other code construct.
DeclContext *CodeDC = Actions.CurContext;
while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
CodeDC = CodeDC->getParent();
assert(CodeDC && !CodeDC->isFileContext() &&
"statement expr not in code context");
}
Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
Actions.ActOnStartStmtExpr();
StmtResult Stmt(ParseCompoundStatement(true));
ExprType = CompoundStmt;
// If the substmt parsed correctly, build the AST node.
if (!Stmt.isInvalid()) {
Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
} else {
Actions.ActOnStmtExprError();
}
}
} else if (ExprType >= CompoundLiteral && BridgeCast) {
tok::TokenKind tokenKind = Tok.getKind();
SourceLocation BridgeKeywordLoc = ConsumeToken();
// Parse an Objective-C ARC ownership cast expression.
ObjCBridgeCastKind Kind;
if (tokenKind == tok::kw___bridge)
Kind = OBC_Bridge;
else if (tokenKind == tok::kw___bridge_transfer)
Kind = OBC_BridgeTransfer;
else if (tokenKind == tok::kw___bridge_retained)
Kind = OBC_BridgeRetained;
else {
// As a hopefully temporary workaround, allow __bridge_retain as
// a synonym for __bridge_retained, but only in system headers.
assert(tokenKind == tok::kw___bridge_retain);
Kind = OBC_BridgeRetained;
if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
<< FixItHint::CreateReplacement(BridgeKeywordLoc,
"__bridge_retained");
}
TypeResult Ty = ParseTypeName();
T.consumeClose();
ColonProtection.restore();
RParenLoc = T.getCloseLocation();
ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
if (Ty.isInvalid() || SubExpr.isInvalid())
return ExprError();
return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
BridgeKeywordLoc, Ty.get(),
RParenLoc, SubExpr.get());
} else if (ExprType >= CompoundLiteral &&
isTypeIdInParens(isAmbiguousTypeId)) {
// Otherwise, this is a compound literal expression or cast expression.
// In C++, if the type-id is ambiguous we disambiguate based on context.
// If stopIfCastExpr is true the context is a typeof/sizeof/alignof
// in which case we should treat it as type-id.
// if stopIfCastExpr is false, we need to determine the context past the
// parens, so we defer to ParseCXXAmbiguousParenExpression for that.
if (isAmbiguousTypeId && !stopIfCastExpr) {
ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
ColonProtection);
RParenLoc = T.getCloseLocation();
return res;
}
// Parse the type declarator.
DeclSpec DS(AttrFactory);
ParseSpecifierQualifierList(DS);
Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
ParseDeclarator(DeclaratorInfo);
// If our type is followed by an identifier and either ':' or ']', then
// this is probably an Objective-C message send where the leading '[' is
// missing. Recover as if that were the case.
if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
!InMessageExpression && getLangOpts().ObjC1 &&
(NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
TypeResult Ty;
{
InMessageExpressionRAIIObject InMessage(*this, false);
Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
Result = ParseObjCMessageExpressionBody(SourceLocation(),
SourceLocation(),
Ty.get(), nullptr);
} else {
// Match the ')'.
T.consumeClose();
ColonProtection.restore();
RParenLoc = T.getCloseLocation();
if (Tok.is(tok::l_brace)) {
ExprType = CompoundLiteral;
TypeResult Ty;
{
InMessageExpressionRAIIObject InMessage(*this, false);
Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
}
if (Tok.is(tok::l_paren)) {
// This could be OpenCL vector Literals
if (getLangOpts().OpenCL)
{
TypeResult Ty;
{
InMessageExpressionRAIIObject InMessage(*this, false);
Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
if(Ty.isInvalid())
{
return ExprError();
}
QualType QT = Ty.get().get().getCanonicalType();
if (QT->isVectorType())
{
// We parsed '(' vector-type-name ')' followed by '('
// Parse the cast-expression that follows it next.
// isVectorLiteral = true will make sure we don't parse any
// Postfix expression yet
Result = ParseCastExpression(/*isUnaryExpression=*/false,
/*isAddressOfOperand=*/false,
/*isTypeCast=*/IsTypeCast,
/*isVectorLiteral=*/true);
if (!Result.isInvalid()) {
Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
DeclaratorInfo, CastTy,
RParenLoc, Result.get());
}
// After we performed the cast we can check for postfix-expr pieces.
if (!Result.isInvalid()) {
Result = ParsePostfixExpressionSuffix(Result);
}
return Result;
}
}
}
if (ExprType == CastExpr) {
// We parsed '(' type-name ')' and the thing after it wasn't a '{'.
if (DeclaratorInfo.isInvalidType())
return ExprError();
// Note that this doesn't parse the subsequent cast-expression, it just
// returns the parsed type to the callee.
if (stopIfCastExpr) {
TypeResult Ty;
{
InMessageExpressionRAIIObject InMessage(*this, false);
Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
CastTy = Ty.get();
return ExprResult();
}
// Reject the cast of super idiom in ObjC.
if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
Tok.getIdentifierInfo() == Ident_super &&
getCurScope()->isInObjcMethodScope() &&
GetLookAheadToken(1).isNot(tok::period)) {
Diag(Tok.getLocation(), diag::err_illegal_super_cast)
<< SourceRange(OpenLoc, RParenLoc);
return ExprError();
}
// Parse the cast-expression that follows it next.
// TODO: For cast expression with CastTy.
Result = ParseCastExpression(/*isUnaryExpression=*/false,
/*isAddressOfOperand=*/false,
/*isTypeCast=*/IsTypeCast);
if (!Result.isInvalid()) {
Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
DeclaratorInfo, CastTy,
RParenLoc, Result.get());
}
return Result;
}
Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
return ExprError();
}
} else if (Tok.is(tok::ellipsis) &&
isFoldOperator(NextToken().getKind())) {
return ParseFoldExpression(ExprResult(), T);
} else if (isTypeCast) {
// Parse the expression-list.
InMessageExpressionRAIIObject InMessage(*this, false);
ExprVector ArgExprs;
CommaLocsTy CommaLocs;
if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
// FIXME: If we ever support comma expressions as operands to
// fold-expressions, we'll need to allow multiple ArgExprs here.
if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
NextToken().is(tok::ellipsis))
return ParseFoldExpression(ArgExprs[0], T);
ExprType = SimpleExpr;
Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
ArgExprs);
}
} else {
InMessageExpressionRAIIObject InMessage(*this, false);
Result = ParseExpression(MaybeTypeCast);
if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
// Correct typos in non-C++ code earlier so that implicit-cast-like
// expressions are parsed correctly.
Result = Actions.CorrectDelayedTyposInExpr(Result);
}
ExprType = SimpleExpr;
if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
return ParseFoldExpression(Result, T);
// Don't build a paren expression unless we actually match a ')'.
if (!Result.isInvalid() && Tok.is(tok::r_paren))
Result =
Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
}
// Match the ')'.
if (Result.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
T.consumeClose();
RParenLoc = T.getCloseLocation();
return Result;
}
/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
/// and we are at the left brace.
///
/// \verbatim
/// postfix-expression: [C99 6.5.2]
/// '(' type-name ')' '{' initializer-list '}'
/// '(' type-name ')' '{' initializer-list ',' '}'
/// \endverbatim
ExprResult
Parser::ParseCompoundLiteralExpression(ParsedType Ty,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
assert(Tok.is(tok::l_brace) && "Not a compound literal!");
if (!getLangOpts().C99) // Compound literals don't exist in C90.
Diag(LParenLoc, diag::ext_c99_compound_literal);
ExprResult Result = ParseInitializer();
if (!Result.isInvalid() && Ty)
return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
return Result;
}
/// ParseStringLiteralExpression - This handles the various token types that
/// form string literals, and also handles string concatenation [C99 5.1.1.2,
/// translation phase #6].
///
/// \verbatim
/// primary-expression: [C99 6.5.1]
/// string-literal
/// \verbatim
ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
assert(isTokenStringLiteral() && "Not a string literal!");
// String concat. Note that keywords like __func__ and __FUNCTION__ are not
// considered to be strings for concatenation purposes.
SmallVector<Token, 4> StringToks;
do {
StringToks.push_back(Tok);
ConsumeStringToken();
} while (isTokenStringLiteral());
// Pass the set of string tokens, ready for concatenation, to the actions.
return Actions.ActOnStringLiteral(StringToks,
AllowUserDefinedLiteral ? getCurScope()
: nullptr);
}
/// ParseGenericSelectionExpression - Parse a C11 generic-selection
/// [C11 6.5.1.1].
///
/// \verbatim
/// generic-selection:
/// _Generic ( assignment-expression , generic-assoc-list )
/// generic-assoc-list:
/// generic-association
/// generic-assoc-list , generic-association
/// generic-association:
/// type-name : assignment-expression
/// default : assignment-expression
/// \endverbatim
ExprResult Parser::ParseGenericSelectionExpression() {
assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
SourceLocation KeyLoc = ConsumeToken();
if (!getLangOpts().C11)
Diag(KeyLoc, diag::ext_c11_generic_selection);
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return ExprError();
ExprResult ControllingExpr;
{
// C11 6.5.1.1p3 "The controlling expression of a generic selection is
// not evaluated."
EnterExpressionEvaluationContext Unevaluated(
Actions, Sema::ExpressionEvaluationContext::Unevaluated);
ControllingExpr =
Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
if (ControllingExpr.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
}
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
SourceLocation DefaultLoc;
TypeVector Types;
ExprVector Exprs;
do {
ParsedType Ty;
if (Tok.is(tok::kw_default)) {
// C11 6.5.1.1p2 "A generic selection shall have no more than one default
// generic association."
if (!DefaultLoc.isInvalid()) {
Diag(Tok, diag::err_duplicate_default_assoc);
Diag(DefaultLoc, diag::note_previous_default_assoc);
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
DefaultLoc = ConsumeToken();
Ty = nullptr;
} else {
ColonProtectionRAIIObject X(*this);
TypeResult TR = ParseTypeName();
if (TR.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
Ty = TR.get();
}
Types.push_back(Ty);
if (ExpectAndConsume(tok::colon)) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
// FIXME: These expressions should be parsed in a potentially potentially
// evaluated context.
ExprResult ER(
Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
if (ER.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
Exprs.push_back(ER.get());
} while (TryConsumeToken(tok::comma));
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return ExprError();
return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
T.getCloseLocation(),
ControllingExpr.get(),
Types, Exprs);
}
/// \brief Parse A C++1z fold-expression after the opening paren and optional
/// left-hand-side expression.
///
/// \verbatim
/// fold-expression:
/// ( cast-expression fold-operator ... )
/// ( ... fold-operator cast-expression )
/// ( cast-expression fold-operator ... fold-operator cast-expression )
ExprResult Parser::ParseFoldExpression(ExprResult LHS,
BalancedDelimiterTracker &T) {
if (LHS.isInvalid()) {
T.skipToEnd();
return true;
}
tok::TokenKind Kind = tok::unknown;
SourceLocation FirstOpLoc;
if (LHS.isUsable()) {
Kind = Tok.getKind();
assert(isFoldOperator(Kind) && "missing fold-operator");
FirstOpLoc = ConsumeToken();
}
assert(Tok.is(tok::ellipsis) && "not a fold-expression");
SourceLocation EllipsisLoc = ConsumeToken();
ExprResult RHS;
if (Tok.isNot(tok::r_paren)) {
if (!isFoldOperator(Tok.getKind()))
return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
if (Kind != tok::unknown && Tok.getKind() != Kind)
Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
<< SourceRange(FirstOpLoc);
Kind = Tok.getKind();
ConsumeToken();
RHS = ParseExpression();
if (RHS.isInvalid()) {
T.skipToEnd();
return true;
}
}
Diag(EllipsisLoc, getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_fold_expression
: diag::ext_fold_expression);
T.consumeClose();
return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
EllipsisLoc, RHS.get(), T.getCloseLocation());
}
/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
///
/// \verbatim
/// argument-expression-list:
/// assignment-expression
/// argument-expression-list , assignment-expression
///
/// [C++] expression-list:
/// [C++] assignment-expression
/// [C++] expression-list , assignment-expression
///
/// [C++0x] expression-list:
/// [C++0x] initializer-list
///
/// [C++0x] initializer-list
/// [C++0x] initializer-clause ...[opt]
/// [C++0x] initializer-list , initializer-clause ...[opt]
///
/// [C++0x] initializer-clause:
/// [C++0x] assignment-expression
/// [C++0x] braced-init-list
/// \endverbatim
bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
SmallVectorImpl<SourceLocation> &CommaLocs,
llvm::function_ref<void()> Completer) {
bool SawError = false;
while (1) {
if (Tok.is(tok::code_completion)) {
if (Completer)
Completer();
else
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
cutOffParsing();
return true;
}
ExprResult Expr;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
Expr = ParseBraceInitializer();
} else
Expr = ParseAssignmentExpression();
if (Tok.is(tok::ellipsis))
Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
if (Expr.isInvalid()) {
SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
SawError = true;
} else {
Exprs.push_back(Expr.get());
}
if (Tok.isNot(tok::comma))
break;
// Move to the next argument, remember where the comma was.
CommaLocs.push_back(ConsumeToken());
}
if (SawError) {
// Ensure typos get diagnosed when errors were encountered while parsing the
// expression list.
for (auto &E : Exprs) {
ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
if (Expr.isUsable()) E = Expr.get();
}
}
return SawError;
}
/// ParseSimpleExpressionList - A simple comma-separated list of expressions,
/// used for misc language extensions.
///
/// \verbatim
/// simple-expression-list:
/// assignment-expression
/// simple-expression-list , assignment-expression
/// \endverbatim
bool
Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
SmallVectorImpl<SourceLocation> &CommaLocs) {
while (1) {
ExprResult Expr = ParseAssignmentExpression();
if (Expr.isInvalid())
return true;
Exprs.push_back(Expr.get());
if (Tok.isNot(tok::comma))
return false;
// Move to the next argument, remember where the comma was.
CommaLocs.push_back(ConsumeToken());
}
}
/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
///
/// \verbatim
/// [clang] block-id:
/// [clang] specifier-qualifier-list block-declarator
/// \endverbatim
void Parser::ParseBlockId(SourceLocation CaretLoc) {
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
return cutOffParsing();
}
// Parse the specifier-qualifier-list piece.
DeclSpec DS(AttrFactory);
ParseSpecifierQualifierList(DS);
// Parse the block-declarator.
Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteralContext);
DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition);
ParseDeclarator(DeclaratorInfo);
MaybeParseGNUAttributes(DeclaratorInfo);
// Inform sema that we are starting a block.
Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
}
/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
/// like ^(int x){ return x+1; }
///
/// \verbatim
/// block-literal:
/// [clang] '^' block-args[opt] compound-statement
/// [clang] '^' block-id compound-statement
/// [clang] block-args:
/// [clang] '(' parameter-list ')'
/// \endverbatim
ExprResult Parser::ParseBlockLiteralExpression() {
assert(Tok.is(tok::caret) && "block literal starts with ^");
SourceLocation CaretLoc = ConsumeToken();
PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
"block literal parsing");
// Enter a scope to hold everything within the block. This includes the
// argument decls, decls within the compound expression, etc. This also
// allows determining whether a variable reference inside the block is
// within or outside of the block.
ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
Scope::CompoundStmtScope | Scope::DeclScope);
// Inform sema that we are starting a block.
Actions.ActOnBlockStart(CaretLoc, getCurScope());
// Parse the return type if present.
DeclSpec DS(AttrFactory);
Declarator ParamInfo(DS, DeclaratorContext::BlockLiteralContext);
ParamInfo.setFunctionDefinitionKind(FDK_Definition);
// FIXME: Since the return type isn't actually parsed, it can't be used to
// fill ParamInfo with an initial valid range, so do it manually.
ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
// If this block has arguments, parse them. There is no ambiguity here with
// the expression case, because the expression case requires a parameter list.
if (Tok.is(tok::l_paren)) {
ParseParenDeclarator(ParamInfo);
// Parse the pieces after the identifier as if we had "int(...)".
// SetIdentifier sets the source range end, but in this case we're past
// that location.
SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
ParamInfo.SetIdentifier(nullptr, CaretLoc);
ParamInfo.SetRangeEnd(Tmp);
if (ParamInfo.isInvalidType()) {
// If there was an error parsing the arguments, they may have
// tried to use ^(x+y) which requires an argument list. Just
// skip the whole block literal.
Actions.ActOnBlockError(CaretLoc, getCurScope());
return ExprError();
}
MaybeParseGNUAttributes(ParamInfo);
// Inform sema that we are starting a block.
Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
} else if (!Tok.is(tok::l_brace)) {
ParseBlockId(CaretLoc);
} else {
// Otherwise, pretend we saw (void).
ParsedAttributes attrs(AttrFactory);
SourceLocation NoLoc;
ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
/*IsAmbiguous=*/false,
/*RParenLoc=*/NoLoc,
/*ArgInfo=*/nullptr,
/*NumArgs=*/0,
/*EllipsisLoc=*/NoLoc,
/*RParenLoc=*/NoLoc,
/*TypeQuals=*/0,
/*RefQualifierIsLvalueRef=*/true,
/*RefQualifierLoc=*/NoLoc,
/*ConstQualifierLoc=*/NoLoc,
/*VolatileQualifierLoc=*/NoLoc,
/*RestrictQualifierLoc=*/NoLoc,
/*MutableLoc=*/NoLoc,
EST_None,
/*ESpecRange=*/SourceRange(),
/*Exceptions=*/nullptr,
/*ExceptionRanges=*/nullptr,
/*NumExceptions=*/0,
/*NoexceptExpr=*/nullptr,
/*ExceptionSpecTokens=*/nullptr,
/*DeclsInPrototype=*/None,
CaretLoc, CaretLoc,
ParamInfo),
attrs, CaretLoc);
MaybeParseGNUAttributes(ParamInfo);
// Inform sema that we are starting a block.
Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
}
ExprResult Result(true);
if (!Tok.is(tok::l_brace)) {
// Saw something like: ^expr
Diag(Tok, diag::err_expected_expression);
Actions.ActOnBlockError(CaretLoc, getCurScope());
return ExprError();
}
StmtResult Stmt(ParseCompoundStatementBody());
BlockScope.Exit();
if (!Stmt.isInvalid())
Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
else
Actions.ActOnBlockError(CaretLoc, getCurScope());
return Result;
}
/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
///
/// '__objc_yes'
/// '__objc_no'
ExprResult Parser::ParseObjCBoolLiteral() {
tok::TokenKind Kind = Tok.getKind();
return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
}
/// Validate availability spec list, emitting diagnostics if necessary. Returns
/// true if invalid.
static bool CheckAvailabilitySpecList(Parser &P,
ArrayRef<AvailabilitySpec> AvailSpecs) {
llvm::SmallSet<StringRef, 4> Platforms;
bool HasOtherPlatformSpec = false;
bool Valid = true;
for (const auto &Spec : AvailSpecs) {
if (Spec.isOtherPlatformSpec()) {
if (HasOtherPlatformSpec) {
P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
Valid = false;
}
HasOtherPlatformSpec = true;
continue;
}
bool Inserted = Platforms.insert(Spec.getPlatform()).second;
if (!Inserted) {
// Rule out multiple version specs referring to the same platform.
// For example, we emit an error for:
// @available(macos 10.10, macos 10.11, *)
StringRef Platform = Spec.getPlatform();
P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
<< Spec.getEndLoc() << Platform;
Valid = false;
}
}
if (!HasOtherPlatformSpec) {
SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
<< FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
return true;
}
return !Valid;
}
/// Parse availability query specification.
///
/// availability-spec:
/// '*'
/// identifier version-tuple
Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
if (Tok.is(tok::star)) {
return AvailabilitySpec(ConsumeToken());
} else {
// Parse the platform name.
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteAvailabilityPlatformName();
cutOffParsing();
return None;
}
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_avail_query_expected_platform_name);
return None;
}
IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
SourceRange VersionRange;
VersionTuple Version = ParseVersionTuple(VersionRange);
if (Version.empty())
return None;
StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
StringRef Platform =
AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
Diag(PlatformIdentifier->Loc,
diag::err_avail_query_unrecognized_platform_name)
<< GivenPlatform;
return None;
}
return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
VersionRange.getEnd());
}
}
ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
assert(Tok.is(tok::kw___builtin_available) ||
Tok.isObjCAtKeyword(tok::objc_available));
// Eat the available or __builtin_available.
ConsumeToken();
BalancedDelimiterTracker Parens(*this, tok::l_paren);
if (Parens.expectAndConsume())
return ExprError();
SmallVector<AvailabilitySpec, 4> AvailSpecs;
bool HasError = false;
while (true) {
Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
if (!Spec)
HasError = true;
else
AvailSpecs.push_back(*Spec);
if (!TryConsumeToken(tok::comma))
break;
}
if (HasError) {
SkipUntil(tok::r_paren, StopAtSemi);
return ExprError();
}
CheckAvailabilitySpecList(*this, AvailSpecs);
if (Parens.consumeClose())
return ExprError();
return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
Parens.getCloseLocation());
}