llvm-project/llvm/test/CodeGen/AArch64/GlobalISel/opt-fold-shift-tbz-tbnz.mir

400 lines
11 KiB
YAML

# NOTE: Assertions have been autogenerated by utils/update_mir_test_checks.py
# RUN: llc -mtriple aarch64-unknown-unknown -run-pass=instruction-select -verify-machineinstrs %s -o - | FileCheck %s
#
# Check folding a G_SHL into a G_BRCOND which has been matched as a TB(N)Z.
...
---
name: fold_shl
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: fold_shl
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr64all = COPY $x0
; CHECK: [[COPY:%[0-9]+]]:gpr32all = COPY %copy.sub_32
; CHECK: [[COPY1:%[0-9]+]]:gpr32 = COPY [[COPY]]
; CHECK: TBNZW [[COPY1]], 2, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s64) = COPY $x0
%bit:gpr(s64) = G_CONSTANT i64 8
%zero:gpr(s64) = G_CONSTANT i64 0
; tbnz (shl x, 1), 3 == tbnz x, 2
%fold_cst:gpr(s64) = G_CONSTANT i64 1
%fold_me:gpr(s64) = G_SHL %copy, %fold_cst
%and:gpr(s64) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s64), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: dont_fold_shl_1
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: dont_fold_shl_1
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr64 = COPY $x0
; CHECK: %fold_me:gpr64 = UBFMXri %copy, 59, 58
; CHECK: [[COPY:%[0-9]+]]:gpr32all = COPY %fold_me.sub_32
; CHECK: [[COPY1:%[0-9]+]]:gpr32 = COPY [[COPY]]
; CHECK: TBNZW [[COPY1]], 3, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s64) = COPY $x0
%bit:gpr(s64) = G_CONSTANT i64 8
%zero:gpr(s64) = G_CONSTANT i64 0
; 5 > 3, so we cannot do the transformation as above.
%fold_cst:gpr(s64) = G_CONSTANT i64 5
%fold_me:gpr(s64) = G_SHL %copy, %fold_cst
%and:gpr(s64) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s64), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: dont_fold_shl_2
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: dont_fold_shl_2
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr64 = COPY $x0
; CHECK: %fold_cst:gpr64 = MOVi64imm -5
; CHECK: %fold_me:gpr64 = LSLVXr %copy, %fold_cst
; CHECK: [[COPY:%[0-9]+]]:gpr32all = COPY %fold_me.sub_32
; CHECK: [[COPY1:%[0-9]+]]:gpr32 = COPY [[COPY]]
; CHECK: TBNZW [[COPY1]], 3, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s64) = COPY $x0
%bit:gpr(s64) = G_CONSTANT i64 8
%zero:gpr(s64) = G_CONSTANT i64 0
; Same case as above, except we wrap around.
%fold_cst:gpr(s64) = G_CONSTANT i64 -5
%fold_me:gpr(s64) = G_SHL %copy, %fold_cst
%and:gpr(s64) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s64), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: dont_fold_shl_3
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: dont_fold_shl_3
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr64 = COPY $x0
; CHECK: %shl:gpr64 = UBFMXri %copy, 62, 61
; CHECK: [[COPY:%[0-9]+]]:gpr32all = COPY %shl.sub_32
; CHECK: [[COPY1:%[0-9]+]]:gpr32 = COPY [[COPY]]
; CHECK: TBNZW [[COPY1]], 3, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: %second_use:gpr64sp = ORRXri %shl, 8000
; CHECK: $x0 = COPY %second_use
; CHECK: RET_ReallyLR implicit $x0
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s64) = COPY $x0
%bit:gpr(s64) = G_CONSTANT i64 8
%zero:gpr(s64) = G_CONSTANT i64 0
%fold_cst:gpr(s64) = G_CONSTANT i64 2
; Don't walk past the G_SHL when it's used more than once.
%shl:gpr(s64) = G_SHL %copy, %fold_cst
%and:gpr(s64) = G_AND %shl, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s64), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
%second_use:gpr(s64) = G_OR %shl, %bit
$x0 = COPY %second_use
RET_ReallyLR implicit $x0
...
---
name: fold_ashr_in_range
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: fold_ashr_in_range
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr64all = COPY $x0
; CHECK: [[COPY:%[0-9]+]]:gpr32all = COPY %copy.sub_32
; CHECK: [[COPY1:%[0-9]+]]:gpr32 = COPY [[COPY]]
; CHECK: TBNZW [[COPY1]], 4, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s64) = COPY $x0
%bit:gpr(s64) = G_CONSTANT i64 8
%zero:gpr(s64) = G_CONSTANT i64 0
; tb(n)z (ashr x, c), b == tbz(x, b + c) when b+c <= the size of the type.
; In this case, we should get 1 + 3 = 4 as the bit number.
%fold_cst:gpr(s64) = G_CONSTANT i64 1
%fold_me:gpr(s64) = G_ASHR %copy, %fold_cst
%and:gpr(s64) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s64), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: fold_ashr_msb_1
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: fold_ashr_msb_1
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr32 = COPY $w0
; CHECK: TBNZW %copy, 31, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s32) = COPY $w0
%bit:gpr(s32) = G_CONSTANT i32 8
%zero:gpr(s32) = G_CONSTANT i32 0
; We should get a TBNZW with a 31 as the bit.
%fold_cst:gpr(s32) = G_CONSTANT i32 1234
%fold_me:gpr(s32) = G_ASHR %copy, %fold_cst
%and:gpr(s32) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s32), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: fold_ashr_msb_2
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: fold_ashr_msb_2
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr64 = COPY $x0
; CHECK: TBNZX %copy, 63, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s64) = COPY $x0
%bit:gpr(s64) = G_CONSTANT i64 8
%zero:gpr(s64) = G_CONSTANT i64 0
; We should get a TBNZX with a 63 as the bit.
%fold_cst:gpr(s64) = G_CONSTANT i64 1234
%fold_me:gpr(s64) = G_ASHR %copy, %fold_cst
%and:gpr(s64) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s64), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: fold_lshr
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: fold_lshr
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr32 = COPY $w0
; CHECK: TBNZW %copy, 4, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s32) = COPY $w0
%bit:gpr(s32) = G_CONSTANT i32 8
%zero:gpr(s32) = G_CONSTANT i32 0
; We should get 4 as the test bit.
%fold_cst:gpr(s32) = G_CONSTANT i32 1
%fold_me:gpr(s32) = G_LSHR %copy, %fold_cst
%and:gpr(s32) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s32), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: fold_lshr_2
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: fold_lshr_2
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr64 = COPY $x0
; CHECK: TBNZX %copy, 32, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s64) = COPY $x0
%bit:gpr(s64) = G_CONSTANT i64 8
%zero:gpr(s64) = G_CONSTANT i64 0
; We're testing a s64.
; 3 + 29 = 32, which is less than 63, so we can fold.
%fold_cst:gpr(s64) = G_CONSTANT i64 29
%fold_me:gpr(s64) = G_LSHR %copy, %fold_cst
%and:gpr(s64) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s64), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: dont_fold_lshr
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: dont_fold_lshr
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr32 = COPY $w0
; CHECK: %fold_cst:gpr32 = MOVi32imm 29
; CHECK: %fold_me:gpr32 = LSRVWr %copy, %fold_cst
; CHECK: TBNZW %fold_me, 3, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s32) = COPY $w0
%bit:gpr(s32) = G_CONSTANT i32 8
%zero:gpr(s32) = G_CONSTANT i32 0
; We're testing a s32.
; 3 + 29 = 32, which is greater than 31, so we don't fold.
%fold_cst:gpr(s32) = G_CONSTANT i32 29
%fold_me:gpr(s32) = G_LSHR %copy, %fold_cst
%and:gpr(s32) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s32), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR
...
---
name: lshr_negative
alignment: 4
legalized: true
regBankSelected: true
body: |
; CHECK-LABEL: name: lshr_negative
; CHECK: bb.0:
; CHECK: successors: %bb.0(0x40000000), %bb.1(0x40000000)
; CHECK: %copy:gpr32 = COPY $w0
; CHECK: TBNZW %copy, 2, %bb.1
; CHECK: B %bb.0
; CHECK: bb.1:
; CHECK: RET_ReallyLR
bb.0:
successors: %bb.0, %bb.1
liveins: $x0
%copy:gpr(s32) = COPY $w0
%bit:gpr(s32) = G_CONSTANT i32 8
%zero:gpr(s32) = G_CONSTANT i32 0
; Constant becomes very large and wraps around. Since it's larger than the
; bit width, that means the LSHR is poison, so we can still fold.
%fold_cst:gpr(s32) = G_CONSTANT i32 -1
%fold_me:gpr(s32) = G_LSHR %copy, %fold_cst
%and:gpr(s32) = G_AND %fold_me, %bit
%cmp:gpr(s32) = G_ICMP intpred(ne), %and(s32), %zero
%cmp_trunc:gpr(s1) = G_TRUNC %cmp(s32)
G_BRCOND %cmp_trunc(s1), %bb.1
G_BR %bb.0
bb.1:
RET_ReallyLR