llvm-project/lldb/tools/debugserver/source/MacOSX/MachProcess.cpp

2151 lines
77 KiB
C++

//===-- MachProcess.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/15/07.
//
//===----------------------------------------------------------------------===//
#include "DNB.h"
#include <mach/mach.h>
#include <spawn.h>
#include <sys/fcntl.h>
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <unistd.h>
#include "MacOSX/CFUtils.h"
#include "SysSignal.h"
#include <algorithm>
#include <map>
#include "DNBDataRef.h"
#include "DNBLog.h"
#include "DNBThreadResumeActions.h"
#include "DNBTimer.h"
#include "MachProcess.h"
#include "PseudoTerminal.h"
#include "CFBundle.h"
#include "CFData.h"
#include "CFString.h"
static CFStringRef CopyBundleIDForPath (const char *app_buncle_path, DNBError &err_str);
#if defined (__arm__)
#include <CoreFoundation/CoreFoundation.h>
#include <SpringBoardServices/SpringBoardServer.h>
#include <SpringBoardServices/SBSWatchdogAssertion.h>
static bool
IsSBProcess (nub_process_t pid)
{
bool opt_runningApps = true;
bool opt_debuggable = false;
CFReleaser<CFArrayRef> sbsAppIDs (::SBSCopyApplicationDisplayIdentifiers (opt_runningApps, opt_debuggable));
if (sbsAppIDs.get() != NULL)
{
CFIndex count = ::CFArrayGetCount (sbsAppIDs.get());
CFIndex i = 0;
for (i = 0; i < count; i++)
{
CFStringRef displayIdentifier = (CFStringRef)::CFArrayGetValueAtIndex (sbsAppIDs.get(), i);
// Get the process id for the app (if there is one)
pid_t sbs_pid = INVALID_NUB_PROCESS;
if (::SBSProcessIDForDisplayIdentifier ((CFStringRef)displayIdentifier, &sbs_pid) == TRUE)
{
if (sbs_pid == pid)
return true;
}
}
}
return false;
}
#endif
#if 0
#define DEBUG_LOG(fmt, ...) printf(fmt, ## __VA_ARGS__)
#else
#define DEBUG_LOG(fmt, ...)
#endif
#ifndef MACH_PROCESS_USE_POSIX_SPAWN
#define MACH_PROCESS_USE_POSIX_SPAWN 1
#endif
#ifndef _POSIX_SPAWN_DISABLE_ASLR
#define _POSIX_SPAWN_DISABLE_ASLR 0x0100
#endif
MachProcess::MachProcess() :
m_pid (0),
m_cpu_type (0),
m_child_stdin (-1),
m_child_stdout (-1),
m_child_stderr (-1),
m_path (),
m_args (),
m_task (this),
m_flags (eMachProcessFlagsNone),
m_stdio_thread (0),
m_stdio_mutex (PTHREAD_MUTEX_RECURSIVE),
m_stdout_data (),
m_thread_actions (),
m_thread_list (),
m_exception_messages (),
m_exception_messages_mutex (PTHREAD_MUTEX_RECURSIVE),
m_state (eStateUnloaded),
m_state_mutex (PTHREAD_MUTEX_RECURSIVE),
m_events (0, kAllEventsMask),
m_breakpoints (),
m_watchpoints (),
m_name_to_addr_callback(NULL),
m_name_to_addr_baton(NULL),
m_image_infos_callback(NULL),
m_image_infos_baton(NULL)
{
DNBLogThreadedIf(LOG_PROCESS | LOG_VERBOSE, "%s", __PRETTY_FUNCTION__);
}
MachProcess::~MachProcess()
{
DNBLogThreadedIf(LOG_PROCESS | LOG_VERBOSE, "%s", __PRETTY_FUNCTION__);
Clear();
}
pid_t
MachProcess::SetProcessID(pid_t pid)
{
// Free any previous process specific data or resources
Clear();
// Set the current PID appropriately
if (pid == 0)
m_pid = ::getpid ();
else
m_pid = pid;
return m_pid; // Return actualy PID in case a zero pid was passed in
}
nub_state_t
MachProcess::GetState()
{
// If any other threads access this we will need a mutex for it
PTHREAD_MUTEX_LOCKER(locker, m_state_mutex);
return m_state;
}
const char *
MachProcess::ThreadGetName(nub_thread_t tid)
{
return m_thread_list.GetName(tid);
}
nub_state_t
MachProcess::ThreadGetState(nub_thread_t tid)
{
return m_thread_list.GetState(tid);
}
nub_size_t
MachProcess::GetNumThreads () const
{
return m_thread_list.NumThreads();
}
nub_thread_t
MachProcess::GetThreadAtIndex (nub_size_t thread_idx) const
{
return m_thread_list.ThreadIDAtIndex(thread_idx);
}
nub_thread_t
MachProcess::GetCurrentThread ()
{
return m_thread_list.CurrentThreadID();
}
nub_thread_t
MachProcess::SetCurrentThread(nub_thread_t tid)
{
return m_thread_list.SetCurrentThread(tid);
}
bool
MachProcess::GetThreadStoppedReason(nub_thread_t tid, struct DNBThreadStopInfo *stop_info) const
{
return m_thread_list.GetThreadStoppedReason(tid, stop_info);
}
void
MachProcess::DumpThreadStoppedReason(nub_thread_t tid) const
{
return m_thread_list.DumpThreadStoppedReason(tid);
}
const char *
MachProcess::GetThreadInfo(nub_thread_t tid) const
{
return m_thread_list.GetThreadInfo(tid);
}
uint32_t
MachProcess::GetCPUType ()
{
if (m_cpu_type == 0 && m_pid != 0)
m_cpu_type = MachProcess::GetCPUTypeForLocalProcess (m_pid);
return m_cpu_type;
}
const DNBRegisterSetInfo *
MachProcess::GetRegisterSetInfo (nub_thread_t tid, nub_size_t *num_reg_sets) const
{
MachThreadSP thread_sp (m_thread_list.GetThreadByID (tid));
if (thread_sp)
{
DNBArchProtocol *arch = thread_sp->GetArchProtocol();
if (arch)
return arch->GetRegisterSetInfo (num_reg_sets);
}
*num_reg_sets = 0;
return NULL;
}
bool
MachProcess::GetRegisterValue ( nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *value ) const
{
return m_thread_list.GetRegisterValue(tid, set, reg, value);
}
bool
MachProcess::SetRegisterValue ( nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *value ) const
{
return m_thread_list.SetRegisterValue(tid, set, reg, value);
}
void
MachProcess::SetState(nub_state_t new_state)
{
// If any other threads access this we will need a mutex for it
uint32_t event_mask = 0;
// Scope for mutex locker
{
PTHREAD_MUTEX_LOCKER(locker, m_state_mutex);
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::SetState ( %s )", DNBStateAsString(new_state));
const nub_state_t old_state = m_state;
if (old_state != new_state)
{
if (NUB_STATE_IS_STOPPED(new_state))
event_mask = eEventProcessStoppedStateChanged;
else
event_mask = eEventProcessRunningStateChanged;
m_state = new_state;
if (new_state == eStateStopped)
m_stop_count++;
}
}
if (event_mask != 0)
{
m_events.SetEvents (event_mask);
// Wait for the event bit to reset if a reset ACK is requested
m_events.WaitForResetAck(event_mask);
}
}
void
MachProcess::Clear()
{
// Clear any cached thread list while the pid and task are still valid
m_task.Clear();
// Now clear out all member variables
m_pid = INVALID_NUB_PROCESS;
CloseChildFileDescriptors();
m_path.clear();
m_args.clear();
SetState(eStateUnloaded);
m_flags = eMachProcessFlagsNone;
m_stop_count = 0;
m_thread_list.Clear();
{
PTHREAD_MUTEX_LOCKER(locker, m_exception_messages_mutex);
m_exception_messages.clear();
}
}
bool
MachProcess::StartSTDIOThread()
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::%s ( )", __FUNCTION__);
// Create the thread that watches for the child STDIO
return ::pthread_create (&m_stdio_thread, NULL, MachProcess::STDIOThread, this) == 0;
}
nub_addr_t
MachProcess::LookupSymbol(const char *name, const char *shlib)
{
if (m_name_to_addr_callback != NULL && name && name[0])
return m_name_to_addr_callback(ProcessID(), name, shlib, m_name_to_addr_baton);
return INVALID_NUB_ADDRESS;
}
bool
MachProcess::Resume (const DNBThreadResumeActions& thread_actions)
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Resume ()");
nub_state_t state = GetState();
if (CanResume(state))
{
m_thread_actions = thread_actions;
PrivateResume();
return true;
}
else if (state == eStateRunning)
{
DNBLogThreadedIf(LOG_PROCESS, "Resume() - task 0x%x is running, ignoring...", m_task.TaskPort());
return true;
}
DNBLogThreadedIf(LOG_PROCESS, "Resume() - task 0x%x can't continue, ignoring...", m_task.TaskPort());
return false;
}
bool
MachProcess::Kill (const struct timespec *timeout_abstime)
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Kill ()");
nub_state_t state = DoSIGSTOP(true);
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Kill() DoSIGSTOP() state = %s", DNBStateAsString(state));
errno = 0;
::ptrace (PT_KILL, m_pid, 0, 0);
DNBError err;
err.SetErrorToErrno();
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Kill() DoSIGSTOP() ::ptrace (PT_KILL, pid=%u, 0, 0) => 0x%8.8x (%s)", err.Error(), err.AsString());
m_thread_actions = DNBThreadResumeActions (eStateRunning, 0);
PrivateResume ();
return true;
}
bool
MachProcess::Signal (int signal, const struct timespec *timeout_abstime)
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Signal (signal = %d, timeout = %p)", signal, timeout_abstime);
nub_state_t state = GetState();
if (::kill (ProcessID(), signal) == 0)
{
// If we were running and we have a timeout, wait for the signal to stop
if (IsRunning(state) && timeout_abstime)
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Signal (signal = %d, timeout = %p) waiting for signal to stop process...", signal, timeout_abstime);
m_events.WaitForSetEvents(eEventProcessStoppedStateChanged, timeout_abstime);
state = GetState();
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Signal (signal = %d, timeout = %p) state = %s", signal, timeout_abstime, DNBStateAsString(state));
return !IsRunning (state);
}
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Signal (signal = %d, timeout = %p) not waiting...", signal, timeout_abstime);
return true;
}
DNBError err(errno, DNBError::POSIX);
err.LogThreadedIfError("kill (pid = %d, signo = %i)", ProcessID(), signal);
return false;
}
nub_state_t
MachProcess::DoSIGSTOP (bool clear_bps_and_wps, uint32_t *thread_idx_ptr)
{
nub_state_t state = GetState();
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::DoSIGSTOP() state = %s", DNBStateAsString (state));
if (!IsRunning(state))
{
if (clear_bps_and_wps)
{
DisableAllBreakpoints (true);
DisableAllWatchpoints (true);
clear_bps_and_wps = false;
}
// If we already have a thread stopped due to a SIGSTOP, we don't have
// to do anything...
uint32_t thread_idx = m_thread_list.GetThreadIndexForThreadStoppedWithSignal (SIGSTOP);
if (thread_idx_ptr)
*thread_idx_ptr = thread_idx;
if (thread_idx != UINT32_MAX)
return GetState();
// No threads were stopped with a SIGSTOP, we need to run and halt the
// process with a signal
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::DoSIGSTOP() state = %s -- resuming process", DNBStateAsString (state));
m_thread_actions = DNBThreadResumeActions (eStateRunning, 0);
PrivateResume ();
// Reset the event that says we were indeed running
m_events.ResetEvents(eEventProcessRunningStateChanged);
state = GetState();
}
// We need to be stopped in order to be able to detach, so we need
// to send ourselves a SIGSTOP
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::DoSIGSTOP() state = %s -- sending SIGSTOP", DNBStateAsString (state));
struct timespec sigstop_timeout;
DNBTimer::OffsetTimeOfDay(&sigstop_timeout, 2, 0);
Signal (SIGSTOP, &sigstop_timeout);
if (clear_bps_and_wps)
{
DisableAllBreakpoints (true);
DisableAllWatchpoints (true);
// The static analyzer complains about this, but just leave the following line in.
clear_bps_and_wps = false;
}
uint32_t thread_idx = m_thread_list.GetThreadIndexForThreadStoppedWithSignal (SIGSTOP);
if (thread_idx_ptr)
*thread_idx_ptr = thread_idx;
return GetState();
}
bool
MachProcess::Detach()
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Detach()");
uint32_t thread_idx = UINT32_MAX;
nub_state_t state = DoSIGSTOP(true, &thread_idx);
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::Detach() DoSIGSTOP() returned %s", DNBStateAsString(state));
{
m_thread_actions.Clear();
DNBThreadResumeAction thread_action;
thread_action.tid = m_thread_list.ThreadIDAtIndex (thread_idx);
thread_action.state = eStateRunning;
thread_action.signal = -1;
thread_action.addr = INVALID_NUB_ADDRESS;
m_thread_actions.Append (thread_action);
m_thread_actions.SetDefaultThreadActionIfNeeded (eStateRunning, 0);
PTHREAD_MUTEX_LOCKER (locker, m_exception_messages_mutex);
ReplyToAllExceptions ();
}
m_task.ShutDownExcecptionThread();
// Detach from our process
errno = 0;
nub_process_t pid = m_pid;
int ret = ::ptrace (PT_DETACH, pid, (caddr_t)1, 0);
DNBError err(errno, DNBError::POSIX);
if (DNBLogCheckLogBit(LOG_PROCESS) || err.Fail() || (ret != 0))
err.LogThreaded("::ptrace (PT_DETACH, %u, (caddr_t)1, 0)", pid);
// Resume our task
m_task.Resume();
// NULL our task out as we have already retored all exception ports
m_task.Clear();
// Clear out any notion of the process we once were
Clear();
SetState(eStateDetached);
return true;
}
nub_size_t
MachProcess::RemoveTrapsFromBuffer (nub_addr_t addr, nub_size_t size, uint8_t *buf) const
{
nub_size_t bytes_removed = 0;
const DNBBreakpoint *bp;
nub_addr_t intersect_addr;
nub_size_t intersect_size;
nub_size_t opcode_offset;
nub_size_t idx;
for (idx = 0; (bp = m_breakpoints.GetByIndex(idx)) != NULL; ++idx)
{
if (bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset))
{
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp->ByteSize());
nub_size_t buf_offset = intersect_addr - addr;
::memcpy(buf + buf_offset, bp->SavedOpcodeBytes() + opcode_offset, intersect_size);
}
}
return bytes_removed;
}
//----------------------------------------------------------------------
// ReadMemory from the MachProcess level will always remove any software
// breakpoints from the memory buffer before returning. If you wish to
// read memory and see those traps, read from the MachTask
// (m_task.ReadMemory()) as that version will give you what is actually
// in inferior memory.
//----------------------------------------------------------------------
nub_size_t
MachProcess::ReadMemory (nub_addr_t addr, nub_size_t size, void *buf)
{
// We need to remove any current software traps (enabled software
// breakpoints) that we may have placed in our tasks memory.
// First just read the memory as is
nub_size_t bytes_read = m_task.ReadMemory(addr, size, buf);
// Then place any opcodes that fall into this range back into the buffer
// before we return this to callers.
if (bytes_read > 0)
RemoveTrapsFromBuffer (addr, size, (uint8_t *)buf);
return bytes_read;
}
//----------------------------------------------------------------------
// WriteMemory from the MachProcess level will always write memory around
// any software breakpoints. Any software breakpoints will have their
// opcodes modified if they are enabled. Any memory that doesn't overlap
// with software breakpoints will be written to. If you wish to write to
// inferior memory without this interference, then write to the MachTask
// (m_task.WriteMemory()) as that version will always modify inferior
// memory.
//----------------------------------------------------------------------
nub_size_t
MachProcess::WriteMemory (nub_addr_t addr, nub_size_t size, const void *buf)
{
// We need to write any data that would go where any current software traps
// (enabled software breakpoints) any software traps (breakpoints) that we
// may have placed in our tasks memory.
std::map<nub_addr_t, DNBBreakpoint *> addr_to_bp_map;
DNBBreakpoint *bp;
nub_size_t idx;
for (idx = 0; (bp = m_breakpoints.GetByIndex(idx)) != NULL; ++idx)
{
if (bp->IntersectsRange(addr, size, NULL, NULL, NULL))
addr_to_bp_map[bp->Address()] = bp;
}
// If we don't have any software breakpoints that are in this buffer, then
// we can just write memory and be done with it.
if (addr_to_bp_map.empty())
return m_task.WriteMemory(addr, size, buf);
// If we make it here, we have some breakpoints that overlap and we need
// to work around them.
nub_size_t bytes_written = 0;
nub_addr_t intersect_addr;
nub_size_t intersect_size;
nub_size_t opcode_offset;
const uint8_t *ubuf = (const uint8_t *)buf;
std::map<nub_addr_t, DNBBreakpoint *>::iterator pos, end = addr_to_bp_map.end();
for (pos = addr_to_bp_map.begin(); pos != end; ++pos)
{
bp = pos->second;
assert(bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset));
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp->ByteSize());
// Check for bytes before this breakpoint
const nub_addr_t curr_addr = addr + bytes_written;
if (intersect_addr > curr_addr)
{
// There are some bytes before this breakpoint that we need to
// just write to memory
nub_size_t curr_size = intersect_addr - curr_addr;
nub_size_t curr_bytes_written = m_task.WriteMemory(curr_addr, curr_size, ubuf + bytes_written);
bytes_written += curr_bytes_written;
if (curr_bytes_written != curr_size)
{
// We weren't able to write all of the requested bytes, we
// are done looping and will return the number of bytes that
// we have written so far.
break;
}
}
// Now write any bytes that would cover up any software breakpoints
// directly into the breakpoint opcode buffer
::memcpy(bp->SavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size);
bytes_written += intersect_size;
}
// Write any remaining bytes after the last breakpoint if we have any left
if (bytes_written < size)
bytes_written += m_task.WriteMemory(addr + bytes_written, size - bytes_written, ubuf + bytes_written);
return bytes_written;
}
void
MachProcess::ReplyToAllExceptions ()
{
PTHREAD_MUTEX_LOCKER(locker, m_exception_messages_mutex);
if (m_exception_messages.empty() == false)
{
MachException::Message::iterator pos;
MachException::Message::iterator begin = m_exception_messages.begin();
MachException::Message::iterator end = m_exception_messages.end();
for (pos = begin; pos != end; ++pos)
{
DNBLogThreadedIf(LOG_EXCEPTIONS, "Replying to exception %d...", std::distance(begin, pos));
int thread_reply_signal = 0;
const DNBThreadResumeAction *action = m_thread_actions.GetActionForThread (pos->state.thread_port, false);
if (action)
{
thread_reply_signal = action->signal;
if (thread_reply_signal)
m_thread_actions.SetSignalHandledForThread (pos->state.thread_port);
}
DNBError err (pos->Reply(this, thread_reply_signal));
if (DNBLogCheckLogBit(LOG_EXCEPTIONS))
err.LogThreadedIfError("Error replying to exception");
}
// Erase all exception message as we should have used and replied
// to them all already.
m_exception_messages.clear();
}
}
void
MachProcess::PrivateResume ()
{
PTHREAD_MUTEX_LOCKER (locker, m_exception_messages_mutex);
ReplyToAllExceptions ();
// bool stepOverBreakInstruction = step;
// Let the thread prepare to resume and see if any threads want us to
// step over a breakpoint instruction (ProcessWillResume will modify
// the value of stepOverBreakInstruction).
m_thread_list.ProcessWillResume (this, m_thread_actions);
// Set our state accordingly
if (m_thread_actions.NumActionsWithState(eStateStepping))
SetState (eStateStepping);
else
SetState (eStateRunning);
// Now resume our task.
m_task.Resume();
}
nub_break_t
MachProcess::CreateBreakpoint(nub_addr_t addr, nub_size_t length, bool hardware, thread_t tid)
{
DNBLogThreadedIf(LOG_BREAKPOINTS, "MachProcess::CreateBreakpoint ( addr = 0x%8.8llx, length = %u, hardware = %i, tid = 0x%4.4x )", (uint64_t)addr, length, hardware, tid);
if (hardware && tid == INVALID_NUB_THREAD)
tid = GetCurrentThread();
DNBBreakpoint bp(addr, length, tid, hardware);
nub_break_t breakID = m_breakpoints.Add(bp);
if (EnableBreakpoint(breakID))
{
DNBLogThreadedIf(LOG_BREAKPOINTS, "MachProcess::CreateBreakpoint ( addr = 0x%8.8llx, length = %u, tid = 0x%4.4x ) => %u", (uint64_t)addr, length, tid, breakID);
return breakID;
}
else
{
m_breakpoints.Remove(breakID);
}
// We failed to enable the breakpoint
return INVALID_NUB_BREAK_ID;
}
nub_watch_t
MachProcess::CreateWatchpoint(nub_addr_t addr, nub_size_t length, uint32_t watch_flags, bool hardware, thread_t tid)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::CreateWatchpoint ( addr = 0x%8.8llx, length = %u, flags = 0x%8.8x, hardware = %i, tid = 0x%4.4x )", (uint64_t)addr, length, watch_flags, hardware, tid);
if (hardware && tid == INVALID_NUB_THREAD)
tid = GetCurrentThread();
DNBBreakpoint watch(addr, length, tid, hardware);
watch.SetIsWatchpoint(watch_flags);
nub_watch_t watchID = m_watchpoints.Add(watch);
if (EnableWatchpoint(watchID))
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::CreateWatchpoint ( addr = 0x%8.8llx, length = %u, tid = 0x%x) => %u", (uint64_t)addr, length, tid, watchID);
return watchID;
}
else
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::CreateWatchpoint ( addr = 0x%8.8llx, length = %u, tid = 0x%x) => FAILED (%u)", (uint64_t)addr, length, tid, watchID);
m_watchpoints.Remove(watchID);
}
// We failed to enable the watchpoint
return INVALID_NUB_BREAK_ID;
}
nub_size_t
MachProcess::DisableAllBreakpoints(bool remove)
{
DNBLogThreadedIf(LOG_BREAKPOINTS, "MachProcess::%s (remove = %d )", __FUNCTION__, remove);
DNBBreakpoint *bp;
nub_size_t disabled_count = 0;
nub_size_t idx = 0;
while ((bp = m_breakpoints.GetByIndex(idx)) != NULL)
{
bool success = DisableBreakpoint(bp->GetID(), remove);
if (success)
disabled_count++;
// If we failed to disable the breakpoint or we aren't removing the breakpoint
// increment the breakpoint index. Otherwise DisableBreakpoint will have removed
// the breakpoint at this index and we don't need to change it.
if ((success == false) || (remove == false))
idx++;
}
return disabled_count;
}
nub_size_t
MachProcess::DisableAllWatchpoints(bool remove)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::%s (remove = %d )", __FUNCTION__, remove);
DNBBreakpoint *wp;
nub_size_t disabled_count = 0;
nub_size_t idx = 0;
while ((wp = m_watchpoints.GetByIndex(idx)) != NULL)
{
bool success = DisableWatchpoint(wp->GetID(), remove);
if (success)
disabled_count++;
// If we failed to disable the watchpoint or we aren't removing the watchpoint
// increment the watchpoint index. Otherwise DisableWatchpoint will have removed
// the watchpoint at this index and we don't need to change it.
if ((success == false) || (remove == false))
idx++;
}
return disabled_count;
}
bool
MachProcess::DisableBreakpoint(nub_break_t breakID, bool remove)
{
DNBBreakpoint *bp = m_breakpoints.FindByID (breakID);
if (bp)
{
nub_addr_t addr = bp->Address();
DNBLogThreadedIf(LOG_BREAKPOINTS | LOG_VERBOSE, "MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x%8.8llx", breakID, remove, (uint64_t)addr);
if (bp->IsHardware())
{
bool hw_disable_result = m_thread_list.DisableHardwareBreakpoint (bp);
if (hw_disable_result == true)
{
bp->SetEnabled(false);
// Let the thread list know that a breakpoint has been modified
if (remove)
{
m_thread_list.NotifyBreakpointChanged(bp);
m_breakpoints.Remove(breakID);
}
DNBLogThreadedIf(LOG_BREAKPOINTS, "MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x%8.8llx (hardware) => success", breakID, remove, (uint64_t)addr);
return true;
}
return false;
}
const nub_size_t break_op_size = bp->ByteSize();
assert (break_op_size > 0);
const uint8_t * const break_op = DNBArchProtocol::GetBreakpointOpcode (bp->ByteSize());
if (break_op_size > 0)
{
// Clear a software breakoint instruction
uint8_t curr_break_op[break_op_size];
bool break_op_found = false;
// Read the breakpoint opcode
if (m_task.ReadMemory(addr, break_op_size, curr_break_op) == break_op_size)
{
bool verify = false;
if (bp->IsEnabled())
{
// Make sure we have the a breakpoint opcode exists at this address
if (memcmp(curr_break_op, break_op, break_op_size) == 0)
{
break_op_found = true;
// We found a valid breakpoint opcode at this address, now restore
// the saved opcode.
if (m_task.WriteMemory(addr, break_op_size, bp->SavedOpcodeBytes()) == break_op_size)
{
verify = true;
}
else
{
DNBLogError("MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x%8.8llx memory write failed when restoring original opcode", breakID, remove, (uint64_t)addr);
}
}
else
{
DNBLogWarning("MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x%8.8llx expected a breakpoint opcode but didn't find one.", breakID, remove, (uint64_t)addr);
// Set verify to true and so we can check if the original opcode has already been restored
verify = true;
}
}
else
{
DNBLogThreadedIf(LOG_BREAKPOINTS | LOG_VERBOSE, "MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x$8.8llx is not enabled", breakID, remove, (uint64_t)addr);
// Set verify to true and so we can check if the original opcode is there
verify = true;
}
if (verify)
{
uint8_t verify_opcode[break_op_size];
// Verify that our original opcode made it back to the inferior
if (m_task.ReadMemory(addr, break_op_size, verify_opcode) == break_op_size)
{
// compare the memory we just read with the original opcode
if (memcmp(bp->SavedOpcodeBytes(), verify_opcode, break_op_size) == 0)
{
// SUCCESS
bp->SetEnabled(false);
// Let the thread list know that a breakpoint has been modified
if (remove)
{
m_thread_list.NotifyBreakpointChanged(bp);
m_breakpoints.Remove(breakID);
}
DNBLogThreadedIf(LOG_BREAKPOINTS, "MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x%8.8llx => success", breakID, remove, (uint64_t)addr);
return true;
}
else
{
if (break_op_found)
DNBLogError("MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x%8.8llx: failed to restore original opcode", breakID, remove, (uint64_t)addr);
else
DNBLogError("MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) addr = 0x%8.8llx: opcode changed", breakID, remove, (uint64_t)addr);
}
}
else
{
DNBLogWarning("MachProcess::DisableBreakpoint: unable to disable breakpoint 0x%8.8llx", (uint64_t)addr);
}
}
}
else
{
DNBLogWarning("MachProcess::DisableBreakpoint: unable to read memory at 0x%8.8llx", (uint64_t)addr);
}
}
}
else
{
DNBLogError("MachProcess::DisableBreakpoint ( breakID = %d, remove = %d ) invalid breakpoint ID", breakID, remove);
}
return false;
}
bool
MachProcess::DisableWatchpoint(nub_watch_t watchID, bool remove)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::%s(watchID = %d, remove = %d)", __FUNCTION__, watchID, remove);
DNBBreakpoint *wp = m_watchpoints.FindByID (watchID);
if (wp)
{
nub_addr_t addr = wp->Address();
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::DisableWatchpoint ( watchID = %d, remove = %d ) addr = 0x%8.8llx", watchID, remove, (uint64_t)addr);
if (wp->IsHardware())
{
bool hw_disable_result = m_thread_list.DisableHardwareWatchpoint (wp);
if (hw_disable_result == true)
{
wp->SetEnabled(false);
if (remove)
m_watchpoints.Remove(watchID);
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::Disablewatchpoint ( watchID = %d, remove = %d ) addr = 0x%8.8llx (hardware) => success", watchID, remove, (uint64_t)addr);
return true;
}
}
// TODO: clear software watchpoints if we implement them
}
else
{
DNBLogError("MachProcess::DisableWatchpoint ( watchID = %d, remove = %d ) invalid watchpoint ID", watchID, remove);
}
return false;
}
void
MachProcess::DumpBreakpoint(nub_break_t breakID) const
{
DNBLogThreaded("MachProcess::DumpBreakpoint(breakID = %d)", breakID);
if (NUB_BREAK_ID_IS_VALID(breakID))
{
const DNBBreakpoint *bp = m_breakpoints.FindByID(breakID);
if (bp)
bp->Dump();
else
DNBLog("MachProcess::DumpBreakpoint(breakID = %d): invalid breakID", breakID);
}
else
{
m_breakpoints.Dump();
}
}
void
MachProcess::DumpWatchpoint(nub_watch_t watchID) const
{
DNBLogThreaded("MachProcess::DumpWatchpoint(watchID = %d)", watchID);
if (NUB_BREAK_ID_IS_VALID(watchID))
{
const DNBBreakpoint *wp = m_watchpoints.FindByID(watchID);
if (wp)
wp->Dump();
else
DNBLog("MachProcess::DumpWatchpoint(watchID = %d): invalid watchID", watchID);
}
else
{
m_watchpoints.Dump();
}
}
bool
MachProcess::EnableBreakpoint(nub_break_t breakID)
{
DNBLogThreadedIf(LOG_BREAKPOINTS, "MachProcess::EnableBreakpoint ( breakID = %d )", breakID);
DNBBreakpoint *bp = m_breakpoints.FindByID (breakID);
if (bp)
{
nub_addr_t addr = bp->Address();
if (bp->IsEnabled())
{
DNBLogWarning("MachProcess::EnableBreakpoint ( breakID = %d ) addr = 0x%8.8llx: breakpoint already enabled.", breakID, (uint64_t)addr);
return true;
}
else
{
if (bp->HardwarePreferred())
{
bp->SetHardwareIndex(m_thread_list.EnableHardwareBreakpoint(bp));
if (bp->IsHardware())
{
bp->SetEnabled(true);
return true;
}
}
const nub_size_t break_op_size = bp->ByteSize();
assert (break_op_size != 0);
const uint8_t * const break_op = DNBArchProtocol::GetBreakpointOpcode (break_op_size);
if (break_op_size > 0)
{
// Save the original opcode by reading it
if (m_task.ReadMemory(addr, break_op_size, bp->SavedOpcodeBytes()) == break_op_size)
{
// Write a software breakpoint in place of the original opcode
if (m_task.WriteMemory(addr, break_op_size, break_op) == break_op_size)
{
uint8_t verify_break_op[4];
if (m_task.ReadMemory(addr, break_op_size, verify_break_op) == break_op_size)
{
if (memcmp(break_op, verify_break_op, break_op_size) == 0)
{
bp->SetEnabled(true);
// Let the thread list know that a breakpoint has been modified
m_thread_list.NotifyBreakpointChanged(bp);
DNBLogThreadedIf(LOG_BREAKPOINTS, "MachProcess::EnableBreakpoint ( breakID = %d ) addr = 0x%8.8llx: SUCCESS.", breakID, (uint64_t)addr);
return true;
}
else
{
DNBLogError("MachProcess::EnableBreakpoint ( breakID = %d ) addr = 0x%8.8llx: breakpoint opcode verification failed.", breakID, (uint64_t)addr);
}
}
else
{
DNBLogError("MachProcess::EnableBreakpoint ( breakID = %d ) addr = 0x%8.8llx: unable to read memory to verify breakpoint opcode.", breakID, (uint64_t)addr);
}
}
else
{
DNBLogError("MachProcess::EnableBreakpoint ( breakID = %d ) addr = 0x%8.8llx: unable to write breakpoint opcode to memory.", breakID, (uint64_t)addr);
}
}
else
{
DNBLogError("MachProcess::EnableBreakpoint ( breakID = %d ) addr = 0x%8.8llx: unable to read memory at breakpoint address.", breakID, (uint64_t)addr);
}
}
else
{
DNBLogError("MachProcess::EnableBreakpoint ( breakID = %d ) no software breakpoint opcode for current architecture.", breakID);
}
}
}
return false;
}
bool
MachProcess::EnableWatchpoint(nub_watch_t watchID)
{
DNBLogThreadedIf(LOG_WATCHPOINTS, "MachProcess::EnableWatchpoint(watchID = %d)", watchID);
DNBBreakpoint *wp = m_watchpoints.FindByID (watchID);
if (wp)
{
nub_addr_t addr = wp->Address();
if (wp->IsEnabled())
{
DNBLogWarning("MachProcess::EnableWatchpoint(watchID = %d) addr = 0x%8.8llx: watchpoint already enabled.", watchID, (uint64_t)addr);
return true;
}
else
{
// Currently only try and set hardware watchpoints.
wp->SetHardwareIndex(m_thread_list.EnableHardwareWatchpoint(wp));
if (wp->IsHardware())
{
wp->SetEnabled(true);
return true;
}
// TODO: Add software watchpoints by doing page protection tricks.
}
}
return false;
}
// Called by the exception thread when an exception has been received from
// our process. The exception message is completely filled and the exception
// data has already been copied.
void
MachProcess::ExceptionMessageReceived (const MachException::Message& exceptionMessage)
{
PTHREAD_MUTEX_LOCKER (locker, m_exception_messages_mutex);
if (m_exception_messages.empty())
m_task.Suspend();
DNBLogThreadedIf(LOG_EXCEPTIONS, "MachProcess::ExceptionMessageReceived ( )");
// Use a locker to automatically unlock our mutex in case of exceptions
// Add the exception to our internal exception stack
m_exception_messages.push_back(exceptionMessage);
}
void
MachProcess::ExceptionMessageBundleComplete()
{
// We have a complete bundle of exceptions for our child process.
PTHREAD_MUTEX_LOCKER (locker, m_exception_messages_mutex);
DNBLogThreadedIf(LOG_EXCEPTIONS, "%s: %d exception messages.", __PRETTY_FUNCTION__, m_exception_messages.size());
if (!m_exception_messages.empty())
{
// Let all threads recover from stopping and do any clean up based
// on the previous thread state (if any).
m_thread_list.ProcessDidStop(this);
// Let each thread know of any exceptions
task_t task = m_task.TaskPort();
size_t i;
for (i=0; i<m_exception_messages.size(); ++i)
{
// Let the thread list figure use the MachProcess to forward all exceptions
// on down to each thread.
if (m_exception_messages[i].state.task_port == task)
m_thread_list.NotifyException(m_exception_messages[i].state);
if (DNBLogCheckLogBit(LOG_EXCEPTIONS))
m_exception_messages[i].Dump();
}
if (DNBLogCheckLogBit(LOG_THREAD))
m_thread_list.Dump();
bool step_more = false;
if (m_thread_list.ShouldStop(step_more))
{
// Wait for the eEventProcessRunningStateChanged event to be reset
// before changing state to stopped to avoid race condition with
// very fast start/stops
struct timespec timeout;
//DNBTimer::OffsetTimeOfDay(&timeout, 0, 250 * 1000); // Wait for 250 ms
DNBTimer::OffsetTimeOfDay(&timeout, 1, 0); // Wait for 250 ms
m_events.WaitForEventsToReset(eEventProcessRunningStateChanged, &timeout);
SetState(eStateStopped);
}
else
{
// Resume without checking our current state.
PrivateResume ();
}
}
else
{
DNBLogThreadedIf(LOG_EXCEPTIONS, "%s empty exception messages bundle.", __PRETTY_FUNCTION__, m_exception_messages.size());
}
}
nub_size_t
MachProcess::CopyImageInfos ( struct DNBExecutableImageInfo **image_infos, bool only_changed)
{
if (m_image_infos_callback != NULL)
return m_image_infos_callback(ProcessID(), image_infos, only_changed, m_image_infos_baton);
return 0;
}
void
MachProcess::SharedLibrariesUpdated ( )
{
uint32_t event_bits = eEventSharedLibsStateChange;
// Set the shared library event bit to let clients know of shared library
// changes
m_events.SetEvents(event_bits);
// Wait for the event bit to reset if a reset ACK is requested
m_events.WaitForResetAck(event_bits);
}
void
MachProcess::AppendSTDOUT (char* s, size_t len)
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::%s (<%d> %s) ...", __FUNCTION__, len, s);
PTHREAD_MUTEX_LOCKER (locker, m_stdio_mutex);
m_stdout_data.append(s, len);
m_events.SetEvents(eEventStdioAvailable);
// Wait for the event bit to reset if a reset ACK is requested
m_events.WaitForResetAck(eEventStdioAvailable);
}
size_t
MachProcess::GetAvailableSTDOUT (char *buf, size_t buf_size)
{
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::%s (&%p[%u]) ...", __FUNCTION__, buf, buf_size);
PTHREAD_MUTEX_LOCKER (locker, m_stdio_mutex);
size_t bytes_available = m_stdout_data.size();
if (bytes_available > 0)
{
if (bytes_available > buf_size)
{
memcpy(buf, m_stdout_data.data(), buf_size);
m_stdout_data.erase(0, buf_size);
bytes_available = buf_size;
}
else
{
memcpy(buf, m_stdout_data.data(), bytes_available);
m_stdout_data.clear();
}
}
return bytes_available;
}
nub_addr_t
MachProcess::GetDYLDAllImageInfosAddress ()
{
DNBError err;
return m_task.GetDYLDAllImageInfosAddress(err);
}
size_t
MachProcess::GetAvailableSTDERR (char *buf, size_t buf_size)
{
return 0;
}
void *
MachProcess::STDIOThread(void *arg)
{
MachProcess *proc = (MachProcess*) arg;
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::%s ( arg = %p ) thread starting...", __FUNCTION__, arg);
// We start use a base and more options so we can control if we
// are currently using a timeout on the mach_msg. We do this to get a
// bunch of related exceptions on our exception port so we can process
// then together. When we have multiple threads, we can get an exception
// per thread and they will come in consecutively. The main thread loop
// will start by calling mach_msg to without having the MACH_RCV_TIMEOUT
// flag set in the options, so we will wait forever for an exception on
// our exception port. After we get one exception, we then will use the
// MACH_RCV_TIMEOUT option with a zero timeout to grab all other current
// exceptions for our process. After we have received the last pending
// exception, we will get a timeout which enables us to then notify
// our main thread that we have an exception bundle avaiable. We then wait
// for the main thread to tell this exception thread to start trying to get
// exceptions messages again and we start again with a mach_msg read with
// infinite timeout.
DNBError err;
int stdout_fd = proc->GetStdoutFileDescriptor();
int stderr_fd = proc->GetStderrFileDescriptor();
if (stdout_fd == stderr_fd)
stderr_fd = -1;
while (stdout_fd >= 0 || stderr_fd >= 0)
{
::pthread_testcancel ();
fd_set read_fds;
FD_ZERO (&read_fds);
if (stdout_fd >= 0)
FD_SET (stdout_fd, &read_fds);
if (stderr_fd >= 0)
FD_SET (stderr_fd, &read_fds);
int nfds = std::max<int>(stdout_fd, stderr_fd) + 1;
int num_set_fds = select (nfds, &read_fds, NULL, NULL, NULL);
DNBLogThreadedIf(LOG_PROCESS, "select (nfds, &read_fds, NULL, NULL, NULL) => %d", num_set_fds);
if (num_set_fds < 0)
{
int select_errno = errno;
if (DNBLogCheckLogBit(LOG_PROCESS))
{
err.SetError (select_errno, DNBError::POSIX);
err.LogThreadedIfError("select (nfds, &read_fds, NULL, NULL, NULL) => %d", num_set_fds);
}
switch (select_errno)
{
case EAGAIN: // The kernel was (perhaps temporarily) unable to allocate the requested number of file descriptors, or we have non-blocking IO
break;
case EBADF: // One of the descriptor sets specified an invalid descriptor.
return NULL;
break;
case EINTR: // A signal was delivered before the time limit expired and before any of the selected events occurred.
case EINVAL: // The specified time limit is invalid. One of its components is negative or too large.
default: // Other unknown error
break;
}
}
else if (num_set_fds == 0)
{
}
else
{
char s[1024];
s[sizeof(s)-1] = '\0'; // Ensure we have NULL termination
int bytes_read = 0;
if (stdout_fd >= 0 && FD_ISSET (stdout_fd, &read_fds))
{
do
{
bytes_read = ::read (stdout_fd, s, sizeof(s)-1);
if (bytes_read < 0)
{
int read_errno = errno;
DNBLogThreadedIf(LOG_PROCESS, "read (stdout_fd, ) => %d errno: %d (%s)", bytes_read, read_errno, strerror(read_errno));
}
else if (bytes_read == 0)
{
// EOF...
DNBLogThreadedIf(LOG_PROCESS, "read (stdout_fd, ) => %d (reached EOF for child STDOUT)", bytes_read);
stdout_fd = -1;
}
else if (bytes_read > 0)
{
proc->AppendSTDOUT(s, bytes_read);
}
} while (bytes_read > 0);
}
if (stderr_fd >= 0 && FD_ISSET (stderr_fd, &read_fds))
{
do
{
bytes_read = ::read (stderr_fd, s, sizeof(s)-1);
if (bytes_read < 0)
{
int read_errno = errno;
DNBLogThreadedIf(LOG_PROCESS, "read (stderr_fd, ) => %d errno: %d (%s)", bytes_read, read_errno, strerror(read_errno));
}
else if (bytes_read == 0)
{
// EOF...
DNBLogThreadedIf(LOG_PROCESS, "read (stderr_fd, ) => %d (reached EOF for child STDERR)", bytes_read);
stderr_fd = -1;
}
else if (bytes_read > 0)
{
proc->AppendSTDOUT(s, bytes_read);
}
} while (bytes_read > 0);
}
}
}
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::%s (%p): thread exiting...", __FUNCTION__, arg);
return NULL;
}
pid_t
MachProcess::AttachForDebug (pid_t pid, char *err_str, size_t err_len)
{
// Clear out and clean up from any current state
Clear();
if (pid != 0)
{
DNBError err;
// Make sure the process exists...
if (::getpgid (pid) < 0)
{
err.SetErrorToErrno();
const char *err_cstr = err.AsString();
::snprintf (err_str, err_len, "%s", err_cstr ? err_cstr : "No such process");
return INVALID_NUB_PROCESS;
}
SetState(eStateAttaching);
m_pid = pid;
// Let ourselves know we are going to be using SBS if the correct flag bit is set...
#if defined (__arm__)
if (IsSBProcess(pid))
m_flags |= eMachProcessFlagsUsingSBS;
#endif
if (!m_task.StartExceptionThread(err))
{
const char *err_cstr = err.AsString();
::snprintf (err_str, err_len, "%s", err_cstr ? err_cstr : "unable to start the exception thread");
DNBLogThreadedIf(LOG_PROCESS, "error: failed to attach to pid %d", pid);
m_pid = INVALID_NUB_PROCESS;
return INVALID_NUB_PROCESS;
}
errno = 0;
if (::ptrace (PT_ATTACHEXC, pid, 0, 0))
err.SetError(errno);
else
err.Clear();
if (err.Success())
{
m_flags |= eMachProcessFlagsAttached;
// Sleep a bit to let the exception get received and set our process status
// to stopped.
::usleep(250000);
DNBLogThreadedIf(LOG_PROCESS, "successfully attached to pid %d", pid);
return m_pid;
}
else
{
::snprintf (err_str, err_len, "%s", err.AsString());
DNBLogThreadedIf(LOG_PROCESS, "error: failed to attach to pid %d", pid);
}
}
return INVALID_NUB_PROCESS;
}
// Do the process specific setup for attach. If this returns NULL, then there's no
// platform specific stuff to be done to wait for the attach. If you get non-null,
// pass that token to the CheckForProcess method, and then to CleanupAfterAttach.
// Call PrepareForAttach before attaching to a process that has not yet launched
// This returns a token that can be passed to CheckForProcess, and to CleanupAfterAttach.
// You should call CleanupAfterAttach to free the token, and do whatever other
// cleanup seems good.
const void *
MachProcess::PrepareForAttach (const char *path, nub_launch_flavor_t launch_flavor, bool waitfor, DNBError &err_str)
{
#if defined (__arm__)
// Tell SpringBoard to halt the next launch of this application on startup.
if (!waitfor)
return NULL;
const char *app_ext = strstr(path, ".app");
if (app_ext == NULL)
{
DNBLogThreadedIf(LOG_PROCESS, "%s: path '%s' doesn't contain .app, we can't tell springboard to wait for launch...", path);
return NULL;
}
if (launch_flavor != eLaunchFlavorSpringBoard
&& launch_flavor != eLaunchFlavorDefault)
return NULL;
std::string app_bundle_path(path, app_ext + strlen(".app"));
CFStringRef bundleIDCFStr = CopyBundleIDForPath (app_bundle_path.c_str (), err_str);
std::string bundleIDStr;
CFString::UTF8(bundleIDCFStr, bundleIDStr);
DNBLogThreadedIf(LOG_PROCESS, "CopyBundleIDForPath (%s, err_str) returned @\"%s\"", app_bundle_path.c_str (), bundleIDStr.c_str());
if (bundleIDCFStr == NULL)
{
return NULL;
}
SBSApplicationLaunchError sbs_error = 0;
const char *stdout_err = "/dev/null";
CFString stdio_path;
stdio_path.SetFileSystemRepresentation (stdout_err);
DNBLogThreadedIf(LOG_PROCESS, "SBSLaunchApplicationForDebugging ( @\"%s\" , NULL, NULL, NULL, @\"%s\", @\"%s\", SBSApplicationDebugOnNextLaunch | SBSApplicationLaunchWaitForDebugger )", bundleIDStr.c_str(), stdout_err, stdout_err);
sbs_error = SBSLaunchApplicationForDebugging (bundleIDCFStr,
(CFURLRef)NULL, // openURL
NULL, // launch_argv.get(),
NULL, // launch_envp.get(), // CFDictionaryRef environment
stdio_path.get(),
stdio_path.get(),
SBSApplicationDebugOnNextLaunch | SBSApplicationLaunchWaitForDebugger);
if (sbs_error != SBSApplicationLaunchErrorSuccess)
{
err_str.SetError(sbs_error, DNBError::SpringBoard);
return NULL;
}
DNBLogThreadedIf(LOG_PROCESS, "Successfully set DebugOnNextLaunch.");
return bundleIDCFStr;
# else
return NULL;
#endif
}
// Pass in the token you got from PrepareForAttach. If there is a process
// for that token, then the pid will be returned, otherwise INVALID_NUB_PROCESS
// will be returned.
nub_process_t
MachProcess::CheckForProcess (const void *attach_token)
{
if (attach_token == NULL)
return INVALID_NUB_PROCESS;
#if defined (__arm__)
CFStringRef bundleIDCFStr = (CFStringRef) attach_token;
Boolean got_it;
nub_process_t attach_pid;
got_it = SBSProcessIDForDisplayIdentifier(bundleIDCFStr, &attach_pid);
if (got_it)
return attach_pid;
else
return INVALID_NUB_PROCESS;
#endif
return INVALID_NUB_PROCESS;
}
// Call this to clean up after you have either attached or given up on the attach.
// Pass true for success if you have attached, false if you have not.
// The token will also be freed at this point, so you can't use it after calling
// this method.
void
MachProcess::CleanupAfterAttach (const void *attach_token, bool success, DNBError &err_str)
{
#if defined (__arm__)
if (attach_token == NULL)
return;
// Tell SpringBoard to cancel the debug on next launch of this application
// if we failed to attach
if (!success)
{
SBSApplicationLaunchError sbs_error = 0;
CFStringRef bundleIDCFStr = (CFStringRef) attach_token;
sbs_error = SBSLaunchApplicationForDebugging (bundleIDCFStr,
(CFURLRef)NULL,
NULL,
NULL,
NULL,
NULL,
SBSApplicationCancelDebugOnNextLaunch);
if (sbs_error != SBSApplicationLaunchErrorSuccess)
{
err_str.SetError(sbs_error, DNBError::SpringBoard);
return;
}
}
CFRelease((CFStringRef) attach_token);
#endif
}
pid_t
MachProcess::LaunchForDebug
(
const char *path,
char const *argv[],
char const *envp[],
const char *working_directory, // NULL => dont' change, non-NULL => set working directory for inferior to this
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
bool no_stdio,
nub_launch_flavor_t launch_flavor,
int disable_aslr,
DNBError &launch_err
)
{
// Clear out and clean up from any current state
Clear();
DNBLogThreadedIf(LOG_PROCESS, "%s( path = '%s', argv = %p, envp = %p, launch_flavor = %u, disable_aslr = %d )", __FUNCTION__, path, argv, envp, launch_flavor, disable_aslr);
// Fork a child process for debugging
SetState(eStateLaunching);
switch (launch_flavor)
{
case eLaunchFlavorForkExec:
m_pid = MachProcess::ForkChildForPTraceDebugging (path, argv, envp, this, launch_err);
break;
case eLaunchFlavorPosixSpawn:
m_pid = MachProcess::PosixSpawnChildForPTraceDebugging (path,
DNBArchProtocol::GetArchitecture (),
argv,
envp,
working_directory,
stdin_path,
stdout_path,
stderr_path,
no_stdio,
this,
disable_aslr,
launch_err);
break;
#if defined (__arm__)
case eLaunchFlavorSpringBoard:
{
const char *app_ext = strstr(path, ".app");
if (app_ext != NULL)
{
std::string app_bundle_path(path, app_ext + strlen(".app"));
return SBLaunchForDebug (app_bundle_path.c_str(), argv, envp, no_stdio, launch_err);
}
}
break;
#endif
default:
// Invalid launch
launch_err.SetError(NUB_GENERIC_ERROR, DNBError::Generic);
return INVALID_NUB_PROCESS;
}
if (m_pid == INVALID_NUB_PROCESS)
{
// If we don't have a valid process ID and no one has set the error,
// then return a generic error
if (launch_err.Success())
launch_err.SetError(NUB_GENERIC_ERROR, DNBError::Generic);
}
else
{
m_path = path;
size_t i;
char const *arg;
for (i=0; (arg = argv[i]) != NULL; i++)
m_args.push_back(arg);
m_task.StartExceptionThread(launch_err);
if (launch_err.Fail())
{
if (launch_err.AsString() == NULL)
launch_err.SetErrorString("unable to start the exception thread");
::ptrace (PT_KILL, m_pid, 0, 0);
m_pid = INVALID_NUB_PROCESS;
return INVALID_NUB_PROCESS;
}
StartSTDIOThread();
if (launch_flavor == eLaunchFlavorPosixSpawn)
{
SetState (eStateAttaching);
errno = 0;
int err = ::ptrace (PT_ATTACHEXC, m_pid, 0, 0);
if (err == 0)
{
m_flags |= eMachProcessFlagsAttached;
DNBLogThreadedIf(LOG_PROCESS, "successfully spawned pid %d", m_pid);
launch_err.Clear();
}
else
{
SetState (eStateExited);
DNBError ptrace_err(errno, DNBError::POSIX);
DNBLogThreadedIf(LOG_PROCESS, "error: failed to attach to spawned pid %d (err = %i, errno = %i (%s))", m_pid, err, ptrace_err.Error(), ptrace_err.AsString());
launch_err.SetError(NUB_GENERIC_ERROR, DNBError::Generic);
}
}
else
{
launch_err.Clear();
}
}
return m_pid;
}
pid_t
MachProcess::PosixSpawnChildForPTraceDebugging
(
const char *path,
cpu_type_t cpu_type,
char const *argv[],
char const *envp[],
const char *working_directory,
const char *stdin_path,
const char *stdout_path,
const char *stderr_path,
bool no_stdio,
MachProcess* process,
int disable_aslr,
DNBError& err
)
{
posix_spawnattr_t attr;
short flags;
DNBLogThreadedIf(LOG_PROCESS, "%s ( path='%s', argv=%p, envp=%p, working_dir=%s, stdin=%s, stdout=%s stderr=%s, no-stdio=%i)",
__FUNCTION__,
path,
argv,
envp,
working_directory,
stdin_path,
stdout_path,
stderr_path,
no_stdio);
err.SetError( ::posix_spawnattr_init (&attr), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawnattr_init ( &attr )");
if (err.Fail())
return INVALID_NUB_PROCESS;
flags = POSIX_SPAWN_START_SUSPENDED;
if (disable_aslr)
flags |= _POSIX_SPAWN_DISABLE_ASLR;
err.SetError( ::posix_spawnattr_setflags (&attr, flags), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawnattr_setflags ( &attr, POSIX_SPAWN_START_SUSPENDED%s )", flags & _POSIX_SPAWN_DISABLE_ASLR ? " | _POSIX_SPAWN_DISABLE_ASLR" : "");
if (err.Fail())
return INVALID_NUB_PROCESS;
// Don't do this on SnowLeopard, _sometimes_ the TASK_BASIC_INFO will fail
// and we will fail to continue with our process...
// On SnowLeopard we should set "DYLD_NO_PIE" in the inferior environment....
#if !defined(__arm__)
// We don't need to do this for ARM, and we really shouldn't now that we
// have multiple CPU subtypes and no posix_spawnattr call that allows us
// to set which CPU subtype to launch...
if (cpu_type != 0)
{
size_t ocount = 0;
err.SetError( ::posix_spawnattr_setbinpref_np (&attr, 1, &cpu_type, &ocount), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawnattr_setbinpref_np ( &attr, 1, cpu_type = 0x%8.8x, count => %zu )", cpu_type, ocount);
if (err.Fail() != 0 || ocount != 1)
return INVALID_NUB_PROCESS;
}
#endif
PseudoTerminal pty;
posix_spawn_file_actions_t file_actions;
err.SetError( ::posix_spawn_file_actions_init (&file_actions), DNBError::POSIX);
int file_actions_valid = err.Success();
if (!file_actions_valid || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawn_file_actions_init ( &file_actions )");
int pty_error = -1;
pid_t pid = INVALID_NUB_PROCESS;
if (file_actions_valid)
{
if (stdin_path == NULL && stdout_path == NULL && stderr_path == NULL && !no_stdio)
{
pty_error = pty.OpenFirstAvailableMaster(O_RDWR|O_NOCTTY);
if (pty_error == PseudoTerminal::success)
{
stdin_path = stdout_path = stderr_path = pty.SlaveName();
}
}
// if no_stdio, then do open file actions, opening /dev/null.
if (no_stdio)
{
err.SetError( ::posix_spawn_file_actions_addopen (&file_actions, STDIN_FILENO, "/dev/null",
O_RDONLY | O_NOCTTY, 0), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit (LOG_PROCESS))
err.LogThreaded ("::posix_spawn_file_actions_addopen (&file_actions, filedes=STDIN_FILENO, path=/dev/null)");
err.SetError( ::posix_spawn_file_actions_addopen (&file_actions, STDOUT_FILENO, "/dev/null",
O_WRONLY | O_NOCTTY, 0), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit (LOG_PROCESS))
err.LogThreaded ("::posix_spawn_file_actions_addopen (&file_actions, filedes=STDOUT_FILENO, path=/dev/null)");
err.SetError( ::posix_spawn_file_actions_addopen (&file_actions, STDERR_FILENO, "/dev/null",
O_RDWR | O_NOCTTY, 0), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit (LOG_PROCESS))
err.LogThreaded ("::posix_spawn_file_actions_addopen (&file_actions, filedes=STDERR_FILENO, path=/dev/null)");
}
else
{
if ( stdin_path == NULL) stdin_path = "/dev/null";
if (stdout_path == NULL) stdout_path = "/dev/null";
if (stderr_path == NULL) stderr_path = "/dev/null";
int slave_fd_err = open (stderr_path, O_NOCTTY | O_CREAT | O_RDWR , 0640);
int slave_fd_in = open (stdin_path , O_NOCTTY | O_RDONLY);
int slave_fd_out = open (stdout_path, O_NOCTTY | O_CREAT | O_WRONLY , 0640);
err.SetError( ::posix_spawn_file_actions_adddup2(&file_actions, slave_fd_err, STDERR_FILENO), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawn_file_actions_adddup2 ( &file_actions, filedes = %d (\"%s\"), newfiledes = STDERR_FILENO )", slave_fd_err, stderr_path);
err.SetError( ::posix_spawn_file_actions_adddup2(&file_actions, slave_fd_in, STDIN_FILENO), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawn_file_actions_adddup2 ( &file_actions, filedes = %d (\"%s\"), newfiledes = STDIN_FILENO )", slave_fd_in, stdin_path);
err.SetError( ::posix_spawn_file_actions_adddup2(&file_actions, slave_fd_out, STDOUT_FILENO), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawn_file_actions_adddup2 ( &file_actions, filedes = %d (\"%s\"), newfiledes = STDOUT_FILENO )", slave_fd_out, stdout_path);
}
// TODO: Verify if we can set the working directory back immediately
// after the posix_spawnp call without creating a race condition???
if (working_directory)
::chdir (working_directory);
err.SetError( ::posix_spawnp (&pid, path, &file_actions, &attr, (char * const*)argv, (char * const*)envp), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawnp ( pid => %i, path = '%s', file_actions = %p, attr = %p, argv = %p, envp = %p )", pid, path, &file_actions, &attr, argv, envp);
}
else
{
// TODO: Verify if we can set the working directory back immediately
// after the posix_spawnp call without creating a race condition???
if (working_directory)
::chdir (working_directory);
err.SetError( ::posix_spawnp (&pid, path, NULL, &attr, (char * const*)argv, (char * const*)envp), DNBError::POSIX);
if (err.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err.LogThreaded("::posix_spawnp ( pid => %i, path = '%s', file_actions = %p, attr = %p, argv = %p, envp = %p )", pid, path, NULL, &attr, argv, envp);
}
// We have seen some cases where posix_spawnp was returning a valid
// looking pid even when an error was returned, so clear it out
if (err.Fail())
pid = INVALID_NUB_PROCESS;
if (pty_error == 0)
{
if (process != NULL)
{
int master_fd = pty.ReleaseMasterFD();
process->SetChildFileDescriptors(master_fd, master_fd, master_fd);
}
}
::posix_spawnattr_destroy (&attr);
if (pid != INVALID_NUB_PROCESS)
{
cpu_type_t pid_cpu_type = MachProcess::GetCPUTypeForLocalProcess (pid);
DNBLogThreadedIf(LOG_PROCESS, "MachProcess::%s ( ) pid=%i, cpu_type=0x%8.8x", __FUNCTION__, pid, pid_cpu_type);
if (pid_cpu_type)
DNBArchProtocol::SetArchitecture (pid_cpu_type);
}
if (file_actions_valid)
{
DNBError err2;
err2.SetError( ::posix_spawn_file_actions_destroy (&file_actions), DNBError::POSIX);
if (err2.Fail() || DNBLogCheckLogBit(LOG_PROCESS))
err2.LogThreaded("::posix_spawn_file_actions_destroy ( &file_actions )");
}
return pid;
}
uint32_t
MachProcess::GetCPUTypeForLocalProcess (pid_t pid)
{
int mib[CTL_MAXNAME]={0,};
size_t len = CTL_MAXNAME;
if (::sysctlnametomib("sysctl.proc_cputype", mib, &len))
return 0;
mib[len] = pid;
len++;
cpu_type_t cpu;
size_t cpu_len = sizeof(cpu);
if (::sysctl (mib, len, &cpu, &cpu_len, 0, 0))
cpu = 0;
return cpu;
}
pid_t
MachProcess::ForkChildForPTraceDebugging
(
const char *path,
char const *argv[],
char const *envp[],
MachProcess* process,
DNBError& launch_err
)
{
PseudoTerminal::Error pty_error = PseudoTerminal::success;
// Use a fork that ties the child process's stdin/out/err to a pseudo
// terminal so we can read it in our MachProcess::STDIOThread
// as unbuffered io.
PseudoTerminal pty;
pid_t pid = pty.Fork(pty_error);
if (pid < 0)
{
//--------------------------------------------------------------
// Error during fork.
//--------------------------------------------------------------
return pid;
}
else if (pid == 0)
{
//--------------------------------------------------------------
// Child process
//--------------------------------------------------------------
::ptrace (PT_TRACE_ME, 0, 0, 0); // Debug this process
::ptrace (PT_SIGEXC, 0, 0, 0); // Get BSD signals as mach exceptions
// If our parent is setgid, lets make sure we don't inherit those
// extra powers due to nepotism.
::setgid (getgid ());
// Let the child have its own process group. We need to execute
// this call in both the child and parent to avoid a race condition
// between the two processes.
::setpgid (0, 0); // Set the child process group to match its pid
// Sleep a bit to before the exec call
::sleep (1);
// Turn this process into
::execv (path, (char * const *)argv);
// Exit with error code. Child process should have taken
// over in above exec call and if the exec fails it will
// exit the child process below.
::exit (127);
}
else
{
//--------------------------------------------------------------
// Parent process
//--------------------------------------------------------------
// Let the child have its own process group. We need to execute
// this call in both the child and parent to avoid a race condition
// between the two processes.
::setpgid (pid, pid); // Set the child process group to match its pid
if (process != NULL)
{
// Release our master pty file descriptor so the pty class doesn't
// close it and so we can continue to use it in our STDIO thread
int master_fd = pty.ReleaseMasterFD();
process->SetChildFileDescriptors(master_fd, master_fd, master_fd);
}
}
return pid;
}
#if defined (__arm__)
pid_t
MachProcess::SBLaunchForDebug (const char *path, char const *argv[], char const *envp[], bool no_stdio, DNBError &launch_err)
{
// Clear out and clean up from any current state
Clear();
DNBLogThreadedIf(LOG_PROCESS, "%s( '%s', argv)", __FUNCTION__, path);
// Fork a child process for debugging
SetState(eStateLaunching);
m_pid = MachProcess::SBForkChildForPTraceDebugging(path, argv, envp, no_stdio, this, launch_err);
if (m_pid != 0)
{
m_flags |= eMachProcessFlagsUsingSBS;
m_path = path;
size_t i;
char const *arg;
for (i=0; (arg = argv[i]) != NULL; i++)
m_args.push_back(arg);
m_task.StartExceptionThread(launch_err);
if (launch_err.Fail())
{
if (launch_err.AsString() == NULL)
launch_err.SetErrorString("unable to start the exception thread");
::ptrace (PT_KILL, m_pid, 0, 0);
m_pid = INVALID_NUB_PROCESS;
return INVALID_NUB_PROCESS;
}
StartSTDIOThread();
SetState (eStateAttaching);
int err = ::ptrace (PT_ATTACHEXC, m_pid, 0, 0);
if (err == 0)
{
m_flags |= eMachProcessFlagsAttached;
DNBLogThreadedIf(LOG_PROCESS, "successfully attached to pid %d", m_pid);
}
else
{
SetState (eStateExited);
DNBLogThreadedIf(LOG_PROCESS, "error: failed to attach to pid %d", m_pid);
}
}
return m_pid;
}
#include <servers/bootstrap.h>
// This returns a CFRetained pointer to the Bundle ID for app_bundle_path,
// or NULL if there was some problem getting the bundle id.
static CFStringRef
CopyBundleIDForPath (const char *app_bundle_path, DNBError &err_str)
{
CFBundle bundle(app_bundle_path);
CFStringRef bundleIDCFStr = bundle.GetIdentifier();
std::string bundleID;
if (CFString::UTF8(bundleIDCFStr, bundleID) == NULL)
{
struct stat app_bundle_stat;
char err_msg[PATH_MAX];
if (::stat (app_bundle_path, &app_bundle_stat) < 0)
{
err_str.SetError(errno, DNBError::POSIX);
snprintf(err_msg, sizeof(err_msg), "%s: \"%s\"", err_str.AsString(), app_bundle_path);
err_str.SetErrorString(err_msg);
DNBLogThreadedIf(LOG_PROCESS, "%s() error: %s", __FUNCTION__, err_msg);
}
else
{
err_str.SetError(-1, DNBError::Generic);
snprintf(err_msg, sizeof(err_msg), "failed to extract CFBundleIdentifier from %s", app_bundle_path);
err_str.SetErrorString(err_msg);
DNBLogThreadedIf(LOG_PROCESS, "%s() error: failed to extract CFBundleIdentifier from '%s'", __FUNCTION__, app_bundle_path);
}
return NULL;
}
DNBLogThreadedIf(LOG_PROCESS, "%s() extracted CFBundleIdentifier: %s", __FUNCTION__, bundleID.c_str());
CFRetain (bundleIDCFStr);
return bundleIDCFStr;
}
pid_t
MachProcess::SBForkChildForPTraceDebugging (const char *app_bundle_path, char const *argv[], char const *envp[], bool no_stdio, MachProcess* process, DNBError &launch_err)
{
DNBLogThreadedIf(LOG_PROCESS, "%s( '%s', argv, %p)", __FUNCTION__, app_bundle_path, process);
CFAllocatorRef alloc = kCFAllocatorDefault;
if (argv[0] == NULL)
return INVALID_NUB_PROCESS;
size_t argc = 0;
// Count the number of arguments
while (argv[argc] != NULL)
argc++;
// Enumerate the arguments
size_t first_launch_arg_idx = 1;
CFReleaser<CFMutableArrayRef> launch_argv;
if (argv[first_launch_arg_idx])
{
size_t launch_argc = argc > 0 ? argc - 1 : 0;
launch_argv.reset (::CFArrayCreateMutable (alloc, launch_argc, &kCFTypeArrayCallBacks));
size_t i;
char const *arg;
CFString launch_arg;
for (i=first_launch_arg_idx; (i < argc) && ((arg = argv[i]) != NULL); i++)
{
launch_arg.reset(::CFStringCreateWithCString (alloc, arg, kCFStringEncodingUTF8));
if (launch_arg.get() != NULL)
CFArrayAppendValue(launch_argv.get(), launch_arg.get());
else
break;
}
}
// Next fill in the arguments dictionary. Note, the envp array is of the form
// Variable=value but SpringBoard wants a CF dictionary. So we have to convert
// this here.
CFReleaser<CFMutableDictionaryRef> launch_envp;
if (envp[0])
{
launch_envp.reset(::CFDictionaryCreateMutable(alloc, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks));
const char *value;
int name_len;
CFString name_string, value_string;
for (int i = 0; envp[i] != NULL; i++)
{
value = strstr (envp[i], "=");
// If the name field is empty or there's no =, skip it. Somebody's messing with us.
if (value == NULL || value == envp[i])
continue;
name_len = value - envp[i];
// Now move value over the "="
value++;
name_string.reset(::CFStringCreateWithBytes(alloc, (const UInt8 *) envp[i], name_len, kCFStringEncodingUTF8, false));
value_string.reset(::CFStringCreateWithCString(alloc, value, kCFStringEncodingUTF8));
CFDictionarySetValue (launch_envp.get(), name_string.get(), value_string.get());
}
}
CFString stdio_path;
PseudoTerminal pty;
if (!no_stdio)
{
PseudoTerminal::Error pty_err = pty.OpenFirstAvailableMaster(O_RDWR|O_NOCTTY);
if (pty_err == PseudoTerminal::success)
{
const char* slave_name = pty.SlaveName();
DNBLogThreadedIf(LOG_PROCESS, "%s() successfully opened master pty, slave is %s", __FUNCTION__, slave_name);
if (slave_name && slave_name[0])
{
::chmod (slave_name, S_IRWXU | S_IRWXG | S_IRWXO);
stdio_path.SetFileSystemRepresentation (slave_name);
}
}
}
if (stdio_path.get() == NULL)
{
stdio_path.SetFileSystemRepresentation ("/dev/null");
}
CFStringRef bundleIDCFStr = CopyBundleIDForPath (app_bundle_path, launch_err);
if (bundleIDCFStr == NULL)
return INVALID_NUB_PROCESS;
std::string bundleID;
CFString::UTF8(bundleIDCFStr, bundleID);
CFData argv_data(NULL);
if (launch_argv.get())
{
if (argv_data.Serialize(launch_argv.get(), kCFPropertyListBinaryFormat_v1_0) == NULL)
{
DNBLogThreadedIf(LOG_PROCESS, "%s() error: failed to serialize launch arg array...", __FUNCTION__);
return INVALID_NUB_PROCESS;
}
}
DNBLogThreadedIf(LOG_PROCESS, "%s() serialized launch arg array", __FUNCTION__);
// Find SpringBoard
SBSApplicationLaunchError sbs_error = 0;
sbs_error = SBSLaunchApplicationForDebugging (bundleIDCFStr,
(CFURLRef)NULL, // openURL
launch_argv.get(),
launch_envp.get(), // CFDictionaryRef environment
stdio_path.get(),
stdio_path.get(),
SBSApplicationLaunchWaitForDebugger | SBSApplicationLaunchUnlockDevice);
launch_err.SetError(sbs_error, DNBError::SpringBoard);
if (sbs_error == SBSApplicationLaunchErrorSuccess)
{
static const useconds_t pid_poll_interval = 200000;
static const useconds_t pid_poll_timeout = 30000000;
useconds_t pid_poll_total = 0;
nub_process_t pid = INVALID_NUB_PROCESS;
Boolean pid_found = SBSProcessIDForDisplayIdentifier(bundleIDCFStr, &pid);
// Poll until the process is running, as long as we are getting valid responses and the timeout hasn't expired
// A return PID of 0 means the process is not running, which may be because it hasn't been (asynchronously) started
// yet, or that it died very quickly (if you weren't using waitForDebugger).
while (!pid_found && pid_poll_total < pid_poll_timeout)
{
usleep (pid_poll_interval);
pid_poll_total += pid_poll_interval;
DNBLogThreadedIf(LOG_PROCESS, "%s() polling Springboard for pid for %s...", __FUNCTION__, bundleID.c_str());
pid_found = SBSProcessIDForDisplayIdentifier(bundleIDCFStr, &pid);
}
CFRelease (bundleIDCFStr);
if (pid_found)
{
if (process != NULL)
{
// Release our master pty file descriptor so the pty class doesn't
// close it and so we can continue to use it in our STDIO thread
int master_fd = pty.ReleaseMasterFD();
process->SetChildFileDescriptors(master_fd, master_fd, master_fd);
}
DNBLogThreadedIf(LOG_PROCESS, "%s() => pid = %4.4x", __FUNCTION__, pid);
}
else
{
DNBLogError("failed to lookup the process ID for CFBundleIdentifier %s.", bundleID.c_str());
}
return pid;
}
DNBLogError("unable to launch the application with CFBundleIdentifier '%s' sbs_error = %u", bundleID.c_str(), sbs_error);
return INVALID_NUB_PROCESS;
}
#endif // #if defined (__arm__)