forked from OSchip/llvm-project
317 lines
9.1 KiB
C++
317 lines
9.1 KiB
C++
//===-- tsan_fd.cpp -------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "tsan_fd.h"
|
|
#include "tsan_rtl.h"
|
|
#include <sanitizer_common/sanitizer_atomic.h>
|
|
|
|
namespace __tsan {
|
|
|
|
const int kTableSizeL1 = 1024;
|
|
const int kTableSizeL2 = 1024;
|
|
const int kTableSize = kTableSizeL1 * kTableSizeL2;
|
|
|
|
struct FdSync {
|
|
atomic_uint64_t rc;
|
|
};
|
|
|
|
struct FdDesc {
|
|
FdSync *sync;
|
|
Tid creation_tid;
|
|
StackID creation_stack;
|
|
};
|
|
|
|
struct FdContext {
|
|
atomic_uintptr_t tab[kTableSizeL1];
|
|
// Addresses used for synchronization.
|
|
FdSync globsync;
|
|
FdSync filesync;
|
|
FdSync socksync;
|
|
u64 connectsync;
|
|
};
|
|
|
|
static FdContext fdctx;
|
|
|
|
static bool bogusfd(int fd) {
|
|
// Apparently a bogus fd value.
|
|
return fd < 0 || fd >= kTableSize;
|
|
}
|
|
|
|
static FdSync *allocsync(ThreadState *thr, uptr pc) {
|
|
FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
|
|
kDefaultAlignment, false);
|
|
atomic_store(&s->rc, 1, memory_order_relaxed);
|
|
return s;
|
|
}
|
|
|
|
static FdSync *ref(FdSync *s) {
|
|
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
|
|
atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
|
|
return s;
|
|
}
|
|
|
|
static void unref(ThreadState *thr, uptr pc, FdSync *s) {
|
|
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
|
|
if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
|
|
CHECK_NE(s, &fdctx.globsync);
|
|
CHECK_NE(s, &fdctx.filesync);
|
|
CHECK_NE(s, &fdctx.socksync);
|
|
user_free(thr, pc, s, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
|
|
CHECK_GE(fd, 0);
|
|
CHECK_LT(fd, kTableSize);
|
|
atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
|
|
uptr l1 = atomic_load(pl1, memory_order_consume);
|
|
if (l1 == 0) {
|
|
uptr size = kTableSizeL2 * sizeof(FdDesc);
|
|
// We need this to reside in user memory to properly catch races on it.
|
|
void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
|
|
internal_memset(p, 0, size);
|
|
MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
|
|
if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
|
|
l1 = (uptr)p;
|
|
else
|
|
user_free(thr, pc, p, false);
|
|
}
|
|
FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
|
|
return &fds[fd % kTableSizeL2];
|
|
}
|
|
|
|
// pd must be already ref'ed.
|
|
static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
|
|
bool write = true) {
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
// As a matter of fact, we don't intercept all close calls.
|
|
// See e.g. libc __res_iclose().
|
|
if (d->sync) {
|
|
unref(thr, pc, d->sync);
|
|
d->sync = 0;
|
|
}
|
|
if (flags()->io_sync == 0) {
|
|
unref(thr, pc, s);
|
|
} else if (flags()->io_sync == 1) {
|
|
d->sync = s;
|
|
} else if (flags()->io_sync == 2) {
|
|
unref(thr, pc, s);
|
|
d->sync = &fdctx.globsync;
|
|
}
|
|
d->creation_tid = thr->tid;
|
|
d->creation_stack = CurrentStackId(thr, pc);
|
|
if (write) {
|
|
// To catch races between fd usage and open.
|
|
MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
|
|
} else {
|
|
// See the dup-related comment in FdClose.
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
}
|
|
}
|
|
|
|
void FdInit() {
|
|
atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
|
|
atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
|
|
atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
|
|
}
|
|
|
|
void FdOnFork(ThreadState *thr, uptr pc) {
|
|
// On fork() we need to reset all fd's, because the child is going
|
|
// close all them, and that will cause races between previous read/write
|
|
// and the close.
|
|
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
|
|
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
|
|
if (tab == 0)
|
|
break;
|
|
for (int l2 = 0; l2 < kTableSizeL2; l2++) {
|
|
FdDesc *d = &tab[l2];
|
|
MemoryResetRange(thr, pc, (uptr)d, 8);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack) {
|
|
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
|
|
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
|
|
if (tab == 0)
|
|
break;
|
|
if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
|
|
int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
|
|
FdDesc *d = &tab[l2];
|
|
*fd = l1 * kTableSizeL1 + l2;
|
|
*tid = d->creation_tid;
|
|
*stack = d->creation_stack;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void FdAcquire(ThreadState *thr, uptr pc, int fd) {
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
FdSync *s = d->sync;
|
|
DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
if (s)
|
|
Acquire(thr, pc, (uptr)s);
|
|
}
|
|
|
|
void FdRelease(ThreadState *thr, uptr pc, int fd) {
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
FdSync *s = d->sync;
|
|
DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
if (s)
|
|
Release(thr, pc, (uptr)s);
|
|
}
|
|
|
|
void FdAccess(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
}
|
|
|
|
void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
|
|
DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
FdDesc *d = fddesc(thr, pc, fd);
|
|
if (write) {
|
|
// To catch races between fd usage and close.
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessWrite);
|
|
} else {
|
|
// This path is used only by dup2/dup3 calls.
|
|
// We do read instead of write because there is a number of legitimate
|
|
// cases where write would lead to false positives:
|
|
// 1. Some software dups a closed pipe in place of a socket before closing
|
|
// the socket (to prevent races actually).
|
|
// 2. Some daemons dup /dev/null in place of stdin/stdout.
|
|
// On the other hand we have not seen cases when write here catches real
|
|
// bugs.
|
|
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
|
|
}
|
|
// We need to clear it, because if we do not intercept any call out there
|
|
// that creates fd, we will hit false postives.
|
|
MemoryResetRange(thr, pc, (uptr)d, 8);
|
|
unref(thr, pc, d->sync);
|
|
d->sync = 0;
|
|
d->creation_tid = kInvalidTid;
|
|
d->creation_stack = kInvalidStackID;
|
|
}
|
|
|
|
void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, &fdctx.filesync);
|
|
}
|
|
|
|
void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
|
|
DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
|
|
if (bogusfd(oldfd) || bogusfd(newfd))
|
|
return;
|
|
// Ignore the case when user dups not yet connected socket.
|
|
FdDesc *od = fddesc(thr, pc, oldfd);
|
|
MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
|
|
FdClose(thr, pc, newfd, write);
|
|
init(thr, pc, newfd, ref(od->sync), write);
|
|
}
|
|
|
|
void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
|
|
DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
|
|
FdSync *s = allocsync(thr, pc);
|
|
init(thr, pc, rfd, ref(s));
|
|
init(thr, pc, wfd, ref(s));
|
|
unref(thr, pc, s);
|
|
}
|
|
|
|
void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, allocsync(thr, pc));
|
|
}
|
|
|
|
void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, 0);
|
|
}
|
|
|
|
void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, 0);
|
|
}
|
|
|
|
void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, allocsync(thr, pc));
|
|
}
|
|
|
|
void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
// It can be a UDP socket.
|
|
init(thr, pc, fd, &fdctx.socksync);
|
|
}
|
|
|
|
void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
|
|
DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
// Synchronize connect->accept.
|
|
Acquire(thr, pc, (uptr)&fdctx.connectsync);
|
|
init(thr, pc, newfd, &fdctx.socksync);
|
|
}
|
|
|
|
void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
// Synchronize connect->accept.
|
|
Release(thr, pc, (uptr)&fdctx.connectsync);
|
|
}
|
|
|
|
void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
|
|
DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
|
|
if (bogusfd(fd))
|
|
return;
|
|
init(thr, pc, fd, &fdctx.socksync);
|
|
}
|
|
|
|
uptr File2addr(const char *path) {
|
|
(void)path;
|
|
static u64 addr;
|
|
return (uptr)&addr;
|
|
}
|
|
|
|
uptr Dir2addr(const char *path) {
|
|
(void)path;
|
|
static u64 addr;
|
|
return (uptr)&addr;
|
|
}
|
|
|
|
} // namespace __tsan
|