forked from OSchip/llvm-project
3270 lines
113 KiB
C++
3270 lines
113 KiB
C++
//===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines BugReporter, a utility class for generating
|
|
// PathDiagnostics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/Analysis/AnalysisDeclContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/Analysis/PathDiagnostic.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <queue>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "BugReporter"
|
|
|
|
STATISTIC(MaxBugClassSize,
|
|
"The maximum number of bug reports in the same equivalence class");
|
|
STATISTIC(MaxValidBugClassSize,
|
|
"The maximum number of bug reports in the same equivalence class "
|
|
"where at least one report is valid (not suppressed)");
|
|
|
|
BugReporterVisitor::~BugReporterVisitor() = default;
|
|
|
|
void BugReporterContext::anchor() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PathDiagnosticBuilder and its associated routines and helper objects.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// A (CallPiece, node assiciated with its CallEnter) pair.
|
|
using CallWithEntry =
|
|
std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
|
|
using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
|
|
|
|
/// Map from each node to the diagnostic pieces visitors emit for them.
|
|
using VisitorsDiagnosticsTy =
|
|
llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
|
|
|
|
/// A map from PathDiagnosticPiece to the LocationContext of the inlined
|
|
/// function call it represents.
|
|
using LocationContextMap =
|
|
llvm::DenseMap<const PathPieces *, const LocationContext *>;
|
|
|
|
/// A helper class that contains everything needed to construct a
|
|
/// PathDiagnostic object. It does no much more then providing convenient
|
|
/// getters and some well placed asserts for extra security.
|
|
class PathDiagnosticConstruct {
|
|
/// The consumer we're constructing the bug report for.
|
|
const PathDiagnosticConsumer *Consumer;
|
|
/// Our current position in the bug path, which is owned by
|
|
/// PathDiagnosticBuilder.
|
|
const ExplodedNode *CurrentNode;
|
|
/// A mapping from parts of the bug path (for example, a function call, which
|
|
/// would span backwards from a CallExit to a CallEnter with the nodes in
|
|
/// between them) with the location contexts it is associated with.
|
|
LocationContextMap LCM;
|
|
const SourceManager &SM;
|
|
|
|
public:
|
|
/// We keep stack of calls to functions as we're ascending the bug path.
|
|
/// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
|
|
/// that instead?
|
|
CallWithEntryStack CallStack;
|
|
/// The bug report we're constructing. For ease of use, this field is kept
|
|
/// public, though some "shortcut" getters are provided for commonly used
|
|
/// methods of PathDiagnostic.
|
|
std::unique_ptr<PathDiagnostic> PD;
|
|
|
|
public:
|
|
PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
|
|
const ExplodedNode *ErrorNode,
|
|
const PathSensitiveBugReport *R);
|
|
|
|
/// \returns the location context associated with the current position in the
|
|
/// bug path.
|
|
const LocationContext *getCurrLocationContext() const {
|
|
assert(CurrentNode && "Already reached the root!");
|
|
return CurrentNode->getLocationContext();
|
|
}
|
|
|
|
/// Same as getCurrLocationContext (they should always return the same
|
|
/// location context), but works after reaching the root of the bug path as
|
|
/// well.
|
|
const LocationContext *getLocationContextForActivePath() const {
|
|
return LCM.find(&PD->getActivePath())->getSecond();
|
|
}
|
|
|
|
const ExplodedNode *getCurrentNode() const { return CurrentNode; }
|
|
|
|
/// Steps the current node to its predecessor.
|
|
/// \returns whether we reached the root of the bug path.
|
|
bool ascendToPrevNode() {
|
|
CurrentNode = CurrentNode->getFirstPred();
|
|
return static_cast<bool>(CurrentNode);
|
|
}
|
|
|
|
const ParentMap &getParentMap() const {
|
|
return getCurrLocationContext()->getParentMap();
|
|
}
|
|
|
|
const SourceManager &getSourceManager() const { return SM; }
|
|
|
|
const Stmt *getParent(const Stmt *S) const {
|
|
return getParentMap().getParent(S);
|
|
}
|
|
|
|
void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
|
|
assert(Path && LC);
|
|
LCM[Path] = LC;
|
|
}
|
|
|
|
const LocationContext *getLocationContextFor(const PathPieces *Path) const {
|
|
assert(LCM.count(Path) &&
|
|
"Failed to find the context associated with these pieces!");
|
|
return LCM.find(Path)->getSecond();
|
|
}
|
|
|
|
bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
|
|
|
|
PathPieces &getActivePath() { return PD->getActivePath(); }
|
|
PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
|
|
|
|
bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
|
|
bool shouldGenerateDiagnostics() const {
|
|
return Consumer->shouldGenerateDiagnostics();
|
|
}
|
|
bool supportsLogicalOpControlFlow() const {
|
|
return Consumer->supportsLogicalOpControlFlow();
|
|
}
|
|
};
|
|
|
|
/// Contains every contextual information needed for constructing a
|
|
/// PathDiagnostic object for a given bug report. This class and its fields are
|
|
/// immutable, and passes a BugReportConstruct object around during the
|
|
/// construction.
|
|
class PathDiagnosticBuilder : public BugReporterContext {
|
|
/// A linear path from the error node to the root.
|
|
std::unique_ptr<const ExplodedGraph> BugPath;
|
|
/// The bug report we're describing. Visitors create their diagnostics with
|
|
/// them being the last entities being able to modify it (for example,
|
|
/// changing interestingness here would cause inconsistencies as to how this
|
|
/// file and visitors construct diagnostics), hence its const.
|
|
const PathSensitiveBugReport *R;
|
|
/// The leaf of the bug path. This isn't the same as the bug reports error
|
|
/// node, which refers to the *original* graph, not the bug path.
|
|
const ExplodedNode *const ErrorNode;
|
|
/// The diagnostic pieces visitors emitted, which is expected to be collected
|
|
/// by the time this builder is constructed.
|
|
std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
|
|
|
|
public:
|
|
/// Find a non-invalidated report for a given equivalence class, and returns
|
|
/// a PathDiagnosticBuilder able to construct bug reports for different
|
|
/// consumers. Returns None if no valid report is found.
|
|
static Optional<PathDiagnosticBuilder>
|
|
findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
|
|
PathSensitiveBugReporter &Reporter);
|
|
|
|
PathDiagnosticBuilder(
|
|
BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
|
|
PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
|
|
std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
|
|
|
|
/// This function is responsible for generating diagnostic pieces that are
|
|
/// *not* provided by bug report visitors.
|
|
/// These diagnostics may differ depending on the consumer's settings,
|
|
/// and are therefore constructed separately for each consumer.
|
|
///
|
|
/// There are two path diagnostics generation modes: with adding edges (used
|
|
/// for plists) and without (used for HTML and text). When edges are added,
|
|
/// the path is modified to insert artificially generated edges.
|
|
/// Otherwise, more detailed diagnostics is emitted for block edges,
|
|
/// explaining the transitions in words.
|
|
std::unique_ptr<PathDiagnostic>
|
|
generate(const PathDiagnosticConsumer *PDC) const;
|
|
|
|
private:
|
|
void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
|
|
const CallWithEntryStack &CallStack) const;
|
|
void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
|
|
PathDiagnosticLocation &PrevLoc) const;
|
|
|
|
void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
|
|
BlockEdge BE) const;
|
|
|
|
PathDiagnosticPieceRef
|
|
generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
|
|
PathDiagnosticLocation &Start) const;
|
|
|
|
PathDiagnosticPieceRef
|
|
generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
|
|
PathDiagnosticLocation &Start) const;
|
|
|
|
PathDiagnosticPieceRef
|
|
generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
|
|
const CFGBlock *Src, const CFGBlock *DstC) const;
|
|
|
|
PathDiagnosticLocation
|
|
ExecutionContinues(const PathDiagnosticConstruct &C) const;
|
|
|
|
PathDiagnosticLocation
|
|
ExecutionContinues(llvm::raw_string_ostream &os,
|
|
const PathDiagnosticConstruct &C) const;
|
|
|
|
const PathSensitiveBugReport *getBugReport() const { return R; }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Base implementation of stack hint generators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StackHintGenerator::~StackHintGenerator() = default;
|
|
|
|
std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
|
|
if (!N)
|
|
return getMessageForSymbolNotFound();
|
|
|
|
ProgramPoint P = N->getLocation();
|
|
CallExitEnd CExit = P.castAs<CallExitEnd>();
|
|
|
|
// FIXME: Use CallEvent to abstract this over all calls.
|
|
const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
|
|
const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
|
|
if (!CE)
|
|
return {};
|
|
|
|
// Check if one of the parameters are set to the interesting symbol.
|
|
unsigned ArgIndex = 0;
|
|
for (CallExpr::const_arg_iterator I = CE->arg_begin(),
|
|
E = CE->arg_end(); I != E; ++I, ++ArgIndex){
|
|
SVal SV = N->getSVal(*I);
|
|
|
|
// Check if the variable corresponding to the symbol is passed by value.
|
|
SymbolRef AS = SV.getAsLocSymbol();
|
|
if (AS == Sym) {
|
|
return getMessageForArg(*I, ArgIndex);
|
|
}
|
|
|
|
// Check if the parameter is a pointer to the symbol.
|
|
if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
|
|
// Do not attempt to dereference void*.
|
|
if ((*I)->getType()->isVoidPointerType())
|
|
continue;
|
|
SVal PSV = N->getState()->getSVal(Reg->getRegion());
|
|
SymbolRef AS = PSV.getAsLocSymbol();
|
|
if (AS == Sym) {
|
|
return getMessageForArg(*I, ArgIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if we are returning the interesting symbol.
|
|
SVal SV = N->getSVal(CE);
|
|
SymbolRef RetSym = SV.getAsLocSymbol();
|
|
if (RetSym == Sym) {
|
|
return getMessageForReturn(CE);
|
|
}
|
|
|
|
return getMessageForSymbolNotFound();
|
|
}
|
|
|
|
std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
|
|
unsigned ArgIndex) {
|
|
// Printed parameters start at 1, not 0.
|
|
++ArgIndex;
|
|
|
|
return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
|
|
llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnostic cleanup.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static PathDiagnosticEventPiece *
|
|
eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
|
|
PathDiagnosticEventPiece *Y) {
|
|
// Prefer diagnostics that come from ConditionBRVisitor over
|
|
// those that came from TrackConstraintBRVisitor,
|
|
// unless the one from ConditionBRVisitor is
|
|
// its generic fallback diagnostic.
|
|
const void *tagPreferred = ConditionBRVisitor::getTag();
|
|
const void *tagLesser = TrackConstraintBRVisitor::getTag();
|
|
|
|
if (X->getLocation() != Y->getLocation())
|
|
return nullptr;
|
|
|
|
if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
|
|
return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
|
|
|
|
if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
|
|
return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// An optimization pass over PathPieces that removes redundant diagnostics
|
|
/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
|
|
/// BugReporterVisitors use different methods to generate diagnostics, with
|
|
/// one capable of emitting diagnostics in some cases but not in others. This
|
|
/// can lead to redundant diagnostic pieces at the same point in a path.
|
|
static void removeRedundantMsgs(PathPieces &path) {
|
|
unsigned N = path.size();
|
|
if (N < 2)
|
|
return;
|
|
// NOTE: this loop intentionally is not using an iterator. Instead, we
|
|
// are streaming the path and modifying it in place. This is done by
|
|
// grabbing the front, processing it, and if we decide to keep it append
|
|
// it to the end of the path. The entire path is processed in this way.
|
|
for (unsigned i = 0; i < N; ++i) {
|
|
auto piece = std::move(path.front());
|
|
path.pop_front();
|
|
|
|
switch (piece->getKind()) {
|
|
case PathDiagnosticPiece::Call:
|
|
removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
|
|
break;
|
|
case PathDiagnosticPiece::Macro:
|
|
removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
|
|
break;
|
|
case PathDiagnosticPiece::Event: {
|
|
if (i == N-1)
|
|
break;
|
|
|
|
if (auto *nextEvent =
|
|
dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
|
|
auto *event = cast<PathDiagnosticEventPiece>(piece.get());
|
|
// Check to see if we should keep one of the two pieces. If we
|
|
// come up with a preference, record which piece to keep, and consume
|
|
// another piece from the path.
|
|
if (auto *pieceToKeep =
|
|
eventsDescribeSameCondition(event, nextEvent)) {
|
|
piece = std::move(pieceToKeep == event ? piece : path.front());
|
|
path.pop_front();
|
|
++i;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PathDiagnosticPiece::ControlFlow:
|
|
case PathDiagnosticPiece::Note:
|
|
case PathDiagnosticPiece::PopUp:
|
|
break;
|
|
}
|
|
path.push_back(std::move(piece));
|
|
}
|
|
}
|
|
|
|
/// Recursively scan through a path and prune out calls and macros pieces
|
|
/// that aren't needed. Return true if afterwards the path contains
|
|
/// "interesting stuff" which means it shouldn't be pruned from the parent path.
|
|
static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
|
|
PathPieces &pieces,
|
|
const PathSensitiveBugReport *R,
|
|
bool IsInteresting = false) {
|
|
bool containsSomethingInteresting = IsInteresting;
|
|
const unsigned N = pieces.size();
|
|
|
|
for (unsigned i = 0 ; i < N ; ++i) {
|
|
// Remove the front piece from the path. If it is still something we
|
|
// want to keep once we are done, we will push it back on the end.
|
|
auto piece = std::move(pieces.front());
|
|
pieces.pop_front();
|
|
|
|
switch (piece->getKind()) {
|
|
case PathDiagnosticPiece::Call: {
|
|
auto &call = cast<PathDiagnosticCallPiece>(*piece);
|
|
// Check if the location context is interesting.
|
|
if (!removeUnneededCalls(
|
|
C, call.path, R,
|
|
R->isInteresting(C.getLocationContextFor(&call.path))))
|
|
continue;
|
|
|
|
containsSomethingInteresting = true;
|
|
break;
|
|
}
|
|
case PathDiagnosticPiece::Macro: {
|
|
auto ¯o = cast<PathDiagnosticMacroPiece>(*piece);
|
|
if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
|
|
continue;
|
|
containsSomethingInteresting = true;
|
|
break;
|
|
}
|
|
case PathDiagnosticPiece::Event: {
|
|
auto &event = cast<PathDiagnosticEventPiece>(*piece);
|
|
|
|
// We never throw away an event, but we do throw it away wholesale
|
|
// as part of a path if we throw the entire path away.
|
|
containsSomethingInteresting |= !event.isPrunable();
|
|
break;
|
|
}
|
|
case PathDiagnosticPiece::ControlFlow:
|
|
case PathDiagnosticPiece::Note:
|
|
case PathDiagnosticPiece::PopUp:
|
|
break;
|
|
}
|
|
|
|
pieces.push_back(std::move(piece));
|
|
}
|
|
|
|
return containsSomethingInteresting;
|
|
}
|
|
|
|
/// Same logic as above to remove extra pieces.
|
|
static void removePopUpNotes(PathPieces &Path) {
|
|
for (unsigned int i = 0; i < Path.size(); ++i) {
|
|
auto Piece = std::move(Path.front());
|
|
Path.pop_front();
|
|
if (!isa<PathDiagnosticPopUpPiece>(*Piece))
|
|
Path.push_back(std::move(Piece));
|
|
}
|
|
}
|
|
|
|
/// Returns true if the given decl has been implicitly given a body, either by
|
|
/// the analyzer or by the compiler proper.
|
|
static bool hasImplicitBody(const Decl *D) {
|
|
assert(D);
|
|
return D->isImplicit() || !D->hasBody();
|
|
}
|
|
|
|
/// Recursively scan through a path and make sure that all call pieces have
|
|
/// valid locations.
|
|
static void
|
|
adjustCallLocations(PathPieces &Pieces,
|
|
PathDiagnosticLocation *LastCallLocation = nullptr) {
|
|
for (const auto &I : Pieces) {
|
|
auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
|
|
|
|
if (!Call)
|
|
continue;
|
|
|
|
if (LastCallLocation) {
|
|
bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
|
|
if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
|
|
Call->callEnter = *LastCallLocation;
|
|
if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
|
|
Call->callReturn = *LastCallLocation;
|
|
}
|
|
|
|
// Recursively clean out the subclass. Keep this call around if
|
|
// it contains any informative diagnostics.
|
|
PathDiagnosticLocation *ThisCallLocation;
|
|
if (Call->callEnterWithin.asLocation().isValid() &&
|
|
!hasImplicitBody(Call->getCallee()))
|
|
ThisCallLocation = &Call->callEnterWithin;
|
|
else
|
|
ThisCallLocation = &Call->callEnter;
|
|
|
|
assert(ThisCallLocation && "Outermost call has an invalid location");
|
|
adjustCallLocations(Call->path, ThisCallLocation);
|
|
}
|
|
}
|
|
|
|
/// Remove edges in and out of C++ default initializer expressions. These are
|
|
/// for fields that have in-class initializers, as opposed to being initialized
|
|
/// explicitly in a constructor or braced list.
|
|
static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
|
|
for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
|
|
if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
|
|
removeEdgesToDefaultInitializers(C->path);
|
|
|
|
if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
|
|
removeEdgesToDefaultInitializers(M->subPieces);
|
|
|
|
if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
|
|
const Stmt *Start = CF->getStartLocation().asStmt();
|
|
const Stmt *End = CF->getEndLocation().asStmt();
|
|
if (Start && isa<CXXDefaultInitExpr>(Start)) {
|
|
I = Pieces.erase(I);
|
|
continue;
|
|
} else if (End && isa<CXXDefaultInitExpr>(End)) {
|
|
PathPieces::iterator Next = std::next(I);
|
|
if (Next != E) {
|
|
if (auto *NextCF =
|
|
dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
|
|
NextCF->setStartLocation(CF->getStartLocation());
|
|
}
|
|
}
|
|
I = Pieces.erase(I);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
I++;
|
|
}
|
|
}
|
|
|
|
/// Remove all pieces with invalid locations as these cannot be serialized.
|
|
/// We might have pieces with invalid locations as a result of inlining Body
|
|
/// Farm generated functions.
|
|
static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
|
|
for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
|
|
if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
|
|
removePiecesWithInvalidLocations(C->path);
|
|
|
|
if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
|
|
removePiecesWithInvalidLocations(M->subPieces);
|
|
|
|
if (!(*I)->getLocation().isValid() ||
|
|
!(*I)->getLocation().asLocation().isValid()) {
|
|
I = Pieces.erase(I);
|
|
continue;
|
|
}
|
|
I++;
|
|
}
|
|
}
|
|
|
|
PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
|
|
const PathDiagnosticConstruct &C) const {
|
|
if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
|
|
return PathDiagnosticLocation(S, getSourceManager(),
|
|
C.getCurrLocationContext());
|
|
|
|
return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
|
|
getSourceManager());
|
|
}
|
|
|
|
PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
|
|
llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
|
|
// Slow, but probably doesn't matter.
|
|
if (os.str().empty())
|
|
os << ' ';
|
|
|
|
const PathDiagnosticLocation &Loc = ExecutionContinues(C);
|
|
|
|
if (Loc.asStmt())
|
|
os << "Execution continues on line "
|
|
<< getSourceManager().getExpansionLineNumber(Loc.asLocation())
|
|
<< '.';
|
|
else {
|
|
os << "Execution jumps to the end of the ";
|
|
const Decl *D = C.getCurrLocationContext()->getDecl();
|
|
if (isa<ObjCMethodDecl>(D))
|
|
os << "method";
|
|
else if (isa<FunctionDecl>(D))
|
|
os << "function";
|
|
else {
|
|
assert(isa<BlockDecl>(D));
|
|
os << "anonymous block";
|
|
}
|
|
os << '.';
|
|
}
|
|
|
|
return Loc;
|
|
}
|
|
|
|
static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
|
|
if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
|
|
return PM.getParentIgnoreParens(S);
|
|
|
|
const Stmt *Parent = PM.getParentIgnoreParens(S);
|
|
if (!Parent)
|
|
return nullptr;
|
|
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
case Stmt::CXXForRangeStmtClass:
|
|
return Parent;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static PathDiagnosticLocation
|
|
getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
|
|
bool allowNestedContexts = false) {
|
|
if (!S)
|
|
return {};
|
|
|
|
const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
|
|
|
|
while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::BinaryOperatorClass: {
|
|
const auto *B = cast<BinaryOperator>(Parent);
|
|
if (B->isLogicalOp())
|
|
return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
|
|
break;
|
|
}
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::StmtExprClass:
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::ChooseExprClass:
|
|
// Similar to '?' if we are referring to condition, just have the edge
|
|
// point to the entire choose expression.
|
|
if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
|
|
return PathDiagnosticLocation(Parent, SMgr, LC);
|
|
else
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass:
|
|
// For '?', if we are referring to condition, just have the edge point
|
|
// to the entire '?' expression.
|
|
if (allowNestedContexts ||
|
|
cast<AbstractConditionalOperator>(Parent)->getCond() == S)
|
|
return PathDiagnosticLocation(Parent, SMgr, LC);
|
|
else
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::CXXForRangeStmtClass:
|
|
if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
case Stmt::DoStmtClass:
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
case Stmt::ForStmtClass:
|
|
if (cast<ForStmt>(Parent)->getBody() == S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
case Stmt::IfStmtClass:
|
|
if (cast<IfStmt>(Parent)->getCond() != S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
case Stmt::WhileStmtClass:
|
|
if (cast<WhileStmt>(Parent)->getCond() != S)
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
S = Parent;
|
|
}
|
|
|
|
assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
|
|
|
|
return PathDiagnosticLocation(S, SMgr, LC);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Minimal" path diagnostic generation algorithm.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// If the piece contains a special message, add it to all the call pieces on
|
|
/// the active stack. For example, my_malloc allocated memory, so MallocChecker
|
|
/// will construct an event at the call to malloc(), and add a stack hint that
|
|
/// an allocated memory was returned. We'll use this hint to construct a message
|
|
/// when returning from the call to my_malloc
|
|
///
|
|
/// void *my_malloc() { return malloc(sizeof(int)); }
|
|
/// void fishy() {
|
|
/// void *ptr = my_malloc(); // returned allocated memory
|
|
/// } // leak
|
|
void PathDiagnosticBuilder::updateStackPiecesWithMessage(
|
|
PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
|
|
if (R->hasCallStackHint(P))
|
|
for (const auto &I : CallStack) {
|
|
PathDiagnosticCallPiece *CP = I.first;
|
|
const ExplodedNode *N = I.second;
|
|
std::string stackMsg = R->getCallStackMessage(P, N);
|
|
|
|
// The last message on the path to final bug is the most important
|
|
// one. Since we traverse the path backwards, do not add the message
|
|
// if one has been previously added.
|
|
if (!CP->hasCallStackMessage())
|
|
CP->setCallStackMessage(stackMsg);
|
|
}
|
|
}
|
|
|
|
static void CompactMacroExpandedPieces(PathPieces &path,
|
|
const SourceManager& SM);
|
|
|
|
PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
|
|
const PathDiagnosticConstruct &C, const CFGBlock *Dst,
|
|
PathDiagnosticLocation &Start) const {
|
|
|
|
const SourceManager &SM = getSourceManager();
|
|
// Figure out what case arm we took.
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
PathDiagnosticLocation End;
|
|
|
|
if (const Stmt *S = Dst->getLabel()) {
|
|
End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
|
|
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
os << "No cases match in the switch statement. "
|
|
"Control jumps to line "
|
|
<< End.asLocation().getExpansionLineNumber();
|
|
break;
|
|
case Stmt::DefaultStmtClass:
|
|
os << "Control jumps to the 'default' case at line "
|
|
<< End.asLocation().getExpansionLineNumber();
|
|
break;
|
|
|
|
case Stmt::CaseStmtClass: {
|
|
os << "Control jumps to 'case ";
|
|
const auto *Case = cast<CaseStmt>(S);
|
|
const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
|
|
|
|
// Determine if it is an enum.
|
|
bool GetRawInt = true;
|
|
|
|
if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
|
|
// FIXME: Maybe this should be an assertion. Are there cases
|
|
// were it is not an EnumConstantDecl?
|
|
const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
|
|
|
|
if (D) {
|
|
GetRawInt = false;
|
|
os << *D;
|
|
}
|
|
}
|
|
|
|
if (GetRawInt)
|
|
os << LHS->EvaluateKnownConstInt(getASTContext());
|
|
|
|
os << ":' at line " << End.asLocation().getExpansionLineNumber();
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
os << "'Default' branch taken. ";
|
|
End = ExecutionContinues(os, C);
|
|
}
|
|
return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
|
|
os.str());
|
|
}
|
|
|
|
PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
|
|
const PathDiagnosticConstruct &C, const Stmt *S,
|
|
PathDiagnosticLocation &Start) const {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
const PathDiagnosticLocation &End =
|
|
getEnclosingStmtLocation(S, C.getCurrLocationContext());
|
|
os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
|
|
return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
|
|
}
|
|
|
|
PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
|
|
const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
|
|
const CFGBlock *Dst) const {
|
|
|
|
const SourceManager &SM = getSourceManager();
|
|
|
|
const auto *B = cast<BinaryOperator>(T);
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "Left side of '";
|
|
PathDiagnosticLocation Start, End;
|
|
|
|
if (B->getOpcode() == BO_LAnd) {
|
|
os << "&&"
|
|
<< "' is ";
|
|
|
|
if (*(Src->succ_begin() + 1) == Dst) {
|
|
os << "false";
|
|
End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
|
|
Start =
|
|
PathDiagnosticLocation::createOperatorLoc(B, SM);
|
|
} else {
|
|
os << "true";
|
|
Start =
|
|
PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
|
|
End = ExecutionContinues(C);
|
|
}
|
|
} else {
|
|
assert(B->getOpcode() == BO_LOr);
|
|
os << "||"
|
|
<< "' is ";
|
|
|
|
if (*(Src->succ_begin() + 1) == Dst) {
|
|
os << "false";
|
|
Start =
|
|
PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
|
|
End = ExecutionContinues(C);
|
|
} else {
|
|
os << "true";
|
|
End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
|
|
Start =
|
|
PathDiagnosticLocation::createOperatorLoc(B, SM);
|
|
}
|
|
}
|
|
return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
|
|
os.str());
|
|
}
|
|
|
|
void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
|
|
PathDiagnosticConstruct &C, BlockEdge BE) const {
|
|
const SourceManager &SM = getSourceManager();
|
|
const LocationContext *LC = C.getCurrLocationContext();
|
|
const CFGBlock *Src = BE.getSrc();
|
|
const CFGBlock *Dst = BE.getDst();
|
|
const Stmt *T = Src->getTerminatorStmt();
|
|
if (!T)
|
|
return;
|
|
|
|
auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
|
|
switch (T->getStmtClass()) {
|
|
default:
|
|
break;
|
|
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IndirectGotoStmtClass: {
|
|
if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
|
|
C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
|
|
break;
|
|
}
|
|
|
|
case Stmt::SwitchStmtClass: {
|
|
C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
|
|
break;
|
|
}
|
|
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::ContinueStmtClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
PathDiagnosticLocation End = ExecutionContinues(os, C);
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
|
|
break;
|
|
}
|
|
|
|
// Determine control-flow for ternary '?'.
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "'?' condition is ";
|
|
|
|
if (*(Src->succ_begin() + 1) == Dst)
|
|
os << "false";
|
|
else
|
|
os << "true";
|
|
|
|
PathDiagnosticLocation End = ExecutionContinues(C);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
|
|
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
|
|
break;
|
|
}
|
|
|
|
// Determine control-flow for short-circuited '&&' and '||'.
|
|
case Stmt::BinaryOperatorClass: {
|
|
if (!C.supportsLogicalOpControlFlow())
|
|
break;
|
|
|
|
C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
|
|
break;
|
|
}
|
|
|
|
case Stmt::DoStmtClass:
|
|
if (*(Src->succ_begin()) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is true. ";
|
|
PathDiagnosticLocation End = ExecutionContinues(os, C);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
|
|
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
|
|
os.str()));
|
|
} else {
|
|
PathDiagnosticLocation End = ExecutionContinues(C);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
|
|
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(
|
|
Start, End, "Loop condition is false. Exiting loop"));
|
|
}
|
|
break;
|
|
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::ForStmtClass:
|
|
if (*(Src->succ_begin() + 1) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is false. ";
|
|
PathDiagnosticLocation End = ExecutionContinues(os, C);
|
|
if (const Stmt *S = End.asStmt())
|
|
End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
|
|
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
|
|
os.str()));
|
|
} else {
|
|
PathDiagnosticLocation End = ExecutionContinues(C);
|
|
if (const Stmt *S = End.asStmt())
|
|
End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
|
|
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(
|
|
Start, End, "Loop condition is true. Entering loop body"));
|
|
}
|
|
|
|
break;
|
|
|
|
case Stmt::IfStmtClass: {
|
|
PathDiagnosticLocation End = ExecutionContinues(C);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
|
|
|
|
if (*(Src->succ_begin() + 1) == Dst)
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(
|
|
Start, End, "Taking false branch"));
|
|
else
|
|
C.getActivePath().push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(
|
|
Start, End, "Taking true branch"));
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Functions for determining if a loop was executed 0 times.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isLoop(const Stmt *Term) {
|
|
switch (Term->getStmtClass()) {
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
case Stmt::CXXForRangeStmtClass:
|
|
return true;
|
|
default:
|
|
// Note that we intentionally do not include do..while here.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool isJumpToFalseBranch(const BlockEdge *BE) {
|
|
const CFGBlock *Src = BE->getSrc();
|
|
assert(Src->succ_size() == 2);
|
|
return (*(Src->succ_begin()+1) == BE->getDst());
|
|
}
|
|
|
|
static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
|
|
const Stmt *SubS) {
|
|
while (SubS) {
|
|
if (SubS == S)
|
|
return true;
|
|
SubS = PM.getParent(SubS);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
|
|
const ExplodedNode *N) {
|
|
while (N) {
|
|
Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
|
|
if (SP) {
|
|
const Stmt *S = SP->getStmt();
|
|
if (!isContainedByStmt(PM, Term, S))
|
|
return S;
|
|
}
|
|
N = N->getFirstPred();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
|
|
const Stmt *LoopBody = nullptr;
|
|
switch (Term->getStmtClass()) {
|
|
case Stmt::CXXForRangeStmtClass: {
|
|
const auto *FR = cast<CXXForRangeStmt>(Term);
|
|
if (isContainedByStmt(PM, FR->getInc(), S))
|
|
return true;
|
|
if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
|
|
return true;
|
|
LoopBody = FR->getBody();
|
|
break;
|
|
}
|
|
case Stmt::ForStmtClass: {
|
|
const auto *FS = cast<ForStmt>(Term);
|
|
if (isContainedByStmt(PM, FS->getInc(), S))
|
|
return true;
|
|
LoopBody = FS->getBody();
|
|
break;
|
|
}
|
|
case Stmt::ObjCForCollectionStmtClass: {
|
|
const auto *FC = cast<ObjCForCollectionStmt>(Term);
|
|
LoopBody = FC->getBody();
|
|
break;
|
|
}
|
|
case Stmt::WhileStmtClass:
|
|
LoopBody = cast<WhileStmt>(Term)->getBody();
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return isContainedByStmt(PM, LoopBody, S);
|
|
}
|
|
|
|
/// Adds a sanitized control-flow diagnostic edge to a path.
|
|
static void addEdgeToPath(PathPieces &path,
|
|
PathDiagnosticLocation &PrevLoc,
|
|
PathDiagnosticLocation NewLoc) {
|
|
if (!NewLoc.isValid())
|
|
return;
|
|
|
|
SourceLocation NewLocL = NewLoc.asLocation();
|
|
if (NewLocL.isInvalid())
|
|
return;
|
|
|
|
if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
|
|
PrevLoc = NewLoc;
|
|
return;
|
|
}
|
|
|
|
// Ignore self-edges, which occur when there are multiple nodes at the same
|
|
// statement.
|
|
if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
|
|
return;
|
|
|
|
path.push_front(
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
|
|
PrevLoc = NewLoc;
|
|
}
|
|
|
|
/// A customized wrapper for CFGBlock::getTerminatorCondition()
|
|
/// which returns the element for ObjCForCollectionStmts.
|
|
static const Stmt *getTerminatorCondition(const CFGBlock *B) {
|
|
const Stmt *S = B->getTerminatorCondition();
|
|
if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
|
|
return FS->getElement();
|
|
return S;
|
|
}
|
|
|
|
constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
|
|
constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
|
|
constexpr llvm::StringLiteral StrLoopRangeEmpty =
|
|
"Loop body skipped when range is empty";
|
|
constexpr llvm::StringLiteral StrLoopCollectionEmpty =
|
|
"Loop body skipped when collection is empty";
|
|
|
|
static std::unique_ptr<FilesToLineNumsMap>
|
|
findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
|
|
|
|
void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
|
|
PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
|
|
ProgramPoint P = C.getCurrentNode()->getLocation();
|
|
const SourceManager &SM = getSourceManager();
|
|
|
|
// Have we encountered an entrance to a call? It may be
|
|
// the case that we have not encountered a matching
|
|
// call exit before this point. This means that the path
|
|
// terminated within the call itself.
|
|
if (auto CE = P.getAs<CallEnter>()) {
|
|
|
|
if (C.shouldAddPathEdges()) {
|
|
// Add an edge to the start of the function.
|
|
const StackFrameContext *CalleeLC = CE->getCalleeContext();
|
|
const Decl *D = CalleeLC->getDecl();
|
|
// Add the edge only when the callee has body. We jump to the beginning
|
|
// of the *declaration*, however we expect it to be followed by the
|
|
// body. This isn't the case for autosynthesized property accessors in
|
|
// Objective-C. No need for a similar extra check for CallExit points
|
|
// because the exit edge comes from a statement (i.e. return),
|
|
// not from declaration.
|
|
if (D->hasBody())
|
|
addEdgeToPath(C.getActivePath(), PrevLoc,
|
|
PathDiagnosticLocation::createBegin(D, SM));
|
|
}
|
|
|
|
// Did we visit an entire call?
|
|
bool VisitedEntireCall = C.PD->isWithinCall();
|
|
C.PD->popActivePath();
|
|
|
|
PathDiagnosticCallPiece *Call;
|
|
if (VisitedEntireCall) {
|
|
Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
|
|
} else {
|
|
// The path terminated within a nested location context, create a new
|
|
// call piece to encapsulate the rest of the path pieces.
|
|
const Decl *Caller = CE->getLocationContext()->getDecl();
|
|
Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
|
|
assert(C.getActivePath().size() == 1 &&
|
|
C.getActivePath().front().get() == Call);
|
|
|
|
// Since we just transferred the path over to the call piece, reset the
|
|
// mapping of the active path to the current location context.
|
|
assert(C.isInLocCtxMap(&C.getActivePath()) &&
|
|
"When we ascend to a previously unvisited call, the active path's "
|
|
"address shouldn't change, but rather should be compacted into "
|
|
"a single CallEvent!");
|
|
C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
|
|
|
|
// Record the location context mapping for the path within the call.
|
|
assert(!C.isInLocCtxMap(&Call->path) &&
|
|
"When we ascend to a previously unvisited call, this must be the "
|
|
"first time we encounter the caller context!");
|
|
C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
|
|
}
|
|
Call->setCallee(*CE, SM);
|
|
|
|
// Update the previous location in the active path.
|
|
PrevLoc = Call->getLocation();
|
|
|
|
if (!C.CallStack.empty()) {
|
|
assert(C.CallStack.back().first == Call);
|
|
C.CallStack.pop_back();
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
|
|
"The current position in the bug path is out of sync with the "
|
|
"location context associated with the active path!");
|
|
|
|
// Have we encountered an exit from a function call?
|
|
if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
|
|
|
|
// We are descending into a call (backwards). Construct
|
|
// a new call piece to contain the path pieces for that call.
|
|
auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
|
|
// Record the mapping from call piece to LocationContext.
|
|
assert(!C.isInLocCtxMap(&Call->path) &&
|
|
"We just entered a call, this must've been the first time we "
|
|
"encounter its context!");
|
|
C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
|
|
|
|
if (C.shouldAddPathEdges()) {
|
|
// Add the edge to the return site.
|
|
addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
|
|
PrevLoc.invalidate();
|
|
}
|
|
|
|
auto *P = Call.get();
|
|
C.getActivePath().push_front(std::move(Call));
|
|
|
|
// Make the contents of the call the active path for now.
|
|
C.PD->pushActivePath(&P->path);
|
|
C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
|
|
return;
|
|
}
|
|
|
|
if (auto PS = P.getAs<PostStmt>()) {
|
|
if (!C.shouldAddPathEdges())
|
|
return;
|
|
|
|
// Add an edge. If this is an ObjCForCollectionStmt do
|
|
// not add an edge here as it appears in the CFG both
|
|
// as a terminator and as a terminator condition.
|
|
if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
|
|
PathDiagnosticLocation L =
|
|
PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
|
|
addEdgeToPath(C.getActivePath(), PrevLoc, L);
|
|
}
|
|
|
|
} else if (auto BE = P.getAs<BlockEdge>()) {
|
|
|
|
if (!C.shouldAddPathEdges()) {
|
|
generateMinimalDiagForBlockEdge(C, *BE);
|
|
return;
|
|
}
|
|
|
|
// Are we jumping to the head of a loop? Add a special diagnostic.
|
|
if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
|
|
PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
|
|
const Stmt *Body = nullptr;
|
|
|
|
if (const auto *FS = dyn_cast<ForStmt>(Loop))
|
|
Body = FS->getBody();
|
|
else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
|
|
Body = WS->getBody();
|
|
else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
|
|
Body = OFS->getBody();
|
|
} else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
|
|
Body = FRS->getBody();
|
|
}
|
|
// do-while statements are explicitly excluded here
|
|
|
|
auto p = std::make_shared<PathDiagnosticEventPiece>(
|
|
L, "Looping back to the head "
|
|
"of the loop");
|
|
p->setPrunable(true);
|
|
|
|
addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
|
|
C.getActivePath().push_front(std::move(p));
|
|
|
|
if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
|
|
addEdgeToPath(C.getActivePath(), PrevLoc,
|
|
PathDiagnosticLocation::createEndBrace(CS, SM));
|
|
}
|
|
}
|
|
|
|
const CFGBlock *BSrc = BE->getSrc();
|
|
const ParentMap &PM = C.getParentMap();
|
|
|
|
if (const Stmt *Term = BSrc->getTerminatorStmt()) {
|
|
// Are we jumping past the loop body without ever executing the
|
|
// loop (because the condition was false)?
|
|
if (isLoop(Term)) {
|
|
const Stmt *TermCond = getTerminatorCondition(BSrc);
|
|
bool IsInLoopBody = isInLoopBody(
|
|
PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
|
|
|
|
StringRef str;
|
|
|
|
if (isJumpToFalseBranch(&*BE)) {
|
|
if (!IsInLoopBody) {
|
|
if (isa<ObjCForCollectionStmt>(Term)) {
|
|
str = StrLoopCollectionEmpty;
|
|
} else if (isa<CXXForRangeStmt>(Term)) {
|
|
str = StrLoopRangeEmpty;
|
|
} else {
|
|
str = StrLoopBodyZero;
|
|
}
|
|
}
|
|
} else {
|
|
str = StrEnteringLoop;
|
|
}
|
|
|
|
if (!str.empty()) {
|
|
PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
|
|
C.getCurrLocationContext());
|
|
auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
|
|
PE->setPrunable(true);
|
|
addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
|
|
C.getActivePath().push_front(std::move(PE));
|
|
}
|
|
} else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
|
|
isa<GotoStmt>(Term)) {
|
|
PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
|
|
addEdgeToPath(C.getActivePath(), PrevLoc, L);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static std::unique_ptr<PathDiagnostic>
|
|
generateDiagnosticForBasicReport(const BasicBugReport *R) {
|
|
const BugType &BT = R->getBugType();
|
|
return std::make_unique<PathDiagnostic>(
|
|
BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
|
|
R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
|
|
BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
|
|
std::make_unique<FilesToLineNumsMap>());
|
|
}
|
|
|
|
static std::unique_ptr<PathDiagnostic>
|
|
generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
|
|
const SourceManager &SM) {
|
|
const BugType &BT = R->getBugType();
|
|
return std::make_unique<PathDiagnostic>(
|
|
BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
|
|
R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
|
|
BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
|
|
findExecutedLines(SM, R->getErrorNode()));
|
|
}
|
|
|
|
static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
|
|
if (!S)
|
|
return nullptr;
|
|
|
|
while (true) {
|
|
S = PM.getParentIgnoreParens(S);
|
|
|
|
if (!S)
|
|
break;
|
|
|
|
if (isa<FullExpr>(S) ||
|
|
isa<CXXBindTemporaryExpr>(S) ||
|
|
isa<SubstNonTypeTemplateParmExpr>(S))
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::BinaryOperatorClass: {
|
|
const auto *BO = cast<BinaryOperator>(S);
|
|
if (!BO->isLogicalOp())
|
|
return false;
|
|
return BO->getLHS() == Cond || BO->getRHS() == Cond;
|
|
}
|
|
case Stmt::IfStmtClass:
|
|
return cast<IfStmt>(S)->getCond() == Cond;
|
|
case Stmt::ForStmtClass:
|
|
return cast<ForStmt>(S)->getCond() == Cond;
|
|
case Stmt::WhileStmtClass:
|
|
return cast<WhileStmt>(S)->getCond() == Cond;
|
|
case Stmt::DoStmtClass:
|
|
return cast<DoStmt>(S)->getCond() == Cond;
|
|
case Stmt::ChooseExprClass:
|
|
return cast<ChooseExpr>(S)->getCond() == Cond;
|
|
case Stmt::IndirectGotoStmtClass:
|
|
return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
|
|
case Stmt::SwitchStmtClass:
|
|
return cast<SwitchStmt>(S)->getCond() == Cond;
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
|
|
case Stmt::ConditionalOperatorClass: {
|
|
const auto *CO = cast<ConditionalOperator>(S);
|
|
return CO->getCond() == Cond ||
|
|
CO->getLHS() == Cond ||
|
|
CO->getRHS() == Cond;
|
|
}
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
|
|
case Stmt::CXXForRangeStmtClass: {
|
|
const auto *FRS = cast<CXXForRangeStmt>(S);
|
|
return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
|
|
if (const auto *FS = dyn_cast<ForStmt>(FL))
|
|
return FS->getInc() == S || FS->getInit() == S;
|
|
if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
|
|
return FRS->getInc() == S || FRS->getRangeStmt() == S ||
|
|
FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
|
|
return false;
|
|
}
|
|
|
|
using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
|
|
|
|
/// Adds synthetic edges from top-level statements to their subexpressions.
|
|
///
|
|
/// This avoids a "swoosh" effect, where an edge from a top-level statement A
|
|
/// points to a sub-expression B.1 that's not at the start of B. In these cases,
|
|
/// we'd like to see an edge from A to B, then another one from B to B.1.
|
|
static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
|
|
const ParentMap &PM = LC->getParentMap();
|
|
PathPieces::iterator Prev = pieces.end();
|
|
for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
|
|
Prev = I, ++I) {
|
|
auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
|
|
|
|
if (!Piece)
|
|
continue;
|
|
|
|
PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
|
|
SmallVector<PathDiagnosticLocation, 4> SrcContexts;
|
|
|
|
PathDiagnosticLocation NextSrcContext = SrcLoc;
|
|
const Stmt *InnerStmt = nullptr;
|
|
while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
|
|
SrcContexts.push_back(NextSrcContext);
|
|
InnerStmt = NextSrcContext.asStmt();
|
|
NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
|
|
/*allowNested=*/true);
|
|
}
|
|
|
|
// Repeatedly split the edge as necessary.
|
|
// This is important for nested logical expressions (||, &&, ?:) where we
|
|
// want to show all the levels of context.
|
|
while (true) {
|
|
const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
|
|
|
|
// We are looking at an edge. Is the destination within a larger
|
|
// expression?
|
|
PathDiagnosticLocation DstContext =
|
|
getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
|
|
if (!DstContext.isValid() || DstContext.asStmt() == Dst)
|
|
break;
|
|
|
|
// If the source is in the same context, we're already good.
|
|
if (llvm::find(SrcContexts, DstContext) != SrcContexts.end())
|
|
break;
|
|
|
|
// Update the subexpression node to point to the context edge.
|
|
Piece->setStartLocation(DstContext);
|
|
|
|
// Try to extend the previous edge if it's at the same level as the source
|
|
// context.
|
|
if (Prev != E) {
|
|
auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
|
|
|
|
if (PrevPiece) {
|
|
if (const Stmt *PrevSrc =
|
|
PrevPiece->getStartLocation().getStmtOrNull()) {
|
|
const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
|
|
if (PrevSrcParent ==
|
|
getStmtParent(DstContext.getStmtOrNull(), PM)) {
|
|
PrevPiece->setEndLocation(DstContext);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, split the current edge into a context edge and a
|
|
// subexpression edge. Note that the context statement may itself have
|
|
// context.
|
|
auto P =
|
|
std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
|
|
Piece = P.get();
|
|
I = pieces.insert(I, std::move(P));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Move edges from a branch condition to a branch target
|
|
/// when the condition is simple.
|
|
///
|
|
/// This restructures some of the work of addContextEdges. That function
|
|
/// creates edges this may destroy, but they work together to create a more
|
|
/// aesthetically set of edges around branches. After the call to
|
|
/// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
|
|
/// the branch to the branch condition, and (3) an edge from the branch
|
|
/// condition to the branch target. We keep (1), but may wish to remove (2)
|
|
/// and move the source of (3) to the branch if the branch condition is simple.
|
|
static void simplifySimpleBranches(PathPieces &pieces) {
|
|
for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
|
|
const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
|
|
|
|
if (!PieceI)
|
|
continue;
|
|
|
|
const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
|
|
const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
|
|
|
|
if (!s1Start || !s1End)
|
|
continue;
|
|
|
|
PathPieces::iterator NextI = I; ++NextI;
|
|
if (NextI == E)
|
|
break;
|
|
|
|
PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
|
|
|
|
while (true) {
|
|
if (NextI == E)
|
|
break;
|
|
|
|
const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
|
|
if (EV) {
|
|
StringRef S = EV->getString();
|
|
if (S == StrEnteringLoop || S == StrLoopBodyZero ||
|
|
S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
|
|
++NextI;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
|
|
break;
|
|
}
|
|
|
|
if (!PieceNextI)
|
|
continue;
|
|
|
|
const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
|
|
const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
|
|
|
|
if (!s2Start || !s2End || s1End != s2Start)
|
|
continue;
|
|
|
|
// We only perform this transformation for specific branch kinds.
|
|
// We don't want to do this for do..while, for example.
|
|
if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
|
|
isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
|
|
isa<CXXForRangeStmt>(s1Start)))
|
|
continue;
|
|
|
|
// Is s1End the branch condition?
|
|
if (!isConditionForTerminator(s1Start, s1End))
|
|
continue;
|
|
|
|
// Perform the hoisting by eliminating (2) and changing the start
|
|
// location of (3).
|
|
PieceNextI->setStartLocation(PieceI->getStartLocation());
|
|
I = pieces.erase(I);
|
|
}
|
|
}
|
|
|
|
/// Returns the number of bytes in the given (character-based) SourceRange.
|
|
///
|
|
/// If the locations in the range are not on the same line, returns None.
|
|
///
|
|
/// Note that this does not do a precise user-visible character or column count.
|
|
static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
|
|
SourceRange Range) {
|
|
SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
|
|
SM.getExpansionRange(Range.getEnd()).getEnd());
|
|
|
|
FileID FID = SM.getFileID(ExpansionRange.getBegin());
|
|
if (FID != SM.getFileID(ExpansionRange.getEnd()))
|
|
return None;
|
|
|
|
bool Invalid;
|
|
const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
|
|
if (Invalid)
|
|
return None;
|
|
|
|
unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
|
|
unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
|
|
StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
|
|
|
|
// We're searching the raw bytes of the buffer here, which might include
|
|
// escaped newlines and such. That's okay; we're trying to decide whether the
|
|
// SourceRange is covering a large or small amount of space in the user's
|
|
// editor.
|
|
if (Snippet.find_first_of("\r\n") != StringRef::npos)
|
|
return None;
|
|
|
|
// This isn't Unicode-aware, but it doesn't need to be.
|
|
return Snippet.size();
|
|
}
|
|
|
|
/// \sa getLengthOnSingleLine(SourceManager, SourceRange)
|
|
static Optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
|
|
const Stmt *S) {
|
|
return getLengthOnSingleLine(SM, S->getSourceRange());
|
|
}
|
|
|
|
/// Eliminate two-edge cycles created by addContextEdges().
|
|
///
|
|
/// Once all the context edges are in place, there are plenty of cases where
|
|
/// there's a single edge from a top-level statement to a subexpression,
|
|
/// followed by a single path note, and then a reverse edge to get back out to
|
|
/// the top level. If the statement is simple enough, the subexpression edges
|
|
/// just add noise and make it harder to understand what's going on.
|
|
///
|
|
/// This function only removes edges in pairs, because removing only one edge
|
|
/// might leave other edges dangling.
|
|
///
|
|
/// This will not remove edges in more complicated situations:
|
|
/// - if there is more than one "hop" leading to or from a subexpression.
|
|
/// - if there is an inlined call between the edges instead of a single event.
|
|
/// - if the whole statement is large enough that having subexpression arrows
|
|
/// might be helpful.
|
|
static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
|
|
for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
|
|
// Pattern match the current piece and its successor.
|
|
const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
|
|
|
|
if (!PieceI) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
|
|
const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
|
|
|
|
PathPieces::iterator NextI = I; ++NextI;
|
|
if (NextI == E)
|
|
break;
|
|
|
|
const auto *PieceNextI =
|
|
dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
|
|
|
|
if (!PieceNextI) {
|
|
if (isa<PathDiagnosticEventPiece>(NextI->get())) {
|
|
++NextI;
|
|
if (NextI == E)
|
|
break;
|
|
PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
|
|
}
|
|
|
|
if (!PieceNextI) {
|
|
++I;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
|
|
const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
|
|
|
|
if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
|
|
const size_t MAX_SHORT_LINE_LENGTH = 80;
|
|
Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
|
|
if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
|
|
Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
|
|
if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
|
|
Path.erase(I);
|
|
I = Path.erase(NextI);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
++I;
|
|
}
|
|
}
|
|
|
|
/// Return true if X is contained by Y.
|
|
static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
|
|
while (X) {
|
|
if (X == Y)
|
|
return true;
|
|
X = PM.getParent(X);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Remove short edges on the same line less than 3 columns in difference.
|
|
static void removePunyEdges(PathPieces &path, const SourceManager &SM,
|
|
const ParentMap &PM) {
|
|
bool erased = false;
|
|
|
|
for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
|
|
erased ? I : ++I) {
|
|
erased = false;
|
|
|
|
const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
|
|
|
|
if (!PieceI)
|
|
continue;
|
|
|
|
const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
|
|
const Stmt *end = PieceI->getEndLocation().getStmtOrNull();
|
|
|
|
if (!start || !end)
|
|
continue;
|
|
|
|
const Stmt *endParent = PM.getParent(end);
|
|
if (!endParent)
|
|
continue;
|
|
|
|
if (isConditionForTerminator(end, endParent))
|
|
continue;
|
|
|
|
SourceLocation FirstLoc = start->getBeginLoc();
|
|
SourceLocation SecondLoc = end->getBeginLoc();
|
|
|
|
if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
|
|
continue;
|
|
if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
|
|
std::swap(SecondLoc, FirstLoc);
|
|
|
|
SourceRange EdgeRange(FirstLoc, SecondLoc);
|
|
Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
|
|
|
|
// If the statements are on different lines, continue.
|
|
if (!ByteWidth)
|
|
continue;
|
|
|
|
const size_t MAX_PUNY_EDGE_LENGTH = 2;
|
|
if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
|
|
// FIXME: There are enough /bytes/ between the endpoints of the edge, but
|
|
// there might not be enough /columns/. A proper user-visible column count
|
|
// is probably too expensive, though.
|
|
I = path.erase(I);
|
|
erased = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void removeIdenticalEvents(PathPieces &path) {
|
|
for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
|
|
const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
|
|
|
|
if (!PieceI)
|
|
continue;
|
|
|
|
PathPieces::iterator NextI = I; ++NextI;
|
|
if (NextI == E)
|
|
return;
|
|
|
|
const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
|
|
|
|
if (!PieceNextI)
|
|
continue;
|
|
|
|
// Erase the second piece if it has the same exact message text.
|
|
if (PieceI->getString() == PieceNextI->getString()) {
|
|
path.erase(NextI);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
|
|
OptimizedCallsSet &OCS) {
|
|
bool hasChanges = false;
|
|
const LocationContext *LC = C.getLocationContextFor(&path);
|
|
assert(LC);
|
|
const ParentMap &PM = LC->getParentMap();
|
|
const SourceManager &SM = C.getSourceManager();
|
|
|
|
for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
|
|
// Optimize subpaths.
|
|
if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
|
|
// Record the fact that a call has been optimized so we only do the
|
|
// effort once.
|
|
if (!OCS.count(CallI)) {
|
|
while (optimizeEdges(C, CallI->path, OCS)) {
|
|
}
|
|
OCS.insert(CallI);
|
|
}
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
// Pattern match the current piece and its successor.
|
|
auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
|
|
|
|
if (!PieceI) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
|
|
const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
|
|
const Stmt *level1 = getStmtParent(s1Start, PM);
|
|
const Stmt *level2 = getStmtParent(s1End, PM);
|
|
|
|
PathPieces::iterator NextI = I; ++NextI;
|
|
if (NextI == E)
|
|
break;
|
|
|
|
const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
|
|
|
|
if (!PieceNextI) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
|
|
const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
|
|
const Stmt *level3 = getStmtParent(s2Start, PM);
|
|
const Stmt *level4 = getStmtParent(s2End, PM);
|
|
|
|
// Rule I.
|
|
//
|
|
// If we have two consecutive control edges whose end/begin locations
|
|
// are at the same level (e.g. statements or top-level expressions within
|
|
// a compound statement, or siblings share a single ancestor expression),
|
|
// then merge them if they have no interesting intermediate event.
|
|
//
|
|
// For example:
|
|
//
|
|
// (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
|
|
// parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
|
|
//
|
|
// NOTE: this will be limited later in cases where we add barriers
|
|
// to prevent this optimization.
|
|
if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
|
|
PieceI->setEndLocation(PieceNextI->getEndLocation());
|
|
path.erase(NextI);
|
|
hasChanges = true;
|
|
continue;
|
|
}
|
|
|
|
// Rule II.
|
|
//
|
|
// Eliminate edges between subexpressions and parent expressions
|
|
// when the subexpression is consumed.
|
|
//
|
|
// NOTE: this will be limited later in cases where we add barriers
|
|
// to prevent this optimization.
|
|
if (s1End && s1End == s2Start && level2) {
|
|
bool removeEdge = false;
|
|
// Remove edges into the increment or initialization of a
|
|
// loop that have no interleaving event. This means that
|
|
// they aren't interesting.
|
|
if (isIncrementOrInitInForLoop(s1End, level2))
|
|
removeEdge = true;
|
|
// Next only consider edges that are not anchored on
|
|
// the condition of a terminator. This are intermediate edges
|
|
// that we might want to trim.
|
|
else if (!isConditionForTerminator(level2, s1End)) {
|
|
// Trim edges on expressions that are consumed by
|
|
// the parent expression.
|
|
if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
|
|
removeEdge = true;
|
|
}
|
|
// Trim edges where a lexical containment doesn't exist.
|
|
// For example:
|
|
//
|
|
// X -> Y -> Z
|
|
//
|
|
// If 'Z' lexically contains Y (it is an ancestor) and
|
|
// 'X' does not lexically contain Y (it is a descendant OR
|
|
// it has no lexical relationship at all) then trim.
|
|
//
|
|
// This can eliminate edges where we dive into a subexpression
|
|
// and then pop back out, etc.
|
|
else if (s1Start && s2End &&
|
|
lexicalContains(PM, s2Start, s2End) &&
|
|
!lexicalContains(PM, s1End, s1Start)) {
|
|
removeEdge = true;
|
|
}
|
|
// Trim edges from a subexpression back to the top level if the
|
|
// subexpression is on a different line.
|
|
//
|
|
// A.1 -> A -> B
|
|
// becomes
|
|
// A.1 -> B
|
|
//
|
|
// These edges just look ugly and don't usually add anything.
|
|
else if (s1Start && s2End &&
|
|
lexicalContains(PM, s1Start, s1End)) {
|
|
SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
|
|
PieceI->getStartLocation().asLocation());
|
|
if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
|
|
removeEdge = true;
|
|
}
|
|
}
|
|
|
|
if (removeEdge) {
|
|
PieceI->setEndLocation(PieceNextI->getEndLocation());
|
|
path.erase(NextI);
|
|
hasChanges = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Optimize edges for ObjC fast-enumeration loops.
|
|
//
|
|
// (X -> collection) -> (collection -> element)
|
|
//
|
|
// becomes:
|
|
//
|
|
// (X -> element)
|
|
if (s1End == s2Start) {
|
|
const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
|
|
if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
|
|
s2End == FS->getElement()) {
|
|
PieceI->setEndLocation(PieceNextI->getEndLocation());
|
|
path.erase(NextI);
|
|
hasChanges = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// No changes at this index? Move to the next one.
|
|
++I;
|
|
}
|
|
|
|
if (!hasChanges) {
|
|
// Adjust edges into subexpressions to make them more uniform
|
|
// and aesthetically pleasing.
|
|
addContextEdges(path, LC);
|
|
// Remove "cyclical" edges that include one or more context edges.
|
|
removeContextCycles(path, SM);
|
|
// Hoist edges originating from branch conditions to branches
|
|
// for simple branches.
|
|
simplifySimpleBranches(path);
|
|
// Remove any puny edges left over after primary optimization pass.
|
|
removePunyEdges(path, SM, PM);
|
|
// Remove identical events.
|
|
removeIdenticalEvents(path);
|
|
}
|
|
|
|
return hasChanges;
|
|
}
|
|
|
|
/// Drop the very first edge in a path, which should be a function entry edge.
|
|
///
|
|
/// If the first edge is not a function entry edge (say, because the first
|
|
/// statement had an invalid source location), this function does nothing.
|
|
// FIXME: We should just generate invalid edges anyway and have the optimizer
|
|
// deal with them.
|
|
static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
|
|
PathPieces &Path) {
|
|
const auto *FirstEdge =
|
|
dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
|
|
if (!FirstEdge)
|
|
return;
|
|
|
|
const Decl *D = C.getLocationContextFor(&Path)->getDecl();
|
|
PathDiagnosticLocation EntryLoc =
|
|
PathDiagnosticLocation::createBegin(D, C.getSourceManager());
|
|
if (FirstEdge->getStartLocation() != EntryLoc)
|
|
return;
|
|
|
|
Path.pop_front();
|
|
}
|
|
|
|
/// Populate executes lines with lines containing at least one diagnostics.
|
|
static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
|
|
|
|
PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
|
|
FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
|
|
|
|
for (const auto &P : path) {
|
|
FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
|
|
FileID FID = Loc.getFileID();
|
|
unsigned LineNo = Loc.getLineNumber();
|
|
assert(FID.isValid());
|
|
ExecutedLines[FID].insert(LineNo);
|
|
}
|
|
}
|
|
|
|
PathDiagnosticConstruct::PathDiagnosticConstruct(
|
|
const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
|
|
const PathSensitiveBugReport *R)
|
|
: Consumer(PDC), CurrentNode(ErrorNode),
|
|
SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
|
|
PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
|
|
LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
|
|
}
|
|
|
|
PathDiagnosticBuilder::PathDiagnosticBuilder(
|
|
BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
|
|
PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
|
|
std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
|
|
: BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
|
|
ErrorNode(ErrorNode),
|
|
VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
|
|
|
|
std::unique_ptr<PathDiagnostic>
|
|
PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
|
|
PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
|
|
|
|
const SourceManager &SM = getSourceManager();
|
|
const AnalyzerOptions &Opts = getAnalyzerOptions();
|
|
StringRef ErrorTag = ErrorNode->getLocation().getTag()->getTagDescription();
|
|
|
|
// See whether we need to silence the checker/package.
|
|
// FIXME: This will not work if the report was emitted with an incorrect tag.
|
|
for (const std::string &CheckerOrPackage : Opts.SilencedCheckersAndPackages) {
|
|
if (ErrorTag.startswith(CheckerOrPackage))
|
|
return nullptr;
|
|
}
|
|
|
|
if (!PDC->shouldGenerateDiagnostics())
|
|
return generateEmptyDiagnosticForReport(R, getSourceManager());
|
|
|
|
// Construct the final (warning) event for the bug report.
|
|
auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
|
|
PathDiagnosticPieceRef LastPiece;
|
|
if (EndNotes != VisitorsDiagnostics->end()) {
|
|
assert(!EndNotes->second.empty());
|
|
LastPiece = EndNotes->second[0];
|
|
} else {
|
|
LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
|
|
*getBugReport());
|
|
}
|
|
Construct.PD->setEndOfPath(LastPiece);
|
|
|
|
PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
|
|
// From the error node to the root, ascend the bug path and construct the bug
|
|
// report.
|
|
while (Construct.ascendToPrevNode()) {
|
|
generatePathDiagnosticsForNode(Construct, PrevLoc);
|
|
|
|
auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
|
|
if (VisitorNotes == VisitorsDiagnostics->end())
|
|
continue;
|
|
|
|
// This is a workaround due to inability to put shared PathDiagnosticPiece
|
|
// into a FoldingSet.
|
|
std::set<llvm::FoldingSetNodeID> DeduplicationSet;
|
|
|
|
// Add pieces from custom visitors.
|
|
for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
|
|
llvm::FoldingSetNodeID ID;
|
|
Note->Profile(ID);
|
|
if (!DeduplicationSet.insert(ID).second)
|
|
continue;
|
|
|
|
if (PDC->shouldAddPathEdges())
|
|
addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
|
|
updateStackPiecesWithMessage(Note, Construct.CallStack);
|
|
Construct.getActivePath().push_front(Note);
|
|
}
|
|
}
|
|
|
|
if (PDC->shouldAddPathEdges()) {
|
|
// Add an edge to the start of the function.
|
|
// We'll prune it out later, but it helps make diagnostics more uniform.
|
|
const StackFrameContext *CalleeLC =
|
|
Construct.getLocationContextForActivePath()->getStackFrame();
|
|
const Decl *D = CalleeLC->getDecl();
|
|
addEdgeToPath(Construct.getActivePath(), PrevLoc,
|
|
PathDiagnosticLocation::createBegin(D, SM));
|
|
}
|
|
|
|
|
|
// Finally, prune the diagnostic path of uninteresting stuff.
|
|
if (!Construct.PD->path.empty()) {
|
|
if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
|
|
bool stillHasNotes =
|
|
removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
|
|
assert(stillHasNotes);
|
|
(void)stillHasNotes;
|
|
}
|
|
|
|
// Remove pop-up notes if needed.
|
|
if (!Opts.ShouldAddPopUpNotes)
|
|
removePopUpNotes(Construct.getMutablePieces());
|
|
|
|
// Redirect all call pieces to have valid locations.
|
|
adjustCallLocations(Construct.getMutablePieces());
|
|
removePiecesWithInvalidLocations(Construct.getMutablePieces());
|
|
|
|
if (PDC->shouldAddPathEdges()) {
|
|
|
|
// Reduce the number of edges from a very conservative set
|
|
// to an aesthetically pleasing subset that conveys the
|
|
// necessary information.
|
|
OptimizedCallsSet OCS;
|
|
while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
|
|
}
|
|
|
|
// Drop the very first function-entry edge. It's not really necessary
|
|
// for top-level functions.
|
|
dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
|
|
}
|
|
|
|
// Remove messages that are basically the same, and edges that may not
|
|
// make sense.
|
|
// We have to do this after edge optimization in the Extensive mode.
|
|
removeRedundantMsgs(Construct.getMutablePieces());
|
|
removeEdgesToDefaultInitializers(Construct.getMutablePieces());
|
|
}
|
|
|
|
if (Opts.ShouldDisplayMacroExpansions)
|
|
CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
|
|
|
|
return std::move(Construct.PD);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugType and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BugType::anchor() {}
|
|
|
|
void BuiltinBug::anchor() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReport and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PathSensitiveBugReport::addVisitor(
|
|
std::unique_ptr<BugReporterVisitor> visitor) {
|
|
if (!visitor)
|
|
return;
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
visitor->Profile(ID);
|
|
|
|
void *InsertPos = nullptr;
|
|
if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
|
|
return;
|
|
}
|
|
|
|
Callbacks.push_back(std::move(visitor));
|
|
}
|
|
|
|
void PathSensitiveBugReport::clearVisitors() {
|
|
Callbacks.clear();
|
|
}
|
|
|
|
const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
|
|
const ExplodedNode *N = getErrorNode();
|
|
if (!N)
|
|
return nullptr;
|
|
|
|
const LocationContext *LC = N->getLocationContext();
|
|
return LC->getStackFrame()->getDecl();
|
|
}
|
|
|
|
void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
|
|
hash.AddInteger(static_cast<int>(getKind()));
|
|
hash.AddPointer(&BT);
|
|
hash.AddString(Description);
|
|
assert(Location.isValid());
|
|
Location.Profile(hash);
|
|
|
|
for (SourceRange range : Ranges) {
|
|
if (!range.isValid())
|
|
continue;
|
|
hash.AddInteger(range.getBegin().getRawEncoding());
|
|
hash.AddInteger(range.getEnd().getRawEncoding());
|
|
}
|
|
}
|
|
|
|
void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
|
|
hash.AddInteger(static_cast<int>(getKind()));
|
|
hash.AddPointer(&BT);
|
|
hash.AddString(Description);
|
|
PathDiagnosticLocation UL = getUniqueingLocation();
|
|
if (UL.isValid()) {
|
|
UL.Profile(hash);
|
|
} else {
|
|
// TODO: The statement may be null if the report was emitted before any
|
|
// statements were executed. In particular, some checkers by design
|
|
// occasionally emit their reports in empty functions (that have no
|
|
// statements in their body). Do we profile correctly in this case?
|
|
hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
|
|
}
|
|
|
|
for (SourceRange range : Ranges) {
|
|
if (!range.isValid())
|
|
continue;
|
|
hash.AddInteger(range.getBegin().getRawEncoding());
|
|
hash.AddInteger(range.getEnd().getRawEncoding());
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static void insertToInterestingnessMap(
|
|
llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
|
|
bugreporter::TrackingKind TKind) {
|
|
auto Result = InterestingnessMap.insert({Val, TKind});
|
|
|
|
if (Result.second)
|
|
return;
|
|
|
|
// Even if this symbol/region was already marked as interesting as a
|
|
// condition, if we later mark it as interesting again but with
|
|
// thorough tracking, overwrite it. Entities marked with thorough
|
|
// interestiness are the most important (or most interesting, if you will),
|
|
// and we wouldn't like to downplay their importance.
|
|
|
|
switch (TKind) {
|
|
case bugreporter::TrackingKind::Thorough:
|
|
Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
|
|
return;
|
|
case bugreporter::TrackingKind::Condition:
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable(
|
|
"BugReport::markInteresting currently can only handle 2 different "
|
|
"tracking kinds! Please define what tracking kind should this entitiy"
|
|
"have, if it was already marked as interesting with a different kind!");
|
|
}
|
|
|
|
void PathSensitiveBugReport::markInteresting(SymbolRef sym,
|
|
bugreporter::TrackingKind TKind) {
|
|
if (!sym)
|
|
return;
|
|
|
|
insertToInterestingnessMap(InterestingSymbols, sym, TKind);
|
|
|
|
if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
|
|
markInteresting(meta->getRegion(), TKind);
|
|
}
|
|
|
|
void PathSensitiveBugReport::markInteresting(const MemRegion *R,
|
|
bugreporter::TrackingKind TKind) {
|
|
if (!R)
|
|
return;
|
|
|
|
R = R->getBaseRegion();
|
|
insertToInterestingnessMap(InterestingRegions, R, TKind);
|
|
|
|
if (const auto *SR = dyn_cast<SymbolicRegion>(R))
|
|
markInteresting(SR->getSymbol(), TKind);
|
|
}
|
|
|
|
void PathSensitiveBugReport::markInteresting(SVal V,
|
|
bugreporter::TrackingKind TKind) {
|
|
markInteresting(V.getAsRegion(), TKind);
|
|
markInteresting(V.getAsSymbol(), TKind);
|
|
}
|
|
|
|
void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
|
|
if (!LC)
|
|
return;
|
|
InterestingLocationContexts.insert(LC);
|
|
}
|
|
|
|
Optional<bugreporter::TrackingKind>
|
|
PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
|
|
auto RKind = getInterestingnessKind(V.getAsRegion());
|
|
auto SKind = getInterestingnessKind(V.getAsSymbol());
|
|
if (!RKind)
|
|
return SKind;
|
|
if (!SKind)
|
|
return RKind;
|
|
|
|
// If either is marked with throrough tracking, return that, we wouldn't like
|
|
// to downplay a note's importance by 'only' mentioning it as a condition.
|
|
switch(*RKind) {
|
|
case bugreporter::TrackingKind::Thorough:
|
|
return RKind;
|
|
case bugreporter::TrackingKind::Condition:
|
|
return SKind;
|
|
}
|
|
|
|
llvm_unreachable(
|
|
"BugReport::getInterestingnessKind currently can only handle 2 different "
|
|
"tracking kinds! Please define what tracking kind should we return here "
|
|
"when the kind of getAsRegion() and getAsSymbol() is different!");
|
|
return None;
|
|
}
|
|
|
|
Optional<bugreporter::TrackingKind>
|
|
PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
|
|
if (!sym)
|
|
return None;
|
|
// We don't currently consider metadata symbols to be interesting
|
|
// even if we know their region is interesting. Is that correct behavior?
|
|
auto It = InterestingSymbols.find(sym);
|
|
if (It == InterestingSymbols.end())
|
|
return None;
|
|
return It->getSecond();
|
|
}
|
|
|
|
Optional<bugreporter::TrackingKind>
|
|
PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
|
|
if (!R)
|
|
return None;
|
|
|
|
R = R->getBaseRegion();
|
|
auto It = InterestingRegions.find(R);
|
|
if (It != InterestingRegions.end())
|
|
return It->getSecond();
|
|
|
|
if (const auto *SR = dyn_cast<SymbolicRegion>(R))
|
|
return getInterestingnessKind(SR->getSymbol());
|
|
return None;
|
|
}
|
|
|
|
bool PathSensitiveBugReport::isInteresting(SVal V) const {
|
|
return getInterestingnessKind(V).hasValue();
|
|
}
|
|
|
|
bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
|
|
return getInterestingnessKind(sym).hasValue();
|
|
}
|
|
|
|
bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
|
|
return getInterestingnessKind(R).hasValue();
|
|
}
|
|
|
|
bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const {
|
|
if (!LC)
|
|
return false;
|
|
return InterestingLocationContexts.count(LC);
|
|
}
|
|
|
|
const Stmt *PathSensitiveBugReport::getStmt() const {
|
|
if (!ErrorNode)
|
|
return nullptr;
|
|
|
|
ProgramPoint ProgP = ErrorNode->getLocation();
|
|
const Stmt *S = nullptr;
|
|
|
|
if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
|
|
CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
|
|
if (BE->getBlock() == &Exit)
|
|
S = ErrorNode->getPreviousStmtForDiagnostics();
|
|
}
|
|
if (!S)
|
|
S = ErrorNode->getStmtForDiagnostics();
|
|
|
|
return S;
|
|
}
|
|
|
|
ArrayRef<SourceRange>
|
|
PathSensitiveBugReport::getRanges() const {
|
|
// If no custom ranges, add the range of the statement corresponding to
|
|
// the error node.
|
|
if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
|
|
return ErrorNodeRange;
|
|
|
|
return Ranges;
|
|
}
|
|
|
|
PathDiagnosticLocation
|
|
PathSensitiveBugReport::getLocation() const {
|
|
assert(ErrorNode && "Cannot create a location with a null node.");
|
|
const Stmt *S = ErrorNode->getStmtForDiagnostics();
|
|
ProgramPoint P = ErrorNode->getLocation();
|
|
const LocationContext *LC = P.getLocationContext();
|
|
SourceManager &SM =
|
|
ErrorNode->getState()->getStateManager().getContext().getSourceManager();
|
|
|
|
if (!S) {
|
|
// If this is an implicit call, return the implicit call point location.
|
|
if (Optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
|
|
return PathDiagnosticLocation(PIE->getLocation(), SM);
|
|
if (auto FE = P.getAs<FunctionExitPoint>()) {
|
|
if (const ReturnStmt *RS = FE->getStmt())
|
|
return PathDiagnosticLocation::createBegin(RS, SM, LC);
|
|
}
|
|
S = ErrorNode->getNextStmtForDiagnostics();
|
|
}
|
|
|
|
if (S) {
|
|
// For member expressions, return the location of the '.' or '->'.
|
|
if (const auto *ME = dyn_cast<MemberExpr>(S))
|
|
return PathDiagnosticLocation::createMemberLoc(ME, SM);
|
|
|
|
// For binary operators, return the location of the operator.
|
|
if (const auto *B = dyn_cast<BinaryOperator>(S))
|
|
return PathDiagnosticLocation::createOperatorLoc(B, SM);
|
|
|
|
if (P.getAs<PostStmtPurgeDeadSymbols>())
|
|
return PathDiagnosticLocation::createEnd(S, SM, LC);
|
|
|
|
if (S->getBeginLoc().isValid())
|
|
return PathDiagnosticLocation(S, SM, LC);
|
|
|
|
return PathDiagnosticLocation(
|
|
PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
|
|
}
|
|
|
|
return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
|
|
SM);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReporter and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
|
|
return Eng.getGraph();
|
|
}
|
|
|
|
ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
|
|
return Eng.getStateManager();
|
|
}
|
|
|
|
BugReporter::~BugReporter() {
|
|
// Make sure reports are flushed.
|
|
assert(StrBugTypes.empty() &&
|
|
"Destroying BugReporter before diagnostics are emitted!");
|
|
|
|
// Free the bug reports we are tracking.
|
|
for (const auto I : EQClassesVector)
|
|
delete I;
|
|
}
|
|
|
|
void BugReporter::FlushReports() {
|
|
// We need to flush reports in deterministic order to ensure the order
|
|
// of the reports is consistent between runs.
|
|
for (const auto EQ : EQClassesVector)
|
|
FlushReport(*EQ);
|
|
|
|
// BugReporter owns and deletes only BugTypes created implicitly through
|
|
// EmitBasicReport.
|
|
// FIXME: There are leaks from checkers that assume that the BugTypes they
|
|
// create will be destroyed by the BugReporter.
|
|
llvm::DeleteContainerSeconds(StrBugTypes);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PathDiagnostics generation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// A wrapper around an ExplodedGraph that contains a single path from the root
|
|
/// to the error node.
|
|
class BugPathInfo {
|
|
public:
|
|
std::unique_ptr<ExplodedGraph> BugPath;
|
|
PathSensitiveBugReport *Report;
|
|
const ExplodedNode *ErrorNode;
|
|
};
|
|
|
|
/// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
|
|
/// conveniently retrieve bug paths from a single error node to the root.
|
|
class BugPathGetter {
|
|
std::unique_ptr<ExplodedGraph> TrimmedGraph;
|
|
|
|
using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
|
|
|
|
/// Assign each node with its distance from the root.
|
|
PriorityMapTy PriorityMap;
|
|
|
|
/// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
|
|
/// we need to pair it to the error node of the constructed trimmed graph.
|
|
using ReportNewNodePair =
|
|
std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
|
|
SmallVector<ReportNewNodePair, 32> ReportNodes;
|
|
|
|
BugPathInfo CurrentBugPath;
|
|
|
|
/// A helper class for sorting ExplodedNodes by priority.
|
|
template <bool Descending>
|
|
class PriorityCompare {
|
|
const PriorityMapTy &PriorityMap;
|
|
|
|
public:
|
|
PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
|
|
|
|
bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
|
|
PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
|
|
PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
|
|
PriorityMapTy::const_iterator E = PriorityMap.end();
|
|
|
|
if (LI == E)
|
|
return Descending;
|
|
if (RI == E)
|
|
return !Descending;
|
|
|
|
return Descending ? LI->second > RI->second
|
|
: LI->second < RI->second;
|
|
}
|
|
|
|
bool operator()(const ReportNewNodePair &LHS,
|
|
const ReportNewNodePair &RHS) const {
|
|
return (*this)(LHS.second, RHS.second);
|
|
}
|
|
};
|
|
|
|
public:
|
|
BugPathGetter(const ExplodedGraph *OriginalGraph,
|
|
ArrayRef<PathSensitiveBugReport *> &bugReports);
|
|
|
|
BugPathInfo *getNextBugPath();
|
|
};
|
|
|
|
} // namespace
|
|
|
|
BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
|
|
ArrayRef<PathSensitiveBugReport *> &bugReports) {
|
|
SmallVector<const ExplodedNode *, 32> Nodes;
|
|
for (const auto I : bugReports) {
|
|
assert(I->isValid() &&
|
|
"We only allow BugReporterVisitors and BugReporter itself to "
|
|
"invalidate reports!");
|
|
Nodes.emplace_back(I->getErrorNode());
|
|
}
|
|
|
|
// The trimmed graph is created in the body of the constructor to ensure
|
|
// that the DenseMaps have been initialized already.
|
|
InterExplodedGraphMap ForwardMap;
|
|
TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
|
|
|
|
// Find the (first) error node in the trimmed graph. We just need to consult
|
|
// the node map which maps from nodes in the original graph to nodes
|
|
// in the new graph.
|
|
llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
|
|
|
|
for (PathSensitiveBugReport *Report : bugReports) {
|
|
const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
|
|
assert(NewNode &&
|
|
"Failed to construct a trimmed graph that contains this error "
|
|
"node!");
|
|
ReportNodes.emplace_back(Report, NewNode);
|
|
RemainingNodes.insert(NewNode);
|
|
}
|
|
|
|
assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
|
|
|
|
// Perform a forward BFS to find all the shortest paths.
|
|
std::queue<const ExplodedNode *> WS;
|
|
|
|
assert(TrimmedGraph->num_roots() == 1);
|
|
WS.push(*TrimmedGraph->roots_begin());
|
|
unsigned Priority = 0;
|
|
|
|
while (!WS.empty()) {
|
|
const ExplodedNode *Node = WS.front();
|
|
WS.pop();
|
|
|
|
PriorityMapTy::iterator PriorityEntry;
|
|
bool IsNew;
|
|
std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
|
|
++Priority;
|
|
|
|
if (!IsNew) {
|
|
assert(PriorityEntry->second <= Priority);
|
|
continue;
|
|
}
|
|
|
|
if (RemainingNodes.erase(Node))
|
|
if (RemainingNodes.empty())
|
|
break;
|
|
|
|
for (const ExplodedNode *Succ : Node->succs())
|
|
WS.push(Succ);
|
|
}
|
|
|
|
// Sort the error paths from longest to shortest.
|
|
llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
|
|
}
|
|
|
|
BugPathInfo *BugPathGetter::getNextBugPath() {
|
|
if (ReportNodes.empty())
|
|
return nullptr;
|
|
|
|
const ExplodedNode *OrigN;
|
|
std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
|
|
assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
|
|
"error node not accessible from root");
|
|
|
|
// Create a new graph with a single path. This is the graph that will be
|
|
// returned to the caller.
|
|
auto GNew = std::make_unique<ExplodedGraph>();
|
|
|
|
// Now walk from the error node up the BFS path, always taking the
|
|
// predeccessor with the lowest number.
|
|
ExplodedNode *Succ = nullptr;
|
|
while (true) {
|
|
// Create the equivalent node in the new graph with the same state
|
|
// and location.
|
|
ExplodedNode *NewN = GNew->createUncachedNode(
|
|
OrigN->getLocation(), OrigN->getState(),
|
|
OrigN->getID(), OrigN->isSink());
|
|
|
|
// Link up the new node with the previous node.
|
|
if (Succ)
|
|
Succ->addPredecessor(NewN, *GNew);
|
|
else
|
|
CurrentBugPath.ErrorNode = NewN;
|
|
|
|
Succ = NewN;
|
|
|
|
// Are we at the final node?
|
|
if (OrigN->pred_empty()) {
|
|
GNew->addRoot(NewN);
|
|
break;
|
|
}
|
|
|
|
// Find the next predeccessor node. We choose the node that is marked
|
|
// with the lowest BFS number.
|
|
OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
|
|
PriorityCompare<false>(PriorityMap));
|
|
}
|
|
|
|
CurrentBugPath.BugPath = std::move(GNew);
|
|
|
|
return &CurrentBugPath;
|
|
}
|
|
|
|
/// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
|
|
/// object and collapses PathDiagosticPieces that are expanded by macros.
|
|
static void CompactMacroExpandedPieces(PathPieces &path,
|
|
const SourceManager& SM) {
|
|
using MacroStackTy = std::vector<
|
|
std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
|
|
|
|
using PiecesTy = std::vector<PathDiagnosticPieceRef>;
|
|
|
|
MacroStackTy MacroStack;
|
|
PiecesTy Pieces;
|
|
|
|
for (PathPieces::const_iterator I = path.begin(), E = path.end();
|
|
I != E; ++I) {
|
|
const auto &piece = *I;
|
|
|
|
// Recursively compact calls.
|
|
if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
|
|
CompactMacroExpandedPieces(call->path, SM);
|
|
}
|
|
|
|
// Get the location of the PathDiagnosticPiece.
|
|
const FullSourceLoc Loc = piece->getLocation().asLocation();
|
|
|
|
// Determine the instantiation location, which is the location we group
|
|
// related PathDiagnosticPieces.
|
|
SourceLocation InstantiationLoc = Loc.isMacroID() ?
|
|
SM.getExpansionLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
if (Loc.isFileID()) {
|
|
MacroStack.clear();
|
|
Pieces.push_back(piece);
|
|
continue;
|
|
}
|
|
|
|
assert(Loc.isMacroID());
|
|
|
|
// Is the PathDiagnosticPiece within the same macro group?
|
|
if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
|
|
MacroStack.back().first->subPieces.push_back(piece);
|
|
continue;
|
|
}
|
|
|
|
// We aren't in the same group. Are we descending into a new macro
|
|
// or are part of an old one?
|
|
std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
|
|
|
|
SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
|
|
SM.getExpansionLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
// Walk the entire macro stack.
|
|
while (!MacroStack.empty()) {
|
|
if (InstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
if (ParentInstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
MacroStack.pop_back();
|
|
}
|
|
|
|
if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
|
|
// Create a new macro group and add it to the stack.
|
|
auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
|
|
PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
|
|
|
|
if (MacroGroup)
|
|
MacroGroup->subPieces.push_back(NewGroup);
|
|
else {
|
|
assert(InstantiationLoc.isFileID());
|
|
Pieces.push_back(NewGroup);
|
|
}
|
|
|
|
MacroGroup = NewGroup;
|
|
MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
|
|
}
|
|
|
|
// Finally, add the PathDiagnosticPiece to the group.
|
|
MacroGroup->subPieces.push_back(piece);
|
|
}
|
|
|
|
// Now take the pieces and construct a new PathDiagnostic.
|
|
path.clear();
|
|
|
|
path.insert(path.end(), Pieces.begin(), Pieces.end());
|
|
}
|
|
|
|
/// Generate notes from all visitors.
|
|
/// Notes associated with {@code ErrorNode} are generated using
|
|
/// {@code getEndPath}, and the rest are generated with {@code VisitNode}.
|
|
static std::unique_ptr<VisitorsDiagnosticsTy>
|
|
generateVisitorsDiagnostics(PathSensitiveBugReport *R,
|
|
const ExplodedNode *ErrorNode,
|
|
BugReporterContext &BRC) {
|
|
std::unique_ptr<VisitorsDiagnosticsTy> Notes =
|
|
std::make_unique<VisitorsDiagnosticsTy>();
|
|
PathSensitiveBugReport::VisitorList visitors;
|
|
|
|
// Run visitors on all nodes starting from the node *before* the last one.
|
|
// The last node is reserved for notes generated with {@code getEndPath}.
|
|
const ExplodedNode *NextNode = ErrorNode->getFirstPred();
|
|
while (NextNode) {
|
|
|
|
// At each iteration, move all visitors from report to visitor list. This is
|
|
// important, because the Profile() functions of the visitors make sure that
|
|
// a visitor isn't added multiple times for the same node, but it's fine
|
|
// to add the a visitor with Profile() for different nodes (e.g. tracking
|
|
// a region at different points of the symbolic execution).
|
|
for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
|
|
visitors.push_back(std::move(Visitor));
|
|
|
|
R->clearVisitors();
|
|
|
|
const ExplodedNode *Pred = NextNode->getFirstPred();
|
|
if (!Pred) {
|
|
PathDiagnosticPieceRef LastPiece;
|
|
for (auto &V : visitors) {
|
|
V->finalizeVisitor(BRC, ErrorNode, *R);
|
|
|
|
if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
|
|
assert(!LastPiece &&
|
|
"There can only be one final piece in a diagnostic.");
|
|
assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
|
|
"The final piece must contain a message!");
|
|
LastPiece = std::move(Piece);
|
|
(*Notes)[ErrorNode].push_back(LastPiece);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
for (auto &V : visitors) {
|
|
auto P = V->VisitNode(NextNode, BRC, *R);
|
|
if (P)
|
|
(*Notes)[NextNode].push_back(std::move(P));
|
|
}
|
|
|
|
if (!R->isValid())
|
|
break;
|
|
|
|
NextNode = Pred;
|
|
}
|
|
|
|
return Notes;
|
|
}
|
|
|
|
Optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
|
|
ArrayRef<PathSensitiveBugReport *> &bugReports,
|
|
PathSensitiveBugReporter &Reporter) {
|
|
|
|
BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
|
|
|
|
while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
|
|
// Find the BugReport with the original location.
|
|
PathSensitiveBugReport *R = BugPath->Report;
|
|
assert(R && "No original report found for sliced graph.");
|
|
assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
|
|
const ExplodedNode *ErrorNode = BugPath->ErrorNode;
|
|
|
|
// Register refutation visitors first, if they mark the bug invalid no
|
|
// further analysis is required
|
|
R->addVisitor(std::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
|
|
|
|
// Register additional node visitors.
|
|
R->addVisitor(std::make_unique<NilReceiverBRVisitor>());
|
|
R->addVisitor(std::make_unique<ConditionBRVisitor>());
|
|
R->addVisitor(std::make_unique<TagVisitor>());
|
|
|
|
BugReporterContext BRC(Reporter);
|
|
|
|
// Run all visitors on a given graph, once.
|
|
std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
|
|
generateVisitorsDiagnostics(R, ErrorNode, BRC);
|
|
|
|
if (R->isValid()) {
|
|
if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
|
|
// If crosscheck is enabled, remove all visitors, add the refutation
|
|
// visitor and check again
|
|
R->clearVisitors();
|
|
R->addVisitor(std::make_unique<FalsePositiveRefutationBRVisitor>());
|
|
|
|
// We don't overrite the notes inserted by other visitors because the
|
|
// refutation manager does not add any new note to the path
|
|
generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
|
|
}
|
|
|
|
// Check if the bug is still valid
|
|
if (R->isValid())
|
|
return PathDiagnosticBuilder(
|
|
std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
|
|
BugPath->ErrorNode, std::move(visitorNotes));
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
std::unique_ptr<DiagnosticForConsumerMapTy>
|
|
PathSensitiveBugReporter::generatePathDiagnostics(
|
|
ArrayRef<PathDiagnosticConsumer *> consumers,
|
|
ArrayRef<PathSensitiveBugReport *> &bugReports) {
|
|
assert(!bugReports.empty());
|
|
|
|
auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
|
|
|
|
Optional<PathDiagnosticBuilder> PDB =
|
|
PathDiagnosticBuilder::findValidReport(bugReports, *this);
|
|
|
|
if (PDB) {
|
|
for (PathDiagnosticConsumer *PC : consumers) {
|
|
if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
|
|
(*Out)[PC] = std::move(PD);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Out;
|
|
}
|
|
|
|
void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
|
|
bool ValidSourceLoc = R->getLocation().isValid();
|
|
assert(ValidSourceLoc);
|
|
// If we mess up in a release build, we'd still prefer to just drop the bug
|
|
// instead of trying to go on.
|
|
if (!ValidSourceLoc)
|
|
return;
|
|
|
|
// Compute the bug report's hash to determine its equivalence class.
|
|
llvm::FoldingSetNodeID ID;
|
|
R->Profile(ID);
|
|
|
|
// Lookup the equivance class. If there isn't one, create it.
|
|
void *InsertPos;
|
|
BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!EQ) {
|
|
EQ = new BugReportEquivClass(std::move(R));
|
|
EQClasses.InsertNode(EQ, InsertPos);
|
|
EQClassesVector.push_back(EQ);
|
|
} else
|
|
EQ->AddReport(std::move(R));
|
|
}
|
|
|
|
void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
|
|
if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
|
|
if (const ExplodedNode *E = PR->getErrorNode()) {
|
|
// An error node must either be a sink or have a tag, otherwise
|
|
// it could get reclaimed before the path diagnostic is created.
|
|
assert((E->isSink() || E->getLocation().getTag()) &&
|
|
"Error node must either be a sink or have a tag");
|
|
|
|
const AnalysisDeclContext *DeclCtx =
|
|
E->getLocationContext()->getAnalysisDeclContext();
|
|
// The source of autosynthesized body can be handcrafted AST or a model
|
|
// file. The locations from handcrafted ASTs have no valid source
|
|
// locations and have to be discarded. Locations from model files should
|
|
// be preserved for processing and reporting.
|
|
if (DeclCtx->isBodyAutosynthesized() &&
|
|
!DeclCtx->isBodyAutosynthesizedFromModelFile())
|
|
return;
|
|
}
|
|
|
|
BugReporter::emitReport(std::move(R));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Emitting reports in equivalence classes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct FRIEC_WLItem {
|
|
const ExplodedNode *N;
|
|
ExplodedNode::const_succ_iterator I, E;
|
|
|
|
FRIEC_WLItem(const ExplodedNode *n)
|
|
: N(n), I(N->succ_begin()), E(N->succ_end()) {}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
|
|
BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
|
|
// If we don't need to suppress any of the nodes because they are
|
|
// post-dominated by a sink, simply add all the nodes in the equivalence class
|
|
// to 'Nodes'. Any of the reports will serve as a "representative" report.
|
|
assert(EQ.getReports().size() > 0);
|
|
const BugType& BT = EQ.getReports()[0]->getBugType();
|
|
if (!BT.isSuppressOnSink()) {
|
|
BugReport *R = EQ.getReports()[0].get();
|
|
for (auto &J : EQ.getReports()) {
|
|
if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
|
|
R = PR;
|
|
bugReports.push_back(PR);
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// For bug reports that should be suppressed when all paths are post-dominated
|
|
// by a sink node, iterate through the reports in the equivalence class
|
|
// until we find one that isn't post-dominated (if one exists). We use a
|
|
// DFS traversal of the ExplodedGraph to find a non-sink node. We could write
|
|
// this as a recursive function, but we don't want to risk blowing out the
|
|
// stack for very long paths.
|
|
BugReport *exampleReport = nullptr;
|
|
|
|
for (const auto &I: EQ.getReports()) {
|
|
auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
|
|
if (!R)
|
|
continue;
|
|
|
|
const ExplodedNode *errorNode = R->getErrorNode();
|
|
if (errorNode->isSink()) {
|
|
llvm_unreachable(
|
|
"BugType::isSuppressSink() should not be 'true' for sink end nodes");
|
|
}
|
|
// No successors? By definition this nodes isn't post-dominated by a sink.
|
|
if (errorNode->succ_empty()) {
|
|
bugReports.push_back(R);
|
|
if (!exampleReport)
|
|
exampleReport = R;
|
|
continue;
|
|
}
|
|
|
|
// See if we are in a no-return CFG block. If so, treat this similarly
|
|
// to being post-dominated by a sink. This works better when the analysis
|
|
// is incomplete and we have never reached the no-return function call(s)
|
|
// that we'd inevitably bump into on this path.
|
|
if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
|
|
if (ErrorB->isInevitablySinking())
|
|
continue;
|
|
|
|
// At this point we know that 'N' is not a sink and it has at least one
|
|
// successor. Use a DFS worklist to find a non-sink end-of-path node.
|
|
using WLItem = FRIEC_WLItem;
|
|
using DFSWorkList = SmallVector<WLItem, 10>;
|
|
|
|
llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
|
|
|
|
DFSWorkList WL;
|
|
WL.push_back(errorNode);
|
|
Visited[errorNode] = 1;
|
|
|
|
while (!WL.empty()) {
|
|
WLItem &WI = WL.back();
|
|
assert(!WI.N->succ_empty());
|
|
|
|
for (; WI.I != WI.E; ++WI.I) {
|
|
const ExplodedNode *Succ = *WI.I;
|
|
// End-of-path node?
|
|
if (Succ->succ_empty()) {
|
|
// If we found an end-of-path node that is not a sink.
|
|
if (!Succ->isSink()) {
|
|
bugReports.push_back(R);
|
|
if (!exampleReport)
|
|
exampleReport = R;
|
|
WL.clear();
|
|
break;
|
|
}
|
|
// Found a sink? Continue on to the next successor.
|
|
continue;
|
|
}
|
|
// Mark the successor as visited. If it hasn't been explored,
|
|
// enqueue it to the DFS worklist.
|
|
unsigned &mark = Visited[Succ];
|
|
if (!mark) {
|
|
mark = 1;
|
|
WL.push_back(Succ);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The worklist may have been cleared at this point. First
|
|
// check if it is empty before checking the last item.
|
|
if (!WL.empty() && &WL.back() == &WI)
|
|
WL.pop_back();
|
|
}
|
|
}
|
|
|
|
// ExampleReport will be NULL if all the nodes in the equivalence class
|
|
// were post-dominated by sinks.
|
|
return exampleReport;
|
|
}
|
|
|
|
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
|
|
SmallVector<BugReport*, 10> bugReports;
|
|
BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
|
|
if (!report)
|
|
return;
|
|
|
|
ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
|
|
std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
|
|
generateDiagnosticForConsumerMap(report, Consumers, bugReports);
|
|
|
|
for (auto &P : *Diagnostics) {
|
|
PathDiagnosticConsumer *Consumer = P.first;
|
|
std::unique_ptr<PathDiagnostic> &PD = P.second;
|
|
|
|
// If the path is empty, generate a single step path with the location
|
|
// of the issue.
|
|
if (PD->path.empty()) {
|
|
PathDiagnosticLocation L = report->getLocation();
|
|
auto piece = std::make_unique<PathDiagnosticEventPiece>(
|
|
L, report->getDescription());
|
|
for (SourceRange Range : report->getRanges())
|
|
piece->addRange(Range);
|
|
PD->setEndOfPath(std::move(piece));
|
|
}
|
|
|
|
PathPieces &Pieces = PD->getMutablePieces();
|
|
if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
|
|
// For path diagnostic consumers that don't support extra notes,
|
|
// we may optionally convert those to path notes.
|
|
for (auto I = report->getNotes().rbegin(),
|
|
E = report->getNotes().rend(); I != E; ++I) {
|
|
PathDiagnosticNotePiece *Piece = I->get();
|
|
auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
|
|
Piece->getLocation(), Piece->getString());
|
|
for (const auto &R: Piece->getRanges())
|
|
ConvertedPiece->addRange(R);
|
|
|
|
Pieces.push_front(std::move(ConvertedPiece));
|
|
}
|
|
} else {
|
|
for (auto I = report->getNotes().rbegin(),
|
|
E = report->getNotes().rend(); I != E; ++I)
|
|
Pieces.push_front(*I);
|
|
}
|
|
|
|
for (const auto &I : report->getFixits())
|
|
Pieces.back()->addFixit(I);
|
|
|
|
updateExecutedLinesWithDiagnosticPieces(*PD);
|
|
Consumer->HandlePathDiagnostic(std::move(PD));
|
|
}
|
|
}
|
|
|
|
/// Insert all lines participating in the function signature \p Signature
|
|
/// into \p ExecutedLines.
|
|
static void populateExecutedLinesWithFunctionSignature(
|
|
const Decl *Signature, const SourceManager &SM,
|
|
FilesToLineNumsMap &ExecutedLines) {
|
|
SourceRange SignatureSourceRange;
|
|
const Stmt* Body = Signature->getBody();
|
|
if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
|
|
SignatureSourceRange = FD->getSourceRange();
|
|
} else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
|
|
SignatureSourceRange = OD->getSourceRange();
|
|
} else {
|
|
return;
|
|
}
|
|
SourceLocation Start = SignatureSourceRange.getBegin();
|
|
SourceLocation End = Body ? Body->getSourceRange().getBegin()
|
|
: SignatureSourceRange.getEnd();
|
|
if (!Start.isValid() || !End.isValid())
|
|
return;
|
|
unsigned StartLine = SM.getExpansionLineNumber(Start);
|
|
unsigned EndLine = SM.getExpansionLineNumber(End);
|
|
|
|
FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
|
|
for (unsigned Line = StartLine; Line <= EndLine; Line++)
|
|
ExecutedLines[FID].insert(Line);
|
|
}
|
|
|
|
static void populateExecutedLinesWithStmt(
|
|
const Stmt *S, const SourceManager &SM,
|
|
FilesToLineNumsMap &ExecutedLines) {
|
|
SourceLocation Loc = S->getSourceRange().getBegin();
|
|
if (!Loc.isValid())
|
|
return;
|
|
SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
|
|
FileID FID = SM.getFileID(ExpansionLoc);
|
|
unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
|
|
ExecutedLines[FID].insert(LineNo);
|
|
}
|
|
|
|
/// \return all executed lines including function signatures on the path
|
|
/// starting from \p N.
|
|
static std::unique_ptr<FilesToLineNumsMap>
|
|
findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
|
|
auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
|
|
|
|
while (N) {
|
|
if (N->getFirstPred() == nullptr) {
|
|
// First node: show signature of the entrance point.
|
|
const Decl *D = N->getLocationContext()->getDecl();
|
|
populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
|
|
} else if (auto CE = N->getLocationAs<CallEnter>()) {
|
|
// Inlined function: show signature.
|
|
const Decl* D = CE->getCalleeContext()->getDecl();
|
|
populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
|
|
} else if (const Stmt *S = N->getStmtForDiagnostics()) {
|
|
populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
|
|
|
|
// Show extra context for some parent kinds.
|
|
const Stmt *P = N->getParentMap().getParent(S);
|
|
|
|
// The path exploration can die before the node with the associated
|
|
// return statement is generated, but we do want to show the whole
|
|
// return.
|
|
if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
|
|
populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
|
|
P = N->getParentMap().getParent(RS);
|
|
}
|
|
|
|
if (P && (isa<SwitchCase>(P) || isa<LabelStmt>(P)))
|
|
populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
|
|
}
|
|
|
|
N = N->getFirstPred();
|
|
}
|
|
return ExecutedLines;
|
|
}
|
|
|
|
std::unique_ptr<DiagnosticForConsumerMapTy>
|
|
BugReporter::generateDiagnosticForConsumerMap(
|
|
BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
|
|
ArrayRef<BugReport *> bugReports) {
|
|
auto *basicReport = cast<BasicBugReport>(exampleReport);
|
|
auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
|
|
for (auto *Consumer : consumers)
|
|
(*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
|
|
return Out;
|
|
}
|
|
|
|
static PathDiagnosticCallPiece *
|
|
getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
|
|
const SourceManager &SMgr) {
|
|
SourceLocation CallLoc = CP->callEnter.asLocation();
|
|
|
|
// If the call is within a macro, don't do anything (for now).
|
|
if (CallLoc.isMacroID())
|
|
return nullptr;
|
|
|
|
assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
|
|
"The call piece should not be in a header file.");
|
|
|
|
// Check if CP represents a path through a function outside of the main file.
|
|
if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
|
|
return CP;
|
|
|
|
const PathPieces &Path = CP->path;
|
|
if (Path.empty())
|
|
return nullptr;
|
|
|
|
// Check if the last piece in the callee path is a call to a function outside
|
|
// of the main file.
|
|
if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
|
|
return getFirstStackedCallToHeaderFile(CPInner, SMgr);
|
|
|
|
// Otherwise, the last piece is in the main file.
|
|
return nullptr;
|
|
}
|
|
|
|
static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
|
|
if (PD.path.empty())
|
|
return;
|
|
|
|
PathDiagnosticPiece *LastP = PD.path.back().get();
|
|
assert(LastP);
|
|
const SourceManager &SMgr = LastP->getLocation().getManager();
|
|
|
|
// We only need to check if the report ends inside headers, if the last piece
|
|
// is a call piece.
|
|
if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
|
|
CP = getFirstStackedCallToHeaderFile(CP, SMgr);
|
|
if (CP) {
|
|
// Mark the piece.
|
|
CP->setAsLastInMainSourceFile();
|
|
|
|
// Update the path diagnostic message.
|
|
const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
|
|
if (ND) {
|
|
SmallString<200> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
os << " (within a call to '" << ND->getDeclName() << "')";
|
|
PD.appendToDesc(os.str());
|
|
}
|
|
|
|
// Reset the report containing declaration and location.
|
|
PD.setDeclWithIssue(CP->getCaller());
|
|
PD.setLocation(CP->getLocation());
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<DiagnosticForConsumerMapTy>
|
|
PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
|
|
BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
|
|
ArrayRef<BugReport *> bugReports) {
|
|
std::vector<BasicBugReport *> BasicBugReports;
|
|
std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
|
|
if (isa<BasicBugReport>(exampleReport))
|
|
return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
|
|
consumers, bugReports);
|
|
|
|
// Generate the full path sensitive diagnostic, using the generation scheme
|
|
// specified by the PathDiagnosticConsumer. Note that we have to generate
|
|
// path diagnostics even for consumers which do not support paths, because
|
|
// the BugReporterVisitors may mark this bug as a false positive.
|
|
assert(!bugReports.empty());
|
|
MaxBugClassSize.updateMax(bugReports.size());
|
|
|
|
// Avoid copying the whole array because there may be a lot of reports.
|
|
ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
|
|
reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
|
|
reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
|
|
std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
|
|
consumers, convertedArrayOfReports);
|
|
|
|
if (Out->empty())
|
|
return Out;
|
|
|
|
MaxValidBugClassSize.updateMax(bugReports.size());
|
|
|
|
// Examine the report and see if the last piece is in a header. Reset the
|
|
// report location to the last piece in the main source file.
|
|
const AnalyzerOptions &Opts = getAnalyzerOptions();
|
|
for (auto const &P : *Out)
|
|
if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
|
|
resetDiagnosticLocationToMainFile(*P.second);
|
|
|
|
return Out;
|
|
}
|
|
|
|
void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
|
|
const CheckerBase *Checker, StringRef Name,
|
|
StringRef Category, StringRef Str,
|
|
PathDiagnosticLocation Loc,
|
|
ArrayRef<SourceRange> Ranges,
|
|
ArrayRef<FixItHint> Fixits) {
|
|
EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
|
|
Loc, Ranges, Fixits);
|
|
}
|
|
|
|
void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
|
|
CheckerNameRef CheckName,
|
|
StringRef name, StringRef category,
|
|
StringRef str, PathDiagnosticLocation Loc,
|
|
ArrayRef<SourceRange> Ranges,
|
|
ArrayRef<FixItHint> Fixits) {
|
|
// 'BT' is owned by BugReporter.
|
|
BugType *BT = getBugTypeForName(CheckName, name, category);
|
|
auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
|
|
R->setDeclWithIssue(DeclWithIssue);
|
|
for (const auto &SR : Ranges)
|
|
R->addRange(SR);
|
|
for (const auto &FH : Fixits)
|
|
R->addFixItHint(FH);
|
|
emitReport(std::move(R));
|
|
}
|
|
|
|
BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
|
|
StringRef name, StringRef category) {
|
|
SmallString<136> fullDesc;
|
|
llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
|
|
<< ":" << category;
|
|
BugType *&BT = StrBugTypes[fullDesc];
|
|
if (!BT)
|
|
BT = new BugType(CheckName, name, category);
|
|
return BT;
|
|
}
|