llvm-project/polly/lib/Analysis/Dependences.cpp

637 lines
23 KiB
C++

//===- Dependency.cpp - Calculate dependency information for a Scop. -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Calculate the data dependency relations for a Scop using ISL.
//
// The integer set library (ISL) from Sven, has a integrated dependency analysis
// to calculate data dependences. This pass takes advantage of this and
// calculate those dependences a Scop.
//
// The dependences in this pass are exact in terms that for a specific read
// statement instance only the last write statement instance is returned. In
// case of may writes a set of possible write instances is returned. This
// analysis will never produce redundant dependences.
//
//===----------------------------------------------------------------------===//
//
#include "polly/Dependences.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Support/Debug.h"
#include <isl/aff.h>
#include <isl/ctx.h>
#include <isl/flow.h>
#include <isl/map.h>
#include <isl/options.h>
#include <isl/set.h>
using namespace polly;
using namespace llvm;
#define DEBUG_TYPE "polly-dependence"
static cl::opt<int> OptComputeOut(
"polly-dependences-computeout",
cl::desc("Bound the dependence analysis by a maximal amount of "
"computational steps"),
cl::Hidden, cl::init(250000), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> LegalityCheckDisabled(
"disable-polly-legality", cl::desc("Disable polly legality check"),
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS };
static cl::opt<enum AnalysisType> OptAnalysisType(
"polly-dependences-analysis-type",
cl::desc("The kind of dependence analysis to use"),
cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based",
"Exact dependences without transitive dependences"),
clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based",
"Overapproximation of dependences"),
clEnumValEnd),
cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::ZeroOrMore,
cl::cat(PollyCategory));
//===----------------------------------------------------------------------===//
Dependences::Dependences() : ScopPass(ID) { RAW = WAR = WAW = nullptr; }
void Dependences::collectInfo(Scop &S, isl_union_map **Read,
isl_union_map **Write, isl_union_map **MayWrite,
isl_union_map **AccessSchedule,
isl_union_map **StmtSchedule) {
isl_space *Space = S.getParamSpace();
*Read = isl_union_map_empty(isl_space_copy(Space));
*Write = isl_union_map_empty(isl_space_copy(Space));
*MayWrite = isl_union_map_empty(isl_space_copy(Space));
*AccessSchedule = isl_union_map_empty(isl_space_copy(Space));
*StmtSchedule = isl_union_map_empty(Space);
SmallPtrSet<const Value *, 8> ReductionBaseValues;
for (ScopStmt *Stmt : S)
for (MemoryAccess *MA : *Stmt)
if (MA->isReductionLike())
ReductionBaseValues.insert(MA->getBaseAddr());
for (ScopStmt *Stmt : S) {
for (MemoryAccess *MA : *Stmt) {
isl_set *domcp = Stmt->getDomain();
isl_map *accdom = MA->getAccessRelation();
accdom = isl_map_intersect_domain(accdom, domcp);
if (ReductionBaseValues.count(MA->getBaseAddr())) {
// Wrap the access domain and adjust the scattering accordingly.
//
// An access domain like
// Stmt[i0, i1] -> MemAcc_A[i0 + i1]
// will be transformed into
// [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
//
// The original scattering looks like
// Stmt[i0, i1] -> [0, i0, 2, i1, 0]
// but as we transformed the access domain we need the scattering
// to match the new access domains, thus we need
// [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> [0, i0, 2, i1, 0]
accdom = isl_map_range_map(accdom);
isl_map *stmt_scatter = Stmt->getScattering();
isl_set *scatter_dom = isl_map_domain(isl_map_copy(accdom));
isl_set *scatter_ran = isl_map_range(stmt_scatter);
isl_map *scatter =
isl_map_from_domain_and_range(scatter_dom, scatter_ran);
for (unsigned u = 0, e = Stmt->getNumIterators(); u != e; u++)
scatter =
isl_map_equate(scatter, isl_dim_out, 2 * u + 1, isl_dim_in, u);
*AccessSchedule = isl_union_map_add_map(*AccessSchedule, scatter);
}
if (MA->isRead())
*Read = isl_union_map_add_map(*Read, accdom);
else
*Write = isl_union_map_add_map(*Write, accdom);
}
*StmtSchedule = isl_union_map_add_map(*StmtSchedule, Stmt->getScattering());
}
}
/// @brief Fix all dimension of @p Zero to 0 and add it to @p user
static int fixSetToZero(__isl_take isl_set *Zero, void *user) {
isl_union_set **User = (isl_union_set **)user;
for (unsigned i = 0; i < isl_set_dim(Zero, isl_dim_set); i++)
Zero = isl_set_fix_si(Zero, isl_dim_set, i, 0);
*User = isl_union_set_add_set(*User, Zero);
return 0;
}
/// @brief Compute the privatization dependences for a given dependency @p Map
///
/// Privatization dependences are widened original dependences which originate
/// or end in a reduction access. To compute them we apply the transitive close
/// of the reduction dependences (which maps each iteration of a reduction
/// statement to all following ones) on the RAW/WAR/WAW dependences. The
/// dependences which start or end at a reduction statement will be extended to
/// depend on all following reduction statement iterations as well.
/// Note: "Following" here means according to the reduction dependences.
///
/// For the input:
///
/// S0: *sum = 0;
/// for (int i = 0; i < 1024; i++)
/// S1: *sum += i;
/// S2: *sum = *sum * 3;
///
/// we have the following dependences before we add privatization dependences:
///
/// RAW:
/// { S0[] -> S1[0]; S1[1023] -> S2[] }
/// WAR:
/// { }
/// WAW:
/// { S0[] -> S1[0]; S1[1024] -> S2[] }
/// RED:
/// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
///
/// and afterwards:
///
/// RAW:
/// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
/// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
/// WAR:
/// { }
/// WAW:
/// { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
/// S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
/// RED:
/// { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
///
/// Note: This function also computes the (reverse) transitive closure of the
/// reduction dependences.
void Dependences::addPrivatizationDependences() {
isl_union_map *PrivRAW, *PrivWAW, *PrivWAR;
// The transitive closure might be over approximated, thus could lead to
// dependency cycles in the privatization dependences. To make sure this
// will not happen we remove all negative dependences after we computed
// the transitive closure.
TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), 0);
// FIXME: Apply the current schedule instead of assuming the identity schedule
// here. The current approach is only valid as long as we compute the
// dependences only with the initial (identity schedule). Any other
// schedule could change "the direction of the backward dependences" we
// want to eliminate here.
isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED));
isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas));
isl_union_set *Zero = isl_union_set_empty(isl_union_set_get_space(Universe));
isl_union_set_foreach_set(Universe, fixSetToZero, &Zero);
isl_union_map *NonPositive = isl_union_set_lex_le_union_set(UDeltas, Zero);
TC_RED = isl_union_map_subtract(TC_RED, NonPositive);
TC_RED = isl_union_map_union(
TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED)));
TC_RED = isl_union_map_coalesce(TC_RED);
isl_union_map **Maps[] = {&RAW, &WAW, &WAR};
isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR};
for (unsigned u = 0; u < 3; u++) {
isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u];
*PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map),
isl_union_map_copy(TC_RED));
*PrivMap = isl_union_map_union(
*PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED),
isl_union_map_copy(*Map)));
*Map = isl_union_map_union(*Map, *PrivMap);
}
isl_union_set_free(Universe);
}
void Dependences::calculateDependences(Scop &S) {
isl_union_map *Read, *Write, *MayWrite, *AccessSchedule, *StmtSchedule,
*Schedule;
DEBUG(dbgs() << "Scop: \n" << S << "\n");
collectInfo(S, &Read, &Write, &MayWrite, &AccessSchedule, &StmtSchedule);
Schedule =
isl_union_map_union(AccessSchedule, isl_union_map_copy(StmtSchedule));
Read = isl_union_map_coalesce(Read);
Write = isl_union_map_coalesce(Write);
MayWrite = isl_union_map_coalesce(MayWrite);
long MaxOpsOld = isl_ctx_get_max_operations(S.getIslCtx());
isl_ctx_set_max_operations(S.getIslCtx(), OptComputeOut);
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);
DEBUG(dbgs() << "Read: " << Read << "\n";
dbgs() << "Write: " << Write << "\n";
dbgs() << "MayWrite: " << MayWrite << "\n";
dbgs() << "Schedule: " << Schedule << "\n");
// The pointers below will be set by the subsequent calls to
// isl_union_map_compute_flow.
RAW = WAW = WAR = RED = nullptr;
if (OptAnalysisType == VALUE_BASED_ANALYSIS) {
isl_union_map_compute_flow(
isl_union_map_copy(Read), isl_union_map_copy(Write),
isl_union_map_copy(MayWrite), isl_union_map_copy(Schedule), &RAW,
nullptr, nullptr, nullptr);
isl_union_map_compute_flow(
isl_union_map_copy(Write), isl_union_map_copy(Write),
isl_union_map_copy(Read), isl_union_map_copy(Schedule), &WAW, &WAR,
nullptr, nullptr);
} else {
isl_union_map *Empty;
Empty = isl_union_map_empty(isl_union_map_get_space(Write));
Write = isl_union_map_union(Write, isl_union_map_copy(MayWrite));
isl_union_map_compute_flow(
isl_union_map_copy(Read), isl_union_map_copy(Empty),
isl_union_map_copy(Write), isl_union_map_copy(Schedule), nullptr, &RAW,
nullptr, nullptr);
isl_union_map_compute_flow(
isl_union_map_copy(Write), isl_union_map_copy(Empty),
isl_union_map_copy(Read), isl_union_map_copy(Schedule), nullptr, &WAR,
nullptr, nullptr);
isl_union_map_compute_flow(
isl_union_map_copy(Write), isl_union_map_copy(Empty),
isl_union_map_copy(Write), isl_union_map_copy(Schedule), nullptr, &WAW,
nullptr, nullptr);
isl_union_map_free(Empty);
}
isl_union_map_free(MayWrite);
isl_union_map_free(Write);
isl_union_map_free(Read);
isl_union_map_free(Schedule);
RAW = isl_union_map_coalesce(RAW);
WAW = isl_union_map_coalesce(WAW);
WAR = isl_union_map_coalesce(WAR);
if (isl_ctx_last_error(S.getIslCtx()) == isl_error_quota) {
isl_union_map_free(RAW);
isl_union_map_free(WAW);
isl_union_map_free(WAR);
RAW = WAW = WAR = nullptr;
isl_ctx_reset_error(S.getIslCtx());
}
isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);
isl_ctx_reset_operations(S.getIslCtx());
isl_ctx_set_max_operations(S.getIslCtx(), MaxOpsOld);
isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR;
STMT_RAW = isl_union_map_intersect_domain(
isl_union_map_copy(RAW),
isl_union_map_domain(isl_union_map_copy(StmtSchedule)));
STMT_WAW = isl_union_map_intersect_domain(
isl_union_map_copy(WAW),
isl_union_map_domain(isl_union_map_copy(StmtSchedule)));
STMT_WAR = isl_union_map_intersect_domain(isl_union_map_copy(WAR),
isl_union_map_domain(StmtSchedule));
DEBUG({
dbgs() << "Wrapped Dependences:\n";
printScop(dbgs());
dbgs() << "\n";
});
// To handle reduction dependences we proceed as follows:
// 1) Aggregate all possible reduction dependences, namely all self
// dependences on reduction like statements.
// 2) Intersect them with the actual RAW & WAW dependences to the get the
// actual reduction dependences. This will ensure the load/store memory
// addresses were __identical__ in the two iterations of the statement.
// 3) Relax the original RAW and WAW dependences by substracting the actual
// reduction dependences. Binary reductions (sum += A[i]) cause both, and
// the same, RAW and WAW dependences.
// 4) Add the privatization dependences which are widened versions of
// already present dependences. They model the effect of manual
// privatization at the outermost possible place (namely after the last
// write and before the first access to a reduction location).
// Step 1)
RED = isl_union_map_empty(isl_union_map_get_space(RAW));
for (ScopStmt *Stmt : S) {
for (MemoryAccess *MA : *Stmt) {
if (!MA->isReductionLike())
continue;
isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation());
isl_map *Identity =
isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW);
RED = isl_union_map_add_map(RED, Identity);
}
}
// Step 2)
RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW));
RED = isl_union_map_intersect(RED, isl_union_map_copy(WAW));
if (!isl_union_map_is_empty(RED)) {
// Step 3)
RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED));
WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED));
// Step 4)
addPrivatizationDependences();
}
DEBUG({
dbgs() << "Final Wrapped Dependences:\n";
printScop(dbgs());
dbgs() << "\n";
});
// RED_SIN is used to collect all reduction dependences again after we
// split them according to the causing memory accesses. The current assumption
// is that our method of splitting will not have any leftovers. In the end
// we validate this assumption until we have more confidence in this method.
isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW));
// For each reduction like memory access, check if there are reduction
// dependences with the access relation of the memory access as a domain
// (wrapped space!). If so these dependences are caused by this memory access.
// We then move this portion of reduction dependences back to the statement ->
// statement space and add a mapping from the memory access to these
// dependences.
for (ScopStmt *Stmt : S) {
for (MemoryAccess *MA : *Stmt) {
if (!MA->isReductionLike())
continue;
isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation());
isl_union_map *AccRedDepU = isl_union_map_intersect_domain(
isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW));
if (isl_union_map_is_empty(AccRedDepU) && !isl_union_map_free(AccRedDepU))
continue;
isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU);
RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep));
AccRedDep = isl_map_zip(AccRedDep);
AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep));
setReductionDependences(MA, AccRedDep);
}
}
assert(isl_union_map_is_equal(RED_SIN, TC_RED) &&
"Intersecting the reduction dependence domain with the wrapped access "
"relation is not enough, we need to loosen the access relation also");
isl_union_map_free(RED_SIN);
RAW = isl_union_map_zip(RAW);
WAW = isl_union_map_zip(WAW);
WAR = isl_union_map_zip(WAR);
RED = isl_union_map_zip(RED);
TC_RED = isl_union_map_zip(TC_RED);
DEBUG({
dbgs() << "Zipped Dependences:\n";
printScop(dbgs());
dbgs() << "\n";
});
RAW = isl_union_set_unwrap(isl_union_map_domain(RAW));
WAW = isl_union_set_unwrap(isl_union_map_domain(WAW));
WAR = isl_union_set_unwrap(isl_union_map_domain(WAR));
RED = isl_union_set_unwrap(isl_union_map_domain(RED));
TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED));
DEBUG({
dbgs() << "Unwrapped Dependences:\n";
printScop(dbgs());
dbgs() << "\n";
});
RAW = isl_union_map_union(RAW, STMT_RAW);
WAW = isl_union_map_union(WAW, STMT_WAW);
WAR = isl_union_map_union(WAR, STMT_WAR);
RAW = isl_union_map_coalesce(RAW);
WAW = isl_union_map_coalesce(WAW);
WAR = isl_union_map_coalesce(WAR);
RED = isl_union_map_coalesce(RED);
TC_RED = isl_union_map_coalesce(TC_RED);
DEBUG(printScop(dbgs()));
}
bool Dependences::runOnScop(Scop &S) {
releaseMemory();
calculateDependences(S);
return false;
}
bool Dependences::isValidScattering(StatementToIslMapTy *NewScattering) {
Scop &S = getCurScop();
if (LegalityCheckDisabled)
return true;
isl_union_map *Dependences = getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR);
isl_space *Space = S.getParamSpace();
isl_union_map *Scattering = isl_union_map_empty(Space);
isl_space *ScatteringSpace = 0;
for (ScopStmt *Stmt : S) {
isl_map *StmtScat;
if (NewScattering->find(Stmt) == NewScattering->end())
StmtScat = Stmt->getScattering();
else
StmtScat = isl_map_copy((*NewScattering)[Stmt]);
if (!ScatteringSpace)
ScatteringSpace = isl_space_range(isl_map_get_space(StmtScat));
Scattering = isl_union_map_add_map(Scattering, StmtScat);
}
Dependences =
isl_union_map_apply_domain(Dependences, isl_union_map_copy(Scattering));
Dependences = isl_union_map_apply_range(Dependences, Scattering);
isl_set *Zero = isl_set_universe(isl_space_copy(ScatteringSpace));
for (unsigned i = 0; i < isl_set_dim(Zero, isl_dim_set); i++)
Zero = isl_set_fix_si(Zero, isl_dim_set, i, 0);
isl_union_set *UDeltas = isl_union_map_deltas(Dependences);
isl_set *Deltas = isl_union_set_extract_set(UDeltas, ScatteringSpace);
isl_union_set_free(UDeltas);
isl_map *NonPositive = isl_set_lex_le_set(Deltas, Zero);
bool IsValid = isl_map_is_empty(NonPositive);
isl_map_free(NonPositive);
return IsValid;
}
// Check if the current scheduling dimension is parallel.
//
// We check for parallelism by verifying that the loop does not carry any
// dependences.
//
// Parallelism test: if the distance is zero in all outer dimensions, then it
// has to be zero in the current dimension as well.
//
// Implementation: first, translate dependences into time space, then force
// outer dimensions to be equal. If the distance is zero in the current
// dimension, then the loop is parallel. The distance is zero in the current
// dimension if it is a subset of a map with equal values for the current
// dimension.
bool Dependences::isParallel(isl_union_map *Schedule, isl_union_map *Deps,
isl_pw_aff **MinDistancePtr) {
isl_set *Deltas, *Distance;
isl_map *ScheduleDeps;
unsigned Dimension;
bool IsParallel;
Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule));
if (isl_union_map_is_empty(Deps)) {
isl_union_map_free(Deps);
return true;
}
ScheduleDeps = isl_map_from_union_map(Deps);
Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1;
for (unsigned i = 0; i < Dimension; i++)
ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i);
Deltas = isl_map_deltas(ScheduleDeps);
Distance = isl_set_universe(isl_set_get_space(Deltas));
// [0, ..., 0, +] - All zeros and last dimension larger than zero
for (unsigned i = 0; i < Dimension; i++)
Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0);
Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1);
Distance = isl_set_intersect(Distance, Deltas);
IsParallel = isl_set_is_empty(Distance);
if (IsParallel || !MinDistancePtr) {
isl_set_free(Distance);
return IsParallel;
}
Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension);
Distance = isl_set_coalesce(Distance);
// This last step will compute a expression for the minimal value in the
// distance polyhedron Distance with regards to the first (outer most)
// dimension.
*MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0));
return false;
}
static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) {
if (DM)
OS << DM << "\n";
else
OS << "n/a\n";
}
void Dependences::printScop(raw_ostream &OS) const {
OS << "\tRAW dependences:\n\t\t";
printDependencyMap(OS, RAW);
OS << "\tWAR dependences:\n\t\t";
printDependencyMap(OS, WAR);
OS << "\tWAW dependences:\n\t\t";
printDependencyMap(OS, WAW);
OS << "\tReduction dependences:\n\t\t";
printDependencyMap(OS, RED);
OS << "\tTransitive closure of reduction dependences:\n\t\t";
printDependencyMap(OS, TC_RED);
}
void Dependences::releaseMemory() {
isl_union_map_free(RAW);
isl_union_map_free(WAR);
isl_union_map_free(WAW);
isl_union_map_free(RED);
isl_union_map_free(TC_RED);
RED = RAW = WAR = WAW = TC_RED = nullptr;
for (auto &ReductionDeps : ReductionDependences)
isl_map_free(ReductionDeps.second);
ReductionDependences.clear();
}
isl_union_map *Dependences::getDependences(int Kinds) {
assert(hasValidDependences() && "No valid dependences available");
isl_space *Space = isl_union_map_get_space(RAW);
isl_union_map *Deps = isl_union_map_empty(Space);
if (Kinds & TYPE_RAW)
Deps = isl_union_map_union(Deps, isl_union_map_copy(RAW));
if (Kinds & TYPE_WAR)
Deps = isl_union_map_union(Deps, isl_union_map_copy(WAR));
if (Kinds & TYPE_WAW)
Deps = isl_union_map_union(Deps, isl_union_map_copy(WAW));
if (Kinds & TYPE_RED)
Deps = isl_union_map_union(Deps, isl_union_map_copy(RED));
if (Kinds & TYPE_TC_RED)
Deps = isl_union_map_union(Deps, isl_union_map_copy(TC_RED));
Deps = isl_union_map_coalesce(Deps);
Deps = isl_union_map_detect_equalities(Deps);
return Deps;
}
bool Dependences::hasValidDependences() {
return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr);
}
isl_map *Dependences::getReductionDependences(MemoryAccess *MA) {
return isl_map_copy(ReductionDependences[MA]);
}
void Dependences::setReductionDependences(MemoryAccess *MA, isl_map *D) {
assert(ReductionDependences.count(MA) == 0 &&
"Reduction dependences set twice!");
ReductionDependences[MA] = D;
}
void Dependences::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
}
char Dependences::ID = 0;
Pass *polly::createDependencesPass() { return new Dependences(); }
INITIALIZE_PASS_BEGIN(Dependences, "polly-dependences",
"Polly - Calculate dependences", false, false);
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
INITIALIZE_PASS_END(Dependences, "polly-dependences",
"Polly - Calculate dependences", false, false)