forked from OSchip/llvm-project
912 lines
38 KiB
C++
912 lines
38 KiB
C++
//===- Storage.h - TACO-flavored sparse tensor representation ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is part of the lightweight runtime support library for sparse
|
|
// tensor manipulations. The functionality of the support library is meant
|
|
// to simplify benchmarking, testing, and debugging MLIR code operating on
|
|
// sparse tensors. However, the provided functionality is **not** part of
|
|
// core MLIR itself.
|
|
//
|
|
// This file contains definitions for the following classes:
|
|
//
|
|
// * `SparseTensorStorageBase`
|
|
// * `SparseTensorStorage<P, I, V>`
|
|
// * `SparseTensorEnumeratorBase<V>`
|
|
// * `SparseTensorEnumerator<P, I, V>`
|
|
// * `SparseTensorNNZ`
|
|
//
|
|
// Ideally we would split the storage classes and enumerator classes
|
|
// into separate files, to improve legibility. But alas: because these
|
|
// are template-classes, they must therefore provide *definitions* in the
|
|
// header; and those definitions cause circular dependencies that make it
|
|
// impossible to split the file up along the desired lines. (We could
|
|
// split the base classes from the derived classes, but that doesn't
|
|
// particularly help improve legibility.)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef MLIR_EXECUTIONENGINE_SPARSETENSOR_STORAGE_H
|
|
#define MLIR_EXECUTIONENGINE_SPARSETENSOR_STORAGE_H
|
|
|
|
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
|
|
#include "mlir/ExecutionEngine/SparseTensor/CheckedMul.h"
|
|
#include "mlir/ExecutionEngine/SparseTensor/Enums.h"
|
|
#include "mlir/ExecutionEngine/SparseTensor/ErrorHandling.h"
|
|
|
|
namespace mlir {
|
|
namespace sparse_tensor {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// This forward decl is sufficient to split `SparseTensorStorageBase` into
|
|
// its own header, but isn't sufficient for `SparseTensorStorage` to join it.
|
|
template <typename V>
|
|
class SparseTensorEnumeratorBase;
|
|
|
|
// These macros ensure consistent error messages, without risk of incuring
|
|
// an additional method call to do so.
|
|
#define ASSERT_VALID_DIM(d) \
|
|
assert(d < getRank() && "Dimension index is out of bounds");
|
|
#define ASSERT_COMPRESSED_DIM(d) \
|
|
assert(isCompressedDim(d) && "Dimension is not compressed");
|
|
#define ASSERT_DENSE_DIM(d) assert(isDenseDim(d) && "Dimension is not dense");
|
|
|
|
/// Abstract base class for `SparseTensorStorage<P,I,V>`. This class
|
|
/// takes responsibility for all the `<P,I,V>`-independent aspects
|
|
/// of the tensor (e.g., shape, sparsity, permutation). In addition,
|
|
/// we use function overloading to implement "partial" method
|
|
/// specialization, which the C-API relies on to catch type errors
|
|
/// arising from our use of opaque pointers.
|
|
class SparseTensorStorageBase {
|
|
protected:
|
|
// Since this class is virtual, we must disallow public copying in
|
|
// order to avoid "slicing". Since this class has data members,
|
|
// that means making copying protected.
|
|
// <https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-copy-virtual>
|
|
SparseTensorStorageBase(const SparseTensorStorageBase &) = default;
|
|
// Copy-assignment would be implicitly deleted (because `dimSizes`
|
|
// is const), so we explicitly delete it for clarity.
|
|
SparseTensorStorageBase &operator=(const SparseTensorStorageBase &) = delete;
|
|
|
|
public:
|
|
/// Constructs a new storage object. The `perm` maps the tensor's
|
|
/// semantic-ordering of dimensions to this object's storage-order.
|
|
/// The `dimSizes` and `sparsity` arrays are already in storage-order.
|
|
///
|
|
/// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`.
|
|
SparseTensorStorageBase(const std::vector<uint64_t> &dimSizes,
|
|
const uint64_t *perm, const DimLevelType *sparsity);
|
|
|
|
virtual ~SparseTensorStorageBase() = default;
|
|
|
|
/// Get the rank of the tensor.
|
|
uint64_t getRank() const { return dimSizes.size(); }
|
|
|
|
/// Get the dimension-sizes array, in storage-order.
|
|
const std::vector<uint64_t> &getDimSizes() const { return dimSizes; }
|
|
|
|
/// Safely lookup the size of the given (storage-order) dimension.
|
|
uint64_t getDimSize(uint64_t d) const {
|
|
ASSERT_VALID_DIM(d);
|
|
return dimSizes[d];
|
|
}
|
|
|
|
/// Get the "reverse" permutation, which maps this object's
|
|
/// storage-order to the tensor's semantic-order.
|
|
const std::vector<uint64_t> &getRev() const { return rev; }
|
|
|
|
/// Get the dimension-types array, in storage-order.
|
|
const std::vector<DimLevelType> &getDimTypes() const { return dimTypes; }
|
|
|
|
/// Safely lookup the level-type of the given (storage-order) dimension.
|
|
DimLevelType getDimType(uint64_t d) const {
|
|
ASSERT_VALID_DIM(d);
|
|
return dimTypes[d];
|
|
}
|
|
|
|
/// Safely check if the (storage-order) dimension uses dense storage.
|
|
bool isDenseDim(uint64_t d) const { return isDenseDLT(getDimType(d)); }
|
|
|
|
/// Safely check if the (storage-order) dimension uses compressed storage.
|
|
bool isCompressedDim(uint64_t d) const {
|
|
return isCompressedDLT(getDimType(d));
|
|
}
|
|
|
|
/// Safely check if the (storage-order) dimension uses singleton storage.
|
|
bool isSingletonDim(uint64_t d) const {
|
|
return isSingletonDLT(getDimType(d));
|
|
}
|
|
|
|
/// Safely check if the (storage-order) dimension is ordered.
|
|
bool isOrderedDim(uint64_t d) const { return isOrderedDLT(getDimType(d)); }
|
|
|
|
/// Safely check if the (storage-order) dimension is unique.
|
|
bool isUniqueDim(uint64_t d) const { return isUniqueDLT(getDimType(d)); }
|
|
|
|
/// Allocate a new enumerator.
|
|
#define DECL_NEWENUMERATOR(VNAME, V) \
|
|
virtual void newEnumerator(SparseTensorEnumeratorBase<V> **, uint64_t, \
|
|
const uint64_t *) const;
|
|
FOREVERY_V(DECL_NEWENUMERATOR)
|
|
#undef DECL_NEWENUMERATOR
|
|
|
|
/// Pointers-overhead storage.
|
|
#define DECL_GETPOINTERS(PNAME, P) \
|
|
virtual void getPointers(std::vector<P> **, uint64_t);
|
|
FOREVERY_FIXED_O(DECL_GETPOINTERS)
|
|
#undef DECL_GETPOINTERS
|
|
|
|
/// Indices-overhead storage.
|
|
#define DECL_GETINDICES(INAME, I) \
|
|
virtual void getIndices(std::vector<I> **, uint64_t);
|
|
FOREVERY_FIXED_O(DECL_GETINDICES)
|
|
#undef DECL_GETINDICES
|
|
|
|
/// Primary storage.
|
|
#define DECL_GETVALUES(VNAME, V) virtual void getValues(std::vector<V> **);
|
|
FOREVERY_V(DECL_GETVALUES)
|
|
#undef DECL_GETVALUES
|
|
|
|
/// Element-wise insertion in lexicographic index order.
|
|
#define DECL_LEXINSERT(VNAME, V) virtual void lexInsert(const uint64_t *, V);
|
|
FOREVERY_V(DECL_LEXINSERT)
|
|
#undef DECL_LEXINSERT
|
|
|
|
/// Expanded insertion.
|
|
#define DECL_EXPINSERT(VNAME, V) \
|
|
virtual void expInsert(uint64_t *, V *, bool *, uint64_t *, uint64_t);
|
|
FOREVERY_V(DECL_EXPINSERT)
|
|
#undef DECL_EXPINSERT
|
|
|
|
/// Finishes insertion.
|
|
virtual void endInsert() = 0;
|
|
|
|
private:
|
|
const std::vector<uint64_t> dimSizes;
|
|
std::vector<uint64_t> rev; // conceptually `const`
|
|
const std::vector<DimLevelType> dimTypes;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// This forward decl is necessary for defining `SparseTensorStorage`,
|
|
// but isn't sufficient for splitting it off.
|
|
template <typename P, typename I, typename V>
|
|
class SparseTensorEnumerator;
|
|
|
|
/// A memory-resident sparse tensor using a storage scheme based on
|
|
/// per-dimension sparse/dense annotations. This data structure provides
|
|
/// a bufferized form of a sparse tensor type. In contrast to generating
|
|
/// setup methods for each differently annotated sparse tensor, this
|
|
/// method provides a convenient "one-size-fits-all" solution that simply
|
|
/// takes an input tensor and annotations to implement all required setup
|
|
/// in a general manner.
|
|
template <typename P, typename I, typename V>
|
|
class SparseTensorStorage final : public SparseTensorStorageBase {
|
|
/// Private constructor to share code between the other constructors.
|
|
/// Beware that the object is not necessarily guaranteed to be in a
|
|
/// valid state after this constructor alone; e.g., `isCompressedDim(d)`
|
|
/// doesn't entail `!(pointers[d].empty())`.
|
|
///
|
|
/// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`.
|
|
SparseTensorStorage(const std::vector<uint64_t> &dimSizes,
|
|
const uint64_t *perm, const DimLevelType *sparsity)
|
|
: SparseTensorStorageBase(dimSizes, perm, sparsity), pointers(getRank()),
|
|
indices(getRank()), idx(getRank()) {}
|
|
|
|
public:
|
|
/// Constructs a sparse tensor storage scheme with the given dimensions,
|
|
/// permutation, and per-dimension dense/sparse annotations, using
|
|
/// the coordinate scheme tensor for the initial contents if provided.
|
|
///
|
|
/// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`.
|
|
SparseTensorStorage(const std::vector<uint64_t> &dimSizes,
|
|
const uint64_t *perm, const DimLevelType *sparsity,
|
|
SparseTensorCOO<V> *coo);
|
|
|
|
/// Constructs a sparse tensor storage scheme with the given dimensions,
|
|
/// permutation, and per-dimension dense/sparse annotations, using
|
|
/// the given sparse tensor for the initial contents.
|
|
///
|
|
/// Preconditions:
|
|
/// * `perm` and `sparsity` must be valid for `dimSizes.size()`.
|
|
/// * The `tensor` must have the same value type `V`.
|
|
SparseTensorStorage(const std::vector<uint64_t> &dimSizes,
|
|
const uint64_t *perm, const DimLevelType *sparsity,
|
|
const SparseTensorStorageBase &tensor);
|
|
|
|
/// Factory method. Constructs a sparse tensor storage scheme with the given
|
|
/// dimensions, permutation, and per-dimension dense/sparse annotations,
|
|
/// using the coordinate scheme tensor for the initial contents if provided.
|
|
/// In the latter case, the coordinate scheme must respect the same
|
|
/// permutation as is desired for the new sparse tensor storage.
|
|
///
|
|
/// Precondition: `shape`, `perm`, and `sparsity` must be valid for `rank`.
|
|
static SparseTensorStorage<P, I, V> *
|
|
newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm,
|
|
const DimLevelType *sparsity, SparseTensorCOO<V> *coo);
|
|
|
|
/// Factory method. Constructs a sparse tensor storage scheme with
|
|
/// the given dimensions, permutation, and per-dimension dense/sparse
|
|
/// annotations, using the sparse tensor for the initial contents.
|
|
///
|
|
/// Preconditions:
|
|
/// * `shape`, `perm`, and `sparsity` must be valid for `rank`.
|
|
/// * The `tensor` must have the same value type `V`.
|
|
static SparseTensorStorage<P, I, V> *
|
|
newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm,
|
|
const DimLevelType *sparsity,
|
|
const SparseTensorStorageBase *source);
|
|
|
|
~SparseTensorStorage() final = default;
|
|
|
|
/// Partially specialize these getter methods based on template types.
|
|
void getPointers(std::vector<P> **out, uint64_t d) final {
|
|
ASSERT_VALID_DIM(d);
|
|
*out = &pointers[d];
|
|
}
|
|
void getIndices(std::vector<I> **out, uint64_t d) final {
|
|
ASSERT_VALID_DIM(d);
|
|
*out = &indices[d];
|
|
}
|
|
void getValues(std::vector<V> **out) final { *out = &values; }
|
|
|
|
/// Partially specialize lexicographical insertions based on template types.
|
|
void lexInsert(const uint64_t *cursor, V val) final {
|
|
// First, wrap up pending insertion path.
|
|
uint64_t diff = 0;
|
|
uint64_t top = 0;
|
|
if (!values.empty()) {
|
|
diff = lexDiff(cursor);
|
|
endPath(diff + 1);
|
|
top = idx[diff] + 1;
|
|
}
|
|
// Then continue with insertion path.
|
|
insPath(cursor, diff, top, val);
|
|
}
|
|
|
|
/// Partially specialize expanded insertions based on template types.
|
|
/// Note that this method resets the values/filled-switch array back
|
|
/// to all-zero/false while only iterating over the nonzero elements.
|
|
void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added,
|
|
uint64_t count) final {
|
|
if (count == 0)
|
|
return;
|
|
// Sort.
|
|
std::sort(added, added + count);
|
|
// Restore insertion path for first insert.
|
|
const uint64_t lastDim = getRank() - 1;
|
|
uint64_t index = added[0];
|
|
assert(filled[index] && "added index is not filled");
|
|
cursor[lastDim] = index;
|
|
lexInsert(cursor, values[index]);
|
|
values[index] = 0;
|
|
filled[index] = false;
|
|
// Subsequent insertions are quick.
|
|
for (uint64_t i = 1; i < count; ++i) {
|
|
assert(index < added[i] && "non-lexicographic insertion");
|
|
index = added[i];
|
|
assert(filled[index] && "added index is not filled");
|
|
cursor[lastDim] = index;
|
|
insPath(cursor, lastDim, added[i - 1] + 1, values[index]);
|
|
values[index] = 0;
|
|
filled[index] = false;
|
|
}
|
|
}
|
|
|
|
/// Finalizes lexicographic insertions.
|
|
void endInsert() final {
|
|
if (values.empty())
|
|
finalizeSegment(0);
|
|
else
|
|
endPath(0);
|
|
}
|
|
|
|
/// Allocate a new enumerator for this classes `<P,I,V>` types and
|
|
/// erase the `<P,I>` parts from the type. Callers must make sure to
|
|
/// delete the enumerator when they're done with it.
|
|
void newEnumerator(SparseTensorEnumeratorBase<V> **out, uint64_t rank,
|
|
const uint64_t *perm) const final {
|
|
*out = new SparseTensorEnumerator<P, I, V>(*this, rank, perm);
|
|
}
|
|
|
|
/// Returns this sparse tensor storage scheme as a new memory-resident
|
|
/// sparse tensor in coordinate scheme with the given dimension order.
|
|
///
|
|
/// Precondition: `perm` must be valid for `getRank()`.
|
|
SparseTensorCOO<V> *toCOO(const uint64_t *perm) const {
|
|
SparseTensorEnumeratorBase<V> *enumerator;
|
|
newEnumerator(&enumerator, getRank(), perm);
|
|
SparseTensorCOO<V> *coo =
|
|
new SparseTensorCOO<V>(enumerator->permutedSizes(), values.size());
|
|
enumerator->forallElements([&coo](const std::vector<uint64_t> &ind, V val) {
|
|
coo->add(ind, val);
|
|
});
|
|
// TODO: This assertion assumes there are no stored zeros,
|
|
// or if there are then that we don't filter them out.
|
|
// Cf., <https://github.com/llvm/llvm-project/issues/54179>
|
|
assert(coo->getElements().size() == values.size());
|
|
delete enumerator;
|
|
return coo;
|
|
}
|
|
|
|
private:
|
|
/// Appends an arbitrary new position to `pointers[d]`. This method
|
|
/// checks that `pos` is representable in the `P` type; however, it
|
|
/// does not check that `pos` is semantically valid (i.e., larger than
|
|
/// the previous position and smaller than `indices[d].capacity()`).
|
|
void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) {
|
|
ASSERT_COMPRESSED_DIM(d);
|
|
assert(pos <= std::numeric_limits<P>::max() &&
|
|
"Pointer value is too large for the P-type");
|
|
pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos));
|
|
}
|
|
|
|
/// Appends index `i` to dimension `d`, in the semantically general
|
|
/// sense. For non-dense dimensions, that means appending to the
|
|
/// `indices[d]` array, checking that `i` is representable in the `I`
|
|
/// type; however, we do not verify other semantic requirements (e.g.,
|
|
/// that `i` is in bounds for `dimSizes[d]`, and not previously occurring
|
|
/// in the same segment). For dense dimensions, this method instead
|
|
/// appends the appropriate number of zeros to the `values` array,
|
|
/// where `full` is the number of "entries" already written to `values`
|
|
/// for this segment (aka one after the highest index previously appended).
|
|
void appendIndex(uint64_t d, uint64_t full, uint64_t i) {
|
|
if (isCompressedDim(d) || isSingletonDim(d)) {
|
|
assert(i <= std::numeric_limits<I>::max() &&
|
|
"Index value is too large for the I-type");
|
|
indices[d].push_back(static_cast<I>(i));
|
|
} else { // Dense dimension.
|
|
ASSERT_DENSE_DIM(d);
|
|
assert(i >= full && "Index was already filled");
|
|
if (i == full)
|
|
return; // Short-circuit, since it'll be a nop.
|
|
if (d + 1 == getRank())
|
|
values.insert(values.end(), i - full, 0);
|
|
else
|
|
finalizeSegment(d + 1, 0, i - full);
|
|
}
|
|
}
|
|
|
|
/// Writes the given coordinate to `indices[d][pos]`. This method
|
|
/// checks that `i` is representable in the `I` type; however, it
|
|
/// does not check that `i` is semantically valid (i.e., in bounds
|
|
/// for `dimSizes[d]` and not elsewhere occurring in the same segment).
|
|
void writeIndex(uint64_t d, uint64_t pos, uint64_t i) {
|
|
ASSERT_COMPRESSED_DIM(d);
|
|
// Subscript assignment to `std::vector` requires that the `pos`-th
|
|
// entry has been initialized; thus we must be sure to check `size()`
|
|
// here, instead of `capacity()` as would be ideal.
|
|
assert(pos < indices[d].size() && "Index position is out of bounds");
|
|
assert(i <= std::numeric_limits<I>::max() &&
|
|
"Index value is too large for the I-type");
|
|
indices[d][pos] = static_cast<I>(i);
|
|
}
|
|
|
|
/// Computes the assembled-size associated with the `d`-th dimension,
|
|
/// given the assembled-size associated with the `(d-1)`-th dimension.
|
|
/// "Assembled-sizes" correspond to the (nominal) sizes of overhead
|
|
/// storage, as opposed to "dimension-sizes" which are the cardinality
|
|
/// of coordinates for that dimension.
|
|
///
|
|
/// Precondition: the `pointers[d]` array must be fully initialized
|
|
/// before calling this method.
|
|
uint64_t assembledSize(uint64_t parentSz, uint64_t d) const {
|
|
if (isCompressedDim(d))
|
|
return pointers[d][parentSz];
|
|
// else if dense:
|
|
return parentSz * getDimSizes()[d];
|
|
}
|
|
|
|
/// Initializes sparse tensor storage scheme from a memory-resident sparse
|
|
/// tensor in coordinate scheme. This method prepares the pointers and
|
|
/// indices arrays under the given per-dimension dense/sparse annotations.
|
|
///
|
|
/// Preconditions:
|
|
/// (1) the `elements` must be lexicographically sorted.
|
|
/// (2) the indices of every element are valid for `dimSizes` (equal rank
|
|
/// and pointwise less-than).
|
|
void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo,
|
|
uint64_t hi, uint64_t d) {
|
|
const uint64_t rank = getRank();
|
|
assert(d <= rank && hi <= elements.size());
|
|
// Once dimensions are exhausted, insert the numerical values.
|
|
if (d == rank) {
|
|
assert(lo < hi);
|
|
values.push_back(elements[lo].value);
|
|
return;
|
|
}
|
|
// Visit all elements in this interval.
|
|
uint64_t full = 0;
|
|
while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`.
|
|
// Find segment in interval with same index elements in this dimension.
|
|
const uint64_t i = elements[lo].indices[d];
|
|
uint64_t seg = lo + 1;
|
|
if (isUniqueDim(d))
|
|
while (seg < hi && elements[seg].indices[d] == i)
|
|
++seg;
|
|
// Handle segment in interval for sparse or dense dimension.
|
|
appendIndex(d, full, i);
|
|
full = i + 1;
|
|
fromCOO(elements, lo, seg, d + 1);
|
|
// And move on to next segment in interval.
|
|
lo = seg;
|
|
}
|
|
// Finalize the sparse pointer structure at this dimension.
|
|
finalizeSegment(d, full);
|
|
}
|
|
|
|
/// Finalize the sparse pointer structure at this dimension.
|
|
void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) {
|
|
if (count == 0)
|
|
return; // Short-circuit, since it'll be a nop.
|
|
if (isCompressedDim(d)) {
|
|
appendPointer(d, indices[d].size(), count);
|
|
} else if (isSingletonDim(d)) {
|
|
return;
|
|
} else { // Dense dimension.
|
|
ASSERT_DENSE_DIM(d);
|
|
const uint64_t sz = getDimSizes()[d];
|
|
assert(sz >= full && "Segment is overfull");
|
|
count = detail::checkedMul(count, sz - full);
|
|
// For dense storage we must enumerate all the remaining coordinates
|
|
// in this dimension (i.e., coordinates after the last non-zero
|
|
// element), and either fill in their zero values or else recurse
|
|
// to finalize some deeper dimension.
|
|
if (d + 1 == getRank())
|
|
values.insert(values.end(), count, 0);
|
|
else
|
|
finalizeSegment(d + 1, 0, count);
|
|
}
|
|
}
|
|
|
|
/// Wraps up a single insertion path, inner to outer.
|
|
void endPath(uint64_t diff) {
|
|
const uint64_t rank = getRank();
|
|
assert(diff <= rank && "Dimension-diff is out of bounds");
|
|
for (uint64_t i = 0; i < rank - diff; ++i) {
|
|
const uint64_t d = rank - i - 1;
|
|
finalizeSegment(d, idx[d] + 1);
|
|
}
|
|
}
|
|
|
|
/// Continues a single insertion path, outer to inner.
|
|
void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) {
|
|
ASSERT_VALID_DIM(diff);
|
|
const uint64_t rank = getRank();
|
|
for (uint64_t d = diff; d < rank; ++d) {
|
|
const uint64_t i = cursor[d];
|
|
appendIndex(d, top, i);
|
|
top = 0;
|
|
idx[d] = i;
|
|
}
|
|
values.push_back(val);
|
|
}
|
|
|
|
/// Finds the lexicographic differing dimension.
|
|
uint64_t lexDiff(const uint64_t *cursor) const {
|
|
const uint64_t rank = getRank();
|
|
for (uint64_t r = 0; r < rank; ++r)
|
|
if (cursor[r] > idx[r])
|
|
return r;
|
|
else
|
|
assert(cursor[r] == idx[r] && "non-lexicographic insertion");
|
|
assert(0 && "duplication insertion");
|
|
return -1u;
|
|
}
|
|
|
|
// Allow `SparseTensorEnumerator` to access the data-members (to avoid
|
|
// the cost of virtual-function dispatch in inner loops), without
|
|
// making them public to other client code.
|
|
friend class SparseTensorEnumerator<P, I, V>;
|
|
|
|
std::vector<std::vector<P>> pointers;
|
|
std::vector<std::vector<I>> indices;
|
|
std::vector<V> values;
|
|
std::vector<uint64_t> idx; // index cursor for lexicographic insertion.
|
|
};
|
|
|
|
#undef ASSERT_COMPRESSED_DIM
|
|
#undef ASSERT_VALID_DIM
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// A (higher-order) function object for enumerating the elements of some
|
|
/// `SparseTensorStorage` under a permutation. That is, the `forallElements`
|
|
/// method encapsulates the loop-nest for enumerating the elements of
|
|
/// the source tensor (in whatever order is best for the source tensor),
|
|
/// and applies a permutation to the coordinates/indices before handing
|
|
/// each element to the callback. A single enumerator object can be
|
|
/// freely reused for several calls to `forallElements`, just so long
|
|
/// as each call is sequential with respect to one another.
|
|
///
|
|
/// N.B., this class stores a reference to the `SparseTensorStorageBase`
|
|
/// passed to the constructor; thus, objects of this class must not
|
|
/// outlive the sparse tensor they depend on.
|
|
///
|
|
/// Design Note: The reason we define this class instead of simply using
|
|
/// `SparseTensorEnumerator<P,I,V>` is because we need to hide/generalize
|
|
/// the `<P,I>` template parameters from MLIR client code (to simplify the
|
|
/// type parameters used for direct sparse-to-sparse conversion). And the
|
|
/// reason we define the `SparseTensorEnumerator<P,I,V>` subclasses rather
|
|
/// than simply using this class, is to avoid the cost of virtual-method
|
|
/// dispatch within the loop-nest.
|
|
template <typename V>
|
|
class SparseTensorEnumeratorBase {
|
|
public:
|
|
/// Constructs an enumerator with the given permutation for mapping
|
|
/// the semantic-ordering of dimensions to the desired target-ordering.
|
|
///
|
|
/// Preconditions:
|
|
/// * the `tensor` must have the same `V` value type.
|
|
/// * `perm` must be valid for `rank`.
|
|
SparseTensorEnumeratorBase(const SparseTensorStorageBase &tensor,
|
|
uint64_t rank, const uint64_t *perm)
|
|
: src(tensor), permsz(src.getRev().size()), reord(getRank()),
|
|
cursor(getRank()) {
|
|
assert(perm && "Received nullptr for permutation");
|
|
assert(rank == getRank() && "Permutation rank mismatch");
|
|
const auto &rev = src.getRev(); // source-order -> semantic-order
|
|
const auto &dimSizes = src.getDimSizes(); // in source storage-order
|
|
for (uint64_t s = 0; s < rank; ++s) { // `s` source storage-order
|
|
uint64_t t = perm[rev[s]]; // `t` target-order
|
|
reord[s] = t;
|
|
permsz[t] = dimSizes[s];
|
|
}
|
|
}
|
|
|
|
virtual ~SparseTensorEnumeratorBase() = default;
|
|
|
|
// We disallow copying to help avoid leaking the `src` reference.
|
|
// (In addition to avoiding the problem of slicing.)
|
|
SparseTensorEnumeratorBase(const SparseTensorEnumeratorBase &) = delete;
|
|
SparseTensorEnumeratorBase &
|
|
operator=(const SparseTensorEnumeratorBase &) = delete;
|
|
|
|
/// Returns the source/target tensor's rank. (The source-rank and
|
|
/// target-rank are always equal since we only support permutations.
|
|
/// Though once we add support for other dimension mappings, this
|
|
/// method will have to be split in two.)
|
|
uint64_t getRank() const { return permsz.size(); }
|
|
|
|
/// Returns the target tensor's dimension sizes.
|
|
const std::vector<uint64_t> &permutedSizes() const { return permsz; }
|
|
|
|
/// Enumerates all elements of the source tensor, permutes their
|
|
/// indices, and passes the permuted element to the callback.
|
|
/// The callback must not store the cursor reference directly,
|
|
/// since this function reuses the storage. Instead, the callback
|
|
/// must copy it if they want to keep it.
|
|
virtual void forallElements(ElementConsumer<V> yield) = 0;
|
|
|
|
protected:
|
|
const SparseTensorStorageBase &src;
|
|
std::vector<uint64_t> permsz; // in target order.
|
|
std::vector<uint64_t> reord; // source storage-order -> target order.
|
|
std::vector<uint64_t> cursor; // in target order.
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
template <typename P, typename I, typename V>
|
|
class SparseTensorEnumerator final : public SparseTensorEnumeratorBase<V> {
|
|
using Base = SparseTensorEnumeratorBase<V>;
|
|
using StorageImpl = SparseTensorStorage<P, I, V>;
|
|
|
|
public:
|
|
/// Constructs an enumerator with the given permutation for mapping
|
|
/// the semantic-ordering of dimensions to the desired target-ordering.
|
|
///
|
|
/// Precondition: `perm` must be valid for `rank`.
|
|
SparseTensorEnumerator(const StorageImpl &tensor, uint64_t rank,
|
|
const uint64_t *perm)
|
|
: Base(tensor, rank, perm) {}
|
|
|
|
~SparseTensorEnumerator() final = default;
|
|
|
|
void forallElements(ElementConsumer<V> yield) final {
|
|
forallElements(yield, 0, 0);
|
|
}
|
|
|
|
private:
|
|
/// The recursive component of the public `forallElements`.
|
|
void forallElements(ElementConsumer<V> yield, uint64_t parentPos,
|
|
uint64_t d) {
|
|
// Recover the `<P,I,V>` type parameters of `src`.
|
|
const auto &src = static_cast<const StorageImpl &>(this->src);
|
|
if (d == Base::getRank()) {
|
|
assert(parentPos < src.values.size() &&
|
|
"Value position is out of bounds");
|
|
// TODO: <https://github.com/llvm/llvm-project/issues/54179>
|
|
yield(this->cursor, src.values[parentPos]);
|
|
} else if (src.isCompressedDim(d)) {
|
|
// Look up the bounds of the `d`-level segment determined by the
|
|
// `d-1`-level position `parentPos`.
|
|
const std::vector<P> &pointersD = src.pointers[d];
|
|
assert(parentPos + 1 < pointersD.size() &&
|
|
"Parent pointer position is out of bounds");
|
|
const uint64_t pstart = static_cast<uint64_t>(pointersD[parentPos]);
|
|
const uint64_t pstop = static_cast<uint64_t>(pointersD[parentPos + 1]);
|
|
// Loop-invariant code for looking up the `d`-level coordinates/indices.
|
|
const std::vector<I> &indicesD = src.indices[d];
|
|
assert(pstop <= indicesD.size() && "Index position is out of bounds");
|
|
uint64_t &cursorReordD = this->cursor[this->reord[d]];
|
|
for (uint64_t pos = pstart; pos < pstop; ++pos) {
|
|
cursorReordD = static_cast<uint64_t>(indicesD[pos]);
|
|
forallElements(yield, pos, d + 1);
|
|
}
|
|
} else if (src.isSingletonDim(d)) {
|
|
MLIR_SPARSETENSOR_FATAL("unsupported dimension level type");
|
|
} else { // Dense dimension.
|
|
assert(src.isDenseDim(d)); // TODO: reuse the ASSERT_DENSE_DIM message
|
|
const uint64_t sz = src.getDimSizes()[d];
|
|
const uint64_t pstart = parentPos * sz;
|
|
uint64_t &cursorReordD = this->cursor[this->reord[d]];
|
|
for (uint64_t i = 0; i < sz; ++i) {
|
|
cursorReordD = i;
|
|
forallElements(yield, pstart + i, d + 1);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Statistics regarding the number of nonzero subtensors in
|
|
/// a source tensor, for direct sparse=>sparse conversion a la
|
|
/// <https://arxiv.org/abs/2001.02609>.
|
|
///
|
|
/// N.B., this class stores references to the parameters passed to
|
|
/// the constructor; thus, objects of this class must not outlive
|
|
/// those parameters.
|
|
class SparseTensorNNZ final {
|
|
public:
|
|
/// Allocate the statistics structure for the desired sizes and
|
|
/// sparsity (in the target tensor's storage-order). This constructor
|
|
/// does not actually populate the statistics, however; for that see
|
|
/// `initialize`.
|
|
///
|
|
/// Precondition: `dimSizes` must not contain zeros.
|
|
SparseTensorNNZ(const std::vector<uint64_t> &dimSizes,
|
|
const std::vector<DimLevelType> &sparsity);
|
|
|
|
// We disallow copying to help avoid leaking the stored references.
|
|
SparseTensorNNZ(const SparseTensorNNZ &) = delete;
|
|
SparseTensorNNZ &operator=(const SparseTensorNNZ &) = delete;
|
|
|
|
/// Returns the rank of the target tensor.
|
|
uint64_t getRank() const { return dimSizes.size(); }
|
|
|
|
/// Enumerate the source tensor to fill in the statistics. The
|
|
/// enumerator should already incorporate the permutation (from
|
|
/// semantic-order to the target storage-order).
|
|
template <typename V>
|
|
void initialize(SparseTensorEnumeratorBase<V> &enumerator) {
|
|
assert(enumerator.getRank() == getRank() && "Tensor rank mismatch");
|
|
assert(enumerator.permutedSizes() == dimSizes && "Tensor size mismatch");
|
|
enumerator.forallElements(
|
|
[this](const std::vector<uint64_t> &ind, V) { add(ind); });
|
|
}
|
|
|
|
/// The type of callback functions which receive an nnz-statistic.
|
|
using NNZConsumer = const std::function<void(uint64_t)> &;
|
|
|
|
/// Lexicographically enumerates all indicies for dimensions strictly
|
|
/// less than `stopDim`, and passes their nnz statistic to the callback.
|
|
/// Since our use-case only requires the statistic not the coordinates
|
|
/// themselves, we do not bother to construct those coordinates.
|
|
void forallIndices(uint64_t stopDim, NNZConsumer yield) const;
|
|
|
|
private:
|
|
/// Adds a new element (i.e., increment its statistics). We use
|
|
/// a method rather than inlining into the lambda in `initialize`,
|
|
/// to avoid spurious templating over `V`. And this method is private
|
|
/// to avoid needing to re-assert validity of `ind` (which is guaranteed
|
|
/// by `forallElements`).
|
|
void add(const std::vector<uint64_t> &ind);
|
|
|
|
/// Recursive component of the public `forallIndices`.
|
|
void forallIndices(NNZConsumer yield, uint64_t stopDim, uint64_t parentPos,
|
|
uint64_t d) const;
|
|
|
|
// All of these are in the target storage-order.
|
|
const std::vector<uint64_t> &dimSizes;
|
|
const std::vector<DimLevelType> &dimTypes;
|
|
std::vector<std::vector<uint64_t>> nnz;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Definitions of the ctors and factories of `SparseTensorStorage<P,I,V>`.
|
|
|
|
namespace detail {
|
|
/// Asserts that the `dimSizes` (in target-order) under the `perm` (mapping
|
|
/// semantic-order to target-order) are a refinement of the desired `shape`
|
|
/// (in semantic-order).
|
|
///
|
|
/// Precondition: `perm` and `shape` must be valid for `rank`.
|
|
void assertPermutedSizesMatchShape(const std::vector<uint64_t> &dimSizes,
|
|
uint64_t rank, const uint64_t *perm,
|
|
const uint64_t *shape);
|
|
} // namespace detail
|
|
|
|
template <typename P, typename I, typename V>
|
|
SparseTensorStorage<P, I, V> *SparseTensorStorage<P, I, V>::newSparseTensor(
|
|
uint64_t rank, const uint64_t *shape, const uint64_t *perm,
|
|
const DimLevelType *sparsity, SparseTensorCOO<V> *coo) {
|
|
if (coo) {
|
|
const auto &coosz = coo->getDimSizes();
|
|
#ifndef NDEBUG
|
|
detail::assertPermutedSizesMatchShape(coosz, rank, perm, shape);
|
|
#endif
|
|
return new SparseTensorStorage<P, I, V>(coosz, perm, sparsity, coo);
|
|
}
|
|
// else
|
|
std::vector<uint64_t> permsz(rank);
|
|
for (uint64_t r = 0; r < rank; ++r) {
|
|
assert(shape[r] > 0 && "Dimension size zero has trivial storage");
|
|
permsz[perm[r]] = shape[r];
|
|
}
|
|
// We pass the null `coo` to ensure we select the intended constructor.
|
|
return new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, coo);
|
|
}
|
|
|
|
template <typename P, typename I, typename V>
|
|
SparseTensorStorage<P, I, V> *SparseTensorStorage<P, I, V>::newSparseTensor(
|
|
uint64_t rank, const uint64_t *shape, const uint64_t *perm,
|
|
const DimLevelType *sparsity, const SparseTensorStorageBase *source) {
|
|
assert(source && "Got nullptr for source");
|
|
SparseTensorEnumeratorBase<V> *enumerator;
|
|
source->newEnumerator(&enumerator, rank, perm);
|
|
const auto &permsz = enumerator->permutedSizes();
|
|
#ifndef NDEBUG
|
|
detail::assertPermutedSizesMatchShape(permsz, rank, perm, shape);
|
|
#endif
|
|
auto *tensor =
|
|
new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, *source);
|
|
delete enumerator;
|
|
return tensor;
|
|
}
|
|
|
|
template <typename P, typename I, typename V>
|
|
SparseTensorStorage<P, I, V>::SparseTensorStorage(
|
|
const std::vector<uint64_t> &dimSizes, const uint64_t *perm,
|
|
const DimLevelType *sparsity, SparseTensorCOO<V> *coo)
|
|
: SparseTensorStorage(dimSizes, perm, sparsity) {
|
|
// Provide hints on capacity of pointers and indices.
|
|
// TODO: needs much fine-tuning based on actual sparsity; currently
|
|
// we reserve pointer/index space based on all previous dense
|
|
// dimensions, which works well up to first sparse dim; but
|
|
// we should really use nnz and dense/sparse distribution.
|
|
bool allDense = true;
|
|
uint64_t sz = 1;
|
|
for (uint64_t r = 0, rank = getRank(); r < rank; ++r) {
|
|
if (isCompressedDim(r)) {
|
|
// TODO: Take a parameter between 1 and `dimSizes[r]`, and multiply
|
|
// `sz` by that before reserving. (For now we just use 1.)
|
|
pointers[r].reserve(sz + 1);
|
|
pointers[r].push_back(0);
|
|
indices[r].reserve(sz);
|
|
sz = 1;
|
|
allDense = false;
|
|
} else if (isSingletonDim(r)) {
|
|
indices[r].reserve(sz);
|
|
sz = 1;
|
|
allDense = false;
|
|
} else { // Dense dimension.
|
|
ASSERT_DENSE_DIM(r);
|
|
sz = detail::checkedMul(sz, getDimSizes()[r]);
|
|
}
|
|
}
|
|
// Then assign contents from coordinate scheme tensor if provided.
|
|
if (coo) {
|
|
// Ensure both preconditions of `fromCOO`.
|
|
assert(coo->getDimSizes() == getDimSizes() && "Tensor size mismatch");
|
|
coo->sort();
|
|
// Now actually insert the `elements`.
|
|
const std::vector<Element<V>> &elements = coo->getElements();
|
|
uint64_t nnz = elements.size();
|
|
values.reserve(nnz);
|
|
fromCOO(elements, 0, nnz, 0);
|
|
} else if (allDense) {
|
|
values.resize(sz, 0);
|
|
}
|
|
}
|
|
|
|
template <typename P, typename I, typename V>
|
|
SparseTensorStorage<P, I, V>::SparseTensorStorage(
|
|
const std::vector<uint64_t> &dimSizes, const uint64_t *perm,
|
|
const DimLevelType *sparsity, const SparseTensorStorageBase &tensor)
|
|
: SparseTensorStorage(dimSizes, perm, sparsity) {
|
|
SparseTensorEnumeratorBase<V> *enumerator;
|
|
tensor.newEnumerator(&enumerator, getRank(), perm);
|
|
{
|
|
// Initialize the statistics structure.
|
|
SparseTensorNNZ nnz(getDimSizes(), getDimTypes());
|
|
nnz.initialize(*enumerator);
|
|
// Initialize "pointers" overhead (and allocate "indices", "values").
|
|
uint64_t parentSz = 1; // assembled-size (not dimension-size) of `r-1`.
|
|
for (uint64_t rank = getRank(), r = 0; r < rank; ++r) {
|
|
if (isCompressedDim(r)) {
|
|
pointers[r].reserve(parentSz + 1);
|
|
pointers[r].push_back(0);
|
|
uint64_t currentPos = 0;
|
|
nnz.forallIndices(r, [this, ¤tPos, r](uint64_t n) {
|
|
currentPos += n;
|
|
appendPointer(r, currentPos);
|
|
});
|
|
assert(pointers[r].size() == parentSz + 1 &&
|
|
"Final pointers size doesn't match allocated size");
|
|
// That assertion entails `assembledSize(parentSz, r)`
|
|
// is now in a valid state. That is, `pointers[r][parentSz]`
|
|
// equals the present value of `currentPos`, which is the
|
|
// correct assembled-size for `indices[r]`.
|
|
}
|
|
// Update assembled-size for the next iteration.
|
|
parentSz = assembledSize(parentSz, r);
|
|
// Ideally we need only `indices[r].reserve(parentSz)`, however
|
|
// the `std::vector` implementation forces us to initialize it too.
|
|
// That is, in the yieldPos loop we need random-access assignment
|
|
// to `indices[r]`; however, `std::vector`'s subscript-assignment
|
|
// only allows assigning to already-initialized positions.
|
|
if (isCompressedDim(r))
|
|
indices[r].resize(parentSz, 0);
|
|
}
|
|
values.resize(parentSz, 0); // Both allocate and zero-initialize.
|
|
}
|
|
// The yieldPos loop
|
|
enumerator->forallElements([this](const std::vector<uint64_t> &ind, V val) {
|
|
uint64_t parentSz = 1, parentPos = 0;
|
|
for (uint64_t rank = getRank(), r = 0; r < rank; ++r) {
|
|
if (isCompressedDim(r)) {
|
|
// If `parentPos == parentSz` then it's valid as an array-lookup;
|
|
// however, it's semantically invalid here since that entry
|
|
// does not represent a segment of `indices[r]`. Moreover, that
|
|
// entry must be immutable for `assembledSize` to remain valid.
|
|
assert(parentPos < parentSz && "Pointers position is out of bounds");
|
|
const uint64_t currentPos = pointers[r][parentPos];
|
|
// This increment won't overflow the `P` type, since it can't
|
|
// exceed the original value of `pointers[r][parentPos+1]`
|
|
// which was already verified to be within bounds for `P`
|
|
// when it was written to the array.
|
|
pointers[r][parentPos]++;
|
|
writeIndex(r, currentPos, ind[r]);
|
|
parentPos = currentPos;
|
|
} else if (isSingletonDim(r)) {
|
|
// the new parentPos equals the old parentPos.
|
|
} else { // Dense dimension.
|
|
ASSERT_DENSE_DIM(r);
|
|
parentPos = parentPos * getDimSizes()[r] + ind[r];
|
|
}
|
|
parentSz = assembledSize(parentSz, r);
|
|
}
|
|
assert(parentPos < values.size() && "Value position is out of bounds");
|
|
values[parentPos] = val;
|
|
});
|
|
// No longer need the enumerator, so we'll delete it ASAP.
|
|
delete enumerator;
|
|
// The finalizeYieldPos loop
|
|
for (uint64_t parentSz = 1, rank = getRank(), r = 0; r < rank; ++r) {
|
|
if (isCompressedDim(r)) {
|
|
assert(parentSz == pointers[r].size() - 1 &&
|
|
"Actual pointers size doesn't match the expected size");
|
|
// Can't check all of them, but at least we can check the last one.
|
|
assert(pointers[r][parentSz - 1] == pointers[r][parentSz] &&
|
|
"Pointers got corrupted");
|
|
// TODO: optimize this by using `memmove` or similar.
|
|
for (uint64_t n = 0; n < parentSz; ++n) {
|
|
const uint64_t parentPos = parentSz - n;
|
|
pointers[r][parentPos] = pointers[r][parentPos - 1];
|
|
}
|
|
pointers[r][0] = 0;
|
|
}
|
|
parentSz = assembledSize(parentSz, r);
|
|
}
|
|
}
|
|
|
|
} // namespace sparse_tensor
|
|
} // namespace mlir
|
|
|
|
#undef ASSERT_DENSE_DIM
|
|
|
|
#endif // MLIR_EXECUTIONENGINE_SPARSETENSOR_STORAGE_H
|