llvm-project/mlir/include/mlir/ExecutionEngine/SparseTensor/Storage.h

912 lines
38 KiB
C++

//===- Storage.h - TACO-flavored sparse tensor representation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the lightweight runtime support library for sparse
// tensor manipulations. The functionality of the support library is meant
// to simplify benchmarking, testing, and debugging MLIR code operating on
// sparse tensors. However, the provided functionality is **not** part of
// core MLIR itself.
//
// This file contains definitions for the following classes:
//
// * `SparseTensorStorageBase`
// * `SparseTensorStorage<P, I, V>`
// * `SparseTensorEnumeratorBase<V>`
// * `SparseTensorEnumerator<P, I, V>`
// * `SparseTensorNNZ`
//
// Ideally we would split the storage classes and enumerator classes
// into separate files, to improve legibility. But alas: because these
// are template-classes, they must therefore provide *definitions* in the
// header; and those definitions cause circular dependencies that make it
// impossible to split the file up along the desired lines. (We could
// split the base classes from the derived classes, but that doesn't
// particularly help improve legibility.)
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_EXECUTIONENGINE_SPARSETENSOR_STORAGE_H
#define MLIR_EXECUTIONENGINE_SPARSETENSOR_STORAGE_H
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
#include "mlir/ExecutionEngine/SparseTensor/CheckedMul.h"
#include "mlir/ExecutionEngine/SparseTensor/Enums.h"
#include "mlir/ExecutionEngine/SparseTensor/ErrorHandling.h"
namespace mlir {
namespace sparse_tensor {
//===----------------------------------------------------------------------===//
// This forward decl is sufficient to split `SparseTensorStorageBase` into
// its own header, but isn't sufficient for `SparseTensorStorage` to join it.
template <typename V>
class SparseTensorEnumeratorBase;
// These macros ensure consistent error messages, without risk of incuring
// an additional method call to do so.
#define ASSERT_VALID_DIM(d) \
assert(d < getRank() && "Dimension index is out of bounds");
#define ASSERT_COMPRESSED_DIM(d) \
assert(isCompressedDim(d) && "Dimension is not compressed");
#define ASSERT_DENSE_DIM(d) assert(isDenseDim(d) && "Dimension is not dense");
/// Abstract base class for `SparseTensorStorage<P,I,V>`. This class
/// takes responsibility for all the `<P,I,V>`-independent aspects
/// of the tensor (e.g., shape, sparsity, permutation). In addition,
/// we use function overloading to implement "partial" method
/// specialization, which the C-API relies on to catch type errors
/// arising from our use of opaque pointers.
class SparseTensorStorageBase {
protected:
// Since this class is virtual, we must disallow public copying in
// order to avoid "slicing". Since this class has data members,
// that means making copying protected.
// <https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-copy-virtual>
SparseTensorStorageBase(const SparseTensorStorageBase &) = default;
// Copy-assignment would be implicitly deleted (because `dimSizes`
// is const), so we explicitly delete it for clarity.
SparseTensorStorageBase &operator=(const SparseTensorStorageBase &) = delete;
public:
/// Constructs a new storage object. The `perm` maps the tensor's
/// semantic-ordering of dimensions to this object's storage-order.
/// The `dimSizes` and `sparsity` arrays are already in storage-order.
///
/// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`.
SparseTensorStorageBase(const std::vector<uint64_t> &dimSizes,
const uint64_t *perm, const DimLevelType *sparsity);
virtual ~SparseTensorStorageBase() = default;
/// Get the rank of the tensor.
uint64_t getRank() const { return dimSizes.size(); }
/// Get the dimension-sizes array, in storage-order.
const std::vector<uint64_t> &getDimSizes() const { return dimSizes; }
/// Safely lookup the size of the given (storage-order) dimension.
uint64_t getDimSize(uint64_t d) const {
ASSERT_VALID_DIM(d);
return dimSizes[d];
}
/// Get the "reverse" permutation, which maps this object's
/// storage-order to the tensor's semantic-order.
const std::vector<uint64_t> &getRev() const { return rev; }
/// Get the dimension-types array, in storage-order.
const std::vector<DimLevelType> &getDimTypes() const { return dimTypes; }
/// Safely lookup the level-type of the given (storage-order) dimension.
DimLevelType getDimType(uint64_t d) const {
ASSERT_VALID_DIM(d);
return dimTypes[d];
}
/// Safely check if the (storage-order) dimension uses dense storage.
bool isDenseDim(uint64_t d) const { return isDenseDLT(getDimType(d)); }
/// Safely check if the (storage-order) dimension uses compressed storage.
bool isCompressedDim(uint64_t d) const {
return isCompressedDLT(getDimType(d));
}
/// Safely check if the (storage-order) dimension uses singleton storage.
bool isSingletonDim(uint64_t d) const {
return isSingletonDLT(getDimType(d));
}
/// Safely check if the (storage-order) dimension is ordered.
bool isOrderedDim(uint64_t d) const { return isOrderedDLT(getDimType(d)); }
/// Safely check if the (storage-order) dimension is unique.
bool isUniqueDim(uint64_t d) const { return isUniqueDLT(getDimType(d)); }
/// Allocate a new enumerator.
#define DECL_NEWENUMERATOR(VNAME, V) \
virtual void newEnumerator(SparseTensorEnumeratorBase<V> **, uint64_t, \
const uint64_t *) const;
FOREVERY_V(DECL_NEWENUMERATOR)
#undef DECL_NEWENUMERATOR
/// Pointers-overhead storage.
#define DECL_GETPOINTERS(PNAME, P) \
virtual void getPointers(std::vector<P> **, uint64_t);
FOREVERY_FIXED_O(DECL_GETPOINTERS)
#undef DECL_GETPOINTERS
/// Indices-overhead storage.
#define DECL_GETINDICES(INAME, I) \
virtual void getIndices(std::vector<I> **, uint64_t);
FOREVERY_FIXED_O(DECL_GETINDICES)
#undef DECL_GETINDICES
/// Primary storage.
#define DECL_GETVALUES(VNAME, V) virtual void getValues(std::vector<V> **);
FOREVERY_V(DECL_GETVALUES)
#undef DECL_GETVALUES
/// Element-wise insertion in lexicographic index order.
#define DECL_LEXINSERT(VNAME, V) virtual void lexInsert(const uint64_t *, V);
FOREVERY_V(DECL_LEXINSERT)
#undef DECL_LEXINSERT
/// Expanded insertion.
#define DECL_EXPINSERT(VNAME, V) \
virtual void expInsert(uint64_t *, V *, bool *, uint64_t *, uint64_t);
FOREVERY_V(DECL_EXPINSERT)
#undef DECL_EXPINSERT
/// Finishes insertion.
virtual void endInsert() = 0;
private:
const std::vector<uint64_t> dimSizes;
std::vector<uint64_t> rev; // conceptually `const`
const std::vector<DimLevelType> dimTypes;
};
//===----------------------------------------------------------------------===//
// This forward decl is necessary for defining `SparseTensorStorage`,
// but isn't sufficient for splitting it off.
template <typename P, typename I, typename V>
class SparseTensorEnumerator;
/// A memory-resident sparse tensor using a storage scheme based on
/// per-dimension sparse/dense annotations. This data structure provides
/// a bufferized form of a sparse tensor type. In contrast to generating
/// setup methods for each differently annotated sparse tensor, this
/// method provides a convenient "one-size-fits-all" solution that simply
/// takes an input tensor and annotations to implement all required setup
/// in a general manner.
template <typename P, typename I, typename V>
class SparseTensorStorage final : public SparseTensorStorageBase {
/// Private constructor to share code between the other constructors.
/// Beware that the object is not necessarily guaranteed to be in a
/// valid state after this constructor alone; e.g., `isCompressedDim(d)`
/// doesn't entail `!(pointers[d].empty())`.
///
/// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`.
SparseTensorStorage(const std::vector<uint64_t> &dimSizes,
const uint64_t *perm, const DimLevelType *sparsity)
: SparseTensorStorageBase(dimSizes, perm, sparsity), pointers(getRank()),
indices(getRank()), idx(getRank()) {}
public:
/// Constructs a sparse tensor storage scheme with the given dimensions,
/// permutation, and per-dimension dense/sparse annotations, using
/// the coordinate scheme tensor for the initial contents if provided.
///
/// Precondition: `perm` and `sparsity` must be valid for `dimSizes.size()`.
SparseTensorStorage(const std::vector<uint64_t> &dimSizes,
const uint64_t *perm, const DimLevelType *sparsity,
SparseTensorCOO<V> *coo);
/// Constructs a sparse tensor storage scheme with the given dimensions,
/// permutation, and per-dimension dense/sparse annotations, using
/// the given sparse tensor for the initial contents.
///
/// Preconditions:
/// * `perm` and `sparsity` must be valid for `dimSizes.size()`.
/// * The `tensor` must have the same value type `V`.
SparseTensorStorage(const std::vector<uint64_t> &dimSizes,
const uint64_t *perm, const DimLevelType *sparsity,
const SparseTensorStorageBase &tensor);
/// Factory method. Constructs a sparse tensor storage scheme with the given
/// dimensions, permutation, and per-dimension dense/sparse annotations,
/// using the coordinate scheme tensor for the initial contents if provided.
/// In the latter case, the coordinate scheme must respect the same
/// permutation as is desired for the new sparse tensor storage.
///
/// Precondition: `shape`, `perm`, and `sparsity` must be valid for `rank`.
static SparseTensorStorage<P, I, V> *
newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm,
const DimLevelType *sparsity, SparseTensorCOO<V> *coo);
/// Factory method. Constructs a sparse tensor storage scheme with
/// the given dimensions, permutation, and per-dimension dense/sparse
/// annotations, using the sparse tensor for the initial contents.
///
/// Preconditions:
/// * `shape`, `perm`, and `sparsity` must be valid for `rank`.
/// * The `tensor` must have the same value type `V`.
static SparseTensorStorage<P, I, V> *
newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm,
const DimLevelType *sparsity,
const SparseTensorStorageBase *source);
~SparseTensorStorage() final = default;
/// Partially specialize these getter methods based on template types.
void getPointers(std::vector<P> **out, uint64_t d) final {
ASSERT_VALID_DIM(d);
*out = &pointers[d];
}
void getIndices(std::vector<I> **out, uint64_t d) final {
ASSERT_VALID_DIM(d);
*out = &indices[d];
}
void getValues(std::vector<V> **out) final { *out = &values; }
/// Partially specialize lexicographical insertions based on template types.
void lexInsert(const uint64_t *cursor, V val) final {
// First, wrap up pending insertion path.
uint64_t diff = 0;
uint64_t top = 0;
if (!values.empty()) {
diff = lexDiff(cursor);
endPath(diff + 1);
top = idx[diff] + 1;
}
// Then continue with insertion path.
insPath(cursor, diff, top, val);
}
/// Partially specialize expanded insertions based on template types.
/// Note that this method resets the values/filled-switch array back
/// to all-zero/false while only iterating over the nonzero elements.
void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added,
uint64_t count) final {
if (count == 0)
return;
// Sort.
std::sort(added, added + count);
// Restore insertion path for first insert.
const uint64_t lastDim = getRank() - 1;
uint64_t index = added[0];
assert(filled[index] && "added index is not filled");
cursor[lastDim] = index;
lexInsert(cursor, values[index]);
values[index] = 0;
filled[index] = false;
// Subsequent insertions are quick.
for (uint64_t i = 1; i < count; ++i) {
assert(index < added[i] && "non-lexicographic insertion");
index = added[i];
assert(filled[index] && "added index is not filled");
cursor[lastDim] = index;
insPath(cursor, lastDim, added[i - 1] + 1, values[index]);
values[index] = 0;
filled[index] = false;
}
}
/// Finalizes lexicographic insertions.
void endInsert() final {
if (values.empty())
finalizeSegment(0);
else
endPath(0);
}
/// Allocate a new enumerator for this classes `<P,I,V>` types and
/// erase the `<P,I>` parts from the type. Callers must make sure to
/// delete the enumerator when they're done with it.
void newEnumerator(SparseTensorEnumeratorBase<V> **out, uint64_t rank,
const uint64_t *perm) const final {
*out = new SparseTensorEnumerator<P, I, V>(*this, rank, perm);
}
/// Returns this sparse tensor storage scheme as a new memory-resident
/// sparse tensor in coordinate scheme with the given dimension order.
///
/// Precondition: `perm` must be valid for `getRank()`.
SparseTensorCOO<V> *toCOO(const uint64_t *perm) const {
SparseTensorEnumeratorBase<V> *enumerator;
newEnumerator(&enumerator, getRank(), perm);
SparseTensorCOO<V> *coo =
new SparseTensorCOO<V>(enumerator->permutedSizes(), values.size());
enumerator->forallElements([&coo](const std::vector<uint64_t> &ind, V val) {
coo->add(ind, val);
});
// TODO: This assertion assumes there are no stored zeros,
// or if there are then that we don't filter them out.
// Cf., <https://github.com/llvm/llvm-project/issues/54179>
assert(coo->getElements().size() == values.size());
delete enumerator;
return coo;
}
private:
/// Appends an arbitrary new position to `pointers[d]`. This method
/// checks that `pos` is representable in the `P` type; however, it
/// does not check that `pos` is semantically valid (i.e., larger than
/// the previous position and smaller than `indices[d].capacity()`).
void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) {
ASSERT_COMPRESSED_DIM(d);
assert(pos <= std::numeric_limits<P>::max() &&
"Pointer value is too large for the P-type");
pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos));
}
/// Appends index `i` to dimension `d`, in the semantically general
/// sense. For non-dense dimensions, that means appending to the
/// `indices[d]` array, checking that `i` is representable in the `I`
/// type; however, we do not verify other semantic requirements (e.g.,
/// that `i` is in bounds for `dimSizes[d]`, and not previously occurring
/// in the same segment). For dense dimensions, this method instead
/// appends the appropriate number of zeros to the `values` array,
/// where `full` is the number of "entries" already written to `values`
/// for this segment (aka one after the highest index previously appended).
void appendIndex(uint64_t d, uint64_t full, uint64_t i) {
if (isCompressedDim(d) || isSingletonDim(d)) {
assert(i <= std::numeric_limits<I>::max() &&
"Index value is too large for the I-type");
indices[d].push_back(static_cast<I>(i));
} else { // Dense dimension.
ASSERT_DENSE_DIM(d);
assert(i >= full && "Index was already filled");
if (i == full)
return; // Short-circuit, since it'll be a nop.
if (d + 1 == getRank())
values.insert(values.end(), i - full, 0);
else
finalizeSegment(d + 1, 0, i - full);
}
}
/// Writes the given coordinate to `indices[d][pos]`. This method
/// checks that `i` is representable in the `I` type; however, it
/// does not check that `i` is semantically valid (i.e., in bounds
/// for `dimSizes[d]` and not elsewhere occurring in the same segment).
void writeIndex(uint64_t d, uint64_t pos, uint64_t i) {
ASSERT_COMPRESSED_DIM(d);
// Subscript assignment to `std::vector` requires that the `pos`-th
// entry has been initialized; thus we must be sure to check `size()`
// here, instead of `capacity()` as would be ideal.
assert(pos < indices[d].size() && "Index position is out of bounds");
assert(i <= std::numeric_limits<I>::max() &&
"Index value is too large for the I-type");
indices[d][pos] = static_cast<I>(i);
}
/// Computes the assembled-size associated with the `d`-th dimension,
/// given the assembled-size associated with the `(d-1)`-th dimension.
/// "Assembled-sizes" correspond to the (nominal) sizes of overhead
/// storage, as opposed to "dimension-sizes" which are the cardinality
/// of coordinates for that dimension.
///
/// Precondition: the `pointers[d]` array must be fully initialized
/// before calling this method.
uint64_t assembledSize(uint64_t parentSz, uint64_t d) const {
if (isCompressedDim(d))
return pointers[d][parentSz];
// else if dense:
return parentSz * getDimSizes()[d];
}
/// Initializes sparse tensor storage scheme from a memory-resident sparse
/// tensor in coordinate scheme. This method prepares the pointers and
/// indices arrays under the given per-dimension dense/sparse annotations.
///
/// Preconditions:
/// (1) the `elements` must be lexicographically sorted.
/// (2) the indices of every element are valid for `dimSizes` (equal rank
/// and pointwise less-than).
void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo,
uint64_t hi, uint64_t d) {
const uint64_t rank = getRank();
assert(d <= rank && hi <= elements.size());
// Once dimensions are exhausted, insert the numerical values.
if (d == rank) {
assert(lo < hi);
values.push_back(elements[lo].value);
return;
}
// Visit all elements in this interval.
uint64_t full = 0;
while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`.
// Find segment in interval with same index elements in this dimension.
const uint64_t i = elements[lo].indices[d];
uint64_t seg = lo + 1;
if (isUniqueDim(d))
while (seg < hi && elements[seg].indices[d] == i)
++seg;
// Handle segment in interval for sparse or dense dimension.
appendIndex(d, full, i);
full = i + 1;
fromCOO(elements, lo, seg, d + 1);
// And move on to next segment in interval.
lo = seg;
}
// Finalize the sparse pointer structure at this dimension.
finalizeSegment(d, full);
}
/// Finalize the sparse pointer structure at this dimension.
void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) {
if (count == 0)
return; // Short-circuit, since it'll be a nop.
if (isCompressedDim(d)) {
appendPointer(d, indices[d].size(), count);
} else if (isSingletonDim(d)) {
return;
} else { // Dense dimension.
ASSERT_DENSE_DIM(d);
const uint64_t sz = getDimSizes()[d];
assert(sz >= full && "Segment is overfull");
count = detail::checkedMul(count, sz - full);
// For dense storage we must enumerate all the remaining coordinates
// in this dimension (i.e., coordinates after the last non-zero
// element), and either fill in their zero values or else recurse
// to finalize some deeper dimension.
if (d + 1 == getRank())
values.insert(values.end(), count, 0);
else
finalizeSegment(d + 1, 0, count);
}
}
/// Wraps up a single insertion path, inner to outer.
void endPath(uint64_t diff) {
const uint64_t rank = getRank();
assert(diff <= rank && "Dimension-diff is out of bounds");
for (uint64_t i = 0; i < rank - diff; ++i) {
const uint64_t d = rank - i - 1;
finalizeSegment(d, idx[d] + 1);
}
}
/// Continues a single insertion path, outer to inner.
void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) {
ASSERT_VALID_DIM(diff);
const uint64_t rank = getRank();
for (uint64_t d = diff; d < rank; ++d) {
const uint64_t i = cursor[d];
appendIndex(d, top, i);
top = 0;
idx[d] = i;
}
values.push_back(val);
}
/// Finds the lexicographic differing dimension.
uint64_t lexDiff(const uint64_t *cursor) const {
const uint64_t rank = getRank();
for (uint64_t r = 0; r < rank; ++r)
if (cursor[r] > idx[r])
return r;
else
assert(cursor[r] == idx[r] && "non-lexicographic insertion");
assert(0 && "duplication insertion");
return -1u;
}
// Allow `SparseTensorEnumerator` to access the data-members (to avoid
// the cost of virtual-function dispatch in inner loops), without
// making them public to other client code.
friend class SparseTensorEnumerator<P, I, V>;
std::vector<std::vector<P>> pointers;
std::vector<std::vector<I>> indices;
std::vector<V> values;
std::vector<uint64_t> idx; // index cursor for lexicographic insertion.
};
#undef ASSERT_COMPRESSED_DIM
#undef ASSERT_VALID_DIM
//===----------------------------------------------------------------------===//
/// A (higher-order) function object for enumerating the elements of some
/// `SparseTensorStorage` under a permutation. That is, the `forallElements`
/// method encapsulates the loop-nest for enumerating the elements of
/// the source tensor (in whatever order is best for the source tensor),
/// and applies a permutation to the coordinates/indices before handing
/// each element to the callback. A single enumerator object can be
/// freely reused for several calls to `forallElements`, just so long
/// as each call is sequential with respect to one another.
///
/// N.B., this class stores a reference to the `SparseTensorStorageBase`
/// passed to the constructor; thus, objects of this class must not
/// outlive the sparse tensor they depend on.
///
/// Design Note: The reason we define this class instead of simply using
/// `SparseTensorEnumerator<P,I,V>` is because we need to hide/generalize
/// the `<P,I>` template parameters from MLIR client code (to simplify the
/// type parameters used for direct sparse-to-sparse conversion). And the
/// reason we define the `SparseTensorEnumerator<P,I,V>` subclasses rather
/// than simply using this class, is to avoid the cost of virtual-method
/// dispatch within the loop-nest.
template <typename V>
class SparseTensorEnumeratorBase {
public:
/// Constructs an enumerator with the given permutation for mapping
/// the semantic-ordering of dimensions to the desired target-ordering.
///
/// Preconditions:
/// * the `tensor` must have the same `V` value type.
/// * `perm` must be valid for `rank`.
SparseTensorEnumeratorBase(const SparseTensorStorageBase &tensor,
uint64_t rank, const uint64_t *perm)
: src(tensor), permsz(src.getRev().size()), reord(getRank()),
cursor(getRank()) {
assert(perm && "Received nullptr for permutation");
assert(rank == getRank() && "Permutation rank mismatch");
const auto &rev = src.getRev(); // source-order -> semantic-order
const auto &dimSizes = src.getDimSizes(); // in source storage-order
for (uint64_t s = 0; s < rank; ++s) { // `s` source storage-order
uint64_t t = perm[rev[s]]; // `t` target-order
reord[s] = t;
permsz[t] = dimSizes[s];
}
}
virtual ~SparseTensorEnumeratorBase() = default;
// We disallow copying to help avoid leaking the `src` reference.
// (In addition to avoiding the problem of slicing.)
SparseTensorEnumeratorBase(const SparseTensorEnumeratorBase &) = delete;
SparseTensorEnumeratorBase &
operator=(const SparseTensorEnumeratorBase &) = delete;
/// Returns the source/target tensor's rank. (The source-rank and
/// target-rank are always equal since we only support permutations.
/// Though once we add support for other dimension mappings, this
/// method will have to be split in two.)
uint64_t getRank() const { return permsz.size(); }
/// Returns the target tensor's dimension sizes.
const std::vector<uint64_t> &permutedSizes() const { return permsz; }
/// Enumerates all elements of the source tensor, permutes their
/// indices, and passes the permuted element to the callback.
/// The callback must not store the cursor reference directly,
/// since this function reuses the storage. Instead, the callback
/// must copy it if they want to keep it.
virtual void forallElements(ElementConsumer<V> yield) = 0;
protected:
const SparseTensorStorageBase &src;
std::vector<uint64_t> permsz; // in target order.
std::vector<uint64_t> reord; // source storage-order -> target order.
std::vector<uint64_t> cursor; // in target order.
};
//===----------------------------------------------------------------------===//
template <typename P, typename I, typename V>
class SparseTensorEnumerator final : public SparseTensorEnumeratorBase<V> {
using Base = SparseTensorEnumeratorBase<V>;
using StorageImpl = SparseTensorStorage<P, I, V>;
public:
/// Constructs an enumerator with the given permutation for mapping
/// the semantic-ordering of dimensions to the desired target-ordering.
///
/// Precondition: `perm` must be valid for `rank`.
SparseTensorEnumerator(const StorageImpl &tensor, uint64_t rank,
const uint64_t *perm)
: Base(tensor, rank, perm) {}
~SparseTensorEnumerator() final = default;
void forallElements(ElementConsumer<V> yield) final {
forallElements(yield, 0, 0);
}
private:
/// The recursive component of the public `forallElements`.
void forallElements(ElementConsumer<V> yield, uint64_t parentPos,
uint64_t d) {
// Recover the `<P,I,V>` type parameters of `src`.
const auto &src = static_cast<const StorageImpl &>(this->src);
if (d == Base::getRank()) {
assert(parentPos < src.values.size() &&
"Value position is out of bounds");
// TODO: <https://github.com/llvm/llvm-project/issues/54179>
yield(this->cursor, src.values[parentPos]);
} else if (src.isCompressedDim(d)) {
// Look up the bounds of the `d`-level segment determined by the
// `d-1`-level position `parentPos`.
const std::vector<P> &pointersD = src.pointers[d];
assert(parentPos + 1 < pointersD.size() &&
"Parent pointer position is out of bounds");
const uint64_t pstart = static_cast<uint64_t>(pointersD[parentPos]);
const uint64_t pstop = static_cast<uint64_t>(pointersD[parentPos + 1]);
// Loop-invariant code for looking up the `d`-level coordinates/indices.
const std::vector<I> &indicesD = src.indices[d];
assert(pstop <= indicesD.size() && "Index position is out of bounds");
uint64_t &cursorReordD = this->cursor[this->reord[d]];
for (uint64_t pos = pstart; pos < pstop; ++pos) {
cursorReordD = static_cast<uint64_t>(indicesD[pos]);
forallElements(yield, pos, d + 1);
}
} else if (src.isSingletonDim(d)) {
MLIR_SPARSETENSOR_FATAL("unsupported dimension level type");
} else { // Dense dimension.
assert(src.isDenseDim(d)); // TODO: reuse the ASSERT_DENSE_DIM message
const uint64_t sz = src.getDimSizes()[d];
const uint64_t pstart = parentPos * sz;
uint64_t &cursorReordD = this->cursor[this->reord[d]];
for (uint64_t i = 0; i < sz; ++i) {
cursorReordD = i;
forallElements(yield, pstart + i, d + 1);
}
}
}
};
//===----------------------------------------------------------------------===//
/// Statistics regarding the number of nonzero subtensors in
/// a source tensor, for direct sparse=>sparse conversion a la
/// <https://arxiv.org/abs/2001.02609>.
///
/// N.B., this class stores references to the parameters passed to
/// the constructor; thus, objects of this class must not outlive
/// those parameters.
class SparseTensorNNZ final {
public:
/// Allocate the statistics structure for the desired sizes and
/// sparsity (in the target tensor's storage-order). This constructor
/// does not actually populate the statistics, however; for that see
/// `initialize`.
///
/// Precondition: `dimSizes` must not contain zeros.
SparseTensorNNZ(const std::vector<uint64_t> &dimSizes,
const std::vector<DimLevelType> &sparsity);
// We disallow copying to help avoid leaking the stored references.
SparseTensorNNZ(const SparseTensorNNZ &) = delete;
SparseTensorNNZ &operator=(const SparseTensorNNZ &) = delete;
/// Returns the rank of the target tensor.
uint64_t getRank() const { return dimSizes.size(); }
/// Enumerate the source tensor to fill in the statistics. The
/// enumerator should already incorporate the permutation (from
/// semantic-order to the target storage-order).
template <typename V>
void initialize(SparseTensorEnumeratorBase<V> &enumerator) {
assert(enumerator.getRank() == getRank() && "Tensor rank mismatch");
assert(enumerator.permutedSizes() == dimSizes && "Tensor size mismatch");
enumerator.forallElements(
[this](const std::vector<uint64_t> &ind, V) { add(ind); });
}
/// The type of callback functions which receive an nnz-statistic.
using NNZConsumer = const std::function<void(uint64_t)> &;
/// Lexicographically enumerates all indicies for dimensions strictly
/// less than `stopDim`, and passes their nnz statistic to the callback.
/// Since our use-case only requires the statistic not the coordinates
/// themselves, we do not bother to construct those coordinates.
void forallIndices(uint64_t stopDim, NNZConsumer yield) const;
private:
/// Adds a new element (i.e., increment its statistics). We use
/// a method rather than inlining into the lambda in `initialize`,
/// to avoid spurious templating over `V`. And this method is private
/// to avoid needing to re-assert validity of `ind` (which is guaranteed
/// by `forallElements`).
void add(const std::vector<uint64_t> &ind);
/// Recursive component of the public `forallIndices`.
void forallIndices(NNZConsumer yield, uint64_t stopDim, uint64_t parentPos,
uint64_t d) const;
// All of these are in the target storage-order.
const std::vector<uint64_t> &dimSizes;
const std::vector<DimLevelType> &dimTypes;
std::vector<std::vector<uint64_t>> nnz;
};
//===----------------------------------------------------------------------===//
// Definitions of the ctors and factories of `SparseTensorStorage<P,I,V>`.
namespace detail {
/// Asserts that the `dimSizes` (in target-order) under the `perm` (mapping
/// semantic-order to target-order) are a refinement of the desired `shape`
/// (in semantic-order).
///
/// Precondition: `perm` and `shape` must be valid for `rank`.
void assertPermutedSizesMatchShape(const std::vector<uint64_t> &dimSizes,
uint64_t rank, const uint64_t *perm,
const uint64_t *shape);
} // namespace detail
template <typename P, typename I, typename V>
SparseTensorStorage<P, I, V> *SparseTensorStorage<P, I, V>::newSparseTensor(
uint64_t rank, const uint64_t *shape, const uint64_t *perm,
const DimLevelType *sparsity, SparseTensorCOO<V> *coo) {
if (coo) {
const auto &coosz = coo->getDimSizes();
#ifndef NDEBUG
detail::assertPermutedSizesMatchShape(coosz, rank, perm, shape);
#endif
return new SparseTensorStorage<P, I, V>(coosz, perm, sparsity, coo);
}
// else
std::vector<uint64_t> permsz(rank);
for (uint64_t r = 0; r < rank; ++r) {
assert(shape[r] > 0 && "Dimension size zero has trivial storage");
permsz[perm[r]] = shape[r];
}
// We pass the null `coo` to ensure we select the intended constructor.
return new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, coo);
}
template <typename P, typename I, typename V>
SparseTensorStorage<P, I, V> *SparseTensorStorage<P, I, V>::newSparseTensor(
uint64_t rank, const uint64_t *shape, const uint64_t *perm,
const DimLevelType *sparsity, const SparseTensorStorageBase *source) {
assert(source && "Got nullptr for source");
SparseTensorEnumeratorBase<V> *enumerator;
source->newEnumerator(&enumerator, rank, perm);
const auto &permsz = enumerator->permutedSizes();
#ifndef NDEBUG
detail::assertPermutedSizesMatchShape(permsz, rank, perm, shape);
#endif
auto *tensor =
new SparseTensorStorage<P, I, V>(permsz, perm, sparsity, *source);
delete enumerator;
return tensor;
}
template <typename P, typename I, typename V>
SparseTensorStorage<P, I, V>::SparseTensorStorage(
const std::vector<uint64_t> &dimSizes, const uint64_t *perm,
const DimLevelType *sparsity, SparseTensorCOO<V> *coo)
: SparseTensorStorage(dimSizes, perm, sparsity) {
// Provide hints on capacity of pointers and indices.
// TODO: needs much fine-tuning based on actual sparsity; currently
// we reserve pointer/index space based on all previous dense
// dimensions, which works well up to first sparse dim; but
// we should really use nnz and dense/sparse distribution.
bool allDense = true;
uint64_t sz = 1;
for (uint64_t r = 0, rank = getRank(); r < rank; ++r) {
if (isCompressedDim(r)) {
// TODO: Take a parameter between 1 and `dimSizes[r]`, and multiply
// `sz` by that before reserving. (For now we just use 1.)
pointers[r].reserve(sz + 1);
pointers[r].push_back(0);
indices[r].reserve(sz);
sz = 1;
allDense = false;
} else if (isSingletonDim(r)) {
indices[r].reserve(sz);
sz = 1;
allDense = false;
} else { // Dense dimension.
ASSERT_DENSE_DIM(r);
sz = detail::checkedMul(sz, getDimSizes()[r]);
}
}
// Then assign contents from coordinate scheme tensor if provided.
if (coo) {
// Ensure both preconditions of `fromCOO`.
assert(coo->getDimSizes() == getDimSizes() && "Tensor size mismatch");
coo->sort();
// Now actually insert the `elements`.
const std::vector<Element<V>> &elements = coo->getElements();
uint64_t nnz = elements.size();
values.reserve(nnz);
fromCOO(elements, 0, nnz, 0);
} else if (allDense) {
values.resize(sz, 0);
}
}
template <typename P, typename I, typename V>
SparseTensorStorage<P, I, V>::SparseTensorStorage(
const std::vector<uint64_t> &dimSizes, const uint64_t *perm,
const DimLevelType *sparsity, const SparseTensorStorageBase &tensor)
: SparseTensorStorage(dimSizes, perm, sparsity) {
SparseTensorEnumeratorBase<V> *enumerator;
tensor.newEnumerator(&enumerator, getRank(), perm);
{
// Initialize the statistics structure.
SparseTensorNNZ nnz(getDimSizes(), getDimTypes());
nnz.initialize(*enumerator);
// Initialize "pointers" overhead (and allocate "indices", "values").
uint64_t parentSz = 1; // assembled-size (not dimension-size) of `r-1`.
for (uint64_t rank = getRank(), r = 0; r < rank; ++r) {
if (isCompressedDim(r)) {
pointers[r].reserve(parentSz + 1);
pointers[r].push_back(0);
uint64_t currentPos = 0;
nnz.forallIndices(r, [this, &currentPos, r](uint64_t n) {
currentPos += n;
appendPointer(r, currentPos);
});
assert(pointers[r].size() == parentSz + 1 &&
"Final pointers size doesn't match allocated size");
// That assertion entails `assembledSize(parentSz, r)`
// is now in a valid state. That is, `pointers[r][parentSz]`
// equals the present value of `currentPos`, which is the
// correct assembled-size for `indices[r]`.
}
// Update assembled-size for the next iteration.
parentSz = assembledSize(parentSz, r);
// Ideally we need only `indices[r].reserve(parentSz)`, however
// the `std::vector` implementation forces us to initialize it too.
// That is, in the yieldPos loop we need random-access assignment
// to `indices[r]`; however, `std::vector`'s subscript-assignment
// only allows assigning to already-initialized positions.
if (isCompressedDim(r))
indices[r].resize(parentSz, 0);
}
values.resize(parentSz, 0); // Both allocate and zero-initialize.
}
// The yieldPos loop
enumerator->forallElements([this](const std::vector<uint64_t> &ind, V val) {
uint64_t parentSz = 1, parentPos = 0;
for (uint64_t rank = getRank(), r = 0; r < rank; ++r) {
if (isCompressedDim(r)) {
// If `parentPos == parentSz` then it's valid as an array-lookup;
// however, it's semantically invalid here since that entry
// does not represent a segment of `indices[r]`. Moreover, that
// entry must be immutable for `assembledSize` to remain valid.
assert(parentPos < parentSz && "Pointers position is out of bounds");
const uint64_t currentPos = pointers[r][parentPos];
// This increment won't overflow the `P` type, since it can't
// exceed the original value of `pointers[r][parentPos+1]`
// which was already verified to be within bounds for `P`
// when it was written to the array.
pointers[r][parentPos]++;
writeIndex(r, currentPos, ind[r]);
parentPos = currentPos;
} else if (isSingletonDim(r)) {
// the new parentPos equals the old parentPos.
} else { // Dense dimension.
ASSERT_DENSE_DIM(r);
parentPos = parentPos * getDimSizes()[r] + ind[r];
}
parentSz = assembledSize(parentSz, r);
}
assert(parentPos < values.size() && "Value position is out of bounds");
values[parentPos] = val;
});
// No longer need the enumerator, so we'll delete it ASAP.
delete enumerator;
// The finalizeYieldPos loop
for (uint64_t parentSz = 1, rank = getRank(), r = 0; r < rank; ++r) {
if (isCompressedDim(r)) {
assert(parentSz == pointers[r].size() - 1 &&
"Actual pointers size doesn't match the expected size");
// Can't check all of them, but at least we can check the last one.
assert(pointers[r][parentSz - 1] == pointers[r][parentSz] &&
"Pointers got corrupted");
// TODO: optimize this by using `memmove` or similar.
for (uint64_t n = 0; n < parentSz; ++n) {
const uint64_t parentPos = parentSz - n;
pointers[r][parentPos] = pointers[r][parentPos - 1];
}
pointers[r][0] = 0;
}
parentSz = assembledSize(parentSz, r);
}
}
} // namespace sparse_tensor
} // namespace mlir
#undef ASSERT_DENSE_DIM
#endif // MLIR_EXECUTIONENGINE_SPARSETENSOR_STORAGE_H