forked from OSchip/llvm-project
1417 lines
56 KiB
C++
1417 lines
56 KiB
C++
//===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements semantic analysis for C++ constraints and concepts.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "TreeTransform.h"
|
||
#include "clang/Sema/SemaConcept.h"
|
||
#include "clang/Sema/Sema.h"
|
||
#include "clang/Sema/SemaInternal.h"
|
||
#include "clang/Sema/SemaDiagnostic.h"
|
||
#include "clang/Sema/TemplateDeduction.h"
|
||
#include "clang/Sema/Template.h"
|
||
#include "clang/Sema/Overload.h"
|
||
#include "clang/Sema/Initialization.h"
|
||
#include "clang/AST/ASTLambda.h"
|
||
#include "clang/AST/ExprConcepts.h"
|
||
#include "clang/AST/RecursiveASTVisitor.h"
|
||
#include "clang/Basic/OperatorPrecedence.h"
|
||
#include "llvm/ADT/DenseMap.h"
|
||
#include "llvm/ADT/PointerUnion.h"
|
||
#include "llvm/ADT/StringExtras.h"
|
||
|
||
using namespace clang;
|
||
using namespace sema;
|
||
|
||
namespace {
|
||
class LogicalBinOp {
|
||
SourceLocation Loc;
|
||
OverloadedOperatorKind Op = OO_None;
|
||
const Expr *LHS = nullptr;
|
||
const Expr *RHS = nullptr;
|
||
|
||
public:
|
||
LogicalBinOp(const Expr *E) {
|
||
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
|
||
Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
|
||
LHS = BO->getLHS();
|
||
RHS = BO->getRHS();
|
||
Loc = BO->getExprLoc();
|
||
} else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
|
||
// If OO is not || or && it might not have exactly 2 arguments.
|
||
if (OO->getNumArgs() == 2) {
|
||
Op = OO->getOperator();
|
||
LHS = OO->getArg(0);
|
||
RHS = OO->getArg(1);
|
||
Loc = OO->getOperatorLoc();
|
||
}
|
||
}
|
||
}
|
||
|
||
bool isAnd() const { return Op == OO_AmpAmp; }
|
||
bool isOr() const { return Op == OO_PipePipe; }
|
||
explicit operator bool() const { return isAnd() || isOr(); }
|
||
|
||
const Expr *getLHS() const { return LHS; }
|
||
const Expr *getRHS() const { return RHS; }
|
||
|
||
ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const {
|
||
return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS()));
|
||
}
|
||
|
||
ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS,
|
||
ExprResult RHS) const {
|
||
assert((isAnd() || isOr()) && "Not the right kind of op?");
|
||
assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?");
|
||
|
||
if (!LHS.isUsable() || !RHS.isUsable())
|
||
return ExprEmpty();
|
||
|
||
// We should just be able to 'normalize' these to the builtin Binary
|
||
// Operator, since that is how they are evaluated in constriant checks.
|
||
return BinaryOperator::Create(SemaRef.Context, LHS.get(), RHS.get(),
|
||
BinaryOperator::getOverloadedOpcode(Op),
|
||
SemaRef.Context.BoolTy, VK_PRValue,
|
||
OK_Ordinary, Loc, FPOptionsOverride{});
|
||
}
|
||
};
|
||
}
|
||
|
||
bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
|
||
Token NextToken, bool *PossibleNonPrimary,
|
||
bool IsTrailingRequiresClause) {
|
||
// C++2a [temp.constr.atomic]p1
|
||
// ..E shall be a constant expression of type bool.
|
||
|
||
ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
|
||
|
||
if (LogicalBinOp BO = ConstraintExpression) {
|
||
return CheckConstraintExpression(BO.getLHS(), NextToken,
|
||
PossibleNonPrimary) &&
|
||
CheckConstraintExpression(BO.getRHS(), NextToken,
|
||
PossibleNonPrimary);
|
||
} else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
|
||
return CheckConstraintExpression(C->getSubExpr(), NextToken,
|
||
PossibleNonPrimary);
|
||
|
||
QualType Type = ConstraintExpression->getType();
|
||
|
||
auto CheckForNonPrimary = [&] {
|
||
if (PossibleNonPrimary)
|
||
*PossibleNonPrimary =
|
||
// We have the following case:
|
||
// template<typename> requires func(0) struct S { };
|
||
// The user probably isn't aware of the parentheses required around
|
||
// the function call, and we're only going to parse 'func' as the
|
||
// primary-expression, and complain that it is of non-bool type.
|
||
(NextToken.is(tok::l_paren) &&
|
||
(IsTrailingRequiresClause ||
|
||
(Type->isDependentType() &&
|
||
isa<UnresolvedLookupExpr>(ConstraintExpression)) ||
|
||
Type->isFunctionType() ||
|
||
Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
|
||
// We have the following case:
|
||
// template<typename T> requires size_<T> == 0 struct S { };
|
||
// The user probably isn't aware of the parentheses required around
|
||
// the binary operator, and we're only going to parse 'func' as the
|
||
// first operand, and complain that it is of non-bool type.
|
||
getBinOpPrecedence(NextToken.getKind(),
|
||
/*GreaterThanIsOperator=*/true,
|
||
getLangOpts().CPlusPlus11) > prec::LogicalAnd;
|
||
};
|
||
|
||
// An atomic constraint!
|
||
if (ConstraintExpression->isTypeDependent()) {
|
||
CheckForNonPrimary();
|
||
return true;
|
||
}
|
||
|
||
if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
|
||
Diag(ConstraintExpression->getExprLoc(),
|
||
diag::err_non_bool_atomic_constraint) << Type
|
||
<< ConstraintExpression->getSourceRange();
|
||
CheckForNonPrimary();
|
||
return false;
|
||
}
|
||
|
||
if (PossibleNonPrimary)
|
||
*PossibleNonPrimary = false;
|
||
return true;
|
||
}
|
||
|
||
template <typename AtomicEvaluator>
|
||
static ExprResult
|
||
calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
|
||
ConstraintSatisfaction &Satisfaction,
|
||
AtomicEvaluator &&Evaluator) {
|
||
ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
|
||
|
||
if (LogicalBinOp BO = ConstraintExpr) {
|
||
ExprResult LHSRes = calculateConstraintSatisfaction(
|
||
S, BO.getLHS(), Satisfaction, Evaluator);
|
||
|
||
if (LHSRes.isInvalid())
|
||
return ExprError();
|
||
|
||
bool IsLHSSatisfied = Satisfaction.IsSatisfied;
|
||
|
||
if (BO.isOr() && IsLHSSatisfied)
|
||
// [temp.constr.op] p3
|
||
// A disjunction is a constraint taking two operands. To determine if
|
||
// a disjunction is satisfied, the satisfaction of the first operand
|
||
// is checked. If that is satisfied, the disjunction is satisfied.
|
||
// Otherwise, the disjunction is satisfied if and only if the second
|
||
// operand is satisfied.
|
||
return BO.recreateBinOp(S, LHSRes);
|
||
|
||
if (BO.isAnd() && !IsLHSSatisfied)
|
||
// [temp.constr.op] p2
|
||
// A conjunction is a constraint taking two operands. To determine if
|
||
// a conjunction is satisfied, the satisfaction of the first operand
|
||
// is checked. If that is not satisfied, the conjunction is not
|
||
// satisfied. Otherwise, the conjunction is satisfied if and only if
|
||
// the second operand is satisfied.
|
||
return BO.recreateBinOp(S, LHSRes);
|
||
|
||
ExprResult RHSRes = calculateConstraintSatisfaction(
|
||
S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
|
||
if (RHSRes.isInvalid())
|
||
return ExprError();
|
||
|
||
return BO.recreateBinOp(S, LHSRes, RHSRes);
|
||
}
|
||
|
||
if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
|
||
// These aren't evaluated, so we don't care about cleanups, so we can just
|
||
// evaluate these as if the cleanups didn't exist.
|
||
return calculateConstraintSatisfaction(
|
||
S, C->getSubExpr(), Satisfaction,
|
||
std::forward<AtomicEvaluator>(Evaluator));
|
||
}
|
||
|
||
// An atomic constraint expression
|
||
ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
|
||
|
||
if (SubstitutedAtomicExpr.isInvalid())
|
||
return ExprError();
|
||
|
||
if (!SubstitutedAtomicExpr.isUsable())
|
||
// Evaluator has decided satisfaction without yielding an expression.
|
||
return ExprEmpty();
|
||
|
||
// We don't have the ability to evaluate this, since it contains a
|
||
// RecoveryExpr, so we want to fail overload resolution. Otherwise,
|
||
// we'd potentially pick up a different overload, and cause confusing
|
||
// diagnostics. SO, add a failure detail that will cause us to make this
|
||
// overload set not viable.
|
||
if (SubstitutedAtomicExpr.get()->containsErrors()) {
|
||
Satisfaction.IsSatisfied = false;
|
||
Satisfaction.ContainsErrors = true;
|
||
|
||
PartialDiagnostic Msg = S.PDiag(diag::note_constraint_references_error);
|
||
SmallString<128> DiagString;
|
||
DiagString = ": ";
|
||
Msg.EmitToString(S.getDiagnostics(), DiagString);
|
||
unsigned MessageSize = DiagString.size();
|
||
char *Mem = new (S.Context) char[MessageSize];
|
||
memcpy(Mem, DiagString.c_str(), MessageSize);
|
||
Satisfaction.Details.emplace_back(
|
||
ConstraintExpr,
|
||
new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
|
||
SubstitutedAtomicExpr.get()->getBeginLoc(),
|
||
StringRef(Mem, MessageSize)});
|
||
return SubstitutedAtomicExpr;
|
||
}
|
||
|
||
EnterExpressionEvaluationContext ConstantEvaluated(
|
||
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
||
SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
|
||
Expr::EvalResult EvalResult;
|
||
EvalResult.Diag = &EvaluationDiags;
|
||
if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
|
||
S.Context) ||
|
||
!EvaluationDiags.empty()) {
|
||
// C++2a [temp.constr.atomic]p1
|
||
// ...E shall be a constant expression of type bool.
|
||
S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
|
||
diag::err_non_constant_constraint_expression)
|
||
<< SubstitutedAtomicExpr.get()->getSourceRange();
|
||
for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
|
||
S.Diag(PDiag.first, PDiag.second);
|
||
return ExprError();
|
||
}
|
||
|
||
assert(EvalResult.Val.isInt() &&
|
||
"evaluating bool expression didn't produce int");
|
||
Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
|
||
if (!Satisfaction.IsSatisfied)
|
||
Satisfaction.Details.emplace_back(ConstraintExpr,
|
||
SubstitutedAtomicExpr.get());
|
||
|
||
return SubstitutedAtomicExpr;
|
||
}
|
||
|
||
static ExprResult calculateConstraintSatisfaction(
|
||
Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc,
|
||
const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr,
|
||
ConstraintSatisfaction &Satisfaction) {
|
||
return calculateConstraintSatisfaction(
|
||
S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
|
||
EnterExpressionEvaluationContext ConstantEvaluated(
|
||
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
||
|
||
// Atomic constraint - substitute arguments and check satisfaction.
|
||
ExprResult SubstitutedExpression;
|
||
{
|
||
TemplateDeductionInfo Info(TemplateNameLoc);
|
||
Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
|
||
Sema::InstantiatingTemplate::ConstraintSubstitution{},
|
||
const_cast<NamedDecl *>(Template), Info,
|
||
AtomicExpr->getSourceRange());
|
||
if (Inst.isInvalid())
|
||
return ExprError();
|
||
// We do not want error diagnostics escaping here.
|
||
Sema::SFINAETrap Trap(S);
|
||
SubstitutedExpression =
|
||
S.SubstConstraintExpr(const_cast<Expr *>(AtomicExpr), MLTAL);
|
||
// Substitution might have stripped off a contextual conversion to
|
||
// bool if this is the operand of an '&&' or '||'. For example, we
|
||
// might lose an lvalue-to-rvalue conversion here. If so, put it back
|
||
// before we try to evaluate.
|
||
if (!SubstitutedExpression.isInvalid())
|
||
SubstitutedExpression =
|
||
S.PerformContextuallyConvertToBool(SubstitutedExpression.get());
|
||
if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
|
||
// C++2a [temp.constr.atomic]p1
|
||
// ...If substitution results in an invalid type or expression, the
|
||
// constraint is not satisfied.
|
||
if (!Trap.hasErrorOccurred())
|
||
// A non-SFINAE error has occurred as a result of this
|
||
// substitution.
|
||
return ExprError();
|
||
|
||
PartialDiagnosticAt SubstDiag{SourceLocation(),
|
||
PartialDiagnostic::NullDiagnostic()};
|
||
Info.takeSFINAEDiagnostic(SubstDiag);
|
||
// FIXME: Concepts: This is an unfortunate consequence of there
|
||
// being no serialization code for PartialDiagnostics and the fact
|
||
// that serializing them would likely take a lot more storage than
|
||
// just storing them as strings. We would still like, in the
|
||
// future, to serialize the proper PartialDiagnostic as serializing
|
||
// it as a string defeats the purpose of the diagnostic mechanism.
|
||
SmallString<128> DiagString;
|
||
DiagString = ": ";
|
||
SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
|
||
unsigned MessageSize = DiagString.size();
|
||
char *Mem = new (S.Context) char[MessageSize];
|
||
memcpy(Mem, DiagString.c_str(), MessageSize);
|
||
Satisfaction.Details.emplace_back(
|
||
AtomicExpr,
|
||
new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
|
||
SubstDiag.first, StringRef(Mem, MessageSize)});
|
||
Satisfaction.IsSatisfied = false;
|
||
return ExprEmpty();
|
||
}
|
||
}
|
||
|
||
if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
|
||
return ExprError();
|
||
|
||
return SubstitutedExpression;
|
||
});
|
||
}
|
||
|
||
static bool CheckConstraintSatisfaction(
|
||
Sema &S, const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
|
||
llvm::SmallVectorImpl<Expr *> &Converted,
|
||
const MultiLevelTemplateArgumentList &TemplateArgsLists,
|
||
SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
|
||
if (ConstraintExprs.empty()) {
|
||
Satisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
|
||
if (TemplateArgsLists.isAnyArgInstantiationDependent()) {
|
||
// No need to check satisfaction for dependent constraint expressions.
|
||
Satisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
|
||
ArrayRef<TemplateArgument> TemplateArgs =
|
||
TemplateArgsLists.getNumSubstitutedLevels() > 0
|
||
? TemplateArgsLists.getOutermost()
|
||
: ArrayRef<TemplateArgument> {};
|
||
Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
|
||
Sema::InstantiatingTemplate::ConstraintsCheck{},
|
||
const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
|
||
if (Inst.isInvalid())
|
||
return true;
|
||
|
||
for (const Expr *ConstraintExpr : ConstraintExprs) {
|
||
ExprResult Res = calculateConstraintSatisfaction(
|
||
S, Template, TemplateIDRange.getBegin(), TemplateArgsLists,
|
||
ConstraintExpr, Satisfaction);
|
||
if (Res.isInvalid())
|
||
return true;
|
||
|
||
Converted.push_back(Res.get());
|
||
if (!Satisfaction.IsSatisfied) {
|
||
// Backfill the 'converted' list with nulls so we can keep the Converted
|
||
// and unconverted lists in sync.
|
||
Converted.append(ConstraintExprs.size() - Converted.size(), nullptr);
|
||
// [temp.constr.op] p2
|
||
// [...] To determine if a conjunction is satisfied, the satisfaction
|
||
// of the first operand is checked. If that is not satisfied, the
|
||
// conjunction is not satisfied. [...]
|
||
return false;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool Sema::CheckConstraintSatisfaction(
|
||
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
|
||
llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
|
||
const MultiLevelTemplateArgumentList &TemplateArgsLists,
|
||
SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) {
|
||
if (ConstraintExprs.empty()) {
|
||
OutSatisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
if (!Template) {
|
||
return ::CheckConstraintSatisfaction(
|
||
*this, nullptr, ConstraintExprs, ConvertedConstraints,
|
||
TemplateArgsLists, TemplateIDRange, OutSatisfaction);
|
||
}
|
||
|
||
// A list of the template argument list flattened in a predictible manner for
|
||
// the purposes of caching. The ConstraintSatisfaction type is in AST so it
|
||
// has no access to the MultiLevelTemplateArgumentList, so this has to happen
|
||
// here.
|
||
llvm::SmallVector<TemplateArgument, 4> FlattenedArgs;
|
||
for (ArrayRef<TemplateArgument> List : TemplateArgsLists)
|
||
FlattenedArgs.insert(FlattenedArgs.end(), List.begin(), List.end());
|
||
|
||
llvm::FoldingSetNodeID ID;
|
||
ConstraintSatisfaction::Profile(ID, Context, Template, FlattenedArgs);
|
||
void *InsertPos;
|
||
if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
|
||
OutSatisfaction = *Cached;
|
||
return false;
|
||
}
|
||
auto Satisfaction =
|
||
std::make_unique<ConstraintSatisfaction>(Template, FlattenedArgs);
|
||
if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
|
||
ConvertedConstraints, TemplateArgsLists,
|
||
TemplateIDRange, *Satisfaction)) {
|
||
return true;
|
||
}
|
||
OutSatisfaction = *Satisfaction;
|
||
// We cannot use InsertPos here because CheckConstraintSatisfaction might have
|
||
// invalidated it.
|
||
// Note that entries of SatisfactionCache are deleted in Sema's destructor.
|
||
SatisfactionCache.InsertNode(Satisfaction.release());
|
||
return false;
|
||
}
|
||
|
||
bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
|
||
ConstraintSatisfaction &Satisfaction) {
|
||
return calculateConstraintSatisfaction(
|
||
*this, ConstraintExpr, Satisfaction,
|
||
[this](const Expr *AtomicExpr) -> ExprResult {
|
||
// We only do this to immitate lvalue-to-rvalue conversion.
|
||
return PerformContextuallyConvertToBool(
|
||
const_cast<Expr *>(AtomicExpr));
|
||
})
|
||
.isInvalid();
|
||
}
|
||
|
||
bool Sema::SetupConstraintScope(
|
||
FunctionDecl *FD, llvm::Optional<ArrayRef<TemplateArgument>> TemplateArgs,
|
||
MultiLevelTemplateArgumentList MLTAL, LocalInstantiationScope &Scope) {
|
||
if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) {
|
||
FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate();
|
||
InstantiatingTemplate Inst(
|
||
*this, FD->getPointOfInstantiation(),
|
||
Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate,
|
||
TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
|
||
SourceRange());
|
||
if (Inst.isInvalid())
|
||
return true;
|
||
|
||
// addInstantiatedParametersToScope creates a map of 'uninstantiated' to
|
||
// 'instantiated' parameters and adds it to the context. For the case where
|
||
// this function is a template being instantiated NOW, we also need to add
|
||
// the list of current template arguments to the list so that they also can
|
||
// be picked out of the map.
|
||
if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) {
|
||
MultiLevelTemplateArgumentList JustTemplArgs(*SpecArgs);
|
||
if (addInstantiatedParametersToScope(
|
||
FD, PrimaryTemplate->getTemplatedDecl(), Scope, JustTemplArgs))
|
||
return true;
|
||
}
|
||
|
||
// If this is a member function, make sure we get the parameters that
|
||
// reference the original primary template.
|
||
if (const auto *FromMemTempl =
|
||
PrimaryTemplate->getInstantiatedFromMemberTemplate()) {
|
||
if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(),
|
||
Scope, MLTAL))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization ||
|
||
FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) {
|
||
FunctionDecl *InstantiatedFrom =
|
||
FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
|
||
? FD->getInstantiatedFromMemberFunction()
|
||
: FD->getInstantiatedFromDecl();
|
||
|
||
InstantiatingTemplate Inst(
|
||
*this, FD->getPointOfInstantiation(),
|
||
Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom,
|
||
TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
|
||
SourceRange());
|
||
if (Inst.isInvalid())
|
||
return true;
|
||
|
||
// Case where this was not a template, but instantiated as a
|
||
// child-function.
|
||
if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// This function collects all of the template arguments for the purposes of
|
||
// constraint-instantiation and checking.
|
||
llvm::Optional<MultiLevelTemplateArgumentList>
|
||
Sema::SetupConstraintCheckingTemplateArgumentsAndScope(
|
||
FunctionDecl *FD, llvm::Optional<ArrayRef<TemplateArgument>> TemplateArgs,
|
||
LocalInstantiationScope &Scope) {
|
||
MultiLevelTemplateArgumentList MLTAL;
|
||
|
||
// Collect the list of template arguments relative to the 'primary' template.
|
||
// We need the entire list, since the constraint is completely uninstantiated
|
||
// at this point.
|
||
MLTAL = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary*/ true,
|
||
/*Pattern*/ nullptr,
|
||
/*LookBeyondLambda*/ true);
|
||
if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope))
|
||
return {};
|
||
|
||
return MLTAL;
|
||
}
|
||
|
||
bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
|
||
ConstraintSatisfaction &Satisfaction,
|
||
SourceLocation UsageLoc,
|
||
bool ForOverloadResolution) {
|
||
// Don't check constraints if the function is dependent. Also don't check if
|
||
// this is a function template specialization, as the call to
|
||
// CheckinstantiatedFunctionTemplateConstraints after this will check it
|
||
// better.
|
||
if (FD->isDependentContext() ||
|
||
FD->getTemplatedKind() ==
|
||
FunctionDecl::TK_FunctionTemplateSpecialization) {
|
||
Satisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
|
||
DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD);
|
||
|
||
while (isLambdaCallOperator(CtxToSave) || FD->isTransparentContext()) {
|
||
if (isLambdaCallOperator(CtxToSave))
|
||
CtxToSave = CtxToSave->getParent()->getParent();
|
||
else
|
||
CtxToSave = CtxToSave->getNonTransparentContext();
|
||
}
|
||
|
||
ContextRAII SavedContext{*this, CtxToSave};
|
||
LocalInstantiationScope Scope(*this, !ForOverloadResolution ||
|
||
isLambdaCallOperator(FD));
|
||
llvm::Optional<MultiLevelTemplateArgumentList> MLTAL =
|
||
SetupConstraintCheckingTemplateArgumentsAndScope(
|
||
const_cast<FunctionDecl *>(FD), {}, Scope);
|
||
|
||
Qualifiers ThisQuals;
|
||
CXXRecordDecl *Record = nullptr;
|
||
if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
|
||
ThisQuals = Method->getMethodQualifiers();
|
||
Record = const_cast<CXXRecordDecl *>(Method->getParent());
|
||
}
|
||
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
|
||
// We substitute with empty arguments in order to rebuild the atomic
|
||
// constraint in a constant-evaluated context.
|
||
// FIXME: Should this be a dedicated TreeTransform?
|
||
const Expr *RC = FD->getTrailingRequiresClause();
|
||
llvm::SmallVector<Expr *, 1> Converted;
|
||
|
||
if (CheckConstraintSatisfaction(
|
||
FD, {RC}, Converted, *MLTAL,
|
||
SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
|
||
Satisfaction))
|
||
return true;
|
||
|
||
// FIXME: we need to do this for the function constraints for
|
||
// comparison of constraints to work, but do we also need to do it for
|
||
// CheckInstantiatedFunctionConstraints? That one is more difficult, but we
|
||
// seem to always just pick up the constraints from the primary template.
|
||
assert(Converted.size() <= 1 && "Got more expressions converted?");
|
||
if (!Converted.empty() && Converted[0] != nullptr)
|
||
const_cast<FunctionDecl *>(FD)->setTrailingRequiresClause(Converted[0]);
|
||
return false;
|
||
}
|
||
|
||
|
||
// Figure out the to-translation-unit depth for this function declaration for
|
||
// the purpose of seeing if they differ by constraints. This isn't the same as
|
||
// getTemplateDepth, because it includes already instantiated parents.
|
||
static unsigned CalculateTemplateDepthForConstraints(Sema &S,
|
||
const NamedDecl *ND) {
|
||
MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
|
||
ND, nullptr, /*RelativeToPrimary*/ true,
|
||
/*Pattern*/ nullptr,
|
||
/*LookBeyondLambda*/ true, /*IncludeContainingStruct*/ true);
|
||
return MLTAL.getNumSubstitutedLevels();
|
||
}
|
||
|
||
namespace {
|
||
class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> {
|
||
unsigned TemplateDepth = 0;
|
||
public:
|
||
using inherited = TreeTransform<AdjustConstraintDepth>;
|
||
AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth)
|
||
: inherited(SemaRef), TemplateDepth(TemplateDepth) {}
|
||
QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
|
||
TemplateTypeParmTypeLoc TL) {
|
||
const TemplateTypeParmType *T = TL.getTypePtr();
|
||
|
||
TemplateTypeParmDecl *NewTTPDecl = nullptr;
|
||
if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
|
||
NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
|
||
TransformDecl(TL.getNameLoc(), OldTTPDecl));
|
||
|
||
QualType Result = getSema().Context.getTemplateTypeParmType(
|
||
T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(),
|
||
NewTTPDecl);
|
||
TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
|
||
NewTL.setNameLoc(TL.getNameLoc());
|
||
return Result;
|
||
}
|
||
};
|
||
} // namespace
|
||
|
||
bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old,
|
||
const Expr *OldConstr,
|
||
const NamedDecl *New,
|
||
const Expr *NewConstr) {
|
||
if (Old && New && Old != New) {
|
||
unsigned Depth1 = CalculateTemplateDepthForConstraints(
|
||
*this, Old);
|
||
unsigned Depth2 = CalculateTemplateDepthForConstraints(
|
||
*this, New);
|
||
|
||
// Adjust the 'shallowest' verison of this to increase the depth to match
|
||
// the 'other'.
|
||
if (Depth2 > Depth1) {
|
||
OldConstr = AdjustConstraintDepth(*this, Depth2 - Depth1)
|
||
.TransformExpr(const_cast<Expr *>(OldConstr))
|
||
.get();
|
||
} else if (Depth1 > Depth2) {
|
||
NewConstr = AdjustConstraintDepth(*this, Depth1 - Depth2)
|
||
.TransformExpr(const_cast<Expr *>(NewConstr))
|
||
.get();
|
||
}
|
||
}
|
||
|
||
llvm::FoldingSetNodeID ID1, ID2;
|
||
OldConstr->Profile(ID1, Context, /*Canonical=*/true);
|
||
NewConstr->Profile(ID2, Context, /*Canonical=*/true);
|
||
return ID1 == ID2;
|
||
}
|
||
|
||
bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) {
|
||
assert(FD->getFriendObjectKind() && "Must be a friend!");
|
||
|
||
// The logic for non-templates is handled in ASTContext::isSameEntity, so we
|
||
// don't have to bother checking 'DependsOnEnclosingTemplate' for a
|
||
// non-function-template.
|
||
assert(FD->getDescribedFunctionTemplate() &&
|
||
"Non-function templates don't need to be checked");
|
||
|
||
SmallVector<const Expr *, 3> ACs;
|
||
FD->getDescribedFunctionTemplate()->getAssociatedConstraints(ACs);
|
||
|
||
unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(*this, FD);
|
||
for (const Expr *Constraint : ACs)
|
||
if (ConstraintExpressionDependsOnEnclosingTemplate(OldTemplateDepth,
|
||
Constraint))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
bool Sema::EnsureTemplateArgumentListConstraints(
|
||
TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists,
|
||
SourceRange TemplateIDRange) {
|
||
ConstraintSatisfaction Satisfaction;
|
||
llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
|
||
TD->getAssociatedConstraints(AssociatedConstraints);
|
||
if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgsLists,
|
||
TemplateIDRange, Satisfaction))
|
||
return true;
|
||
|
||
if (!Satisfaction.IsSatisfied) {
|
||
SmallString<128> TemplateArgString;
|
||
TemplateArgString = " ";
|
||
TemplateArgString += getTemplateArgumentBindingsText(
|
||
TD->getTemplateParameters(), TemplateArgsLists.getInnermost().data(),
|
||
TemplateArgsLists.getInnermost().size());
|
||
|
||
Diag(TemplateIDRange.getBegin(),
|
||
diag::err_template_arg_list_constraints_not_satisfied)
|
||
<< (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
|
||
<< TemplateArgString << TemplateIDRange;
|
||
DiagnoseUnsatisfiedConstraint(Satisfaction);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool Sema::CheckInstantiatedFunctionTemplateConstraints(
|
||
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
|
||
ArrayRef<TemplateArgument> TemplateArgs,
|
||
ConstraintSatisfaction &Satisfaction) {
|
||
// In most cases we're not going to have constraints, so check for that first.
|
||
FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
|
||
// Note - code synthesis context for the constraints check is created
|
||
// inside CheckConstraintsSatisfaction.
|
||
SmallVector<const Expr *, 3> TemplateAC;
|
||
Template->getAssociatedConstraints(TemplateAC);
|
||
if (TemplateAC.empty()) {
|
||
Satisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
|
||
// Enter the scope of this instantiation. We don't use
|
||
// PushDeclContext because we don't have a scope.
|
||
Sema::ContextRAII savedContext(*this, Decl);
|
||
LocalInstantiationScope Scope(*this);
|
||
|
||
Optional<MultiLevelTemplateArgumentList> MLTAL =
|
||
SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs,
|
||
Scope);
|
||
|
||
if (!MLTAL)
|
||
return true;
|
||
|
||
Qualifiers ThisQuals;
|
||
CXXRecordDecl *Record = nullptr;
|
||
if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
|
||
ThisQuals = Method->getMethodQualifiers();
|
||
Record = Method->getParent();
|
||
}
|
||
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
|
||
llvm::SmallVector<Expr *, 1> Converted;
|
||
return CheckConstraintSatisfaction(Template, TemplateAC, Converted, *MLTAL,
|
||
PointOfInstantiation, Satisfaction);
|
||
}
|
||
|
||
static void diagnoseUnsatisfiedRequirement(Sema &S,
|
||
concepts::ExprRequirement *Req,
|
||
bool First) {
|
||
assert(!Req->isSatisfied()
|
||
&& "Diagnose() can only be used on an unsatisfied requirement");
|
||
switch (Req->getSatisfactionStatus()) {
|
||
case concepts::ExprRequirement::SS_Dependent:
|
||
llvm_unreachable("Diagnosing a dependent requirement");
|
||
break;
|
||
case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
|
||
auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_expr_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity
|
||
<< SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_expr_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
break;
|
||
}
|
||
case concepts::ExprRequirement::SS_NoexceptNotMet:
|
||
S.Diag(Req->getNoexceptLoc(),
|
||
diag::note_expr_requirement_noexcept_not_met)
|
||
<< (int)First << Req->getExpr();
|
||
break;
|
||
case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
|
||
auto *SubstDiag =
|
||
Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_type_requirement_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity
|
||
<< SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_type_requirement_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
break;
|
||
}
|
||
case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
|
||
ConceptSpecializationExpr *ConstraintExpr =
|
||
Req->getReturnTypeRequirementSubstitutedConstraintExpr();
|
||
if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
|
||
// A simple case - expr type is the type being constrained and the concept
|
||
// was not provided arguments.
|
||
Expr *e = Req->getExpr();
|
||
S.Diag(e->getBeginLoc(),
|
||
diag::note_expr_requirement_constraints_not_satisfied_simple)
|
||
<< (int)First << S.Context.getReferenceQualifiedType(e)
|
||
<< ConstraintExpr->getNamedConcept();
|
||
} else {
|
||
S.Diag(ConstraintExpr->getBeginLoc(),
|
||
diag::note_expr_requirement_constraints_not_satisfied)
|
||
<< (int)First << ConstraintExpr;
|
||
}
|
||
S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
|
||
break;
|
||
}
|
||
case concepts::ExprRequirement::SS_Satisfied:
|
||
llvm_unreachable("We checked this above");
|
||
}
|
||
}
|
||
|
||
static void diagnoseUnsatisfiedRequirement(Sema &S,
|
||
concepts::TypeRequirement *Req,
|
||
bool First) {
|
||
assert(!Req->isSatisfied()
|
||
&& "Diagnose() can only be used on an unsatisfied requirement");
|
||
switch (Req->getSatisfactionStatus()) {
|
||
case concepts::TypeRequirement::SS_Dependent:
|
||
llvm_unreachable("Diagnosing a dependent requirement");
|
||
return;
|
||
case concepts::TypeRequirement::SS_SubstitutionFailure: {
|
||
auto *SubstDiag = Req->getSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_type_requirement_substitution_error) << (int)First
|
||
<< SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_type_requirement_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
return;
|
||
}
|
||
default:
|
||
llvm_unreachable("Unknown satisfaction status");
|
||
return;
|
||
}
|
||
}
|
||
|
||
static void diagnoseUnsatisfiedRequirement(Sema &S,
|
||
concepts::NestedRequirement *Req,
|
||
bool First) {
|
||
if (Req->isSubstitutionFailure()) {
|
||
concepts::Requirement::SubstitutionDiagnostic *SubstDiag =
|
||
Req->getSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_nested_requirement_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity
|
||
<< SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_nested_requirement_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
return;
|
||
}
|
||
S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First);
|
||
}
|
||
|
||
|
||
static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
|
||
Expr *SubstExpr,
|
||
bool First = true) {
|
||
SubstExpr = SubstExpr->IgnoreParenImpCasts();
|
||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
|
||
switch (BO->getOpcode()) {
|
||
// These two cases will in practice only be reached when using fold
|
||
// expressions with || and &&, since otherwise the || and && will have been
|
||
// broken down into atomic constraints during satisfaction checking.
|
||
case BO_LOr:
|
||
// Or evaluated to false - meaning both RHS and LHS evaluated to false.
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
|
||
/*First=*/false);
|
||
return;
|
||
case BO_LAnd: {
|
||
bool LHSSatisfied =
|
||
BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
|
||
if (LHSSatisfied) {
|
||
// LHS is true, so RHS must be false.
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
|
||
return;
|
||
}
|
||
// LHS is false
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
|
||
|
||
// RHS might also be false
|
||
bool RHSSatisfied =
|
||
BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
|
||
if (!RHSSatisfied)
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
|
||
/*First=*/false);
|
||
return;
|
||
}
|
||
case BO_GE:
|
||
case BO_LE:
|
||
case BO_GT:
|
||
case BO_LT:
|
||
case BO_EQ:
|
||
case BO_NE:
|
||
if (BO->getLHS()->getType()->isIntegerType() &&
|
||
BO->getRHS()->getType()->isIntegerType()) {
|
||
Expr::EvalResult SimplifiedLHS;
|
||
Expr::EvalResult SimplifiedRHS;
|
||
BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
|
||
Expr::SE_NoSideEffects,
|
||
/*InConstantContext=*/true);
|
||
BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
|
||
Expr::SE_NoSideEffects,
|
||
/*InConstantContext=*/true);
|
||
if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
|
||
S.Diag(SubstExpr->getBeginLoc(),
|
||
diag::note_atomic_constraint_evaluated_to_false_elaborated)
|
||
<< (int)First << SubstExpr
|
||
<< toString(SimplifiedLHS.Val.getInt(), 10)
|
||
<< BinaryOperator::getOpcodeStr(BO->getOpcode())
|
||
<< toString(SimplifiedRHS.Val.getInt(), 10);
|
||
return;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
} else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
|
||
if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
|
||
S.Diag(
|
||
CSE->getSourceRange().getBegin(),
|
||
diag::
|
||
note_single_arg_concept_specialization_constraint_evaluated_to_false)
|
||
<< (int)First
|
||
<< CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
|
||
<< CSE->getNamedConcept();
|
||
} else {
|
||
S.Diag(SubstExpr->getSourceRange().getBegin(),
|
||
diag::note_concept_specialization_constraint_evaluated_to_false)
|
||
<< (int)First << CSE;
|
||
}
|
||
S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
|
||
return;
|
||
} else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
|
||
for (concepts::Requirement *Req : RE->getRequirements())
|
||
if (!Req->isDependent() && !Req->isSatisfied()) {
|
||
if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
|
||
diagnoseUnsatisfiedRequirement(S, E, First);
|
||
else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
|
||
diagnoseUnsatisfiedRequirement(S, T, First);
|
||
else
|
||
diagnoseUnsatisfiedRequirement(
|
||
S, cast<concepts::NestedRequirement>(Req), First);
|
||
break;
|
||
}
|
||
return;
|
||
}
|
||
|
||
S.Diag(SubstExpr->getSourceRange().getBegin(),
|
||
diag::note_atomic_constraint_evaluated_to_false)
|
||
<< (int)First << SubstExpr;
|
||
}
|
||
|
||
template<typename SubstitutionDiagnostic>
|
||
static void diagnoseUnsatisfiedConstraintExpr(
|
||
Sema &S, const Expr *E,
|
||
const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
|
||
bool First = true) {
|
||
if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
|
||
S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
|
||
<< Diag->second;
|
||
return;
|
||
}
|
||
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S,
|
||
Record.template get<Expr *>(), First);
|
||
}
|
||
|
||
void
|
||
Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
|
||
bool First) {
|
||
assert(!Satisfaction.IsSatisfied &&
|
||
"Attempted to diagnose a satisfied constraint");
|
||
for (auto &Pair : Satisfaction.Details) {
|
||
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
|
||
First = false;
|
||
}
|
||
}
|
||
|
||
void Sema::DiagnoseUnsatisfiedConstraint(
|
||
const ASTConstraintSatisfaction &Satisfaction,
|
||
bool First) {
|
||
assert(!Satisfaction.IsSatisfied &&
|
||
"Attempted to diagnose a satisfied constraint");
|
||
for (auto &Pair : Satisfaction) {
|
||
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
|
||
First = false;
|
||
}
|
||
}
|
||
|
||
const NormalizedConstraint *
|
||
Sema::getNormalizedAssociatedConstraints(
|
||
NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
|
||
auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
|
||
if (CacheEntry == NormalizationCache.end()) {
|
||
auto Normalized =
|
||
NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
|
||
AssociatedConstraints);
|
||
CacheEntry =
|
||
NormalizationCache
|
||
.try_emplace(ConstrainedDecl,
|
||
Normalized
|
||
? new (Context) NormalizedConstraint(
|
||
std::move(*Normalized))
|
||
: nullptr)
|
||
.first;
|
||
}
|
||
return CacheEntry->second;
|
||
}
|
||
|
||
static bool
|
||
substituteParameterMappings(Sema &S, NormalizedConstraint &N,
|
||
ConceptDecl *Concept,
|
||
const MultiLevelTemplateArgumentList &MLTAL,
|
||
const ASTTemplateArgumentListInfo *ArgsAsWritten) {
|
||
if (!N.isAtomic()) {
|
||
if (substituteParameterMappings(S, N.getLHS(), Concept, MLTAL,
|
||
ArgsAsWritten))
|
||
return true;
|
||
return substituteParameterMappings(S, N.getRHS(), Concept, MLTAL,
|
||
ArgsAsWritten);
|
||
}
|
||
TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
|
||
|
||
AtomicConstraint &Atomic = *N.getAtomicConstraint();
|
||
TemplateArgumentListInfo SubstArgs;
|
||
if (!Atomic.ParameterMapping) {
|
||
llvm::SmallBitVector OccurringIndices(TemplateParams->size());
|
||
S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
|
||
/*Depth=*/0, OccurringIndices);
|
||
TemplateArgumentLoc *TempArgs =
|
||
new (S.Context) TemplateArgumentLoc[OccurringIndices.count()];
|
||
for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
|
||
if (OccurringIndices[I])
|
||
new (&(TempArgs)[J++])
|
||
TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc(
|
||
TemplateParams->begin()[I],
|
||
// Here we assume we do not support things like
|
||
// template<typename A, typename B>
|
||
// concept C = ...;
|
||
//
|
||
// template<typename... Ts> requires C<Ts...>
|
||
// struct S { };
|
||
// The above currently yields a diagnostic.
|
||
// We still might have default arguments for concept parameters.
|
||
ArgsAsWritten->NumTemplateArgs > I
|
||
? ArgsAsWritten->arguments()[I].getLocation()
|
||
: SourceLocation()));
|
||
Atomic.ParameterMapping.emplace(TempArgs, OccurringIndices.count());
|
||
}
|
||
Sema::InstantiatingTemplate Inst(
|
||
S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
|
||
Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
|
||
SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(),
|
||
ArgsAsWritten->arguments().back().getSourceRange().getEnd()));
|
||
if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
|
||
return true;
|
||
|
||
TemplateArgumentLoc *TempArgs =
|
||
new (S.Context) TemplateArgumentLoc[SubstArgs.size()];
|
||
std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
|
||
TempArgs);
|
||
Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size());
|
||
return false;
|
||
}
|
||
|
||
static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
|
||
const ConceptSpecializationExpr *CSE) {
|
||
TemplateArgumentList TAL{TemplateArgumentList::OnStack,
|
||
CSE->getTemplateArguments()};
|
||
MultiLevelTemplateArgumentList MLTAL =
|
||
S.getTemplateInstantiationArgs(CSE->getNamedConcept(), &TAL,
|
||
/*RelativeToPrimary*/ true,
|
||
/*Pattern*/ nullptr,
|
||
/*LookBeyondLambda*/ true);
|
||
|
||
return substituteParameterMappings(S, N, CSE->getNamedConcept(), MLTAL,
|
||
CSE->getTemplateArgsAsWritten());
|
||
}
|
||
|
||
Optional<NormalizedConstraint>
|
||
NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
|
||
ArrayRef<const Expr *> E) {
|
||
assert(E.size() != 0);
|
||
auto Conjunction = fromConstraintExpr(S, D, E[0]);
|
||
if (!Conjunction)
|
||
return None;
|
||
for (unsigned I = 1; I < E.size(); ++I) {
|
||
auto Next = fromConstraintExpr(S, D, E[I]);
|
||
if (!Next)
|
||
return None;
|
||
*Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
|
||
std::move(*Next), CCK_Conjunction);
|
||
}
|
||
return Conjunction;
|
||
}
|
||
|
||
llvm::Optional<NormalizedConstraint>
|
||
NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
|
||
assert(E != nullptr);
|
||
|
||
// C++ [temp.constr.normal]p1.1
|
||
// [...]
|
||
// - The normal form of an expression (E) is the normal form of E.
|
||
// [...]
|
||
E = E->IgnoreParenImpCasts();
|
||
if (LogicalBinOp BO = E) {
|
||
auto LHS = fromConstraintExpr(S, D, BO.getLHS());
|
||
if (!LHS)
|
||
return None;
|
||
auto RHS = fromConstraintExpr(S, D, BO.getRHS());
|
||
if (!RHS)
|
||
return None;
|
||
|
||
return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
|
||
BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
|
||
} else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
|
||
const NormalizedConstraint *SubNF;
|
||
{
|
||
Sema::InstantiatingTemplate Inst(
|
||
S, CSE->getExprLoc(),
|
||
Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
|
||
CSE->getSourceRange());
|
||
// C++ [temp.constr.normal]p1.1
|
||
// [...]
|
||
// The normal form of an id-expression of the form C<A1, A2, ..., AN>,
|
||
// where C names a concept, is the normal form of the
|
||
// constraint-expression of C, after substituting A1, A2, ..., AN for C’s
|
||
// respective template parameters in the parameter mappings in each atomic
|
||
// constraint. If any such substitution results in an invalid type or
|
||
// expression, the program is ill-formed; no diagnostic is required.
|
||
// [...]
|
||
ConceptDecl *CD = CSE->getNamedConcept();
|
||
SubNF = S.getNormalizedAssociatedConstraints(CD,
|
||
{CD->getConstraintExpr()});
|
||
if (!SubNF)
|
||
return None;
|
||
}
|
||
|
||
Optional<NormalizedConstraint> New;
|
||
New.emplace(S.Context, *SubNF);
|
||
|
||
if (substituteParameterMappings(S, *New, CSE))
|
||
return None;
|
||
|
||
return New;
|
||
}
|
||
return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
|
||
}
|
||
|
||
using NormalForm =
|
||
llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
|
||
|
||
static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
|
||
if (Normalized.isAtomic())
|
||
return {{Normalized.getAtomicConstraint()}};
|
||
|
||
NormalForm LCNF = makeCNF(Normalized.getLHS());
|
||
NormalForm RCNF = makeCNF(Normalized.getRHS());
|
||
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
|
||
LCNF.reserve(LCNF.size() + RCNF.size());
|
||
while (!RCNF.empty())
|
||
LCNF.push_back(RCNF.pop_back_val());
|
||
return LCNF;
|
||
}
|
||
|
||
// Disjunction
|
||
NormalForm Res;
|
||
Res.reserve(LCNF.size() * RCNF.size());
|
||
for (auto &LDisjunction : LCNF)
|
||
for (auto &RDisjunction : RCNF) {
|
||
NormalForm::value_type Combined;
|
||
Combined.reserve(LDisjunction.size() + RDisjunction.size());
|
||
std::copy(LDisjunction.begin(), LDisjunction.end(),
|
||
std::back_inserter(Combined));
|
||
std::copy(RDisjunction.begin(), RDisjunction.end(),
|
||
std::back_inserter(Combined));
|
||
Res.emplace_back(Combined);
|
||
}
|
||
return Res;
|
||
}
|
||
|
||
static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
|
||
if (Normalized.isAtomic())
|
||
return {{Normalized.getAtomicConstraint()}};
|
||
|
||
NormalForm LDNF = makeDNF(Normalized.getLHS());
|
||
NormalForm RDNF = makeDNF(Normalized.getRHS());
|
||
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
|
||
LDNF.reserve(LDNF.size() + RDNF.size());
|
||
while (!RDNF.empty())
|
||
LDNF.push_back(RDNF.pop_back_val());
|
||
return LDNF;
|
||
}
|
||
|
||
// Conjunction
|
||
NormalForm Res;
|
||
Res.reserve(LDNF.size() * RDNF.size());
|
||
for (auto &LConjunction : LDNF) {
|
||
for (auto &RConjunction : RDNF) {
|
||
NormalForm::value_type Combined;
|
||
Combined.reserve(LConjunction.size() + RConjunction.size());
|
||
std::copy(LConjunction.begin(), LConjunction.end(),
|
||
std::back_inserter(Combined));
|
||
std::copy(RConjunction.begin(), RConjunction.end(),
|
||
std::back_inserter(Combined));
|
||
Res.emplace_back(Combined);
|
||
}
|
||
}
|
||
return Res;
|
||
}
|
||
|
||
template<typename AtomicSubsumptionEvaluator>
|
||
static bool subsumes(NormalForm PDNF, NormalForm QCNF,
|
||
AtomicSubsumptionEvaluator E) {
|
||
// C++ [temp.constr.order] p2
|
||
// Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
|
||
// disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
|
||
// the conjuctive normal form of Q, where [...]
|
||
for (const auto &Pi : PDNF) {
|
||
for (const auto &Qj : QCNF) {
|
||
// C++ [temp.constr.order] p2
|
||
// - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
|
||
// and only if there exists an atomic constraint Pia in Pi for which
|
||
// there exists an atomic constraint, Qjb, in Qj such that Pia
|
||
// subsumes Qjb.
|
||
bool Found = false;
|
||
for (const AtomicConstraint *Pia : Pi) {
|
||
for (const AtomicConstraint *Qjb : Qj) {
|
||
if (E(*Pia, *Qjb)) {
|
||
Found = true;
|
||
break;
|
||
}
|
||
}
|
||
if (Found)
|
||
break;
|
||
}
|
||
if (!Found)
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
template<typename AtomicSubsumptionEvaluator>
|
||
static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
|
||
NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
|
||
AtomicSubsumptionEvaluator E) {
|
||
// C++ [temp.constr.order] p2
|
||
// In order to determine if a constraint P subsumes a constraint Q, P is
|
||
// transformed into disjunctive normal form, and Q is transformed into
|
||
// conjunctive normal form. [...]
|
||
auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
|
||
if (!PNormalized)
|
||
return true;
|
||
const NormalForm PDNF = makeDNF(*PNormalized);
|
||
|
||
auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
|
||
if (!QNormalized)
|
||
return true;
|
||
const NormalForm QCNF = makeCNF(*QNormalized);
|
||
|
||
Subsumes = subsumes(PDNF, QCNF, E);
|
||
return false;
|
||
}
|
||
|
||
bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
|
||
NamedDecl *D2, ArrayRef<const Expr *> AC2,
|
||
bool &Result) {
|
||
if (AC1.empty()) {
|
||
Result = AC2.empty();
|
||
return false;
|
||
}
|
||
if (AC2.empty()) {
|
||
// TD1 has associated constraints and TD2 does not.
|
||
Result = true;
|
||
return false;
|
||
}
|
||
|
||
std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
|
||
auto CacheEntry = SubsumptionCache.find(Key);
|
||
if (CacheEntry != SubsumptionCache.end()) {
|
||
Result = CacheEntry->second;
|
||
return false;
|
||
}
|
||
|
||
if (subsumes(*this, D1, AC1, D2, AC2, Result,
|
||
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
|
||
return A.subsumes(Context, B);
|
||
}))
|
||
return true;
|
||
SubsumptionCache.try_emplace(Key, Result);
|
||
return false;
|
||
}
|
||
|
||
bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
|
||
ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
|
||
if (isSFINAEContext())
|
||
// No need to work here because our notes would be discarded.
|
||
return false;
|
||
|
||
if (AC1.empty() || AC2.empty())
|
||
return false;
|
||
|
||
auto NormalExprEvaluator =
|
||
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
|
||
return A.subsumes(Context, B);
|
||
};
|
||
|
||
const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
|
||
auto IdenticalExprEvaluator =
|
||
[&] (const AtomicConstraint &A, const AtomicConstraint &B) {
|
||
if (!A.hasMatchingParameterMapping(Context, B))
|
||
return false;
|
||
const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
|
||
if (EA == EB)
|
||
return true;
|
||
|
||
// Not the same source level expression - are the expressions
|
||
// identical?
|
||
llvm::FoldingSetNodeID IDA, IDB;
|
||
EA->Profile(IDA, Context, /*Canonical=*/true);
|
||
EB->Profile(IDB, Context, /*Canonical=*/true);
|
||
if (IDA != IDB)
|
||
return false;
|
||
|
||
AmbiguousAtomic1 = EA;
|
||
AmbiguousAtomic2 = EB;
|
||
return true;
|
||
};
|
||
|
||
{
|
||
// The subsumption checks might cause diagnostics
|
||
SFINAETrap Trap(*this);
|
||
auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
|
||
if (!Normalized1)
|
||
return false;
|
||
const NormalForm DNF1 = makeDNF(*Normalized1);
|
||
const NormalForm CNF1 = makeCNF(*Normalized1);
|
||
|
||
auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
|
||
if (!Normalized2)
|
||
return false;
|
||
const NormalForm DNF2 = makeDNF(*Normalized2);
|
||
const NormalForm CNF2 = makeCNF(*Normalized2);
|
||
|
||
bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
|
||
bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
|
||
bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
|
||
bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
|
||
if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
|
||
Is2AtLeastAs1 == Is2AtLeastAs1Normally)
|
||
// Same result - no ambiguity was caused by identical atomic expressions.
|
||
return false;
|
||
}
|
||
|
||
// A different result! Some ambiguous atomic constraint(s) caused a difference
|
||
assert(AmbiguousAtomic1 && AmbiguousAtomic2);
|
||
|
||
Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
|
||
<< AmbiguousAtomic1->getSourceRange();
|
||
Diag(AmbiguousAtomic2->getBeginLoc(),
|
||
diag::note_ambiguous_atomic_constraints_similar_expression)
|
||
<< AmbiguousAtomic2->getSourceRange();
|
||
return true;
|
||
}
|
||
|
||
concepts::ExprRequirement::ExprRequirement(
|
||
Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
|
||
ReturnTypeRequirement Req, SatisfactionStatus Status,
|
||
ConceptSpecializationExpr *SubstitutedConstraintExpr) :
|
||
Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
|
||
Status == SS_Dependent &&
|
||
(E->containsUnexpandedParameterPack() ||
|
||
Req.containsUnexpandedParameterPack()),
|
||
Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
|
||
TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
|
||
Status(Status) {
|
||
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
|
||
"Simple requirement must not have a return type requirement or a "
|
||
"noexcept specification");
|
||
assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
|
||
(SubstitutedConstraintExpr != nullptr));
|
||
}
|
||
|
||
concepts::ExprRequirement::ExprRequirement(
|
||
SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
|
||
SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
|
||
Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
|
||
Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
|
||
Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
|
||
Status(SS_ExprSubstitutionFailure) {
|
||
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
|
||
"Simple requirement must not have a return type requirement or a "
|
||
"noexcept specification");
|
||
}
|
||
|
||
concepts::ExprRequirement::ReturnTypeRequirement::
|
||
ReturnTypeRequirement(TemplateParameterList *TPL) :
|
||
TypeConstraintInfo(TPL, false) {
|
||
assert(TPL->size() == 1);
|
||
const TypeConstraint *TC =
|
||
cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
|
||
assert(TC &&
|
||
"TPL must have a template type parameter with a type constraint");
|
||
auto *Constraint =
|
||
cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
|
||
bool Dependent =
|
||
Constraint->getTemplateArgsAsWritten() &&
|
||
TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
|
||
Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
|
||
TypeConstraintInfo.setInt(Dependent ? true : false);
|
||
}
|
||
|
||
concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
|
||
Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
|
||
T->getType()->containsUnexpandedParameterPack(),
|
||
// We reach this ctor with either dependent types (in which
|
||
// IsSatisfied doesn't matter) or with non-dependent type in
|
||
// which the existence of the type indicates satisfaction.
|
||
/*IsSatisfied=*/true),
|
||
Value(T),
|
||
Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
|
||
: SS_Satisfied) {}
|