llvm-project/mlir/test/Transforms/memref-dataflow-opt.mlir

303 lines
11 KiB
MLIR

// RUN: mlir-opt -allow-unregistered-dialect %s -memref-dataflow-opt | FileCheck %s
// CHECK-DAG: [[$MAP0:#map[0-9]+]] = affine_map<(d0, d1) -> (d1 + 1)>
// CHECK-DAG: [[$MAP1:#map[0-9]+]] = affine_map<(d0, d1) -> (d0)>
// CHECK-DAG: [[$MAP2:#map[0-9]+]] = affine_map<(d0, d1) -> (d1)>
// CHECK-DAG: [[$MAP3:#map[0-9]+]] = affine_map<(d0, d1) -> (d0 - 1)>
// CHECK-DAG: [[$MAP4:#map[0-9]+]] = affine_map<(d0) -> (d0 + 1)>
// CHECK-LABEL: func @simple_store_load() {
func @simple_store_load() {
%cf7 = constant 7.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
%v0 = affine.load %m[%i0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
}
return
// CHECK: %{{.*}} = constant 7.000000e+00 : f32
// CHECK-NEXT: affine.for %{{.*}} = 0 to 10 {
// CHECK-NEXT: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: }
// CHECK-NEXT: return
}
// CHECK-LABEL: func @multi_store_load() {
func @multi_store_load() {
%c0 = constant 0 : index
%cf7 = constant 7.0 : f32
%cf8 = constant 8.0 : f32
%cf9 = constant 9.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
%v0 = affine.load %m[%i0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
affine.store %cf8, %m[%i0] : memref<10xf32>
affine.store %cf9, %m[%i0] : memref<10xf32>
%v2 = affine.load %m[%i0] : memref<10xf32>
%v3 = affine.load %m[%i0] : memref<10xf32>
%v4 = mulf %v2, %v3 : f32
}
return
// CHECK: %{{.*}} = constant 0 : index
// CHECK-NEXT: %{{.*}} = constant 7.000000e+00 : f32
// CHECK-NEXT: %{{.*}} = constant 8.000000e+00 : f32
// CHECK-NEXT: %{{.*}} = constant 9.000000e+00 : f32
// CHECK-NEXT: affine.for %{{.*}} = 0 to 10 {
// CHECK-NEXT: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: %{{.*}} = mulf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: }
// CHECK-NEXT: return
}
// The store-load forwarding can see through affine apply's since it relies on
// dependence information.
// CHECK-LABEL: func @store_load_affine_apply
func @store_load_affine_apply() -> memref<10x10xf32> {
%cf7 = constant 7.0 : f32
%m = alloc() : memref<10x10xf32>
affine.for %i0 = 0 to 10 {
affine.for %i1 = 0 to 10 {
%t0 = affine.apply affine_map<(d0, d1) -> (d1 + 1)>(%i0, %i1)
%t1 = affine.apply affine_map<(d0, d1) -> (d0)>(%i0, %i1)
%idx0 = affine.apply affine_map<(d0, d1) -> (d1)> (%t0, %t1)
%idx1 = affine.apply affine_map<(d0, d1) -> (d0 - 1)> (%t0, %t1)
affine.store %cf7, %m[%idx0, %idx1] : memref<10x10xf32>
// CHECK-NOT: affine.load %{{[0-9]+}}
%v0 = affine.load %m[%i0, %i1] : memref<10x10xf32>
%v1 = addf %v0, %v0 : f32
}
}
// The memref and its stores won't be erased due to this memref return.
return %m : memref<10x10xf32>
// CHECK: %{{.*}} = constant 7.000000e+00 : f32
// CHECK-NEXT: %{{.*}} = alloc() : memref<10x10xf32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 10 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 10 {
// CHECK-NEXT: %{{.*}} = affine.apply [[$MAP0]](%{{.*}}, %{{.*}})
// CHECK-NEXT: %{{.*}} = affine.apply [[$MAP1]](%{{.*}}, %{{.*}})
// CHECK-NEXT: %{{.*}} = affine.apply [[$MAP2]](%{{.*}}, %{{.*}})
// CHECK-NEXT: %{{.*}} = affine.apply [[$MAP3]](%{{.*}}, %{{.*}})
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32>
// CHECK-NEXT: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return %{{.*}} : memref<10x10xf32>
}
// CHECK-LABEL: func @store_load_nested
func @store_load_nested(%N : index) {
%cf7 = constant 7.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
affine.for %i1 = 0 to %N {
%v0 = affine.load %m[%i0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
}
}
return
// CHECK: %{{.*}} = constant 7.000000e+00 : f32
// CHECK-NEXT: affine.for %{{.*}} = 0 to 10 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to %{{.*}} {
// CHECK-NEXT: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
}
// No forwarding happens here since either of the two stores could be the last
// writer; store/load forwarding will however be possible here once loop live
// out SSA scalars are available.
// CHECK-LABEL: func @multi_store_load_nested_no_fwd
func @multi_store_load_nested_no_fwd(%N : index) {
%cf7 = constant 7.0 : f32
%cf8 = constant 8.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
affine.for %i1 = 0 to %N {
affine.store %cf8, %m[%i1] : memref<10xf32>
}
affine.for %i2 = 0 to %N {
// CHECK: %{{[0-9]+}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32>
%v0 = affine.load %m[%i0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
}
}
return
}
// No forwarding happens here since both stores have a value going into
// the load.
// CHECK-LABEL: func @store_load_store_nested_no_fwd
func @store_load_store_nested_no_fwd(%N : index) {
%cf7 = constant 7.0 : f32
%cf9 = constant 9.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
affine.for %i1 = 0 to %N {
// CHECK: %{{[0-9]+}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32>
%v0 = affine.load %m[%i0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
affine.store %cf9, %m[%i0] : memref<10xf32>
}
}
return
}
// Forwarding happens here since the last store postdominates all other stores
// and other forwarding criteria are satisfied.
// CHECK-LABEL: func @multi_store_load_nested_fwd
func @multi_store_load_nested_fwd(%N : index) {
%cf7 = constant 7.0 : f32
%cf8 = constant 8.0 : f32
%cf9 = constant 9.0 : f32
%cf10 = constant 10.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
affine.for %i1 = 0 to %N {
affine.store %cf8, %m[%i1] : memref<10xf32>
}
affine.for %i2 = 0 to %N {
affine.store %cf9, %m[%i2] : memref<10xf32>
}
affine.store %cf10, %m[%i0] : memref<10xf32>
affine.for %i3 = 0 to %N {
// CHECK-NOT: %{{[0-9]+}} = affine.load
%v0 = affine.load %m[%i0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
}
}
return
}
// There is no unique load location for the store to forward to.
// CHECK-LABEL: func @store_load_no_fwd
func @store_load_no_fwd() {
%cf7 = constant 7.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
affine.for %i1 = 0 to 10 {
affine.for %i2 = 0 to 10 {
// CHECK: affine.load %{{[0-9]+}}
%v0 = affine.load %m[%i2] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
}
}
}
return
}
// Forwarding happens here as there is a one-to-one store-load correspondence.
// CHECK-LABEL: func @store_load_fwd
func @store_load_fwd() {
%cf7 = constant 7.0 : f32
%c0 = constant 0 : index
%m = alloc() : memref<10xf32>
affine.store %cf7, %m[%c0] : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.for %i1 = 0 to 10 {
affine.for %i2 = 0 to 10 {
// CHECK-NOT: affine.load %{{[0-9]}}+
%v0 = affine.load %m[%c0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
}
}
}
return
}
// Although there is a dependence from the second store to the load, it is
// satisfied by the outer surrounding loop, and does not prevent the first
// store to be forwarded to the load.
func @store_load_store_nested_fwd(%N : index) -> f32 {
%cf7 = constant 7.0 : f32
%cf9 = constant 9.0 : f32
%c0 = constant 0 : index
%c1 = constant 1 : index
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
affine.store %cf7, %m[%i0] : memref<10xf32>
affine.for %i1 = 0 to %N {
%v0 = affine.load %m[%i0] : memref<10xf32>
%v1 = addf %v0, %v0 : f32
%idx = affine.apply affine_map<(d0) -> (d0 + 1)> (%i0)
affine.store %cf9, %m[%idx] : memref<10xf32>
}
}
// Due to this load, the memref isn't optimized away.
%v3 = affine.load %m[%c1] : memref<10xf32>
return %v3 : f32
// CHECK: %{{.*}} = alloc() : memref<10xf32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 10 {
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to %{{.*}} {
// CHECK-NEXT: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: %{{.*}} = affine.apply [[$MAP4]](%{{.*}})
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32>
// CHECK-NEXT: return %{{.*}} : f32
}
// CHECK-LABEL: func @should_not_fwd
func @should_not_fwd(%A: memref<100xf32>, %M : index, %N : index) -> f32 {
%cf = constant 0.0 : f32
affine.store %cf, %A[%M] : memref<100xf32>
// CHECK: affine.load %{{.*}}[%{{.*}}]
%v = affine.load %A[%N] : memref<100xf32>
return %v : f32
}
// Can store forward to A[%j, %i], but no forwarding to load on %A[%i, %j]
// CHECK-LABEL: func @refs_not_known_to_be_equal
func @refs_not_known_to_be_equal(%A : memref<100 x 100 x f32>, %M : index) {
%N = affine.apply affine_map<(d0) -> (d0 + 1)> (%M)
%cf1 = constant 1.0 : f32
affine.for %i = 0 to 100 {
// CHECK: affine.for %[[I:.*]] =
affine.for %j = 0 to 100 {
// CHECK: affine.for %[[J:.*]] =
// CHECK: affine.load %{{.*}}[%[[I]], %[[J]]]
%u = affine.load %A[%i, %j] : memref<100x100xf32>
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%[[J]], %[[I]]]
affine.store %cf1, %A[%j, %i] : memref<100x100xf32>
// CHECK-NEXT: affine.load %{{.*}}[%[[I]], %[[J]]]
%v = affine.load %A[%i, %j] : memref<100x100xf32>
// This load should disappear.
%w = affine.load %A[%j, %i] : memref<100x100xf32>
// CHECK-NEXT: "foo"
"foo" (%u, %v, %w) : (f32, f32, f32) -> ()
}
}
return
}
// The test checks for value forwarding from vector stores to vector loads.
// The value loaded from %in can directly be stored to %out by eliminating
// store and load from %tmp.
func @vector_forwarding(%in : memref<512xf32>, %out : memref<512xf32>) {
%tmp = alloc() : memref<512xf32>
affine.for %i = 0 to 16 {
%ld0 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32>
affine.vector_store %ld0, %tmp[32*%i] : memref<512xf32>, vector<32xf32>
%ld1 = affine.vector_load %tmp[32*%i] : memref<512xf32>, vector<32xf32>
affine.vector_store %ld1, %out[32*%i] : memref<512xf32>, vector<32xf32>
}
return
}
// CHECK-LABEL: func @vector_forwarding
// CHECK: affine.for %{{.*}} = 0 to 16 {
// CHECK-NEXT: %[[LDVAL:.*]] = affine.vector_load
// CHECK-NEXT: affine.vector_store %[[LDVAL]],{{.*}}
// CHECK-NEXT: }