forked from OSchip/llvm-project
1312 lines
48 KiB
C++
1312 lines
48 KiB
C++
//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass merges loads/stores to/from sequential memory addresses into vector
|
|
// loads/stores. Although there's nothing GPU-specific in here, this pass is
|
|
// motivated by the microarchitectural quirks of nVidia and AMD GPUs.
|
|
//
|
|
// (For simplicity below we talk about loads only, but everything also applies
|
|
// to stores.)
|
|
//
|
|
// This pass is intended to be run late in the pipeline, after other
|
|
// vectorization opportunities have been exploited. So the assumption here is
|
|
// that immediately following our new vector load we'll need to extract out the
|
|
// individual elements of the load, so we can operate on them individually.
|
|
//
|
|
// On CPUs this transformation is usually not beneficial, because extracting the
|
|
// elements of a vector register is expensive on most architectures. It's
|
|
// usually better just to load each element individually into its own scalar
|
|
// register.
|
|
//
|
|
// However, nVidia and AMD GPUs don't have proper vector registers. Instead, a
|
|
// "vector load" loads directly into a series of scalar registers. In effect,
|
|
// extracting the elements of the vector is free. It's therefore always
|
|
// beneficial to vectorize a sequence of loads on these architectures.
|
|
//
|
|
// Vectorizing (perhaps a better name might be "coalescing") loads can have
|
|
// large performance impacts on GPU kernels, and opportunities for vectorizing
|
|
// are common in GPU code. This pass tries very hard to find such
|
|
// opportunities; its runtime is quadratic in the number of loads in a BB.
|
|
//
|
|
// Some CPU architectures, such as ARM, have instructions that load into
|
|
// multiple scalar registers, similar to a GPU vectorized load. In theory ARM
|
|
// could use this pass (with some modifications), but currently it implements
|
|
// its own pass to do something similar to what we do here.
|
|
|
|
#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdlib>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "load-store-vectorizer"
|
|
|
|
STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
|
|
STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
|
|
|
|
// FIXME: Assuming stack alignment of 4 is always good enough
|
|
static const unsigned StackAdjustedAlignment = 4;
|
|
|
|
namespace {
|
|
|
|
/// ChainID is an arbitrary token that is allowed to be different only for the
|
|
/// accesses that are guaranteed to be considered non-consecutive by
|
|
/// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
|
|
/// together and reducing the number of instructions the main search operates on
|
|
/// at a time, i.e. this is to reduce compile time and nothing else as the main
|
|
/// search has O(n^2) time complexity. The underlying type of ChainID should not
|
|
/// be relied upon.
|
|
using ChainID = const Value *;
|
|
using InstrList = SmallVector<Instruction *, 8>;
|
|
using InstrListMap = MapVector<ChainID, InstrList>;
|
|
|
|
class Vectorizer {
|
|
Function &F;
|
|
AliasAnalysis &AA;
|
|
DominatorTree &DT;
|
|
ScalarEvolution &SE;
|
|
TargetTransformInfo &TTI;
|
|
const DataLayout &DL;
|
|
IRBuilder<> Builder;
|
|
|
|
public:
|
|
Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
|
|
ScalarEvolution &SE, TargetTransformInfo &TTI)
|
|
: F(F), AA(AA), DT(DT), SE(SE), TTI(TTI),
|
|
DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
|
|
|
|
bool run();
|
|
|
|
private:
|
|
unsigned getPointerAddressSpace(Value *I);
|
|
|
|
static const unsigned MaxDepth = 3;
|
|
|
|
bool isConsecutiveAccess(Value *A, Value *B);
|
|
bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
|
|
unsigned Depth = 0) const;
|
|
bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
|
|
unsigned Depth) const;
|
|
bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
|
|
unsigned Depth) const;
|
|
|
|
/// After vectorization, reorder the instructions that I depends on
|
|
/// (the instructions defining its operands), to ensure they dominate I.
|
|
void reorder(Instruction *I);
|
|
|
|
/// Returns the first and the last instructions in Chain.
|
|
std::pair<BasicBlock::iterator, BasicBlock::iterator>
|
|
getBoundaryInstrs(ArrayRef<Instruction *> Chain);
|
|
|
|
/// Erases the original instructions after vectorizing.
|
|
void eraseInstructions(ArrayRef<Instruction *> Chain);
|
|
|
|
/// "Legalize" the vector type that would be produced by combining \p
|
|
/// ElementSizeBits elements in \p Chain. Break into two pieces such that the
|
|
/// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
|
|
/// expected to have more than 4 elements.
|
|
std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
|
|
splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
|
|
|
|
/// Finds the largest prefix of Chain that's vectorizable, checking for
|
|
/// intervening instructions which may affect the memory accessed by the
|
|
/// instructions within Chain.
|
|
///
|
|
/// The elements of \p Chain must be all loads or all stores and must be in
|
|
/// address order.
|
|
ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
|
|
|
|
/// Collects load and store instructions to vectorize.
|
|
std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
|
|
|
|
/// Processes the collected instructions, the \p Map. The values of \p Map
|
|
/// should be all loads or all stores.
|
|
bool vectorizeChains(InstrListMap &Map);
|
|
|
|
/// Finds the load/stores to consecutive memory addresses and vectorizes them.
|
|
bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
|
|
|
|
/// Vectorizes the load instructions in Chain.
|
|
bool
|
|
vectorizeLoadChain(ArrayRef<Instruction *> Chain,
|
|
SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
|
|
|
|
/// Vectorizes the store instructions in Chain.
|
|
bool
|
|
vectorizeStoreChain(ArrayRef<Instruction *> Chain,
|
|
SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
|
|
|
|
/// Check if this load/store access is misaligned accesses.
|
|
bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
|
|
unsigned Alignment);
|
|
};
|
|
|
|
class LoadStoreVectorizerLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
|
|
initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
StringRef getPassName() const override {
|
|
return "GPU Load and Store Vectorizer";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char LoadStoreVectorizerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
|
|
"Vectorize load and Store instructions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
|
|
"Vectorize load and store instructions", false, false)
|
|
|
|
Pass *llvm::createLoadStoreVectorizerPass() {
|
|
return new LoadStoreVectorizerLegacyPass();
|
|
}
|
|
|
|
bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
|
|
// Don't vectorize when the attribute NoImplicitFloat is used.
|
|
if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
|
|
return false;
|
|
|
|
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
Vectorizer V(F, AA, DT, SE, TTI);
|
|
return V.run();
|
|
}
|
|
|
|
PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
// Don't vectorize when the attribute NoImplicitFloat is used.
|
|
if (F.hasFnAttribute(Attribute::NoImplicitFloat))
|
|
return PreservedAnalyses::all();
|
|
|
|
AliasAnalysis &AA = AM.getResult<AAManager>(F);
|
|
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
|
|
Vectorizer V(F, AA, DT, SE, TTI);
|
|
bool Changed = V.run();
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return Changed ? PA : PreservedAnalyses::all();
|
|
}
|
|
|
|
// The real propagateMetadata expects a SmallVector<Value*>, but we deal in
|
|
// vectors of Instructions.
|
|
static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
|
|
SmallVector<Value *, 8> VL(IL.begin(), IL.end());
|
|
propagateMetadata(I, VL);
|
|
}
|
|
|
|
// Vectorizer Implementation
|
|
bool Vectorizer::run() {
|
|
bool Changed = false;
|
|
|
|
// Scan the blocks in the function in post order.
|
|
for (BasicBlock *BB : post_order(&F)) {
|
|
InstrListMap LoadRefs, StoreRefs;
|
|
std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
|
|
Changed |= vectorizeChains(LoadRefs);
|
|
Changed |= vectorizeChains(StoreRefs);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
unsigned Vectorizer::getPointerAddressSpace(Value *I) {
|
|
if (LoadInst *L = dyn_cast<LoadInst>(I))
|
|
return L->getPointerAddressSpace();
|
|
if (StoreInst *S = dyn_cast<StoreInst>(I))
|
|
return S->getPointerAddressSpace();
|
|
return -1;
|
|
}
|
|
|
|
// FIXME: Merge with llvm::isConsecutiveAccess
|
|
bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
|
|
Value *PtrA = getLoadStorePointerOperand(A);
|
|
Value *PtrB = getLoadStorePointerOperand(B);
|
|
unsigned ASA = getPointerAddressSpace(A);
|
|
unsigned ASB = getPointerAddressSpace(B);
|
|
|
|
// Check that the address spaces match and that the pointers are valid.
|
|
if (!PtrA || !PtrB || (ASA != ASB))
|
|
return false;
|
|
|
|
// Make sure that A and B are different pointers of the same size type.
|
|
Type *PtrATy = PtrA->getType()->getPointerElementType();
|
|
Type *PtrBTy = PtrB->getType()->getPointerElementType();
|
|
if (PtrA == PtrB ||
|
|
PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
|
|
DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
|
|
DL.getTypeStoreSize(PtrATy->getScalarType()) !=
|
|
DL.getTypeStoreSize(PtrBTy->getScalarType()))
|
|
return false;
|
|
|
|
unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
|
|
APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
|
|
|
|
return areConsecutivePointers(PtrA, PtrB, Size);
|
|
}
|
|
|
|
bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
|
|
APInt PtrDelta, unsigned Depth) const {
|
|
unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
|
|
APInt OffsetA(PtrBitWidth, 0);
|
|
APInt OffsetB(PtrBitWidth, 0);
|
|
PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
|
|
PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
|
|
|
|
unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
|
|
|
|
if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
|
|
return false;
|
|
|
|
// In case if we have to shrink the pointer
|
|
// stripAndAccumulateInBoundsConstantOffsets should properly handle a
|
|
// possible overflow and the value should fit into a smallest data type
|
|
// used in the cast/gep chain.
|
|
assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
|
|
OffsetB.getMinSignedBits() <= NewPtrBitWidth);
|
|
|
|
OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
|
|
OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
|
|
PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);
|
|
|
|
APInt OffsetDelta = OffsetB - OffsetA;
|
|
|
|
// Check if they are based on the same pointer. That makes the offsets
|
|
// sufficient.
|
|
if (PtrA == PtrB)
|
|
return OffsetDelta == PtrDelta;
|
|
|
|
// Compute the necessary base pointer delta to have the necessary final delta
|
|
// equal to the pointer delta requested.
|
|
APInt BaseDelta = PtrDelta - OffsetDelta;
|
|
|
|
// Compute the distance with SCEV between the base pointers.
|
|
const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
|
|
const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
|
|
const SCEV *C = SE.getConstant(BaseDelta);
|
|
const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
|
|
if (X == PtrSCEVB)
|
|
return true;
|
|
|
|
// The above check will not catch the cases where one of the pointers is
|
|
// factorized but the other one is not, such as (C + (S * (A + B))) vs
|
|
// (AS + BS). Get the minus scev. That will allow re-combining the expresions
|
|
// and getting the simplified difference.
|
|
const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
|
|
if (C == Dist)
|
|
return true;
|
|
|
|
// Sometimes even this doesn't work, because SCEV can't always see through
|
|
// patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
|
|
// things the hard way.
|
|
return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
|
|
}
|
|
|
|
bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
|
|
APInt PtrDelta,
|
|
unsigned Depth) const {
|
|
auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
|
|
auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
|
|
if (!GEPA || !GEPB)
|
|
return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
|
|
|
|
// Look through GEPs after checking they're the same except for the last
|
|
// index.
|
|
if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
|
|
GEPA->getPointerOperand() != GEPB->getPointerOperand())
|
|
return false;
|
|
gep_type_iterator GTIA = gep_type_begin(GEPA);
|
|
gep_type_iterator GTIB = gep_type_begin(GEPB);
|
|
for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
|
|
if (GTIA.getOperand() != GTIB.getOperand())
|
|
return false;
|
|
++GTIA;
|
|
++GTIB;
|
|
}
|
|
|
|
Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
|
|
Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
|
|
if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
|
|
OpA->getType() != OpB->getType())
|
|
return false;
|
|
|
|
if (PtrDelta.isNegative()) {
|
|
if (PtrDelta.isMinSignedValue())
|
|
return false;
|
|
PtrDelta.negate();
|
|
std::swap(OpA, OpB);
|
|
}
|
|
uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
|
|
if (PtrDelta.urem(Stride) != 0)
|
|
return false;
|
|
unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
|
|
APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
|
|
|
|
// Only look through a ZExt/SExt.
|
|
if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
|
|
return false;
|
|
|
|
bool Signed = isa<SExtInst>(OpA);
|
|
|
|
// At this point A could be a function parameter, i.e. not an instruction
|
|
Value *ValA = OpA->getOperand(0);
|
|
OpB = dyn_cast<Instruction>(OpB->getOperand(0));
|
|
if (!OpB || ValA->getType() != OpB->getType())
|
|
return false;
|
|
|
|
// Now we need to prove that adding IdxDiff to ValA won't overflow.
|
|
bool Safe = false;
|
|
auto CheckFlags = [](Instruction *I, bool Signed) {
|
|
BinaryOperator *BinOpI = cast<BinaryOperator>(I);
|
|
return (Signed && BinOpI->hasNoSignedWrap()) ||
|
|
(!Signed && BinOpI->hasNoUnsignedWrap());
|
|
};
|
|
|
|
// First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
|
|
// ValA, we're okay.
|
|
if (OpB->getOpcode() == Instruction::Add &&
|
|
isa<ConstantInt>(OpB->getOperand(1)) &&
|
|
IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
|
|
CheckFlags(OpB, Signed))
|
|
Safe = true;
|
|
|
|
// Second attempt: If both OpA and OpB is an add with NSW/NUW and with
|
|
// the same LHS operand, we can guarantee that the transformation is safe
|
|
// if we can prove that OpA won't overflow when IdxDiff added to the RHS
|
|
// of OpA.
|
|
// For example:
|
|
// %tmp7 = add nsw i32 %tmp2, %v0
|
|
// %tmp8 = sext i32 %tmp7 to i64
|
|
// ...
|
|
// %tmp11 = add nsw i32 %v0, 1
|
|
// %tmp12 = add nsw i32 %tmp2, %tmp11
|
|
// %tmp13 = sext i32 %tmp12 to i64
|
|
//
|
|
// Both %tmp7 and %tmp2 has the nsw flag and the first operand
|
|
// is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow
|
|
// because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the
|
|
// nsw flag.
|
|
OpA = dyn_cast<Instruction>(ValA);
|
|
if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
|
|
OpB->getOpcode() == Instruction::Add &&
|
|
OpA->getOperand(0) == OpB->getOperand(0) && CheckFlags(OpA, Signed) &&
|
|
CheckFlags(OpB, Signed)) {
|
|
Value *RHSA = OpA->getOperand(1);
|
|
Value *RHSB = OpB->getOperand(1);
|
|
Instruction *OpRHSA = dyn_cast<Instruction>(RHSA);
|
|
Instruction *OpRHSB = dyn_cast<Instruction>(RHSB);
|
|
// Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
|
|
if (OpRHSB && OpRHSB->getOpcode() == Instruction::Add &&
|
|
CheckFlags(OpRHSB, Signed) && isa<ConstantInt>(OpRHSB->getOperand(1))) {
|
|
int64_t CstVal = cast<ConstantInt>(OpRHSB->getOperand(1))->getSExtValue();
|
|
if (OpRHSB->getOperand(0) == RHSA && IdxDiff.getSExtValue() == CstVal)
|
|
Safe = true;
|
|
}
|
|
// Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
|
|
if (OpRHSA && OpRHSA->getOpcode() == Instruction::Add &&
|
|
CheckFlags(OpRHSA, Signed) && isa<ConstantInt>(OpRHSA->getOperand(1))) {
|
|
int64_t CstVal = cast<ConstantInt>(OpRHSA->getOperand(1))->getSExtValue();
|
|
if (OpRHSA->getOperand(0) == RHSB && IdxDiff.getSExtValue() == -CstVal)
|
|
Safe = true;
|
|
}
|
|
// Match `x +nsw/nuw (y +nsw/nuw c)` and
|
|
// `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
|
|
if (OpRHSA && OpRHSB && OpRHSA->getOpcode() == Instruction::Add &&
|
|
OpRHSB->getOpcode() == Instruction::Add && CheckFlags(OpRHSA, Signed) &&
|
|
CheckFlags(OpRHSB, Signed) && isa<ConstantInt>(OpRHSA->getOperand(1)) &&
|
|
isa<ConstantInt>(OpRHSB->getOperand(1))) {
|
|
int64_t CstValA =
|
|
cast<ConstantInt>(OpRHSA->getOperand(1))->getSExtValue();
|
|
int64_t CstValB =
|
|
cast<ConstantInt>(OpRHSB->getOperand(1))->getSExtValue();
|
|
if (OpRHSA->getOperand(0) == OpRHSB->getOperand(0) &&
|
|
IdxDiff.getSExtValue() == (CstValB - CstValA))
|
|
Safe = true;
|
|
}
|
|
}
|
|
|
|
unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
|
|
|
|
// Third attempt:
|
|
// If all set bits of IdxDiff or any higher order bit other than the sign bit
|
|
// are known to be zero in ValA, we can add Diff to it while guaranteeing no
|
|
// overflow of any sort.
|
|
if (!Safe) {
|
|
OpA = dyn_cast<Instruction>(ValA);
|
|
if (!OpA)
|
|
return false;
|
|
KnownBits Known(BitWidth);
|
|
computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT);
|
|
APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
|
|
if (Signed)
|
|
BitsAllowedToBeSet.clearBit(BitWidth - 1);
|
|
if (BitsAllowedToBeSet.ult(IdxDiff))
|
|
return false;
|
|
}
|
|
|
|
const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
|
|
const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
|
|
const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
|
|
const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
|
|
return X == OffsetSCEVB;
|
|
}
|
|
|
|
bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
|
|
const APInt &PtrDelta,
|
|
unsigned Depth) const {
|
|
if (Depth++ == MaxDepth)
|
|
return false;
|
|
|
|
if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
|
|
if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
|
|
return SelectA->getCondition() == SelectB->getCondition() &&
|
|
areConsecutivePointers(SelectA->getTrueValue(),
|
|
SelectB->getTrueValue(), PtrDelta, Depth) &&
|
|
areConsecutivePointers(SelectA->getFalseValue(),
|
|
SelectB->getFalseValue(), PtrDelta, Depth);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Vectorizer::reorder(Instruction *I) {
|
|
SmallPtrSet<Instruction *, 16> InstructionsToMove;
|
|
SmallVector<Instruction *, 16> Worklist;
|
|
|
|
Worklist.push_back(I);
|
|
while (!Worklist.empty()) {
|
|
Instruction *IW = Worklist.pop_back_val();
|
|
int NumOperands = IW->getNumOperands();
|
|
for (int i = 0; i < NumOperands; i++) {
|
|
Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
|
|
if (!IM || IM->getOpcode() == Instruction::PHI)
|
|
continue;
|
|
|
|
// If IM is in another BB, no need to move it, because this pass only
|
|
// vectorizes instructions within one BB.
|
|
if (IM->getParent() != I->getParent())
|
|
continue;
|
|
|
|
if (!IM->comesBefore(I)) {
|
|
InstructionsToMove.insert(IM);
|
|
Worklist.push_back(IM);
|
|
}
|
|
}
|
|
}
|
|
|
|
// All instructions to move should follow I. Start from I, not from begin().
|
|
for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
|
|
++BBI) {
|
|
if (!InstructionsToMove.count(&*BBI))
|
|
continue;
|
|
Instruction *IM = &*BBI;
|
|
--BBI;
|
|
IM->removeFromParent();
|
|
IM->insertBefore(I);
|
|
}
|
|
}
|
|
|
|
std::pair<BasicBlock::iterator, BasicBlock::iterator>
|
|
Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
|
|
Instruction *C0 = Chain[0];
|
|
BasicBlock::iterator FirstInstr = C0->getIterator();
|
|
BasicBlock::iterator LastInstr = C0->getIterator();
|
|
|
|
BasicBlock *BB = C0->getParent();
|
|
unsigned NumFound = 0;
|
|
for (Instruction &I : *BB) {
|
|
if (!is_contained(Chain, &I))
|
|
continue;
|
|
|
|
++NumFound;
|
|
if (NumFound == 1) {
|
|
FirstInstr = I.getIterator();
|
|
}
|
|
if (NumFound == Chain.size()) {
|
|
LastInstr = I.getIterator();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Range is [first, last).
|
|
return std::make_pair(FirstInstr, ++LastInstr);
|
|
}
|
|
|
|
void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
|
|
SmallVector<Instruction *, 16> Instrs;
|
|
for (Instruction *I : Chain) {
|
|
Value *PtrOperand = getLoadStorePointerOperand(I);
|
|
assert(PtrOperand && "Instruction must have a pointer operand.");
|
|
Instrs.push_back(I);
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
|
|
Instrs.push_back(GEP);
|
|
}
|
|
|
|
// Erase instructions.
|
|
for (Instruction *I : Instrs)
|
|
if (I->use_empty())
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
|
|
Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
|
|
unsigned ElementSizeBits) {
|
|
unsigned ElementSizeBytes = ElementSizeBits / 8;
|
|
unsigned SizeBytes = ElementSizeBytes * Chain.size();
|
|
unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
|
|
if (NumLeft == Chain.size()) {
|
|
if ((NumLeft & 1) == 0)
|
|
NumLeft /= 2; // Split even in half
|
|
else
|
|
--NumLeft; // Split off last element
|
|
} else if (NumLeft == 0)
|
|
NumLeft = 1;
|
|
return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
|
|
}
|
|
|
|
ArrayRef<Instruction *>
|
|
Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
|
|
// These are in BB order, unlike Chain, which is in address order.
|
|
SmallVector<Instruction *, 16> MemoryInstrs;
|
|
SmallVector<Instruction *, 16> ChainInstrs;
|
|
|
|
bool IsLoadChain = isa<LoadInst>(Chain[0]);
|
|
LLVM_DEBUG({
|
|
for (Instruction *I : Chain) {
|
|
if (IsLoadChain)
|
|
assert(isa<LoadInst>(I) &&
|
|
"All elements of Chain must be loads, or all must be stores.");
|
|
else
|
|
assert(isa<StoreInst>(I) &&
|
|
"All elements of Chain must be loads, or all must be stores.");
|
|
}
|
|
});
|
|
|
|
for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
|
|
if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
|
|
if (!is_contained(Chain, &I))
|
|
MemoryInstrs.push_back(&I);
|
|
else
|
|
ChainInstrs.push_back(&I);
|
|
} else if (isa<IntrinsicInst>(&I) &&
|
|
cast<IntrinsicInst>(&I)->getIntrinsicID() ==
|
|
Intrinsic::sideeffect) {
|
|
// Ignore llvm.sideeffect calls.
|
|
} else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
|
|
LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
|
|
<< '\n');
|
|
break;
|
|
} else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
|
|
LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
|
|
<< '\n');
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Loop until we find an instruction in ChainInstrs that we can't vectorize.
|
|
unsigned ChainInstrIdx = 0;
|
|
Instruction *BarrierMemoryInstr = nullptr;
|
|
|
|
for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
|
|
Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
|
|
|
|
// If a barrier memory instruction was found, chain instructions that follow
|
|
// will not be added to the valid prefix.
|
|
if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr))
|
|
break;
|
|
|
|
// Check (in BB order) if any instruction prevents ChainInstr from being
|
|
// vectorized. Find and store the first such "conflicting" instruction.
|
|
for (Instruction *MemInstr : MemoryInstrs) {
|
|
// If a barrier memory instruction was found, do not check past it.
|
|
if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr))
|
|
break;
|
|
|
|
auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
|
|
auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
|
|
if (MemLoad && ChainLoad)
|
|
continue;
|
|
|
|
// We can ignore the alias if the we have a load store pair and the load
|
|
// is known to be invariant. The load cannot be clobbered by the store.
|
|
auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
|
|
return LI->hasMetadata(LLVMContext::MD_invariant_load);
|
|
};
|
|
|
|
// We can ignore the alias as long as the load comes before the store,
|
|
// because that means we won't be moving the load past the store to
|
|
// vectorize it (the vectorized load is inserted at the location of the
|
|
// first load in the chain).
|
|
if (isa<StoreInst>(MemInstr) && ChainLoad &&
|
|
(IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr)))
|
|
continue;
|
|
|
|
// Same case, but in reverse.
|
|
if (MemLoad && isa<StoreInst>(ChainInstr) &&
|
|
(IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr)))
|
|
continue;
|
|
|
|
if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
|
|
MemoryLocation::get(ChainInstr))) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: Found alias:\n"
|
|
" Aliasing instruction and pointer:\n"
|
|
<< " " << *MemInstr << '\n'
|
|
<< " " << *getLoadStorePointerOperand(MemInstr) << '\n'
|
|
<< " Aliased instruction and pointer:\n"
|
|
<< " " << *ChainInstr << '\n'
|
|
<< " " << *getLoadStorePointerOperand(ChainInstr) << '\n';
|
|
});
|
|
// Save this aliasing memory instruction as a barrier, but allow other
|
|
// instructions that precede the barrier to be vectorized with this one.
|
|
BarrierMemoryInstr = MemInstr;
|
|
break;
|
|
}
|
|
}
|
|
// Continue the search only for store chains, since vectorizing stores that
|
|
// precede an aliasing load is valid. Conversely, vectorizing loads is valid
|
|
// up to an aliasing store, but should not pull loads from further down in
|
|
// the basic block.
|
|
if (IsLoadChain && BarrierMemoryInstr) {
|
|
// The BarrierMemoryInstr is a store that precedes ChainInstr.
|
|
assert(BarrierMemoryInstr->comesBefore(ChainInstr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Find the largest prefix of Chain whose elements are all in
|
|
// ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of
|
|
// Chain. (Recall that Chain is in address order, but ChainInstrs is in BB
|
|
// order.)
|
|
SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
|
|
ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
|
|
unsigned ChainIdx = 0;
|
|
for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
|
|
if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
|
|
break;
|
|
}
|
|
return Chain.slice(0, ChainIdx);
|
|
}
|
|
|
|
static ChainID getChainID(const Value *Ptr) {
|
|
const Value *ObjPtr = getUnderlyingObject(Ptr);
|
|
if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
|
|
// The select's themselves are distinct instructions even if they share the
|
|
// same condition and evaluate to consecutive pointers for true and false
|
|
// values of the condition. Therefore using the select's themselves for
|
|
// grouping instructions would put consecutive accesses into different lists
|
|
// and they won't be even checked for being consecutive, and won't be
|
|
// vectorized.
|
|
return Sel->getCondition();
|
|
}
|
|
return ObjPtr;
|
|
}
|
|
|
|
std::pair<InstrListMap, InstrListMap>
|
|
Vectorizer::collectInstructions(BasicBlock *BB) {
|
|
InstrListMap LoadRefs;
|
|
InstrListMap StoreRefs;
|
|
|
|
for (Instruction &I : *BB) {
|
|
if (!I.mayReadOrWriteMemory())
|
|
continue;
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (!LI->isSimple())
|
|
continue;
|
|
|
|
// Skip if it's not legal.
|
|
if (!TTI.isLegalToVectorizeLoad(LI))
|
|
continue;
|
|
|
|
Type *Ty = LI->getType();
|
|
if (!VectorType::isValidElementType(Ty->getScalarType()))
|
|
continue;
|
|
|
|
// Skip weird non-byte sizes. They probably aren't worth the effort of
|
|
// handling correctly.
|
|
unsigned TySize = DL.getTypeSizeInBits(Ty);
|
|
if ((TySize % 8) != 0)
|
|
continue;
|
|
|
|
// Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
|
|
// functions are currently using an integer type for the vectorized
|
|
// load/store, and does not support casting between the integer type and a
|
|
// vector of pointers (e.g. i64 to <2 x i16*>)
|
|
if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
|
|
continue;
|
|
|
|
Value *Ptr = LI->getPointerOperand();
|
|
unsigned AS = Ptr->getType()->getPointerAddressSpace();
|
|
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
|
|
|
|
unsigned VF = VecRegSize / TySize;
|
|
VectorType *VecTy = dyn_cast<VectorType>(Ty);
|
|
|
|
// No point in looking at these if they're too big to vectorize.
|
|
if (TySize > VecRegSize / 2 ||
|
|
(VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
|
|
continue;
|
|
|
|
// Make sure all the users of a vector are constant-index extracts.
|
|
if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
|
|
const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
|
|
return EEI && isa<ConstantInt>(EEI->getOperand(1));
|
|
}))
|
|
continue;
|
|
|
|
// Save the load locations.
|
|
const ChainID ID = getChainID(Ptr);
|
|
LoadRefs[ID].push_back(LI);
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (!SI->isSimple())
|
|
continue;
|
|
|
|
// Skip if it's not legal.
|
|
if (!TTI.isLegalToVectorizeStore(SI))
|
|
continue;
|
|
|
|
Type *Ty = SI->getValueOperand()->getType();
|
|
if (!VectorType::isValidElementType(Ty->getScalarType()))
|
|
continue;
|
|
|
|
// Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
|
|
// functions are currently using an integer type for the vectorized
|
|
// load/store, and does not support casting between the integer type and a
|
|
// vector of pointers (e.g. i64 to <2 x i16*>)
|
|
if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
|
|
continue;
|
|
|
|
// Skip weird non-byte sizes. They probably aren't worth the effort of
|
|
// handling correctly.
|
|
unsigned TySize = DL.getTypeSizeInBits(Ty);
|
|
if ((TySize % 8) != 0)
|
|
continue;
|
|
|
|
Value *Ptr = SI->getPointerOperand();
|
|
unsigned AS = Ptr->getType()->getPointerAddressSpace();
|
|
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
|
|
|
|
unsigned VF = VecRegSize / TySize;
|
|
VectorType *VecTy = dyn_cast<VectorType>(Ty);
|
|
|
|
// No point in looking at these if they're too big to vectorize.
|
|
if (TySize > VecRegSize / 2 ||
|
|
(VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
|
|
continue;
|
|
|
|
if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
|
|
const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
|
|
return EEI && isa<ConstantInt>(EEI->getOperand(1));
|
|
}))
|
|
continue;
|
|
|
|
// Save store location.
|
|
const ChainID ID = getChainID(Ptr);
|
|
StoreRefs[ID].push_back(SI);
|
|
}
|
|
}
|
|
|
|
return {LoadRefs, StoreRefs};
|
|
}
|
|
|
|
bool Vectorizer::vectorizeChains(InstrListMap &Map) {
|
|
bool Changed = false;
|
|
|
|
for (const std::pair<ChainID, InstrList> &Chain : Map) {
|
|
unsigned Size = Chain.second.size();
|
|
if (Size < 2)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
|
|
|
|
// Process the stores in chunks of 64.
|
|
for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
|
|
unsigned Len = std::min<unsigned>(CE - CI, 64);
|
|
ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
|
|
Changed |= vectorizeInstructions(Chunk);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
|
|
LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
|
|
<< " instructions.\n");
|
|
SmallVector<int, 16> Heads, Tails;
|
|
int ConsecutiveChain[64];
|
|
|
|
// Do a quadratic search on all of the given loads/stores and find all of the
|
|
// pairs of loads/stores that follow each other.
|
|
for (int i = 0, e = Instrs.size(); i < e; ++i) {
|
|
ConsecutiveChain[i] = -1;
|
|
for (int j = e - 1; j >= 0; --j) {
|
|
if (i == j)
|
|
continue;
|
|
|
|
if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
|
|
if (ConsecutiveChain[i] != -1) {
|
|
int CurDistance = std::abs(ConsecutiveChain[i] - i);
|
|
int NewDistance = std::abs(ConsecutiveChain[i] - j);
|
|
if (j < i || NewDistance > CurDistance)
|
|
continue; // Should not insert.
|
|
}
|
|
|
|
Tails.push_back(j);
|
|
Heads.push_back(i);
|
|
ConsecutiveChain[i] = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Changed = false;
|
|
SmallPtrSet<Instruction *, 16> InstructionsProcessed;
|
|
|
|
for (int Head : Heads) {
|
|
if (InstructionsProcessed.count(Instrs[Head]))
|
|
continue;
|
|
bool LongerChainExists = false;
|
|
for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
|
|
if (Head == Tails[TIt] &&
|
|
!InstructionsProcessed.count(Instrs[Heads[TIt]])) {
|
|
LongerChainExists = true;
|
|
break;
|
|
}
|
|
if (LongerChainExists)
|
|
continue;
|
|
|
|
// We found an instr that starts a chain. Now follow the chain and try to
|
|
// vectorize it.
|
|
SmallVector<Instruction *, 16> Operands;
|
|
int I = Head;
|
|
while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
|
|
if (InstructionsProcessed.count(Instrs[I]))
|
|
break;
|
|
|
|
Operands.push_back(Instrs[I]);
|
|
I = ConsecutiveChain[I];
|
|
}
|
|
|
|
bool Vectorized = false;
|
|
if (isa<LoadInst>(*Operands.begin()))
|
|
Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
|
|
else
|
|
Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
|
|
|
|
Changed |= Vectorized;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool Vectorizer::vectorizeStoreChain(
|
|
ArrayRef<Instruction *> Chain,
|
|
SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
|
|
StoreInst *S0 = cast<StoreInst>(Chain[0]);
|
|
|
|
// If the vector has an int element, default to int for the whole store.
|
|
Type *StoreTy = nullptr;
|
|
for (Instruction *I : Chain) {
|
|
StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
|
|
if (StoreTy->isIntOrIntVectorTy())
|
|
break;
|
|
|
|
if (StoreTy->isPtrOrPtrVectorTy()) {
|
|
StoreTy = Type::getIntNTy(F.getParent()->getContext(),
|
|
DL.getTypeSizeInBits(StoreTy));
|
|
break;
|
|
}
|
|
}
|
|
assert(StoreTy && "Failed to find store type");
|
|
|
|
unsigned Sz = DL.getTypeSizeInBits(StoreTy);
|
|
unsigned AS = S0->getPointerAddressSpace();
|
|
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
|
|
unsigned VF = VecRegSize / Sz;
|
|
unsigned ChainSize = Chain.size();
|
|
Align Alignment = S0->getAlign();
|
|
|
|
if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
|
|
InstructionsProcessed->insert(Chain.begin(), Chain.end());
|
|
return false;
|
|
}
|
|
|
|
ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
|
|
if (NewChain.empty()) {
|
|
// No vectorization possible.
|
|
InstructionsProcessed->insert(Chain.begin(), Chain.end());
|
|
return false;
|
|
}
|
|
if (NewChain.size() == 1) {
|
|
// Failed after the first instruction. Discard it and try the smaller chain.
|
|
InstructionsProcessed->insert(NewChain.front());
|
|
return false;
|
|
}
|
|
|
|
// Update Chain to the valid vectorizable subchain.
|
|
Chain = NewChain;
|
|
ChainSize = Chain.size();
|
|
|
|
// Check if it's legal to vectorize this chain. If not, split the chain and
|
|
// try again.
|
|
unsigned EltSzInBytes = Sz / 8;
|
|
unsigned SzInBytes = EltSzInBytes * ChainSize;
|
|
|
|
VectorType *VecTy;
|
|
VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
|
|
if (VecStoreTy)
|
|
VecTy = FixedVectorType::get(StoreTy->getScalarType(),
|
|
Chain.size() * VecStoreTy->getNumElements());
|
|
else
|
|
VecTy = FixedVectorType::get(StoreTy, Chain.size());
|
|
|
|
// If it's more than the max vector size or the target has a better
|
|
// vector factor, break it into two pieces.
|
|
unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
|
|
if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
|
|
LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
|
|
" Creating two separate arrays.\n");
|
|
return vectorizeStoreChain(Chain.slice(0, TargetVF),
|
|
InstructionsProcessed) |
|
|
vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: Stores to vectorize:\n";
|
|
for (Instruction *I : Chain)
|
|
dbgs() << " " << *I << "\n";
|
|
});
|
|
|
|
// We won't try again to vectorize the elements of the chain, regardless of
|
|
// whether we succeed below.
|
|
InstructionsProcessed->insert(Chain.begin(), Chain.end());
|
|
|
|
// If the store is going to be misaligned, don't vectorize it.
|
|
if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) {
|
|
if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
|
|
auto Chains = splitOddVectorElts(Chain, Sz);
|
|
return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
|
|
vectorizeStoreChain(Chains.second, InstructionsProcessed);
|
|
}
|
|
|
|
Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
|
|
Align(StackAdjustedAlignment),
|
|
DL, S0, nullptr, &DT);
|
|
if (NewAlign >= Alignment)
|
|
Alignment = NewAlign;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
|
|
auto Chains = splitOddVectorElts(Chain, Sz);
|
|
return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
|
|
vectorizeStoreChain(Chains.second, InstructionsProcessed);
|
|
}
|
|
|
|
BasicBlock::iterator First, Last;
|
|
std::tie(First, Last) = getBoundaryInstrs(Chain);
|
|
Builder.SetInsertPoint(&*Last);
|
|
|
|
Value *Vec = UndefValue::get(VecTy);
|
|
|
|
if (VecStoreTy) {
|
|
unsigned VecWidth = VecStoreTy->getNumElements();
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
StoreInst *Store = cast<StoreInst>(Chain[I]);
|
|
for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
|
|
unsigned NewIdx = J + I * VecWidth;
|
|
Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
|
|
Builder.getInt32(J));
|
|
if (Extract->getType() != StoreTy->getScalarType())
|
|
Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
|
|
|
|
Value *Insert =
|
|
Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
|
|
Vec = Insert;
|
|
}
|
|
}
|
|
} else {
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
StoreInst *Store = cast<StoreInst>(Chain[I]);
|
|
Value *Extract = Store->getValueOperand();
|
|
if (Extract->getType() != StoreTy->getScalarType())
|
|
Extract =
|
|
Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
|
|
|
|
Value *Insert =
|
|
Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
|
|
Vec = Insert;
|
|
}
|
|
}
|
|
|
|
StoreInst *SI = Builder.CreateAlignedStore(
|
|
Vec,
|
|
Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
|
|
Alignment);
|
|
propagateMetadata(SI, Chain);
|
|
|
|
eraseInstructions(Chain);
|
|
++NumVectorInstructions;
|
|
NumScalarsVectorized += Chain.size();
|
|
return true;
|
|
}
|
|
|
|
bool Vectorizer::vectorizeLoadChain(
|
|
ArrayRef<Instruction *> Chain,
|
|
SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
|
|
LoadInst *L0 = cast<LoadInst>(Chain[0]);
|
|
|
|
// If the vector has an int element, default to int for the whole load.
|
|
Type *LoadTy = nullptr;
|
|
for (const auto &V : Chain) {
|
|
LoadTy = cast<LoadInst>(V)->getType();
|
|
if (LoadTy->isIntOrIntVectorTy())
|
|
break;
|
|
|
|
if (LoadTy->isPtrOrPtrVectorTy()) {
|
|
LoadTy = Type::getIntNTy(F.getParent()->getContext(),
|
|
DL.getTypeSizeInBits(LoadTy));
|
|
break;
|
|
}
|
|
}
|
|
assert(LoadTy && "Can't determine LoadInst type from chain");
|
|
|
|
unsigned Sz = DL.getTypeSizeInBits(LoadTy);
|
|
unsigned AS = L0->getPointerAddressSpace();
|
|
unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
|
|
unsigned VF = VecRegSize / Sz;
|
|
unsigned ChainSize = Chain.size();
|
|
Align Alignment = L0->getAlign();
|
|
|
|
if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
|
|
InstructionsProcessed->insert(Chain.begin(), Chain.end());
|
|
return false;
|
|
}
|
|
|
|
ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
|
|
if (NewChain.empty()) {
|
|
// No vectorization possible.
|
|
InstructionsProcessed->insert(Chain.begin(), Chain.end());
|
|
return false;
|
|
}
|
|
if (NewChain.size() == 1) {
|
|
// Failed after the first instruction. Discard it and try the smaller chain.
|
|
InstructionsProcessed->insert(NewChain.front());
|
|
return false;
|
|
}
|
|
|
|
// Update Chain to the valid vectorizable subchain.
|
|
Chain = NewChain;
|
|
ChainSize = Chain.size();
|
|
|
|
// Check if it's legal to vectorize this chain. If not, split the chain and
|
|
// try again.
|
|
unsigned EltSzInBytes = Sz / 8;
|
|
unsigned SzInBytes = EltSzInBytes * ChainSize;
|
|
VectorType *VecTy;
|
|
VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
|
|
if (VecLoadTy)
|
|
VecTy = FixedVectorType::get(LoadTy->getScalarType(),
|
|
Chain.size() * VecLoadTy->getNumElements());
|
|
else
|
|
VecTy = FixedVectorType::get(LoadTy, Chain.size());
|
|
|
|
// If it's more than the max vector size or the target has a better
|
|
// vector factor, break it into two pieces.
|
|
unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
|
|
if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
|
|
LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
|
|
" Creating two separate arrays.\n");
|
|
return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
|
|
vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
|
|
}
|
|
|
|
// We won't try again to vectorize the elements of the chain, regardless of
|
|
// whether we succeed below.
|
|
InstructionsProcessed->insert(Chain.begin(), Chain.end());
|
|
|
|
// If the load is going to be misaligned, don't vectorize it.
|
|
if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) {
|
|
if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
|
|
auto Chains = splitOddVectorElts(Chain, Sz);
|
|
return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
|
|
vectorizeLoadChain(Chains.second, InstructionsProcessed);
|
|
}
|
|
|
|
Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
|
|
Align(StackAdjustedAlignment),
|
|
DL, L0, nullptr, &DT);
|
|
if (NewAlign >= Alignment)
|
|
Alignment = NewAlign;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
|
|
auto Chains = splitOddVectorElts(Chain, Sz);
|
|
return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
|
|
vectorizeLoadChain(Chains.second, InstructionsProcessed);
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "LSV: Loads to vectorize:\n";
|
|
for (Instruction *I : Chain)
|
|
I->dump();
|
|
});
|
|
|
|
// getVectorizablePrefix already computed getBoundaryInstrs. The value of
|
|
// Last may have changed since then, but the value of First won't have. If it
|
|
// matters, we could compute getBoundaryInstrs only once and reuse it here.
|
|
BasicBlock::iterator First, Last;
|
|
std::tie(First, Last) = getBoundaryInstrs(Chain);
|
|
Builder.SetInsertPoint(&*First);
|
|
|
|
Value *Bitcast =
|
|
Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
|
|
LoadInst *LI =
|
|
Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment));
|
|
propagateMetadata(LI, Chain);
|
|
|
|
if (VecLoadTy) {
|
|
SmallVector<Instruction *, 16> InstrsToErase;
|
|
|
|
unsigned VecWidth = VecLoadTy->getNumElements();
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
for (auto Use : Chain[I]->users()) {
|
|
// All users of vector loads are ExtractElement instructions with
|
|
// constant indices, otherwise we would have bailed before now.
|
|
Instruction *UI = cast<Instruction>(Use);
|
|
unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
|
|
unsigned NewIdx = Idx + I * VecWidth;
|
|
Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
|
|
UI->getName());
|
|
if (V->getType() != UI->getType())
|
|
V = Builder.CreateBitCast(V, UI->getType());
|
|
|
|
// Replace the old instruction.
|
|
UI->replaceAllUsesWith(V);
|
|
InstrsToErase.push_back(UI);
|
|
}
|
|
}
|
|
|
|
// Bitcast might not be an Instruction, if the value being loaded is a
|
|
// constant. In that case, no need to reorder anything.
|
|
if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
|
|
reorder(BitcastInst);
|
|
|
|
for (auto I : InstrsToErase)
|
|
I->eraseFromParent();
|
|
} else {
|
|
for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
|
|
Value *CV = Chain[I];
|
|
Value *V =
|
|
Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
|
|
if (V->getType() != CV->getType()) {
|
|
V = Builder.CreateBitOrPointerCast(V, CV->getType());
|
|
}
|
|
|
|
// Replace the old instruction.
|
|
CV->replaceAllUsesWith(V);
|
|
}
|
|
|
|
if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
|
|
reorder(BitcastInst);
|
|
}
|
|
|
|
eraseInstructions(Chain);
|
|
|
|
++NumVectorInstructions;
|
|
NumScalarsVectorized += Chain.size();
|
|
return true;
|
|
}
|
|
|
|
bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
|
|
unsigned Alignment) {
|
|
if (Alignment % SzInBytes == 0)
|
|
return false;
|
|
|
|
bool Fast = false;
|
|
bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
|
|
SzInBytes * 8, AddressSpace,
|
|
Alignment, &Fast);
|
|
LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
|
|
<< " and fast? " << Fast << "\n";);
|
|
return !Allows || !Fast;
|
|
}
|