llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollAndJamPass.cpp

534 lines
21 KiB
C++

//===- LoopUnrollAndJam.cpp - Loop unroll and jam pass --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements an unroll and jam pass. Most of the work is done by
// Utils/UnrollLoopAndJam.cpp.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/LoopPeel.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <cassert>
#include <cstdint>
#include <vector>
namespace llvm {
class Instruction;
class Value;
} // namespace llvm
using namespace llvm;
#define DEBUG_TYPE "loop-unroll-and-jam"
/// @{
/// Metadata attribute names
static const char *const LLVMLoopUnrollAndJamFollowupAll =
"llvm.loop.unroll_and_jam.followup_all";
static const char *const LLVMLoopUnrollAndJamFollowupInner =
"llvm.loop.unroll_and_jam.followup_inner";
static const char *const LLVMLoopUnrollAndJamFollowupOuter =
"llvm.loop.unroll_and_jam.followup_outer";
static const char *const LLVMLoopUnrollAndJamFollowupRemainderInner =
"llvm.loop.unroll_and_jam.followup_remainder_inner";
static const char *const LLVMLoopUnrollAndJamFollowupRemainderOuter =
"llvm.loop.unroll_and_jam.followup_remainder_outer";
/// @}
static cl::opt<bool>
AllowUnrollAndJam("allow-unroll-and-jam", cl::Hidden,
cl::desc("Allows loops to be unroll-and-jammed."));
static cl::opt<unsigned> UnrollAndJamCount(
"unroll-and-jam-count", cl::Hidden,
cl::desc("Use this unroll count for all loops including those with "
"unroll_and_jam_count pragma values, for testing purposes"));
static cl::opt<unsigned> UnrollAndJamThreshold(
"unroll-and-jam-threshold", cl::init(60), cl::Hidden,
cl::desc("Threshold to use for inner loop when doing unroll and jam."));
static cl::opt<unsigned> PragmaUnrollAndJamThreshold(
"pragma-unroll-and-jam-threshold", cl::init(1024), cl::Hidden,
cl::desc("Unrolled size limit for loops with an unroll_and_jam(full) or "
"unroll_count pragma."));
// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
// returned.
static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
if (MDNode *LoopID = L->getLoopID())
return GetUnrollMetadata(LoopID, Name);
return nullptr;
}
// Returns true if the loop has any metadata starting with Prefix. For example a
// Prefix of "llvm.loop.unroll." returns true if we have any unroll metadata.
static bool hasAnyUnrollPragma(const Loop *L, StringRef Prefix) {
if (MDNode *LoopID = L->getLoopID()) {
// First operand should refer to the loop id itself.
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
for (unsigned I = 1, E = LoopID->getNumOperands(); I < E; ++I) {
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(I));
if (!MD)
continue;
MDString *S = dyn_cast<MDString>(MD->getOperand(0));
if (!S)
continue;
if (S->getString().startswith(Prefix))
return true;
}
}
return false;
}
// Returns true if the loop has an unroll_and_jam(enable) pragma.
static bool hasUnrollAndJamEnablePragma(const Loop *L) {
return getUnrollMetadataForLoop(L, "llvm.loop.unroll_and_jam.enable");
}
// If loop has an unroll_and_jam_count pragma return the (necessarily
// positive) value from the pragma. Otherwise return 0.
static unsigned unrollAndJamCountPragmaValue(const Loop *L) {
MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll_and_jam.count");
if (MD) {
assert(MD->getNumOperands() == 2 &&
"Unroll count hint metadata should have two operands.");
unsigned Count =
mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
assert(Count >= 1 && "Unroll count must be positive.");
return Count;
}
return 0;
}
// Returns loop size estimation for unrolled loop.
static uint64_t
getUnrollAndJammedLoopSize(unsigned LoopSize,
TargetTransformInfo::UnrollingPreferences &UP) {
assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
}
// Calculates unroll and jam count and writes it to UP.Count. Returns true if
// unroll count was set explicitly.
static bool computeUnrollAndJamCount(
Loop *L, Loop *SubLoop, const TargetTransformInfo &TTI, DominatorTree &DT,
LoopInfo *LI, ScalarEvolution &SE,
const SmallPtrSetImpl<const Value *> &EphValues,
OptimizationRemarkEmitter *ORE, unsigned OuterTripCount,
unsigned OuterTripMultiple, unsigned OuterLoopSize, unsigned InnerTripCount,
unsigned InnerLoopSize, TargetTransformInfo::UnrollingPreferences &UP,
TargetTransformInfo::PeelingPreferences &PP) {
// First up use computeUnrollCount from the loop unroller to get a count
// for unrolling the outer loop, plus any loops requiring explicit
// unrolling we leave to the unroller. This uses UP.Threshold /
// UP.PartialThreshold / UP.MaxCount to come up with sensible loop values.
// We have already checked that the loop has no unroll.* pragmas.
unsigned MaxTripCount = 0;
bool UseUpperBound = false;
bool ExplicitUnroll = computeUnrollCount(
L, TTI, DT, LI, SE, EphValues, ORE, OuterTripCount, MaxTripCount,
/*MaxOrZero*/ false, OuterTripMultiple, OuterLoopSize, UP, PP,
UseUpperBound);
if (ExplicitUnroll || UseUpperBound) {
// If the user explicitly set the loop as unrolled, dont UnJ it. Leave it
// for the unroller instead.
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; explicit count set by "
"computeUnrollCount\n");
UP.Count = 0;
return false;
}
// Override with any explicit Count from the "unroll-and-jam-count" option.
bool UserUnrollCount = UnrollAndJamCount.getNumOccurrences() > 0;
if (UserUnrollCount) {
UP.Count = UnrollAndJamCount;
UP.Force = true;
if (UP.AllowRemainder &&
getUnrollAndJammedLoopSize(OuterLoopSize, UP) < UP.Threshold &&
getUnrollAndJammedLoopSize(InnerLoopSize, UP) <
UP.UnrollAndJamInnerLoopThreshold)
return true;
}
// Check for unroll_and_jam pragmas
unsigned PragmaCount = unrollAndJamCountPragmaValue(L);
if (PragmaCount > 0) {
UP.Count = PragmaCount;
UP.Runtime = true;
UP.Force = true;
if ((UP.AllowRemainder || (OuterTripMultiple % PragmaCount == 0)) &&
getUnrollAndJammedLoopSize(OuterLoopSize, UP) < UP.Threshold &&
getUnrollAndJammedLoopSize(InnerLoopSize, UP) <
UP.UnrollAndJamInnerLoopThreshold)
return true;
}
bool PragmaEnableUnroll = hasUnrollAndJamEnablePragma(L);
bool ExplicitUnrollAndJamCount = PragmaCount > 0 || UserUnrollCount;
bool ExplicitUnrollAndJam = PragmaEnableUnroll || ExplicitUnrollAndJamCount;
// If the loop has an unrolling pragma, we want to be more aggressive with
// unrolling limits.
if (ExplicitUnrollAndJam)
UP.UnrollAndJamInnerLoopThreshold = PragmaUnrollAndJamThreshold;
if (!UP.AllowRemainder && getUnrollAndJammedLoopSize(InnerLoopSize, UP) >=
UP.UnrollAndJamInnerLoopThreshold) {
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't create remainder and "
"inner loop too large\n");
UP.Count = 0;
return false;
}
// We have a sensible limit for the outer loop, now adjust it for the inner
// loop and UP.UnrollAndJamInnerLoopThreshold. If the outer limit was set
// explicitly, we want to stick to it.
if (!ExplicitUnrollAndJamCount && UP.AllowRemainder) {
while (UP.Count != 0 && getUnrollAndJammedLoopSize(InnerLoopSize, UP) >=
UP.UnrollAndJamInnerLoopThreshold)
UP.Count--;
}
// If we are explicitly unroll and jamming, we are done. Otherwise there are a
// number of extra performance heuristics to check.
if (ExplicitUnrollAndJam)
return true;
// If the inner loop count is known and small, leave the entire loop nest to
// be the unroller
if (InnerTripCount && InnerLoopSize * InnerTripCount < UP.Threshold) {
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; small inner loop count is "
"being left for the unroller\n");
UP.Count = 0;
return false;
}
// Check for situations where UnJ is likely to be unprofitable. Including
// subloops with more than 1 block.
if (SubLoop->getBlocks().size() != 1) {
LLVM_DEBUG(
dbgs() << "Won't unroll-and-jam; More than one inner loop block\n");
UP.Count = 0;
return false;
}
// Limit to loops where there is something to gain from unrolling and
// jamming the loop. In this case, look for loads that are invariant in the
// outer loop and can become shared.
unsigned NumInvariant = 0;
for (BasicBlock *BB : SubLoop->getBlocks()) {
for (Instruction &I : *BB) {
if (auto *Ld = dyn_cast<LoadInst>(&I)) {
Value *V = Ld->getPointerOperand();
const SCEV *LSCEV = SE.getSCEVAtScope(V, L);
if (SE.isLoopInvariant(LSCEV, L))
NumInvariant++;
}
}
}
if (NumInvariant == 0) {
LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; No loop invariant loads\n");
UP.Count = 0;
return false;
}
return false;
}
static LoopUnrollResult
tryToUnrollAndJamLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution &SE, const TargetTransformInfo &TTI,
AssumptionCache &AC, DependenceInfo &DI,
OptimizationRemarkEmitter &ORE, int OptLevel) {
TargetTransformInfo::UnrollingPreferences UP =
gatherUnrollingPreferences(L, SE, TTI, nullptr, nullptr, OptLevel, None,
None, None, None, None, None);
TargetTransformInfo::PeelingPreferences PP =
gatherPeelingPreferences(L, SE, TTI, None, None);
if (AllowUnrollAndJam.getNumOccurrences() > 0)
UP.UnrollAndJam = AllowUnrollAndJam;
if (UnrollAndJamThreshold.getNumOccurrences() > 0)
UP.UnrollAndJamInnerLoopThreshold = UnrollAndJamThreshold;
// Exit early if unrolling is disabled.
if (!UP.UnrollAndJam || UP.UnrollAndJamInnerLoopThreshold == 0)
return LoopUnrollResult::Unmodified;
LLVM_DEBUG(dbgs() << "Loop Unroll and Jam: F["
<< L->getHeader()->getParent()->getName() << "] Loop %"
<< L->getHeader()->getName() << "\n");
TransformationMode EnableMode = hasUnrollAndJamTransformation(L);
if (EnableMode & TM_Disable)
return LoopUnrollResult::Unmodified;
// A loop with any unroll pragma (enabling/disabling/count/etc) is left for
// the unroller, so long as it does not explicitly have unroll_and_jam
// metadata. This means #pragma nounroll will disable unroll and jam as well
// as unrolling
if (hasAnyUnrollPragma(L, "llvm.loop.unroll.") &&
!hasAnyUnrollPragma(L, "llvm.loop.unroll_and_jam.")) {
LLVM_DEBUG(dbgs() << " Disabled due to pragma.\n");
return LoopUnrollResult::Unmodified;
}
if (!isSafeToUnrollAndJam(L, SE, DT, DI, *LI)) {
LLVM_DEBUG(dbgs() << " Disabled due to not being safe.\n");
return LoopUnrollResult::Unmodified;
}
// Approximate the loop size and collect useful info
unsigned NumInlineCandidates;
bool NotDuplicatable;
bool Convergent;
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
Loop *SubLoop = L->getSubLoops()[0];
unsigned InnerLoopSize =
ApproximateLoopSize(SubLoop, NumInlineCandidates, NotDuplicatable,
Convergent, TTI, EphValues, UP.BEInsns);
unsigned OuterLoopSize =
ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
TTI, EphValues, UP.BEInsns);
LLVM_DEBUG(dbgs() << " Outer Loop Size: " << OuterLoopSize << "\n");
LLVM_DEBUG(dbgs() << " Inner Loop Size: " << InnerLoopSize << "\n");
if (NotDuplicatable) {
LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable "
"instructions.\n");
return LoopUnrollResult::Unmodified;
}
if (NumInlineCandidates != 0) {
LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return LoopUnrollResult::Unmodified;
}
if (Convergent) {
LLVM_DEBUG(
dbgs() << " Not unrolling loop with convergent instructions.\n");
return LoopUnrollResult::Unmodified;
}
// Save original loop IDs for after the transformation.
MDNode *OrigOuterLoopID = L->getLoopID();
MDNode *OrigSubLoopID = SubLoop->getLoopID();
// To assign the loop id of the epilogue, assign it before unrolling it so it
// is applied to every inner loop of the epilogue. We later apply the loop ID
// for the jammed inner loop.
Optional<MDNode *> NewInnerEpilogueLoopID = makeFollowupLoopID(
OrigOuterLoopID, {LLVMLoopUnrollAndJamFollowupAll,
LLVMLoopUnrollAndJamFollowupRemainderInner});
if (NewInnerEpilogueLoopID.hasValue())
SubLoop->setLoopID(NewInnerEpilogueLoopID.getValue());
// Find trip count and trip multiple
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
unsigned OuterTripCount = SE.getSmallConstantTripCount(L, Latch);
unsigned OuterTripMultiple = SE.getSmallConstantTripMultiple(L, Latch);
unsigned InnerTripCount = SE.getSmallConstantTripCount(SubLoop, SubLoopLatch);
// Decide if, and by how much, to unroll
bool IsCountSetExplicitly = computeUnrollAndJamCount(
L, SubLoop, TTI, DT, LI, SE, EphValues, &ORE, OuterTripCount,
OuterTripMultiple, OuterLoopSize, InnerTripCount, InnerLoopSize, UP, PP);
if (UP.Count <= 1)
return LoopUnrollResult::Unmodified;
// Unroll factor (Count) must be less or equal to TripCount.
if (OuterTripCount && UP.Count > OuterTripCount)
UP.Count = OuterTripCount;
Loop *EpilogueOuterLoop = nullptr;
LoopUnrollResult UnrollResult = UnrollAndJamLoop(
L, UP.Count, OuterTripCount, OuterTripMultiple, UP.UnrollRemainder, LI,
&SE, &DT, &AC, &TTI, &ORE, &EpilogueOuterLoop);
// Assign new loop attributes.
if (EpilogueOuterLoop) {
Optional<MDNode *> NewOuterEpilogueLoopID = makeFollowupLoopID(
OrigOuterLoopID, {LLVMLoopUnrollAndJamFollowupAll,
LLVMLoopUnrollAndJamFollowupRemainderOuter});
if (NewOuterEpilogueLoopID.hasValue())
EpilogueOuterLoop->setLoopID(NewOuterEpilogueLoopID.getValue());
}
Optional<MDNode *> NewInnerLoopID =
makeFollowupLoopID(OrigOuterLoopID, {LLVMLoopUnrollAndJamFollowupAll,
LLVMLoopUnrollAndJamFollowupInner});
if (NewInnerLoopID.hasValue())
SubLoop->setLoopID(NewInnerLoopID.getValue());
else
SubLoop->setLoopID(OrigSubLoopID);
if (UnrollResult == LoopUnrollResult::PartiallyUnrolled) {
Optional<MDNode *> NewOuterLoopID = makeFollowupLoopID(
OrigOuterLoopID,
{LLVMLoopUnrollAndJamFollowupAll, LLVMLoopUnrollAndJamFollowupOuter});
if (NewOuterLoopID.hasValue()) {
L->setLoopID(NewOuterLoopID.getValue());
// Do not setLoopAlreadyUnrolled if a followup was given.
return UnrollResult;
}
}
// If loop has an unroll count pragma or unrolled by explicitly set count
// mark loop as unrolled to prevent unrolling beyond that requested.
if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
L->setLoopAlreadyUnrolled();
return UnrollResult;
}
static bool tryToUnrollAndJamLoop(Function &F, DominatorTree &DT, LoopInfo &LI,
ScalarEvolution &SE,
const TargetTransformInfo &TTI,
AssumptionCache &AC, DependenceInfo &DI,
OptimizationRemarkEmitter &ORE,
int OptLevel) {
bool DidSomething = false;
// The loop unroll and jam pass requires loops to be in simplified form, and
// also needs LCSSA. Since simplification may add new inner loops, it has to
// run before the legality and profitability checks. This means running the
// loop unroll and jam pass will simplify all loops, regardless of whether
// anything end up being unroll and jammed.
for (auto &L : LI) {
DidSomething |=
simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
DidSomething |= formLCSSARecursively(*L, DT, &LI, &SE);
}
// Add the loop nests in the reverse order of LoopInfo. See method
// declaration.
SmallPriorityWorklist<Loop *, 4> Worklist;
appendLoopsToWorklist(LI, Worklist);
while (!Worklist.empty()) {
Loop *L = Worklist.pop_back_val();
LoopUnrollResult Result =
tryToUnrollAndJamLoop(L, DT, &LI, SE, TTI, AC, DI, ORE, OptLevel);
if (Result != LoopUnrollResult::Unmodified)
DidSomething = true;
}
return DidSomething;
}
namespace {
class LoopUnrollAndJam : public FunctionPass {
public:
static char ID; // Pass ID, replacement for typeid
unsigned OptLevel;
LoopUnrollAndJam(int OptLevel = 2) : FunctionPass(ID), OptLevel(OptLevel) {
initializeLoopUnrollAndJamPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
return tryToUnrollAndJamLoop(F, DT, LI, SE, TTI, AC, DI, ORE, OptLevel);
}
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG...
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DependenceAnalysisWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}
};
} // end anonymous namespace
char LoopUnrollAndJam::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnrollAndJam, "loop-unroll-and-jam",
"Unroll and Jam loops", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopUnrollAndJam, "loop-unroll-and-jam",
"Unroll and Jam loops", false, false)
Pass *llvm::createLoopUnrollAndJamPass(int OptLevel) {
return new LoopUnrollAndJam(OptLevel);
}
PreservedAnalyses LoopUnrollAndJamPass::run(Function &F,
FunctionAnalysisManager &AM) {
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
DependenceInfo &DI = AM.getResult<DependenceAnalysis>(F);
OptimizationRemarkEmitter &ORE =
AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
if (!tryToUnrollAndJamLoop(F, DT, LI, SE, TTI, AC, DI, ORE, OptLevel))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}