forked from OSchip/llvm-project
567 lines
20 KiB
C++
567 lines
20 KiB
C++
//===- CallSiteSplitting.cpp ----------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a transformation that tries to split a call-site to pass
|
|
// more constrained arguments if its argument is predicated in the control flow
|
|
// so that we can expose better context to the later passes (e.g, inliner, jump
|
|
// threading, or IPA-CP based function cloning, etc.).
|
|
// As of now we support two cases :
|
|
//
|
|
// 1) Try to a split call-site with constrained arguments, if any constraints
|
|
// on any argument can be found by following the single predecessors of the
|
|
// all site's predecessors. Currently this pass only handles call-sites with 2
|
|
// predecessors. For example, in the code below, we try to split the call-site
|
|
// since we can predicate the argument(ptr) based on the OR condition.
|
|
//
|
|
// Split from :
|
|
// if (!ptr || c)
|
|
// callee(ptr);
|
|
// to :
|
|
// if (!ptr)
|
|
// callee(null) // set the known constant value
|
|
// else if (c)
|
|
// callee(nonnull ptr) // set non-null attribute in the argument
|
|
//
|
|
// 2) We can also split a call-site based on constant incoming values of a PHI
|
|
// For example,
|
|
// from :
|
|
// Header:
|
|
// %c = icmp eq i32 %i1, %i2
|
|
// br i1 %c, label %Tail, label %TBB
|
|
// TBB:
|
|
// br label Tail%
|
|
// Tail:
|
|
// %p = phi i32 [ 0, %Header], [ 1, %TBB]
|
|
// call void @bar(i32 %p)
|
|
// to
|
|
// Header:
|
|
// %c = icmp eq i32 %i1, %i2
|
|
// br i1 %c, label %Tail-split0, label %TBB
|
|
// TBB:
|
|
// br label %Tail-split1
|
|
// Tail-split0:
|
|
// call void @bar(i32 0)
|
|
// br label %Tail
|
|
// Tail-split1:
|
|
// call void @bar(i32 1)
|
|
// br label %Tail
|
|
// Tail:
|
|
// %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "callsite-splitting"
|
|
|
|
STATISTIC(NumCallSiteSplit, "Number of call-site split");
|
|
|
|
/// Only allow instructions before a call, if their CodeSize cost is below
|
|
/// DuplicationThreshold. Those instructions need to be duplicated in all
|
|
/// split blocks.
|
|
static cl::opt<unsigned>
|
|
DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
|
|
cl::desc("Only allow instructions before a call, if "
|
|
"their cost is below DuplicationThreshold"),
|
|
cl::init(5));
|
|
|
|
static void addNonNullAttribute(CallSite CS, Value *Op) {
|
|
unsigned ArgNo = 0;
|
|
for (auto &I : CS.args()) {
|
|
if (&*I == Op)
|
|
CS.addParamAttr(ArgNo, Attribute::NonNull);
|
|
++ArgNo;
|
|
}
|
|
}
|
|
|
|
static void setConstantInArgument(CallSite CS, Value *Op,
|
|
Constant *ConstValue) {
|
|
unsigned ArgNo = 0;
|
|
for (auto &I : CS.args()) {
|
|
if (&*I == Op) {
|
|
// It is possible we have already added the non-null attribute to the
|
|
// parameter by using an earlier constraining condition.
|
|
CS.removeParamAttr(ArgNo, Attribute::NonNull);
|
|
CS.setArgument(ArgNo, ConstValue);
|
|
}
|
|
++ArgNo;
|
|
}
|
|
}
|
|
|
|
static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
|
|
assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
|
|
Value *Op0 = Cmp->getOperand(0);
|
|
unsigned ArgNo = 0;
|
|
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
|
|
++I, ++ArgNo) {
|
|
// Don't consider constant or arguments that are already known non-null.
|
|
if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
|
|
continue;
|
|
|
|
if (*I == Op0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
typedef std::pair<ICmpInst *, unsigned> ConditionTy;
|
|
typedef SmallVector<ConditionTy, 2> ConditionsTy;
|
|
|
|
/// If From has a conditional jump to To, add the condition to Conditions,
|
|
/// if it is relevant to any argument at CS.
|
|
static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
|
|
ConditionsTy &Conditions) {
|
|
auto *BI = dyn_cast<BranchInst>(From->getTerminator());
|
|
if (!BI || !BI->isConditional())
|
|
return;
|
|
|
|
CmpInst::Predicate Pred;
|
|
Value *Cond = BI->getCondition();
|
|
if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
|
|
return;
|
|
|
|
ICmpInst *Cmp = cast<ICmpInst>(Cond);
|
|
if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
|
|
if (isCondRelevantToAnyCallArgument(Cmp, CS))
|
|
Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
|
|
? Pred
|
|
: Cmp->getInversePredicate()});
|
|
}
|
|
|
|
/// Record ICmp conditions relevant to any argument in CS following Pred's
|
|
/// single predecessors. If there are conflicting conditions along a path, like
|
|
/// x == 1 and x == 0, the first condition will be used.
|
|
static void recordConditions(CallSite CS, BasicBlock *Pred,
|
|
ConditionsTy &Conditions) {
|
|
recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
|
|
BasicBlock *From = Pred;
|
|
BasicBlock *To = Pred;
|
|
SmallPtrSet<BasicBlock *, 4> Visited;
|
|
while (!Visited.count(From->getSinglePredecessor()) &&
|
|
(From = From->getSinglePredecessor())) {
|
|
recordCondition(CS, From, To, Conditions);
|
|
Visited.insert(From);
|
|
To = From;
|
|
}
|
|
}
|
|
|
|
static void addConditions(CallSite CS, const ConditionsTy &Conditions) {
|
|
for (auto &Cond : Conditions) {
|
|
Value *Arg = Cond.first->getOperand(0);
|
|
Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
|
|
if (Cond.second == ICmpInst::ICMP_EQ)
|
|
setConstantInArgument(CS, Arg, ConstVal);
|
|
else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
|
|
assert(Cond.second == ICmpInst::ICMP_NE);
|
|
addNonNullAttribute(CS, Arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
|
|
SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
|
|
assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
|
|
return Preds;
|
|
}
|
|
|
|
static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
|
|
// FIXME: As of now we handle only CallInst. InvokeInst could be handled
|
|
// without too much effort.
|
|
Instruction *Instr = CS.getInstruction();
|
|
if (!isa<CallInst>(Instr))
|
|
return false;
|
|
|
|
BasicBlock *CallSiteBB = Instr->getParent();
|
|
// Need 2 predecessors and cannot split an edge from an IndirectBrInst.
|
|
SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
|
|
if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
|
|
isa<IndirectBrInst>(Preds[1]->getTerminator()))
|
|
return false;
|
|
|
|
// BasicBlock::canSplitPredecessors is more agressive, so checking for
|
|
// BasicBlock::isEHPad as well.
|
|
if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
|
|
return false;
|
|
|
|
// Allow splitting a call-site only when the CodeSize cost of the
|
|
// instructions before the call is less then DuplicationThreshold. The
|
|
// instructions before the call will be duplicated in the split blocks and
|
|
// corresponding uses will be updated.
|
|
unsigned Cost = 0;
|
|
for (auto &InstBeforeCall :
|
|
llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) {
|
|
Cost += TTI.getInstructionCost(&InstBeforeCall,
|
|
TargetTransformInfo::TCK_CodeSize);
|
|
if (Cost >= DuplicationThreshold)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
|
|
Value *V) {
|
|
Instruction *Copy = I->clone();
|
|
Copy->setName(I->getName());
|
|
Copy->insertBefore(Before);
|
|
if (V)
|
|
Copy->setOperand(0, V);
|
|
return Copy;
|
|
}
|
|
|
|
/// Copy mandatory `musttail` return sequence that follows original `CI`, and
|
|
/// link it up to `NewCI` value instead:
|
|
///
|
|
/// * (optional) `bitcast NewCI to ...`
|
|
/// * `ret bitcast or NewCI`
|
|
///
|
|
/// Insert this sequence right before `SplitBB`'s terminator, which will be
|
|
/// cleaned up later in `splitCallSite` below.
|
|
static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
|
|
Instruction *NewCI) {
|
|
bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
|
|
auto II = std::next(CI->getIterator());
|
|
|
|
BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
|
|
if (BCI)
|
|
++II;
|
|
|
|
ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
|
|
assert(RI && "`musttail` call must be followed by `ret` instruction");
|
|
|
|
Instruction *TI = SplitBB->getTerminator();
|
|
Value *V = NewCI;
|
|
if (BCI)
|
|
V = cloneInstForMustTail(BCI, TI, V);
|
|
cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
|
|
|
|
// FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
|
|
// that prevents doing this now.
|
|
}
|
|
|
|
/// For each (predecessor, conditions from predecessors) pair, it will split the
|
|
/// basic block containing the call site, hook it up to the predecessor and
|
|
/// replace the call instruction with new call instructions, which contain
|
|
/// constraints based on the conditions from their predecessors.
|
|
/// For example, in the IR below with an OR condition, the call-site can
|
|
/// be split. In this case, Preds for Tail is [(Header, a == null),
|
|
/// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
|
|
/// CallInst1, which has constraints based on the conditions from Head and
|
|
/// CallInst2, which has constraints based on the conditions coming from TBB.
|
|
///
|
|
/// From :
|
|
///
|
|
/// Header:
|
|
/// %c = icmp eq i32* %a, null
|
|
/// br i1 %c %Tail, %TBB
|
|
/// TBB:
|
|
/// %c2 = icmp eq i32* %b, null
|
|
/// br i1 %c %Tail, %End
|
|
/// Tail:
|
|
/// %ca = call i1 @callee (i32* %a, i32* %b)
|
|
///
|
|
/// to :
|
|
///
|
|
/// Header: // PredBB1 is Header
|
|
/// %c = icmp eq i32* %a, null
|
|
/// br i1 %c %Tail-split1, %TBB
|
|
/// TBB: // PredBB2 is TBB
|
|
/// %c2 = icmp eq i32* %b, null
|
|
/// br i1 %c %Tail-split2, %End
|
|
/// Tail-split1:
|
|
/// %ca1 = call @callee (i32* null, i32* %b) // CallInst1
|
|
/// br %Tail
|
|
/// Tail-split2:
|
|
/// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
|
|
/// br %Tail
|
|
/// Tail:
|
|
/// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
|
|
///
|
|
/// Note that in case any arguments at the call-site are constrained by its
|
|
/// predecessors, new call-sites with more constrained arguments will be
|
|
/// created in createCallSitesOnPredicatedArgument().
|
|
static void splitCallSite(
|
|
CallSite CS,
|
|
const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
|
|
DominatorTree *DT) {
|
|
Instruction *Instr = CS.getInstruction();
|
|
BasicBlock *TailBB = Instr->getParent();
|
|
bool IsMustTailCall = CS.isMustTailCall();
|
|
|
|
PHINode *CallPN = nullptr;
|
|
|
|
// `musttail` calls must be followed by optional `bitcast`, and `ret`. The
|
|
// split blocks will be terminated right after that so there're no users for
|
|
// this phi in a `TailBB`.
|
|
if (!IsMustTailCall && !Instr->use_empty()) {
|
|
CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call");
|
|
CallPN->setDebugLoc(Instr->getDebugLoc());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
|
|
|
|
assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
|
|
// ValueToValueMapTy is neither copy nor moveable, so we use a simple array
|
|
// here.
|
|
ValueToValueMapTy ValueToValueMaps[2];
|
|
for (unsigned i = 0; i < Preds.size(); i++) {
|
|
BasicBlock *PredBB = Preds[i].first;
|
|
BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
|
|
TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i],
|
|
DT);
|
|
assert(SplitBlock && "Unexpected new basic block split.");
|
|
|
|
Instruction *NewCI =
|
|
&*std::prev(SplitBlock->getTerminator()->getIterator());
|
|
CallSite NewCS(NewCI);
|
|
addConditions(NewCS, Preds[i].second);
|
|
|
|
// Handle PHIs used as arguments in the call-site.
|
|
for (PHINode &PN : TailBB->phis()) {
|
|
unsigned ArgNo = 0;
|
|
for (auto &CI : CS.args()) {
|
|
if (&*CI == &PN) {
|
|
NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
|
|
}
|
|
++ArgNo;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName()
|
|
<< "\n");
|
|
if (CallPN)
|
|
CallPN->addIncoming(NewCI, SplitBlock);
|
|
|
|
// Clone and place bitcast and return instructions before `TI`
|
|
if (IsMustTailCall)
|
|
copyMustTailReturn(SplitBlock, Instr, NewCI);
|
|
}
|
|
|
|
NumCallSiteSplit++;
|
|
|
|
// FIXME: remove TI in `copyMustTailReturn`
|
|
if (IsMustTailCall) {
|
|
// Remove superfluous `br` terminators from the end of the Split blocks
|
|
// NOTE: Removing terminator removes the SplitBlock from the TailBB's
|
|
// predecessors. Therefore we must get complete list of Splits before
|
|
// attempting removal.
|
|
SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
|
|
assert(Splits.size() == 2 && "Expected exactly 2 splits!");
|
|
for (unsigned i = 0; i < Splits.size(); i++)
|
|
Splits[i]->getTerminator()->eraseFromParent();
|
|
|
|
// Erase the tail block once done with musttail patching
|
|
TailBB->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
auto *OriginalBegin = &*TailBB->begin();
|
|
// Replace users of the original call with a PHI mering call-sites split.
|
|
if (CallPN) {
|
|
CallPN->insertBefore(OriginalBegin);
|
|
Instr->replaceAllUsesWith(CallPN);
|
|
}
|
|
|
|
// Remove instructions moved to split blocks from TailBB, from the duplicated
|
|
// call instruction to the beginning of the basic block. If an instruction
|
|
// has any uses, add a new PHI node to combine the values coming from the
|
|
// split blocks. The new PHI nodes are placed before the first original
|
|
// instruction, so we do not end up deleting them. By using reverse-order, we
|
|
// do not introduce unnecessary PHI nodes for def-use chains from the call
|
|
// instruction to the beginning of the block.
|
|
auto I = Instr->getReverseIterator();
|
|
while (I != TailBB->rend()) {
|
|
Instruction *CurrentI = &*I++;
|
|
if (!CurrentI->use_empty()) {
|
|
// If an existing PHI has users after the call, there is no need to create
|
|
// a new one.
|
|
if (isa<PHINode>(CurrentI))
|
|
continue;
|
|
PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
|
|
NewPN->setDebugLoc(CurrentI->getDebugLoc());
|
|
for (auto &Mapping : ValueToValueMaps)
|
|
NewPN->addIncoming(Mapping[CurrentI],
|
|
cast<Instruction>(Mapping[CurrentI])->getParent());
|
|
NewPN->insertBefore(&*TailBB->begin());
|
|
CurrentI->replaceAllUsesWith(NewPN);
|
|
}
|
|
CurrentI->eraseFromParent();
|
|
// We are done once we handled the first original instruction in TailBB.
|
|
if (CurrentI == OriginalBegin)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Return true if the call-site has an argument which is a PHI with only
|
|
// constant incoming values.
|
|
static bool isPredicatedOnPHI(CallSite CS) {
|
|
Instruction *Instr = CS.getInstruction();
|
|
BasicBlock *Parent = Instr->getParent();
|
|
if (Instr != Parent->getFirstNonPHIOrDbg())
|
|
return false;
|
|
|
|
for (auto &BI : *Parent) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
|
|
for (auto &I : CS.args())
|
|
if (&*I == PN) {
|
|
assert(PN->getNumIncomingValues() == 2 &&
|
|
"Unexpected number of incoming values");
|
|
if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
|
|
return false;
|
|
if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
|
|
continue;
|
|
if (isa<Constant>(PN->getIncomingValue(0)) &&
|
|
isa<Constant>(PN->getIncomingValue(1)))
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool tryToSplitOnPHIPredicatedArgument(CallSite CS, DominatorTree *DT) {
|
|
if (!isPredicatedOnPHI(CS))
|
|
return false;
|
|
|
|
auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
|
|
SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS = {
|
|
{Preds[0], {}}, {Preds[1], {}}};
|
|
splitCallSite(CS, PredsCS, DT);
|
|
return true;
|
|
}
|
|
|
|
static bool tryToSplitOnPredicatedArgument(CallSite CS, DominatorTree *DT) {
|
|
auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
|
|
if (Preds[0] == Preds[1])
|
|
return false;
|
|
|
|
SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
|
|
for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
|
|
ConditionsTy Conditions;
|
|
recordConditions(CS, Pred, Conditions);
|
|
PredsCS.push_back({Pred, Conditions});
|
|
}
|
|
|
|
if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
|
|
return P.second.empty();
|
|
}))
|
|
return false;
|
|
|
|
splitCallSite(CS, PredsCS, DT);
|
|
return true;
|
|
}
|
|
|
|
static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI,
|
|
DominatorTree *DT) {
|
|
if (!CS.arg_size() || !canSplitCallSite(CS, TTI))
|
|
return false;
|
|
return tryToSplitOnPredicatedArgument(CS, DT) ||
|
|
tryToSplitOnPHIPredicatedArgument(CS, DT);
|
|
}
|
|
|
|
static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
|
|
TargetTransformInfo &TTI, DominatorTree *DT) {
|
|
bool Changed = false;
|
|
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
|
|
BasicBlock &BB = *BI++;
|
|
auto II = BB.getFirstNonPHIOrDbg()->getIterator();
|
|
auto IE = BB.getTerminator()->getIterator();
|
|
// Iterate until we reach the terminator instruction. tryToSplitCallSite
|
|
// can replace BB's terminator in case BB is a successor of itself. In that
|
|
// case, IE will be invalidated and we also have to check the current
|
|
// terminator.
|
|
while (II != IE && &*II != BB.getTerminator()) {
|
|
Instruction *I = &*II++;
|
|
CallSite CS(cast<Value>(I));
|
|
if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
|
|
continue;
|
|
|
|
Function *Callee = CS.getCalledFunction();
|
|
if (!Callee || Callee->isDeclaration())
|
|
continue;
|
|
|
|
// Successful musttail call-site splits result in erased CI and erased BB.
|
|
// Check if such path is possible before attempting the splitting.
|
|
bool IsMustTail = CS.isMustTailCall();
|
|
|
|
Changed |= tryToSplitCallSite(CS, TTI, DT);
|
|
|
|
// There're no interesting instructions after this. The call site
|
|
// itself might have been erased on splitting.
|
|
if (IsMustTail)
|
|
break;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
struct CallSiteSplittingLegacyPass : public FunctionPass {
|
|
static char ID;
|
|
CallSiteSplittingLegacyPass() : FunctionPass(ID) {
|
|
initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
return doCallSiteSplitting(F, TLI, TTI,
|
|
DTWP ? &DTWP->getDomTree() : nullptr);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char CallSiteSplittingLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
|
|
"Call-site splitting", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
|
|
"Call-site splitting", false, false)
|
|
FunctionPass *llvm::createCallSiteSplittingPass() {
|
|
return new CallSiteSplittingLegacyPass();
|
|
}
|
|
|
|
PreservedAnalyses CallSiteSplittingPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
|
|
if (!doCallSiteSplitting(F, TLI, TTI, DT))
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|