forked from OSchip/llvm-project
528 lines
18 KiB
C++
528 lines
18 KiB
C++
//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Outline cold regions to a separate function.
|
|
// TODO: Update BFI and BPI
|
|
// TODO: Add all the outlined functions to a separate section.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/HotColdSplitting.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/CodeExtractor.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
|
|
#define DEBUG_TYPE "hotcoldsplit"
|
|
|
|
STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
|
|
STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<int>
|
|
MinOutliningThreshold("min-outlining-thresh", cl::init(3), cl::Hidden,
|
|
cl::desc("Code size threshold for outlining within a "
|
|
"single BB (as a multiple of TCC_Basic)"));
|
|
|
|
namespace {
|
|
|
|
struct PostDomTree : PostDomTreeBase<BasicBlock> {
|
|
PostDomTree(Function &F) { recalculate(F); }
|
|
};
|
|
|
|
/// A sequence of basic blocks.
|
|
///
|
|
/// A 0-sized SmallVector is slightly cheaper to move than a std::vector.
|
|
using BlockSequence = SmallVector<BasicBlock *, 0>;
|
|
|
|
// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
|
|
// this function unless you modify the MBB version as well.
|
|
//
|
|
/// A no successor, non-return block probably ends in unreachable and is cold.
|
|
/// Also consider a block that ends in an indirect branch to be a return block,
|
|
/// since many targets use plain indirect branches to return.
|
|
bool blockEndsInUnreachable(const BasicBlock &BB) {
|
|
if (!succ_empty(&BB))
|
|
return false;
|
|
if (BB.empty())
|
|
return true;
|
|
const Instruction *I = BB.getTerminator();
|
|
return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
|
|
}
|
|
|
|
static bool exceptionHandlingFunctions(const CallInst *CI) {
|
|
auto F = CI->getCalledFunction();
|
|
if (!F)
|
|
return false;
|
|
auto FName = F->getName();
|
|
return FName == "__cxa_begin_catch" ||
|
|
FName == "__cxa_free_exception" ||
|
|
FName == "__cxa_allocate_exception" ||
|
|
FName == "__cxa_begin_catch" ||
|
|
FName == "__cxa_end_catch";
|
|
}
|
|
|
|
static bool unlikelyExecuted(const BasicBlock &BB) {
|
|
if (blockEndsInUnreachable(BB))
|
|
return true;
|
|
// Exception handling blocks are unlikely executed.
|
|
if (BB.isEHPad())
|
|
return true;
|
|
for (const Instruction &I : BB)
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// The block is cold if it calls functions tagged as cold or noreturn.
|
|
if (CI->hasFnAttr(Attribute::Cold) ||
|
|
CI->hasFnAttr(Attribute::NoReturn) ||
|
|
exceptionHandlingFunctions(CI))
|
|
return true;
|
|
|
|
// Assume that inline assembly is hot code.
|
|
if (isa<InlineAsm>(CI->getCalledValue()))
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check whether it's safe to outline \p BB.
|
|
static bool mayExtractBlock(const BasicBlock &BB) {
|
|
return !BB.hasAddressTaken();
|
|
}
|
|
|
|
/// Check whether \p BB is profitable to outline (i.e. its code size cost meets
|
|
/// the threshold set in \p MinOutliningThreshold).
|
|
static bool isProfitableToOutline(const BasicBlock &BB,
|
|
TargetTransformInfo &TTI) {
|
|
int Cost = 0;
|
|
for (const Instruction &I : BB) {
|
|
if (isa<DbgInfoIntrinsic>(&I) || &I == BB.getTerminator())
|
|
continue;
|
|
|
|
Cost += TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
|
|
|
|
if (Cost >= (MinOutliningThreshold * TargetTransformInfo::TCC_Basic))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Identify the maximal region of cold blocks which includes \p SinkBB.
|
|
///
|
|
/// Include all blocks post-dominated by \p SinkBB, \p SinkBB itself, and all
|
|
/// blocks dominated by \p SinkBB. Exclude all other blocks, and blocks which
|
|
/// cannot be outlined.
|
|
///
|
|
/// Return an empty sequence if the cold region is too small to outline, or if
|
|
/// the cold region has no warm predecessors.
|
|
static BlockSequence findMaximalColdRegion(BasicBlock &SinkBB,
|
|
TargetTransformInfo &TTI,
|
|
DominatorTree &DT,
|
|
PostDomTree &PDT) {
|
|
// The maximal cold region.
|
|
BlockSequence ColdRegion = {};
|
|
|
|
// The ancestor farthest-away from SinkBB, and also post-dominated by it.
|
|
BasicBlock *MaxAncestor = &SinkBB;
|
|
unsigned MaxAncestorHeight = 0;
|
|
|
|
// Visit SinkBB's ancestors using inverse DFS.
|
|
auto PredIt = ++idf_begin(&SinkBB);
|
|
auto PredEnd = idf_end(&SinkBB);
|
|
while (PredIt != PredEnd) {
|
|
BasicBlock &PredBB = **PredIt;
|
|
bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
|
|
|
|
// If SinkBB does not post-dominate a predecessor, do not mark the
|
|
// predecessor (or any of its predecessors) cold.
|
|
if (!SinkPostDom || !mayExtractBlock(PredBB)) {
|
|
PredIt.skipChildren();
|
|
continue;
|
|
}
|
|
|
|
// Keep track of the post-dominated ancestor farthest away from the sink.
|
|
unsigned AncestorHeight = PredIt.getPathLength();
|
|
if (AncestorHeight > MaxAncestorHeight) {
|
|
MaxAncestor = &PredBB;
|
|
MaxAncestorHeight = AncestorHeight;
|
|
}
|
|
|
|
ColdRegion.push_back(&PredBB);
|
|
++PredIt;
|
|
}
|
|
|
|
// CodeExtractor requires that all blocks to be extracted must be dominated
|
|
// by the first block to be extracted.
|
|
//
|
|
// To avoid spurious or repeated outlining, require that the max ancestor
|
|
// has a predecessor. By construction this predecessor is not in the cold
|
|
// region, i.e. its existence implies we don't outline the whole function.
|
|
//
|
|
// TODO: If MaxAncestor has no predecessors, we may be able to outline the
|
|
// second largest cold region that has a predecessor.
|
|
if (pred_empty(MaxAncestor) ||
|
|
MaxAncestor->getSinglePredecessor() == MaxAncestor)
|
|
return {};
|
|
|
|
// Filter out predecessors not dominated by the max ancestor.
|
|
//
|
|
// TODO: Blocks not dominated by the max ancestor could be extracted as
|
|
// other cold regions. Marking outlined calls as noreturn when appropriate
|
|
// and outlining more than once per function could achieve most of the win.
|
|
auto EraseIt = remove_if(ColdRegion, [&](BasicBlock *PredBB) {
|
|
return PredBB != MaxAncestor && !DT.dominates(MaxAncestor, PredBB);
|
|
});
|
|
ColdRegion.erase(EraseIt, ColdRegion.end());
|
|
|
|
// Add SinkBB to the cold region.
|
|
ColdRegion.push_back(&SinkBB);
|
|
|
|
// Ensure that the first extracted block is the max ancestor.
|
|
if (ColdRegion[0] != MaxAncestor) {
|
|
auto AncestorIt = find(ColdRegion, MaxAncestor);
|
|
*AncestorIt = ColdRegion[0];
|
|
ColdRegion[0] = MaxAncestor;
|
|
}
|
|
|
|
// Find all successors of SinkBB dominated by SinkBB using DFS.
|
|
auto SuccIt = ++df_begin(&SinkBB);
|
|
auto SuccEnd = df_end(&SinkBB);
|
|
while (SuccIt != SuccEnd) {
|
|
BasicBlock &SuccBB = **SuccIt;
|
|
bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
|
|
|
|
// If SinkBB does not dominate a successor, do not mark the successor (or
|
|
// any of its successors) cold.
|
|
if (!SinkDom || !mayExtractBlock(SuccBB)) {
|
|
SuccIt.skipChildren();
|
|
continue;
|
|
}
|
|
|
|
ColdRegion.push_back(&SuccBB);
|
|
++SuccIt;
|
|
}
|
|
|
|
if (ColdRegion.size() == 1 && !isProfitableToOutline(*ColdRegion[0], TTI))
|
|
return {};
|
|
|
|
return ColdRegion;
|
|
}
|
|
|
|
/// Get the largest cold region in \p F.
|
|
static BlockSequence getLargestColdRegion(Function &F, ProfileSummaryInfo &PSI,
|
|
BlockFrequencyInfo *BFI,
|
|
TargetTransformInfo &TTI,
|
|
DominatorTree &DT, PostDomTree &PDT) {
|
|
// Keep track of the largest cold region.
|
|
BlockSequence LargestColdRegion = {};
|
|
|
|
for (BasicBlock &BB : F) {
|
|
// Identify cold blocks.
|
|
if (!mayExtractBlock(BB))
|
|
continue;
|
|
bool Cold =
|
|
PSI.isColdBlock(&BB, BFI) || (EnableStaticAnalyis && unlikelyExecuted(BB));
|
|
if (!Cold)
|
|
continue;
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Found cold block:\n";
|
|
BB.dump();
|
|
});
|
|
|
|
// Find a maximal cold region we can outline.
|
|
BlockSequence ColdRegion = findMaximalColdRegion(BB, TTI, DT, PDT);
|
|
if (ColdRegion.empty()) {
|
|
LLVM_DEBUG(dbgs() << " Skipping (block not profitable to extract)\n");
|
|
continue;
|
|
}
|
|
|
|
++NumColdRegionsFound;
|
|
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "Identified cold region with " << ColdRegion.size()
|
|
<< " blocks:\n";
|
|
for (BasicBlock *BB : ColdRegion)
|
|
BB->dump();
|
|
});
|
|
|
|
// TODO: Outline more than one region.
|
|
if (ColdRegion.size() > LargestColdRegion.size())
|
|
LargestColdRegion = std::move(ColdRegion);
|
|
}
|
|
|
|
return LargestColdRegion;
|
|
}
|
|
|
|
class HotColdSplitting {
|
|
public:
|
|
HotColdSplitting(ProfileSummaryInfo *ProfSI,
|
|
function_ref<BlockFrequencyInfo *(Function &)> GBFI,
|
|
function_ref<TargetTransformInfo &(Function &)> GTTI,
|
|
std::function<OptimizationRemarkEmitter &(Function &)> *GORE)
|
|
: PSI(ProfSI), GetBFI(GBFI), GetTTI(GTTI), GetORE(GORE) {}
|
|
bool run(Module &M);
|
|
|
|
private:
|
|
bool shouldOutlineFrom(const Function &F) const;
|
|
Function *extractColdRegion(const BlockSequence &Region, DominatorTree &DT,
|
|
BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
|
|
OptimizationRemarkEmitter &ORE, unsigned Count);
|
|
SmallPtrSet<const Function *, 2> OutlinedFunctions;
|
|
ProfileSummaryInfo *PSI;
|
|
function_ref<BlockFrequencyInfo *(Function &)> GetBFI;
|
|
function_ref<TargetTransformInfo &(Function &)> GetTTI;
|
|
std::function<OptimizationRemarkEmitter &(Function &)> *GetORE;
|
|
};
|
|
|
|
class HotColdSplittingLegacyPass : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
HotColdSplittingLegacyPass() : ModulePass(ID) {
|
|
initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
}
|
|
|
|
bool runOnModule(Module &M) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Returns false if the function should not be considered for hot-cold split
|
|
// optimization.
|
|
bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
|
|
// Do not try to outline again from an already outlined cold function.
|
|
if (OutlinedFunctions.count(&F))
|
|
return false;
|
|
|
|
if (F.size() <= 2)
|
|
return false;
|
|
|
|
// TODO: Consider only skipping functions marked `optnone` or `cold`.
|
|
|
|
if (F.hasAddressTaken())
|
|
return false;
|
|
|
|
if (F.hasFnAttribute(Attribute::AlwaysInline))
|
|
return false;
|
|
|
|
if (F.hasFnAttribute(Attribute::NoInline))
|
|
return false;
|
|
|
|
if (F.getCallingConv() == CallingConv::Cold)
|
|
return false;
|
|
|
|
if (PSI->isFunctionEntryCold(&F))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Function *HotColdSplitting::extractColdRegion(const BlockSequence &Region,
|
|
DominatorTree &DT,
|
|
BlockFrequencyInfo *BFI,
|
|
TargetTransformInfo &TTI,
|
|
OptimizationRemarkEmitter &ORE,
|
|
unsigned Count) {
|
|
assert(!Region.empty());
|
|
LLVM_DEBUG(for (auto *BB : Region)
|
|
llvm::dbgs() << "\nExtracting: " << *BB;);
|
|
|
|
// TODO: Pass BFI and BPI to update profile information.
|
|
CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
|
|
/* BPI */ nullptr, /* AllowVarArgs */ false,
|
|
/* AllowAlloca */ false,
|
|
/* Suffix */ "cold." + std::to_string(Count));
|
|
|
|
SetVector<Value *> Inputs, Outputs, Sinks;
|
|
CE.findInputsOutputs(Inputs, Outputs, Sinks);
|
|
|
|
// Do not extract regions that have live exit variables.
|
|
if (Outputs.size() > 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Not outlining; live outputs\n");
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO: Run MergeBasicBlockIntoOnlyPred on the outlined function.
|
|
Function *OrigF = Region[0]->getParent();
|
|
if (Function *OutF = CE.extractCodeRegion()) {
|
|
User *U = *OutF->user_begin();
|
|
CallInst *CI = cast<CallInst>(U);
|
|
CallSite CS(CI);
|
|
NumColdRegionsOutlined++;
|
|
if (TTI.useColdCCForColdCall(*OutF)) {
|
|
OutF->setCallingConv(CallingConv::Cold);
|
|
CS.setCallingConv(CallingConv::Cold);
|
|
}
|
|
CI->setIsNoInline();
|
|
|
|
// Try to make the outlined code as small as possible on the assumption
|
|
// that it's cold.
|
|
assert(!OutF->hasFnAttribute(Attribute::OptimizeNone) &&
|
|
"An outlined function should never be marked optnone");
|
|
OutF->addFnAttr(Attribute::MinSize);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
|
|
ORE.emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
|
|
&*Region[0]->begin())
|
|
<< ore::NV("Original", OrigF) << " split cold code into "
|
|
<< ore::NV("Split", OutF);
|
|
});
|
|
return OutF;
|
|
}
|
|
|
|
ORE.emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
|
|
&*Region[0]->begin())
|
|
<< "Failed to extract region at block "
|
|
<< ore::NV("Block", Region.front());
|
|
});
|
|
return nullptr;
|
|
}
|
|
|
|
bool HotColdSplitting::run(Module &M) {
|
|
bool Changed = false;
|
|
for (auto &F : M) {
|
|
if (!shouldOutlineFrom(F)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Not outlining in " << F.getName() << "\n");
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
|
|
DominatorTree DT(F);
|
|
PostDomTree PDT(F);
|
|
PDT.recalculate(F);
|
|
BlockFrequencyInfo *BFI = GetBFI(F);
|
|
TargetTransformInfo &TTI = GetTTI(F);
|
|
|
|
BlockSequence ColdRegion = getLargestColdRegion(F, *PSI, BFI, TTI, DT, PDT);
|
|
if (ColdRegion.empty())
|
|
continue;
|
|
|
|
OptimizationRemarkEmitter &ORE = (*GetORE)(F);
|
|
Function *Outlined =
|
|
extractColdRegion(ColdRegion, DT, BFI, TTI, ORE, /*Count=*/1);
|
|
if (Outlined) {
|
|
OutlinedFunctions.insert(Outlined);
|
|
Changed = true;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
|
|
if (skipModule(M))
|
|
return false;
|
|
ProfileSummaryInfo *PSI =
|
|
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
auto GTTI = [this](Function &F) -> TargetTransformInfo & {
|
|
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
};
|
|
auto GBFI = [this](Function &F) {
|
|
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
|
|
};
|
|
std::unique_ptr<OptimizationRemarkEmitter> ORE;
|
|
std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
|
|
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
|
|
ORE.reset(new OptimizationRemarkEmitter(&F));
|
|
return *ORE.get();
|
|
};
|
|
|
|
return HotColdSplitting(PSI, GBFI, GTTI, &GetORE).run(M);
|
|
}
|
|
|
|
PreservedAnalyses
|
|
HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
std::function<AssumptionCache &(Function &)> GetAssumptionCache =
|
|
[&FAM](Function &F) -> AssumptionCache & {
|
|
return FAM.getResult<AssumptionAnalysis>(F);
|
|
};
|
|
|
|
auto GBFI = [&FAM](Function &F) {
|
|
return &FAM.getResult<BlockFrequencyAnalysis>(F);
|
|
};
|
|
|
|
std::function<TargetTransformInfo &(Function &)> GTTI =
|
|
[&FAM](Function &F) -> TargetTransformInfo & {
|
|
return FAM.getResult<TargetIRAnalysis>(F);
|
|
};
|
|
|
|
std::unique_ptr<OptimizationRemarkEmitter> ORE;
|
|
std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
|
|
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
|
|
ORE.reset(new OptimizationRemarkEmitter(&F));
|
|
return *ORE.get();
|
|
};
|
|
|
|
ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
|
|
|
|
if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE).run(M))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
char HotColdSplittingLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
|
|
"Hot Cold Splitting", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
|
INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
|
|
"Hot Cold Splitting", false, false)
|
|
|
|
ModulePass *llvm::createHotColdSplittingPass() {
|
|
return new HotColdSplittingLegacyPass();
|
|
}
|