llvm-project/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp

5219 lines
214 KiB
C++

//===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides a class for OpenMP runtime code generation specialized to NVPTX
// targets.
//
//===----------------------------------------------------------------------===//
#include "CGOpenMPRuntimeNVPTX.h"
#include "CodeGenFunction.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Cuda.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
using namespace CodeGen;
namespace {
enum OpenMPRTLFunctionNVPTX {
/// Call to void __kmpc_kernel_init(kmp_int32 thread_limit,
/// int16_t RequiresOMPRuntime);
OMPRTL_NVPTX__kmpc_kernel_init,
/// Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
OMPRTL_NVPTX__kmpc_kernel_deinit,
/// Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
/// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
OMPRTL_NVPTX__kmpc_spmd_kernel_init,
/// Call to void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2,
/// Call to void __kmpc_kernel_prepare_parallel(void
/// *outlined_function, int16_t
/// IsOMPRuntimeInitialized);
OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
/// Call to bool __kmpc_kernel_parallel(void **outlined_function,
/// int16_t IsOMPRuntimeInitialized);
OMPRTL_NVPTX__kmpc_kernel_parallel,
/// Call to void __kmpc_kernel_end_parallel();
OMPRTL_NVPTX__kmpc_kernel_end_parallel,
/// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
/// global_tid);
OMPRTL_NVPTX__kmpc_serialized_parallel,
/// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
/// global_tid);
OMPRTL_NVPTX__kmpc_end_serialized_parallel,
/// Call to int32_t __kmpc_shuffle_int32(int32_t element,
/// int16_t lane_offset, int16_t warp_size);
OMPRTL_NVPTX__kmpc_shuffle_int32,
/// Call to int64_t __kmpc_shuffle_int64(int64_t element,
/// int16_t lane_offset, int16_t warp_size);
OMPRTL_NVPTX__kmpc_shuffle_int64,
/// Call to __kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc, kmp_int32
/// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
/// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
/// lane_offset, int16_t shortCircuit),
/// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2,
/// Call to __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
/// global_tid, void *global_buffer, int32_t num_of_records, void*
/// reduce_data,
/// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
/// lane_offset, int16_t shortCircuit),
/// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
/// (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
/// void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
/// void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
/// int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
/// *buffer, int idx, void *reduce_data));
OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2,
/// Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
OMPRTL_NVPTX__kmpc_end_reduce_nowait,
/// Call to void __kmpc_data_sharing_init_stack();
OMPRTL_NVPTX__kmpc_data_sharing_init_stack,
/// Call to void __kmpc_data_sharing_init_stack_spmd();
OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd,
/// Call to void* __kmpc_data_sharing_coalesced_push_stack(size_t size,
/// int16_t UseSharedMemory);
OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack,
/// Call to void __kmpc_data_sharing_pop_stack(void *a);
OMPRTL_NVPTX__kmpc_data_sharing_pop_stack,
/// Call to void __kmpc_begin_sharing_variables(void ***args,
/// size_t n_args);
OMPRTL_NVPTX__kmpc_begin_sharing_variables,
/// Call to void __kmpc_end_sharing_variables();
OMPRTL_NVPTX__kmpc_end_sharing_variables,
/// Call to void __kmpc_get_shared_variables(void ***GlobalArgs)
OMPRTL_NVPTX__kmpc_get_shared_variables,
/// Call to uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32
/// global_tid);
OMPRTL_NVPTX__kmpc_parallel_level,
/// Call to int8_t __kmpc_is_spmd_exec_mode();
OMPRTL_NVPTX__kmpc_is_spmd_exec_mode,
/// Call to void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
/// const void *buf, size_t size, int16_t is_shared, const void **res);
OMPRTL_NVPTX__kmpc_get_team_static_memory,
/// Call to void __kmpc_restore_team_static_memory(int16_t
/// isSPMDExecutionMode, int16_t is_shared);
OMPRTL_NVPTX__kmpc_restore_team_static_memory,
/// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_barrier,
/// Call to void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
/// global_tid);
OMPRTL__kmpc_barrier_simple_spmd,
/// Call to int32_t __kmpc_warp_active_thread_mask(void);
OMPRTL_NVPTX__kmpc_warp_active_thread_mask,
/// Call to void __kmpc_syncwarp(int32_t Mask);
OMPRTL_NVPTX__kmpc_syncwarp,
};
/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
class NVPTXActionTy final : public PrePostActionTy {
llvm::FunctionCallee EnterCallee = nullptr;
ArrayRef<llvm::Value *> EnterArgs;
llvm::FunctionCallee ExitCallee = nullptr;
ArrayRef<llvm::Value *> ExitArgs;
bool Conditional = false;
llvm::BasicBlock *ContBlock = nullptr;
public:
NVPTXActionTy(llvm::FunctionCallee EnterCallee,
ArrayRef<llvm::Value *> EnterArgs,
llvm::FunctionCallee ExitCallee,
ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
ExitArgs(ExitArgs), Conditional(Conditional) {}
void Enter(CodeGenFunction &CGF) override {
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
if (Conditional) {
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
ContBlock = CGF.createBasicBlock("omp_if.end");
// Generate the branch (If-stmt)
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
CGF.EmitBlock(ThenBlock);
}
}
void Done(CodeGenFunction &CGF) {
// Emit the rest of blocks/branches
CGF.EmitBranch(ContBlock);
CGF.EmitBlock(ContBlock, true);
}
void Exit(CodeGenFunction &CGF) override {
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
}
};
/// A class to track the execution mode when codegening directives within
/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
/// to the target region and used by containing directives such as 'parallel'
/// to emit optimized code.
class ExecutionRuntimeModesRAII {
private:
CGOpenMPRuntimeNVPTX::ExecutionMode SavedExecMode =
CGOpenMPRuntimeNVPTX::EM_Unknown;
CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode;
bool SavedRuntimeMode = false;
bool *RuntimeMode = nullptr;
public:
/// Constructor for Non-SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode)
: ExecMode(ExecMode) {
SavedExecMode = ExecMode;
ExecMode = CGOpenMPRuntimeNVPTX::EM_NonSPMD;
}
/// Constructor for SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode,
bool &RuntimeMode, bool FullRuntimeMode)
: ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
SavedExecMode = ExecMode;
SavedRuntimeMode = RuntimeMode;
ExecMode = CGOpenMPRuntimeNVPTX::EM_SPMD;
RuntimeMode = FullRuntimeMode;
}
~ExecutionRuntimeModesRAII() {
ExecMode = SavedExecMode;
if (RuntimeMode)
*RuntimeMode = SavedRuntimeMode;
}
};
/// GPU Configuration: This information can be derived from cuda registers,
/// however, providing compile time constants helps generate more efficient
/// code. For all practical purposes this is fine because the configuration
/// is the same for all known NVPTX architectures.
enum MachineConfiguration : unsigned {
WarpSize = 32,
/// Number of bits required to represent a lane identifier, which is
/// computed as log_2(WarpSize).
LaneIDBits = 5,
LaneIDMask = WarpSize - 1,
/// Global memory alignment for performance.
GlobalMemoryAlignment = 128,
/// Maximal size of the shared memory buffer.
SharedMemorySize = 128,
};
static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
RefExpr = RefExpr->IgnoreParens();
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
RefExpr = Base;
} else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
Base = TempOASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
RefExpr = Base;
}
RefExpr = RefExpr->IgnoreParenImpCasts();
if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
const auto *ME = cast<MemberExpr>(RefExpr);
return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
}
static RecordDecl *buildRecordForGlobalizedVars(
ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
&MappedDeclsFields, int BufSize) {
using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
return nullptr;
SmallVector<VarsDataTy, 4> GlobalizedVars;
for (const ValueDecl *D : EscapedDecls)
GlobalizedVars.emplace_back(
CharUnits::fromQuantity(std::max(
C.getDeclAlign(D).getQuantity(),
static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
D);
for (const ValueDecl *D : EscapedDeclsForTeams)
GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
return L.first > R.first;
});
// Build struct _globalized_locals_ty {
// /* globalized vars */[WarSize] align (max(decl_align,
// GlobalMemoryAlignment))
// /* globalized vars */ for EscapedDeclsForTeams
// };
RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
GlobalizedRD->startDefinition();
llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
for (const auto &Pair : GlobalizedVars) {
const ValueDecl *VD = Pair.second;
QualType Type = VD->getType();
if (Type->isLValueReferenceType())
Type = C.getPointerType(Type.getNonReferenceType());
else
Type = Type.getNonReferenceType();
SourceLocation Loc = VD->getLocation();
FieldDecl *Field;
if (SingleEscaped.count(VD)) {
Field = FieldDecl::Create(
C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
C.getTrivialTypeSourceInfo(Type, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false,
/*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
if (VD->hasAttrs()) {
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
E(VD->getAttrs().end());
I != E; ++I)
Field->addAttr(*I);
}
} else {
llvm::APInt ArraySize(32, BufSize);
Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
0);
Field = FieldDecl::Create(
C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
C.getTrivialTypeSourceInfo(Type, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false,
/*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
static_cast<CharUnits::QuantityType>(
GlobalMemoryAlignment)));
Field->addAttr(AlignedAttr::CreateImplicit(
C, /*IsAlignmentExpr=*/true,
IntegerLiteral::Create(C, Align,
C.getIntTypeForBitwidth(32, /*Signed=*/0),
SourceLocation()),
{}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
}
GlobalizedRD->addDecl(Field);
MappedDeclsFields.try_emplace(VD, Field);
}
GlobalizedRD->completeDefinition();
return GlobalizedRD;
}
/// Get the list of variables that can escape their declaration context.
class CheckVarsEscapingDeclContext final
: public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
CodeGenFunction &CGF;
llvm::SetVector<const ValueDecl *> EscapedDecls;
llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
RecordDecl *GlobalizedRD = nullptr;
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
bool AllEscaped = false;
bool IsForCombinedParallelRegion = false;
void markAsEscaped(const ValueDecl *VD) {
// Do not globalize declare target variables.
if (!isa<VarDecl>(VD) ||
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
return;
VD = cast<ValueDecl>(VD->getCanonicalDecl());
// Use user-specified allocation.
if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
return;
// Variables captured by value must be globalized.
if (auto *CSI = CGF.CapturedStmtInfo) {
if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
// Check if need to capture the variable that was already captured by
// value in the outer region.
if (!IsForCombinedParallelRegion) {
if (!FD->hasAttrs())
return;
const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
if (!Attr)
return;
if (((Attr->getCaptureKind() != OMPC_map) &&
!isOpenMPPrivate(
static_cast<OpenMPClauseKind>(Attr->getCaptureKind()))) ||
((Attr->getCaptureKind() == OMPC_map) &&
!FD->getType()->isAnyPointerType()))
return;
}
if (!FD->getType()->isReferenceType()) {
assert(!VD->getType()->isVariablyModifiedType() &&
"Parameter captured by value with variably modified type");
EscapedParameters.insert(VD);
} else if (!IsForCombinedParallelRegion) {
return;
}
}
}
if ((!CGF.CapturedStmtInfo ||
(IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
VD->getType()->isReferenceType())
// Do not globalize variables with reference type.
return;
if (VD->getType()->isVariablyModifiedType())
EscapedVariableLengthDecls.insert(VD);
else
EscapedDecls.insert(VD);
}
void VisitValueDecl(const ValueDecl *VD) {
if (VD->getType()->isLValueReferenceType())
markAsEscaped(VD);
if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
const bool SavedAllEscaped = AllEscaped;
AllEscaped = VD->getType()->isLValueReferenceType();
Visit(VarD->getInit());
AllEscaped = SavedAllEscaped;
}
}
}
void VisitOpenMPCapturedStmt(const CapturedStmt *S,
ArrayRef<OMPClause *> Clauses,
bool IsCombinedParallelRegion) {
if (!S)
return;
for (const CapturedStmt::Capture &C : S->captures()) {
if (C.capturesVariable() && !C.capturesVariableByCopy()) {
const ValueDecl *VD = C.getCapturedVar();
bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
if (IsCombinedParallelRegion) {
// Check if the variable is privatized in the combined construct and
// those private copies must be shared in the inner parallel
// directive.
IsForCombinedParallelRegion = false;
for (const OMPClause *C : Clauses) {
if (!isOpenMPPrivate(C->getClauseKind()) ||
C->getClauseKind() == OMPC_reduction ||
C->getClauseKind() == OMPC_linear ||
C->getClauseKind() == OMPC_private)
continue;
ArrayRef<const Expr *> Vars;
if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
Vars = PC->getVarRefs();
else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
Vars = PC->getVarRefs();
else
llvm_unreachable("Unexpected clause.");
for (const auto *E : Vars) {
const Decl *D =
cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
if (D == VD->getCanonicalDecl()) {
IsForCombinedParallelRegion = true;
break;
}
}
if (IsForCombinedParallelRegion)
break;
}
}
markAsEscaped(VD);
if (isa<OMPCapturedExprDecl>(VD))
VisitValueDecl(VD);
IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
}
}
}
void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
assert(!GlobalizedRD &&
"Record for globalized variables is built already.");
ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
if (IsInTTDRegion)
EscapedDeclsForTeams = EscapedDecls.getArrayRef();
else
EscapedDeclsForParallel = EscapedDecls.getArrayRef();
GlobalizedRD = ::buildRecordForGlobalizedVars(
CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
MappedDeclsFields, WarpSize);
}
public:
CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
ArrayRef<const ValueDecl *> TeamsReductions)
: CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
}
virtual ~CheckVarsEscapingDeclContext() = default;
void VisitDeclStmt(const DeclStmt *S) {
if (!S)
return;
for (const Decl *D : S->decls())
if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
VisitValueDecl(VD);
}
void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
if (!D)
return;
if (!D->hasAssociatedStmt())
return;
if (const auto *S =
dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
// Do not analyze directives that do not actually require capturing,
// like `omp for` or `omp simd` directives.
llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
VisitStmt(S->getCapturedStmt());
return;
}
VisitOpenMPCapturedStmt(
S, D->clauses(),
CaptureRegions.back() == OMPD_parallel &&
isOpenMPDistributeDirective(D->getDirectiveKind()));
}
}
void VisitCapturedStmt(const CapturedStmt *S) {
if (!S)
return;
for (const CapturedStmt::Capture &C : S->captures()) {
if (C.capturesVariable() && !C.capturesVariableByCopy()) {
const ValueDecl *VD = C.getCapturedVar();
markAsEscaped(VD);
if (isa<OMPCapturedExprDecl>(VD))
VisitValueDecl(VD);
}
}
}
void VisitLambdaExpr(const LambdaExpr *E) {
if (!E)
return;
for (const LambdaCapture &C : E->captures()) {
if (C.capturesVariable()) {
if (C.getCaptureKind() == LCK_ByRef) {
const ValueDecl *VD = C.getCapturedVar();
markAsEscaped(VD);
if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
VisitValueDecl(VD);
}
}
}
}
void VisitBlockExpr(const BlockExpr *E) {
if (!E)
return;
for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
if (C.isByRef()) {
const VarDecl *VD = C.getVariable();
markAsEscaped(VD);
if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
VisitValueDecl(VD);
}
}
}
void VisitCallExpr(const CallExpr *E) {
if (!E)
return;
for (const Expr *Arg : E->arguments()) {
if (!Arg)
continue;
if (Arg->isLValue()) {
const bool SavedAllEscaped = AllEscaped;
AllEscaped = true;
Visit(Arg);
AllEscaped = SavedAllEscaped;
} else {
Visit(Arg);
}
}
Visit(E->getCallee());
}
void VisitDeclRefExpr(const DeclRefExpr *E) {
if (!E)
return;
const ValueDecl *VD = E->getDecl();
if (AllEscaped)
markAsEscaped(VD);
if (isa<OMPCapturedExprDecl>(VD))
VisitValueDecl(VD);
else if (const auto *VarD = dyn_cast<VarDecl>(VD))
if (VarD->isInitCapture())
VisitValueDecl(VD);
}
void VisitUnaryOperator(const UnaryOperator *E) {
if (!E)
return;
if (E->getOpcode() == UO_AddrOf) {
const bool SavedAllEscaped = AllEscaped;
AllEscaped = true;
Visit(E->getSubExpr());
AllEscaped = SavedAllEscaped;
} else {
Visit(E->getSubExpr());
}
}
void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
if (!E)
return;
if (E->getCastKind() == CK_ArrayToPointerDecay) {
const bool SavedAllEscaped = AllEscaped;
AllEscaped = true;
Visit(E->getSubExpr());
AllEscaped = SavedAllEscaped;
} else {
Visit(E->getSubExpr());
}
}
void VisitExpr(const Expr *E) {
if (!E)
return;
bool SavedAllEscaped = AllEscaped;
if (!E->isLValue())
AllEscaped = false;
for (const Stmt *Child : E->children())
if (Child)
Visit(Child);
AllEscaped = SavedAllEscaped;
}
void VisitStmt(const Stmt *S) {
if (!S)
return;
for (const Stmt *Child : S->children())
if (Child)
Visit(Child);
}
/// Returns the record that handles all the escaped local variables and used
/// instead of their original storage.
const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
if (!GlobalizedRD)
buildRecordForGlobalizedVars(IsInTTDRegion);
return GlobalizedRD;
}
/// Returns the field in the globalized record for the escaped variable.
const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
assert(GlobalizedRD &&
"Record for globalized variables must be generated already.");
auto I = MappedDeclsFields.find(VD);
if (I == MappedDeclsFields.end())
return nullptr;
return I->getSecond();
}
/// Returns the list of the escaped local variables/parameters.
ArrayRef<const ValueDecl *> getEscapedDecls() const {
return EscapedDecls.getArrayRef();
}
/// Checks if the escaped local variable is actually a parameter passed by
/// value.
const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
return EscapedParameters;
}
/// Returns the list of the escaped variables with the variably modified
/// types.
ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
return EscapedVariableLengthDecls.getArrayRef();
}
};
} // anonymous namespace
/// Get the GPU warp size.
static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
return CGF.EmitRuntimeCall(
llvm::Intrinsic::getDeclaration(
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
"nvptx_warp_size");
}
/// Get the id of the current thread on the GPU.
static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
return CGF.EmitRuntimeCall(
llvm::Intrinsic::getDeclaration(
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
"nvptx_tid");
}
/// Get the id of the warp in the block.
/// We assume that the warp size is 32, which is always the case
/// on the NVPTX device, to generate more efficient code.
static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
}
/// Get the id of the current lane in the Warp.
/// We assume that the warp size is 32, which is always the case
/// on the NVPTX device, to generate more efficient code.
static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
"nvptx_lane_id");
}
/// Get the maximum number of threads in a block of the GPU.
static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
return CGF.EmitRuntimeCall(
llvm::Intrinsic::getDeclaration(
&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
"nvptx_num_threads");
}
/// Get the value of the thread_limit clause in the teams directive.
/// For the 'generic' execution mode, the runtime encodes thread_limit in
/// the launch parameters, always starting thread_limit+warpSize threads per
/// CTA. The threads in the last warp are reserved for master execution.
/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
bool IsInSPMDExecutionMode = false) {
CGBuilderTy &Bld = CGF.Builder;
return IsInSPMDExecutionMode
? getNVPTXNumThreads(CGF)
: Bld.CreateNUWSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
"thread_limit");
}
/// Get the thread id of the OMP master thread.
/// The master thread id is the first thread (lane) of the last warp in the
/// GPU block. Warp size is assumed to be some power of 2.
/// Thread id is 0 indexed.
/// E.g: If NumThreads is 33, master id is 32.
/// If NumThreads is 64, master id is 32.
/// If NumThreads is 1024, master id is 992.
static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
// We assume that the warp size is a power of 2.
llvm::Value *Mask = Bld.CreateNUWSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)),
Bld.CreateNot(Mask), "master_tid");
}
CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
CodeGenModule &CGM, SourceLocation Loc)
: WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
Loc(Loc) {
createWorkerFunction(CGM);
}
void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
CodeGenModule &CGM) {
// Create an worker function with no arguments.
WorkerFn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
/*placeholder=*/"_worker", &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
WorkerFn->setDoesNotRecurse();
}
CGOpenMPRuntimeNVPTX::ExecutionMode
CGOpenMPRuntimeNVPTX::getExecutionMode() const {
return CurrentExecutionMode;
}
static CGOpenMPRuntimeNVPTX::DataSharingMode
getDataSharingMode(CodeGenModule &CGM) {
return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeNVPTX::CUDA
: CGOpenMPRuntimeNVPTX::Generic;
}
/// Check for inner (nested) SPMD construct, if any
static bool hasNestedSPMDDirective(ASTContext &Ctx,
const OMPExecutableDirective &D) {
const auto *CS = D.getInnermostCapturedStmt();
const auto *Body =
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NestedDir =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
switch (D.getDirectiveKind()) {
case OMPD_target:
if (isOpenMPParallelDirective(DKind))
return true;
if (DKind == OMPD_teams) {
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true);
if (!Body)
return false;
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NND =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
DKind = NND->getDirectiveKind();
if (isOpenMPParallelDirective(DKind))
return true;
}
}
return false;
case OMPD_target_teams:
return isOpenMPParallelDirective(DKind);
case OMPD_target_simd:
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
llvm_unreachable("Unexpected directive.");
}
}
return false;
}
static bool supportsSPMDExecutionMode(ASTContext &Ctx,
const OMPExecutableDirective &D) {
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
switch (DirectiveKind) {
case OMPD_target:
case OMPD_target_teams:
return hasNestedSPMDDirective(Ctx, D);
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_simd:
case OMPD_target_teams_distribute_simd:
return true;
case OMPD_target_teams_distribute:
return false;
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
break;
}
llvm_unreachable(
"Unknown programming model for OpenMP directive on NVPTX target.");
}
/// Check if the directive is loops based and has schedule clause at all or has
/// static scheduling.
static bool hasStaticScheduling(const OMPExecutableDirective &D) {
assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
isOpenMPLoopDirective(D.getDirectiveKind()) &&
"Expected loop-based directive.");
return !D.hasClausesOfKind<OMPOrderedClause>() &&
(!D.hasClausesOfKind<OMPScheduleClause>() ||
llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
[](const OMPScheduleClause *C) {
return C->getScheduleKind() == OMPC_SCHEDULE_static;
}));
}
/// Check for inner (nested) lightweight runtime construct, if any
static bool hasNestedLightweightDirective(ASTContext &Ctx,
const OMPExecutableDirective &D) {
assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
const auto *CS = D.getInnermostCapturedStmt();
const auto *Body =
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NestedDir =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
switch (D.getDirectiveKind()) {
case OMPD_target:
if (isOpenMPParallelDirective(DKind) &&
isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
hasStaticScheduling(*NestedDir))
return true;
if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
return true;
if (DKind == OMPD_parallel) {
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true);
if (!Body)
return false;
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NND =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
DKind = NND->getDirectiveKind();
if (isOpenMPWorksharingDirective(DKind) &&
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
return true;
}
} else if (DKind == OMPD_teams) {
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true);
if (!Body)
return false;
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NND =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
DKind = NND->getDirectiveKind();
if (isOpenMPParallelDirective(DKind) &&
isOpenMPWorksharingDirective(DKind) &&
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
return true;
if (DKind == OMPD_parallel) {
Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true);
if (!Body)
return false;
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NND =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
DKind = NND->getDirectiveKind();
if (isOpenMPWorksharingDirective(DKind) &&
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
return true;
}
}
}
}
return false;
case OMPD_target_teams:
if (isOpenMPParallelDirective(DKind) &&
isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
hasStaticScheduling(*NestedDir))
return true;
if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
return true;
if (DKind == OMPD_parallel) {
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true);
if (!Body)
return false;
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NND =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
DKind = NND->getDirectiveKind();
if (isOpenMPWorksharingDirective(DKind) &&
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
return true;
}
}
return false;
case OMPD_target_parallel:
if (DKind == OMPD_simd)
return true;
return isOpenMPWorksharingDirective(DKind) &&
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
case OMPD_target_teams_distribute:
case OMPD_target_simd:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
llvm_unreachable("Unexpected directive.");
}
}
return false;
}
/// Checks if the construct supports lightweight runtime. It must be SPMD
/// construct + inner loop-based construct with static scheduling.
static bool supportsLightweightRuntime(ASTContext &Ctx,
const OMPExecutableDirective &D) {
if (!supportsSPMDExecutionMode(Ctx, D))
return false;
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
switch (DirectiveKind) {
case OMPD_target:
case OMPD_target_teams:
case OMPD_target_parallel:
return hasNestedLightweightDirective(Ctx, D);
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
// (Last|First)-privates must be shared in parallel region.
return hasStaticScheduling(D);
case OMPD_target_simd:
case OMPD_target_teams_distribute_simd:
return true;
case OMPD_target_teams_distribute:
return false;
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
break;
}
llvm_unreachable(
"Unknown programming model for OpenMP directive on NVPTX target.");
}
void CGOpenMPRuntimeNVPTX::emitNonSPMDKernel(const OMPExecutableDirective &D,
StringRef ParentName,
llvm::Function *&OutlinedFn,
llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry,
const RegionCodeGenTy &CodeGen) {
ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
EntryFunctionState EST;
WorkerFunctionState WST(CGM, D.getBeginLoc());
Work.clear();
WrapperFunctionsMap.clear();
// Emit target region as a standalone region.
class NVPTXPrePostActionTy : public PrePostActionTy {
CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;
public:
NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
: EST(EST), WST(WST) {}
void Enter(CodeGenFunction &CGF) override {
auto &RT =
static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
RT.emitNonSPMDEntryHeader(CGF, EST, WST);
// Skip target region initialization.
RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
}
void Exit(CodeGenFunction &CGF) override {
auto &RT =
static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
RT.clearLocThreadIdInsertPt(CGF);
RT.emitNonSPMDEntryFooter(CGF, EST);
}
} Action(EST, WST);
CodeGen.setAction(Action);
IsInTTDRegion = true;
// Reserve place for the globalized memory.
GlobalizedRecords.emplace_back();
if (!KernelStaticGlobalized) {
KernelStaticGlobalized = new llvm::GlobalVariable(
CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
llvm::GlobalValue::InternalLinkage,
llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
"_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
llvm::GlobalValue::NotThreadLocal,
CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
}
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
IsOffloadEntry, CodeGen);
IsInTTDRegion = false;
// Now change the name of the worker function to correspond to this target
// region's entry function.
WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));
// Create the worker function
emitWorkerFunction(WST);
}
// Setup NVPTX threads for master-worker OpenMP scheme.
void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
EntryFunctionState &EST,
WorkerFunctionState &WST) {
CGBuilderTy &Bld = CGF.Builder;
llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
EST.ExitBB = CGF.createBasicBlock(".exit");
llvm::Value *IsWorker =
Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
CGF.EmitBlock(WorkerBB);
emitCall(CGF, WST.Loc, WST.WorkerFn);
CGF.EmitBranch(EST.ExitBB);
CGF.EmitBlock(MasterCheckBB);
llvm::Value *IsMaster =
Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
CGF.EmitBlock(MasterBB);
IsInTargetMasterThreadRegion = true;
// SEQUENTIAL (MASTER) REGION START
// First action in sequential region:
// Initialize the state of the OpenMP runtime library on the GPU.
// TODO: Optimize runtime initialization and pass in correct value.
llvm::Value *Args[] = {getThreadLimit(CGF),
Bld.getInt16(/*RequiresOMPRuntime=*/1)};
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
// For data sharing, we need to initialize the stack.
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_data_sharing_init_stack));
emitGenericVarsProlog(CGF, WST.Loc);
}
void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
EntryFunctionState &EST) {
IsInTargetMasterThreadRegion = false;
if (!CGF.HaveInsertPoint())
return;
emitGenericVarsEpilog(CGF);
if (!EST.ExitBB)
EST.ExitBB = CGF.createBasicBlock(".exit");
llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
CGF.EmitBranch(TerminateBB);
CGF.EmitBlock(TerminateBB);
// Signal termination condition.
// TODO: Optimize runtime initialization and pass in correct value.
llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args);
// Barrier to terminate worker threads.
syncCTAThreads(CGF);
// Master thread jumps to exit point.
CGF.EmitBranch(EST.ExitBB);
CGF.EmitBlock(EST.ExitBB);
EST.ExitBB = nullptr;
}
void CGOpenMPRuntimeNVPTX::emitSPMDKernel(const OMPExecutableDirective &D,
StringRef ParentName,
llvm::Function *&OutlinedFn,
llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry,
const RegionCodeGenTy &CodeGen) {
ExecutionRuntimeModesRAII ModeRAII(
CurrentExecutionMode, RequiresFullRuntime,
CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
!supportsLightweightRuntime(CGM.getContext(), D));
EntryFunctionState EST;
// Emit target region as a standalone region.
class NVPTXPrePostActionTy : public PrePostActionTy {
CGOpenMPRuntimeNVPTX &RT;
CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
const OMPExecutableDirective &D;
public:
NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
const OMPExecutableDirective &D)
: RT(RT), EST(EST), D(D) {}
void Enter(CodeGenFunction &CGF) override {
RT.emitSPMDEntryHeader(CGF, EST, D);
// Skip target region initialization.
RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
}
void Exit(CodeGenFunction &CGF) override {
RT.clearLocThreadIdInsertPt(CGF);
RT.emitSPMDEntryFooter(CGF, EST);
}
} Action(*this, EST, D);
CodeGen.setAction(Action);
IsInTTDRegion = true;
// Reserve place for the globalized memory.
GlobalizedRecords.emplace_back();
if (!KernelStaticGlobalized) {
KernelStaticGlobalized = new llvm::GlobalVariable(
CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
llvm::GlobalValue::InternalLinkage,
llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
"_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
llvm::GlobalValue::NotThreadLocal,
CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
}
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
IsOffloadEntry, CodeGen);
IsInTTDRegion = false;
}
void CGOpenMPRuntimeNVPTX::emitSPMDEntryHeader(
CodeGenFunction &CGF, EntryFunctionState &EST,
const OMPExecutableDirective &D) {
CGBuilderTy &Bld = CGF.Builder;
// Setup BBs in entry function.
llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
EST.ExitBB = CGF.createBasicBlock(".exit");
llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
/*RequiresOMPRuntime=*/
Bld.getInt16(RequiresFullRuntime ? 1 : 0),
/*RequiresDataSharing=*/Bld.getInt16(0)};
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
if (RequiresFullRuntime) {
// For data sharing, we need to initialize the stack.
CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd));
}
CGF.EmitBranch(ExecuteBB);
CGF.EmitBlock(ExecuteBB);
IsInTargetMasterThreadRegion = true;
}
void CGOpenMPRuntimeNVPTX::emitSPMDEntryFooter(CodeGenFunction &CGF,
EntryFunctionState &EST) {
IsInTargetMasterThreadRegion = false;
if (!CGF.HaveInsertPoint())
return;
if (!EST.ExitBB)
EST.ExitBB = CGF.createBasicBlock(".exit");
llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
CGF.EmitBranch(OMPDeInitBB);
CGF.EmitBlock(OMPDeInitBB);
// DeInitialize the OMP state in the runtime; called by all active threads.
llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2), Args);
CGF.EmitBranch(EST.ExitBB);
CGF.EmitBlock(EST.ExitBB);
EST.ExitBB = nullptr;
}
// Create a unique global variable to indicate the execution mode of this target
// region. The execution mode is either 'generic', or 'spmd' depending on the
// target directive. This variable is picked up by the offload library to setup
// the device appropriately before kernel launch. If the execution mode is
// 'generic', the runtime reserves one warp for the master, otherwise, all
// warps participate in parallel work.
static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
bool Mode) {
auto *GVMode =
new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
llvm::GlobalValue::WeakAnyLinkage,
llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
Twine(Name, "_exec_mode"));
CGM.addCompilerUsedGlobal(GVMode);
}
void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
ASTContext &Ctx = CGM.getContext();
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
WST.Loc, WST.Loc);
emitWorkerLoop(CGF, WST);
CGF.FinishFunction();
}
void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
WorkerFunctionState &WST) {
//
// The workers enter this loop and wait for parallel work from the master.
// When the master encounters a parallel region it sets up the work + variable
// arguments, and wakes up the workers. The workers first check to see if
// they are required for the parallel region, i.e., within the # of requested
// parallel threads. The activated workers load the variable arguments and
// execute the parallel work.
//
CGBuilderTy &Bld = CGF.Builder;
llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
CGF.EmitBranch(AwaitBB);
// Workers wait for work from master.
CGF.EmitBlock(AwaitBB);
// Wait for parallel work
syncCTAThreads(CGF);
Address WorkFn =
CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
Address ExecStatus =
CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
// TODO: Optimize runtime initialization and pass in correct value.
llvm::Value *Args[] = {WorkFn.getPointer(),
/*RequiresOMPRuntime=*/Bld.getInt16(1)};
llvm::Value *Ret = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
// On termination condition (workid == 0), exit loop.
llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
// Activate requested workers.
CGF.EmitBlock(SelectWorkersBB);
llvm::Value *IsActive =
Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
// Signal start of parallel region.
CGF.EmitBlock(ExecuteBB);
// Skip initialization.
setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
// Process work items: outlined parallel functions.
for (llvm::Function *W : Work) {
// Try to match this outlined function.
llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
llvm::Value *WorkFnMatch =
Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
// Execute this outlined function.
CGF.EmitBlock(ExecuteFNBB);
// Insert call to work function via shared wrapper. The shared
// wrapper takes two arguments:
// - the parallelism level;
// - the thread ID;
emitCall(CGF, WST.Loc, W,
{Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
// Go to end of parallel region.
CGF.EmitBranch(TerminateBB);
CGF.EmitBlock(CheckNextBB);
}
// Default case: call to outlined function through pointer if the target
// region makes a declare target call that may contain an orphaned parallel
// directive.
auto *ParallelFnTy =
llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
/*isVarArg=*/false);
llvm::Value *WorkFnCast =
Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo());
// Insert call to work function via shared wrapper. The shared
// wrapper takes two arguments:
// - the parallelism level;
// - the thread ID;
emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast},
{Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
// Go to end of parallel region.
CGF.EmitBranch(TerminateBB);
// Signal end of parallel region.
CGF.EmitBlock(TerminateBB);
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
llvm::None);
CGF.EmitBranch(BarrierBB);
// All active and inactive workers wait at a barrier after parallel region.
CGF.EmitBlock(BarrierBB);
// Barrier after parallel region.
syncCTAThreads(CGF);
CGF.EmitBranch(AwaitBB);
// Exit target region.
CGF.EmitBlock(ExitBB);
// Skip initialization.
clearLocThreadIdInsertPt(CGF);
}
/// Returns specified OpenMP runtime function for the current OpenMP
/// implementation. Specialized for the NVPTX device.
/// \param Function OpenMP runtime function.
/// \return Specified function.
llvm::FunctionCallee
CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
llvm::FunctionCallee RTLFn = nullptr;
switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
case OMPRTL_NVPTX__kmpc_kernel_init: {
// Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t
// RequiresOMPRuntime);
llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
break;
}
case OMPRTL_NVPTX__kmpc_kernel_deinit: {
// Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
llvm::Type *TypeParams[] = {CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
break;
}
case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
// Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
break;
}
case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2: {
// Build void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
llvm::Type *TypeParams[] = {CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit_v2");
break;
}
case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
/// Build void __kmpc_kernel_prepare_parallel(
/// void *outlined_function, int16_t IsOMPRuntimeInitialized);
llvm::Type *TypeParams[] = {CGM.Int8PtrTy, CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
break;
}
case OMPRTL_NVPTX__kmpc_kernel_parallel: {
/// Build bool __kmpc_kernel_parallel(void **outlined_function,
/// int16_t IsOMPRuntimeInitialized);
llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy, CGM.Int16Ty};
llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
auto *FnTy =
llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
break;
}
case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
/// Build void __kmpc_kernel_end_parallel();
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
break;
}
case OMPRTL_NVPTX__kmpc_serialized_parallel: {
// Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
break;
}
case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
// Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
break;
}
case OMPRTL_NVPTX__kmpc_shuffle_int32: {
// Build int32_t __kmpc_shuffle_int32(int32_t element,
// int16_t lane_offset, int16_t warp_size);
llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
break;
}
case OMPRTL_NVPTX__kmpc_shuffle_int64: {
// Build int64_t __kmpc_shuffle_int64(int64_t element,
// int16_t lane_offset, int16_t warp_size);
llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
break;
}
case OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2: {
// Build int32_t kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc,
// kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void*
// reduce_data, void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t
// lane_id, int16_t lane_offset, int16_t Algorithm Version), void
// (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
CGM.Int16Ty, CGM.Int16Ty};
auto *ShuffleReduceFnTy =
llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
auto *InterWarpCopyFnTy =
llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
CGM.Int32Ty,
CGM.Int32Ty,
CGM.SizeTy,
CGM.VoidPtrTy,
ShuffleReduceFnTy->getPointerTo(),
InterWarpCopyFnTy->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(
FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait_v2");
break;
}
case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
// Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
llvm::Type *TypeParams[] = {CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(
FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
break;
}
case OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2: {
// Build int32_t __kmpc_nvptx_teams_reduce_nowait_v2(ident_t *loc, kmp_int32
// global_tid, void *global_buffer, int32_t num_of_records, void*
// reduce_data,
// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
// lane_offset, int16_t shortCircuit),
// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), void
// (*kmp_ListToGlobalCpyFctPtr)(void *buffer, int idx, void *reduce_data),
// void (*kmp_GlobalToListCpyFctPtr)(void *buffer, int idx,
// void *reduce_data), void (*kmp_GlobalToListCpyPtrsFctPtr)(void *buffer,
// int idx, void *reduce_data), void (*kmp_GlobalToListRedFctPtr)(void
// *buffer, int idx, void *reduce_data));
llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
CGM.Int16Ty, CGM.Int16Ty};
auto *ShuffleReduceFnTy =
llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
auto *InterWarpCopyFnTy =
llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
/*isVarArg=*/false);
llvm::Type *GlobalListTypeParams[] = {CGM.VoidPtrTy, CGM.IntTy,
CGM.VoidPtrTy};
auto *GlobalListFnTy =
llvm::FunctionType::get(CGM.VoidTy, GlobalListTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
CGM.Int32Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrTy,
ShuffleReduceFnTy->getPointerTo(),
InterWarpCopyFnTy->getPointerTo(),
GlobalListFnTy->getPointerTo(),
GlobalListFnTy->getPointerTo(),
GlobalListFnTy->getPointerTo(),
GlobalListFnTy->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(
FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait_v2");
break;
}
case OMPRTL_NVPTX__kmpc_data_sharing_init_stack: {
/// Build void __kmpc_data_sharing_init_stack();
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack");
break;
}
case OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd: {
/// Build void __kmpc_data_sharing_init_stack_spmd();
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack_spmd");
break;
}
case OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack: {
// Build void *__kmpc_data_sharing_coalesced_push_stack(size_t size,
// int16_t UseSharedMemory);
llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(
FnTy, /*Name=*/"__kmpc_data_sharing_coalesced_push_stack");
break;
}
case OMPRTL_NVPTX__kmpc_data_sharing_pop_stack: {
// Build void __kmpc_data_sharing_pop_stack(void *a);
llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy,
/*Name=*/"__kmpc_data_sharing_pop_stack");
break;
}
case OMPRTL_NVPTX__kmpc_begin_sharing_variables: {
/// Build void __kmpc_begin_sharing_variables(void ***args,
/// size_t n_args);
llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo(), CGM.SizeTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_begin_sharing_variables");
break;
}
case OMPRTL_NVPTX__kmpc_end_sharing_variables: {
/// Build void __kmpc_end_sharing_variables();
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_sharing_variables");
break;
}
case OMPRTL_NVPTX__kmpc_get_shared_variables: {
/// Build void __kmpc_get_shared_variables(void ***GlobalArgs);
llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_shared_variables");
break;
}
case OMPRTL_NVPTX__kmpc_parallel_level: {
// Build uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int16Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_parallel_level");
break;
}
case OMPRTL_NVPTX__kmpc_is_spmd_exec_mode: {
// Build int8_t __kmpc_is_spmd_exec_mode();
auto *FnTy = llvm::FunctionType::get(CGM.Int8Ty, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_is_spmd_exec_mode");
break;
}
case OMPRTL_NVPTX__kmpc_get_team_static_memory: {
// Build void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
// const void *buf, size_t size, int16_t is_shared, const void **res);
llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.VoidPtrTy, CGM.SizeTy,
CGM.Int16Ty, CGM.VoidPtrPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_team_static_memory");
break;
}
case OMPRTL_NVPTX__kmpc_restore_team_static_memory: {
// Build void __kmpc_restore_team_static_memory(int16_t isSPMDExecutionMode,
// int16_t is_shared);
llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.Int16Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, "__kmpc_restore_team_static_memory");
break;
}
case OMPRTL__kmpc_barrier: {
// Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn =
CGM.CreateConvergentRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
break;
}
case OMPRTL__kmpc_barrier_simple_spmd: {
// Build void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateConvergentRuntimeFunction(
FnTy, /*Name*/ "__kmpc_barrier_simple_spmd");
break;
}
case OMPRTL_NVPTX__kmpc_warp_active_thread_mask: {
// Build int32_t __kmpc_warp_active_thread_mask(void);
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, llvm::None, /*isVarArg=*/false);
RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_warp_active_thread_mask");
break;
}
case OMPRTL_NVPTX__kmpc_syncwarp: {
// Build void __kmpc_syncwarp(kmp_int32 Mask);
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, CGM.Int32Ty, /*isVarArg=*/false);
RTLFn = CGM.CreateConvergentRuntimeFunction(FnTy, "__kmpc_syncwarp");
break;
}
}
return RTLFn;
}
void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
llvm::Constant *Addr,
uint64_t Size, int32_t,
llvm::GlobalValue::LinkageTypes) {
// TODO: Add support for global variables on the device after declare target
// support.
if (!isa<llvm::Function>(Addr))
return;
llvm::Module &M = CGM.getModule();
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
// Get "nvvm.annotations" metadata node
llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
llvm::Metadata *MDVals[] = {
llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
// Append metadata to nvvm.annotations
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}
void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
if (!IsOffloadEntry) // Nothing to do.
return;
assert(!ParentName.empty() && "Invalid target region parent name!");
bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
if (Mode)
emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
CodeGen);
else
emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
CodeGen);
setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
}
namespace {
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
/// Enum for accesseing the reserved_2 field of the ident_t struct.
enum ModeFlagsTy : unsigned {
/// Bit set to 1 when in SPMD mode.
KMP_IDENT_SPMD_MODE = 0x01,
/// Bit set to 1 when a simplified runtime is used.
KMP_IDENT_SIMPLE_RT_MODE = 0x02,
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
};
/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
static const ModeFlagsTy UndefinedMode =
(~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
} // anonymous namespace
unsigned CGOpenMPRuntimeNVPTX::getDefaultLocationReserved2Flags() const {
switch (getExecutionMode()) {
case EM_SPMD:
if (requiresFullRuntime())
return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
case EM_NonSPMD:
assert(requiresFullRuntime() && "Expected full runtime.");
return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
case EM_Unknown:
return UndefinedMode;
}
llvm_unreachable("Unknown flags are requested.");
}
bool CGOpenMPRuntimeNVPTX::tryEmitDeclareVariant(const GlobalDecl &NewGD,
const GlobalDecl &OldGD,
llvm::GlobalValue *OrigAddr,
bool IsForDefinition) {
// Emit the function in OldGD with the body from NewGD, if NewGD is defined.
auto *NewFD = cast<FunctionDecl>(NewGD.getDecl());
if (NewFD->isDefined()) {
CGM.emitOpenMPDeviceFunctionRedefinition(OldGD, NewGD, OrigAddr);
return true;
}
return false;
}
CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
: CGOpenMPRuntime(CGM, "_", "$") {
if (!CGM.getLangOpts().OpenMPIsDevice)
llvm_unreachable("OpenMP NVPTX can only handle device code.");
}
void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
OpenMPProcBindClauseKind ProcBind,
SourceLocation Loc) {
// Do nothing in case of SPMD mode and L0 parallel.
if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
return;
CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
}
void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
llvm::Value *NumThreads,
SourceLocation Loc) {
// Do nothing in case of SPMD mode and L0 parallel.
if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
return;
CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
}
void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
const Expr *NumTeams,
const Expr *ThreadLimit,
SourceLocation Loc) {}
llvm::Function *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
// Emit target region as a standalone region.
class NVPTXPrePostActionTy : public PrePostActionTy {
bool &IsInParallelRegion;
bool PrevIsInParallelRegion;
public:
NVPTXPrePostActionTy(bool &IsInParallelRegion)
: IsInParallelRegion(IsInParallelRegion) {}
void Enter(CodeGenFunction &CGF) override {
PrevIsInParallelRegion = IsInParallelRegion;
IsInParallelRegion = true;
}
void Exit(CodeGenFunction &CGF) override {
IsInParallelRegion = PrevIsInParallelRegion;
}
} Action(IsInParallelRegion);
CodeGen.setAction(Action);
bool PrevIsInTTDRegion = IsInTTDRegion;
IsInTTDRegion = false;
bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
IsInTargetMasterThreadRegion = false;
auto *OutlinedFun =
cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
D, ThreadIDVar, InnermostKind, CodeGen));
if (CGM.getLangOpts().Optimize) {
OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
}
IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
IsInTTDRegion = PrevIsInTTDRegion;
if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD &&
!IsInParallelRegion) {
llvm::Function *WrapperFun =
createParallelDataSharingWrapper(OutlinedFun, D);
WrapperFunctionsMap[OutlinedFun] = WrapperFun;
}
return OutlinedFun;
}
/// Get list of lastprivate variables from the teams distribute ... or
/// teams {distribute ...} directives.
static void
getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
"expected teams directive.");
const OMPExecutableDirective *Dir = &D;
if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
Ctx,
D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true))) {
Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
Dir = nullptr;
}
}
if (!Dir)
return;
for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
for (const Expr *E : C->getVarRefs())
Vars.push_back(getPrivateItem(E));
}
}
/// Get list of reduction variables from the teams ... directives.
static void
getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
"expected teams directive.");
for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
for (const Expr *E : C->privates())
Vars.push_back(getPrivateItem(E));
}
}
llvm::Function *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
SourceLocation Loc = D.getBeginLoc();
const RecordDecl *GlobalizedRD = nullptr;
llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
// Globalize team reductions variable unconditionally in all modes.
if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
if (!LastPrivatesReductions.empty()) {
GlobalizedRD = ::buildRecordForGlobalizedVars(
CGM.getContext(), llvm::None, LastPrivatesReductions,
MappedDeclsFields, WarpSize);
}
} else if (!LastPrivatesReductions.empty()) {
assert(!TeamAndReductions.first &&
"Previous team declaration is not expected.");
TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
std::swap(TeamAndReductions.second, LastPrivatesReductions);
}
// Emit target region as a standalone region.
class NVPTXPrePostActionTy : public PrePostActionTy {
SourceLocation &Loc;
const RecordDecl *GlobalizedRD;
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
&MappedDeclsFields;
public:
NVPTXPrePostActionTy(
SourceLocation &Loc, const RecordDecl *GlobalizedRD,
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
&MappedDeclsFields)
: Loc(Loc), GlobalizedRD(GlobalizedRD),
MappedDeclsFields(MappedDeclsFields) {}
void Enter(CodeGenFunction &CGF) override {
auto &Rt =
static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
if (GlobalizedRD) {
auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
I->getSecond().GlobalRecord = GlobalizedRD;
I->getSecond().MappedParams =
std::make_unique<CodeGenFunction::OMPMapVars>();
DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
for (const auto &Pair : MappedDeclsFields) {
assert(Pair.getFirst()->isCanonicalDecl() &&
"Expected canonical declaration");
Data.insert(std::make_pair(Pair.getFirst(),
MappedVarData(Pair.getSecond(),
/*IsOnePerTeam=*/true)));
}
}
Rt.emitGenericVarsProlog(CGF, Loc);
}
void Exit(CodeGenFunction &CGF) override {
static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
.emitGenericVarsEpilog(CGF);
}
} Action(Loc, GlobalizedRD, MappedDeclsFields);
CodeGen.setAction(Action);
llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
D, ThreadIDVar, InnermostKind, CodeGen);
if (CGM.getLangOpts().Optimize) {
OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
}
return OutlinedFun;
}
void CGOpenMPRuntimeNVPTX::emitGenericVarsProlog(CodeGenFunction &CGF,
SourceLocation Loc,
bool WithSPMDCheck) {
if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
return;
CGBuilderTy &Bld = CGF.Builder;
const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
if (I == FunctionGlobalizedDecls.end())
return;
if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
QualType SecGlobalRecTy;
// Recover pointer to this function's global record. The runtime will
// handle the specifics of the allocation of the memory.
// Use actual memory size of the record including the padding
// for alignment purposes.
unsigned Alignment =
CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
unsigned GlobalRecordSize =
CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
llvm::PointerType *GlobalRecPtrTy =
CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
llvm::Value *GlobalRecCastAddr;
llvm::Value *IsTTD = nullptr;
if (!IsInTTDRegion &&
(WithSPMDCheck ||
getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *PL = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
{RTLoc, ThreadID});
IsTTD = Bld.CreateIsNull(PL);
}
llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(SPMDBB);
Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
CharUnits::fromQuantity(Alignment));
CGF.EmitBranch(ExitBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(NonSPMDBB);
llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
if (const RecordDecl *SecGlobalizedVarsRecord =
I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
SecGlobalRecTy =
CGM.getContext().getRecordType(SecGlobalizedVarsRecord);
// Recover pointer to this function's global record. The runtime will
// handle the specifics of the allocation of the memory.
// Use actual memory size of the record including the padding
// for alignment purposes.
unsigned Alignment =
CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
unsigned GlobalRecordSize =
CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
Size = Bld.CreateSelect(
IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
}
// TODO: allow the usage of shared memory to be controlled by
// the user, for now, default to global.
llvm::Value *GlobalRecordSizeArg[] = {
Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
GlobalRecordSizeArg);
GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
GlobalRecValue, GlobalRecPtrTy);
CGF.EmitBlock(ExitBB);
auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
/*NumReservedValues=*/2, "_select_stack");
Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
GlobalRecCastAddr = Phi;
I->getSecond().GlobalRecordAddr = Phi;
I->getSecond().IsInSPMDModeFlag = IsSPMD;
} else if (IsInTTDRegion) {
assert(GlobalizedRecords.back().Records.size() < 2 &&
"Expected less than 2 globalized records: one for target and one "
"for teams.");
unsigned Offset = 0;
for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
QualType RDTy = CGM.getContext().getRecordType(RD);
unsigned Alignment =
CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
Offset =
llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
}
unsigned Alignment =
CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
Offset = llvm::alignTo(Offset, Alignment);
GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
++GlobalizedRecords.back().RegionCounter;
if (GlobalizedRecords.back().Records.size() == 1) {
assert(KernelStaticGlobalized &&
"Kernel static pointer must be initialized already.");
auto *UseSharedMemory = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
llvm::GlobalValue::InternalLinkage, nullptr,
"_openmp_static_kernel$is_shared");
UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
/*DestWidth=*/16, /*Signed=*/0);
llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
Address(UseSharedMemory,
CGM.getContext().getTypeAlignInChars(Int16Ty)),
/*Volatile=*/false, Int16Ty, Loc);
auto *StaticGlobalized = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
llvm::GlobalValue::CommonLinkage, nullptr);
auto *RecSize = new llvm::GlobalVariable(
CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
llvm::GlobalValue::InternalLinkage, nullptr,
"_openmp_static_kernel$size");
RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
llvm::Value *Ld = CGF.EmitLoadOfScalar(
Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
CGM.getContext().getSizeType(), Loc);
llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
KernelStaticGlobalized, CGM.VoidPtrPtrTy);
llvm::Value *GlobalRecordSizeArg[] = {
llvm::ConstantInt::get(
CGM.Int16Ty,
getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_get_team_static_memory),
GlobalRecordSizeArg);
GlobalizedRecords.back().Buffer = StaticGlobalized;
GlobalizedRecords.back().RecSize = RecSize;
GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
GlobalizedRecords.back().Loc = Loc;
}
assert(KernelStaticGlobalized && "Global address must be set already.");
Address FrameAddr = CGF.EmitLoadOfPointer(
Address(KernelStaticGlobalized, CGM.getPointerAlign()),
CGM.getContext()
.getPointerType(CGM.getContext().VoidPtrTy)
.castAs<PointerType>());
llvm::Value *GlobalRecValue =
Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer();
I->getSecond().GlobalRecordAddr = GlobalRecValue;
I->getSecond().IsInSPMDModeFlag = nullptr;
GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
} else {
// TODO: allow the usage of shared memory to be controlled by
// the user, for now, default to global.
llvm::Value *GlobalRecordSizeArg[] = {
llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
GlobalRecordSizeArg);
GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
GlobalRecValue, GlobalRecPtrTy);
I->getSecond().GlobalRecordAddr = GlobalRecValue;
I->getSecond().IsInSPMDModeFlag = nullptr;
}
LValue Base =
CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);
// Emit the "global alloca" which is a GEP from the global declaration
// record using the pointer returned by the runtime.
LValue SecBase;
decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
if (IsTTD) {
SecIt = I->getSecond().SecondaryLocalVarData->begin();
llvm::PointerType *SecGlobalRecPtrTy =
CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
Bld.CreatePointerBitCastOrAddrSpaceCast(
I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
SecGlobalRecTy);
}
for (auto &Rec : I->getSecond().LocalVarData) {
bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
llvm::Value *ParValue;
if (EscapedParam) {
const auto *VD = cast<VarDecl>(Rec.first);
LValue ParLVal =
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
}
LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
// Emit VarAddr basing on lane-id if required.
QualType VarTy;
if (Rec.second.IsOnePerTeam) {
VarTy = Rec.second.FD->getType();
} else {
llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
VarAddr.getAddress(CGF).getPointer(),
{Bld.getInt32(0), getNVPTXLaneID(CGF)});
VarTy =
Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
VarAddr = CGF.MakeAddrLValue(
Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
AlignmentSource::Decl);
}
Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
if (!IsInTTDRegion &&
(WithSPMDCheck ||
getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
assert(I->getSecond().IsInSPMDModeFlag &&
"Expected unknown execution mode or required SPMD check.");
if (IsTTD) {
assert(SecIt->second.IsOnePerTeam &&
"Secondary glob data must be one per team.");
LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
VarAddr.setAddress(
Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF),
VarAddr.getPointer(CGF)),
VarAddr.getAlignment()));
Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
}
Address GlobalPtr = Rec.second.PrivateAddr;
Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
Rec.second.PrivateAddr = Address(
Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
LocalAddr.getPointer(), GlobalPtr.getPointer()),
LocalAddr.getAlignment());
}
if (EscapedParam) {
const auto *VD = cast<VarDecl>(Rec.first);
CGF.EmitStoreOfScalar(ParValue, VarAddr);
I->getSecond().MappedParams->setVarAddr(CGF, VD,
VarAddr.getAddress(CGF));
}
if (IsTTD)
++SecIt;
}
}
for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
// Recover pointer to this function's global record. The runtime will
// handle the specifics of the allocation of the memory.
// Use actual memory size of the record including the padding
// for alignment purposes.
CGBuilderTy &Bld = CGF.Builder;
llvm::Value *Size = CGF.getTypeSize(VD->getType());
CharUnits Align = CGM.getContext().getDeclAlign(VD);
Size = Bld.CreateNUWAdd(
Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
llvm::Value *AlignVal =
llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
Size = Bld.CreateUDiv(Size, AlignVal);
Size = Bld.CreateNUWMul(Size, AlignVal);
// TODO: allow the usage of shared memory to be controlled by
// the user, for now, default to global.
llvm::Value *GlobalRecordSizeArg[] = {
Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
GlobalRecordSizeArg);
llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
CGM.getContext().getDeclAlign(VD),
AlignmentSource::Decl);
I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
Base.getAddress(CGF));
I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
}
I->getSecond().MappedParams->apply(CGF);
}
void CGOpenMPRuntimeNVPTX::emitGenericVarsEpilog(CodeGenFunction &CGF,
bool WithSPMDCheck) {
if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
return;
const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
if (I != FunctionGlobalizedDecls.end()) {
I->getSecond().MappedParams->restore(CGF);
if (!CGF.HaveInsertPoint())
return;
for (llvm::Value *Addr :
llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
Addr);
}
if (I->getSecond().GlobalRecordAddr) {
if (!IsInTTDRegion &&
(WithSPMDCheck ||
getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
CGBuilderTy &Bld = CGF.Builder;
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(NonSPMDBB);
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
CGF.EmitBlock(ExitBB);
} else if (IsInTTDRegion) {
assert(GlobalizedRecords.back().RegionCounter > 0 &&
"region counter must be > 0.");
--GlobalizedRecords.back().RegionCounter;
// Emit the restore function only in the target region.
if (GlobalizedRecords.back().RegionCounter == 0) {
QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
/*DestWidth=*/16, /*Signed=*/0);
llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
Address(GlobalizedRecords.back().UseSharedMemory,
CGM.getContext().getTypeAlignInChars(Int16Ty)),
/*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
llvm::Value *Args[] = {
llvm::ConstantInt::get(
CGM.Int16Ty,
getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
IsInSharedMemory};
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_restore_team_static_memory),
Args);
}
} else {
CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
I->getSecond().GlobalRecordAddr);
}
}
}
}
void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars) {
if (!CGF.HaveInsertPoint())
return;
Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
}
void CGOpenMPRuntimeNVPTX::emitParallelCall(
CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
if (!CGF.HaveInsertPoint())
return;
if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
else
emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
}
void CGOpenMPRuntimeNVPTX::emitNonSPMDParallelCall(
CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
// Force inline this outlined function at its call site.
Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
// ThreadId for serialized parallels is 0.
Address ThreadIDAddr = ZeroAddr;
auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr](
CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
Address ZeroAddr =
CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".bound.zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
};
auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
PrePostActionTy &) {
RegionCodeGenTy RCG(CodeGen);
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *Args[] = {RTLoc, ThreadID};
NVPTXActionTy Action(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
Args,
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
Args);
RCG.setAction(Action);
RCG(CGF);
};
auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF,
PrePostActionTy &Action) {
CGBuilderTy &Bld = CGF.Builder;
llvm::Function *WFn = WrapperFunctionsMap[Fn];
assert(WFn && "Wrapper function does not exist!");
llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
// Prepare for parallel region. Indicate the outlined function.
llvm::Value *Args[] = {ID, /*RequiresOMPRuntime=*/Bld.getInt16(1)};
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
Args);
// Create a private scope that will globalize the arguments
// passed from the outside of the target region.
CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
// There's something to share.
if (!CapturedVars.empty()) {
// Prepare for parallel region. Indicate the outlined function.
Address SharedArgs =
CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs");
llvm::Value *SharedArgsPtr = SharedArgs.getPointer();
llvm::Value *DataSharingArgs[] = {
SharedArgsPtr,
llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_begin_sharing_variables),
DataSharingArgs);
// Store variable address in a list of references to pass to workers.
unsigned Idx = 0;
ASTContext &Ctx = CGF.getContext();
Address SharedArgListAddress = CGF.EmitLoadOfPointer(
SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy))
.castAs<PointerType>());
for (llvm::Value *V : CapturedVars) {
Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
llvm::Value *PtrV;
if (V->getType()->isIntegerTy())
PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
else
PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
Ctx.getPointerType(Ctx.VoidPtrTy));
++Idx;
}
}
// Activate workers. This barrier is used by the master to signal
// work for the workers.
syncCTAThreads(CGF);
// OpenMP [2.5, Parallel Construct, p.49]
// There is an implied barrier at the end of a parallel region. After the
// end of a parallel region, only the master thread of the team resumes
// execution of the enclosing task region.
//
// The master waits at this barrier until all workers are done.
syncCTAThreads(CGF);
if (!CapturedVars.empty())
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_sharing_variables));
// Remember for post-processing in worker loop.
Work.emplace_back(WFn);
};
auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen](
CodeGenFunction &CGF, PrePostActionTy &Action) {
if (IsInParallelRegion) {
SeqGen(CGF, Action);
} else if (IsInTargetMasterThreadRegion) {
L0ParallelGen(CGF, Action);
} else {
// Check for master and then parallelism:
// if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) {
// Serialized execution.
// } else {
// Worker call.
// }
CGBuilderTy &Bld = CGF.Builder;
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential");
llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck");
llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ParallelCheckBB);
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *PL = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
{RTLoc, ThreadID});
llvm::Value *Res = Bld.CreateIsNotNull(PL);
Bld.CreateCondBr(Res, SeqBB, MasterBB);
CGF.EmitBlock(SeqBB);
SeqGen(CGF, Action);
CGF.EmitBranch(ExitBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(MasterBB);
L0ParallelGen(CGF, Action);
CGF.EmitBranch(ExitBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
// Emit the continuation block for code after the if.
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
}
};
if (IfCond) {
emitIfClause(CGF, IfCond, LNParallelGen, SeqGen);
} else {
CodeGenFunction::RunCleanupsScope Scope(CGF);
RegionCodeGenTy ThenRCG(LNParallelGen);
ThenRCG(CGF);
}
}
void CGOpenMPRuntimeNVPTX::emitSPMDParallelCall(
CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
// Just call the outlined function to execute the parallel region.
// OutlinedFn(&GTid, &zero, CapturedStruct);
//
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
// ThreadId for serialized parallels is 0.
Address ThreadIDAddr = ZeroAddr;
auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr](
CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
Address ZeroAddr =
CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".bound.zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
};
auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
PrePostActionTy &) {
RegionCodeGenTy RCG(CodeGen);
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *Args[] = {RTLoc, ThreadID};
NVPTXActionTy Action(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
Args,
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
Args);
RCG.setAction(Action);
RCG(CGF);
};
if (IsInTargetMasterThreadRegion) {
// In the worker need to use the real thread id.
ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
RegionCodeGenTy RCG(CodeGen);
RCG(CGF);
} else {
// If we are not in the target region, it is definitely L2 parallelism or
// more, because for SPMD mode we always has L1 parallel level, sowe don't
// need to check for orphaned directives.
RegionCodeGenTy RCG(SeqGen);
RCG(CGF);
}
}
void CGOpenMPRuntimeNVPTX::syncCTAThreads(CodeGenFunction &CGF) {
// Always emit simple barriers!
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_barrier_simple_spmd(nullptr, 0);
// This function does not use parameters, so we can emit just default values.
llvm::Value *Args[] = {
llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(getIdentTyPointerTy())),
llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
llvm::CallInst *Call = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier_simple_spmd), Args);
Call->setConvergent();
}
void CGOpenMPRuntimeNVPTX::emitBarrierCall(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind Kind, bool,
bool) {
// Always emit simple barriers!
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_cancel_barrier(loc, thread_id);
unsigned Flags = getDefaultFlagsForBarriers(Kind);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
getThreadID(CGF, Loc)};
llvm::CallInst *Call = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier), Args);
Call->setConvergent();
}
void CGOpenMPRuntimeNVPTX::emitCriticalRegion(
CodeGenFunction &CGF, StringRef CriticalName,
const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
const Expr *Hint) {
llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
// Get the mask of active threads in the warp.
llvm::Value *Mask = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_warp_active_thread_mask));
// Fetch team-local id of the thread.
llvm::Value *ThreadID = getNVPTXThreadID(CGF);
// Get the width of the team.
llvm::Value *TeamWidth = getNVPTXNumThreads(CGF);
// Initialize the counter variable for the loop.
QualType Int32Ty =
CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
/*isInit=*/true);
// Block checks if loop counter exceeds upper bound.
CGF.EmitBlock(LoopBB);
llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
// Block tests which single thread should execute region, and which threads
// should go straight to synchronisation point.
CGF.EmitBlock(TestBB);
CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
llvm::Value *CmpThreadToCounter =
CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
// Block emits the body of the critical region.
CGF.EmitBlock(BodyBB);
// Output the critical statement.
CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
Hint);
// After the body surrounded by the critical region, the single executing
// thread will jump to the synchronisation point.
// Block waits for all threads in current team to finish then increments the
// counter variable and returns to the loop.
CGF.EmitBlock(SyncBB);
// Reconverge active threads in the warp.
(void)CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_syncwarp), Mask);
llvm::Value *IncCounterVal =
CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
CGF.EmitBranch(LoopBB);
// Block that is reached when all threads in the team complete the region.
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
}
/// Cast value to the specified type.
static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
QualType ValTy, QualType CastTy,
SourceLocation Loc) {
assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
"Cast type must sized.");
assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
"Val type must sized.");
llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
if (ValTy == CastTy)
return Val;
if (CGF.getContext().getTypeSizeInChars(ValTy) ==
CGF.getContext().getTypeSizeInChars(CastTy))
return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
if (CastTy->isIntegerType() && ValTy->isIntegerType())
return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
CastTy->hasSignedIntegerRepresentation());
Address CastItem = CGF.CreateMemTemp(CastTy);
Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy);
return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc);
}
/// This function creates calls to one of two shuffle functions to copy
/// variables between lanes in a warp.
static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
llvm::Value *Elem,
QualType ElemType,
llvm::Value *Offset,
SourceLocation Loc) {
CodeGenModule &CGM = CGF.CGM;
CGBuilderTy &Bld = CGF.Builder;
CGOpenMPRuntimeNVPTX &RT =
*(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
assert(Size.getQuantity() <= 8 &&
"Unsupported bitwidth in shuffle instruction.");
OpenMPRTLFunctionNVPTX ShuffleFn = Size.getQuantity() <= 4
? OMPRTL_NVPTX__kmpc_shuffle_int32
: OMPRTL_NVPTX__kmpc_shuffle_int64;
// Cast all types to 32- or 64-bit values before calling shuffle routines.
QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
llvm::Value *WarpSize =
Bld.CreateIntCast(getNVPTXWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
RT.createNVPTXRuntimeFunction(ShuffleFn), {ElemCast, Offset, WarpSize});
return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
}
static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
Address DestAddr, QualType ElemType,
llvm::Value *Offset, SourceLocation Loc) {
CGBuilderTy &Bld = CGF.Builder;
CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
// Create the loop over the big sized data.
// ptr = (void*)Elem;
// ptrEnd = (void*) Elem + 1;
// Step = 8;
// while (ptr + Step < ptrEnd)
// shuffle((int64_t)*ptr);
// Step = 4;
// while (ptr + Step < ptrEnd)
// shuffle((int32_t)*ptr);
// ...
Address ElemPtr = DestAddr;
Address Ptr = SrcAddr;
Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
if (Size < CharUnits::fromQuantity(IntSize))
continue;
QualType IntType = CGF.getContext().getIntTypeForBitwidth(
CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
/*Signed=*/1);
llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
ElemPtr =
Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
if (Size.getQuantity() / IntSize > 1) {
llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
CGF.EmitBlock(PreCondBB);
llvm::PHINode *PhiSrc =
Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
llvm::PHINode *PhiDest =
Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
Ptr = Address(PhiSrc, Ptr.getAlignment());
ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
llvm::Value *PtrDiff = Bld.CreatePtrDiff(
PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
Ptr.getPointer(), CGF.VoidPtrTy));
Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
ThenBB, ExitBB);
CGF.EmitBlock(ThenBB);
llvm::Value *Res = createRuntimeShuffleFunction(
CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
IntType, Offset, Loc);
CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
CGF.EmitBranch(PreCondBB);
CGF.EmitBlock(ExitBB);
} else {
llvm::Value *Res = createRuntimeShuffleFunction(
CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
IntType, Offset, Loc);
CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
Ptr = Bld.CreateConstGEP(Ptr, 1);
ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
}
Size = Size % IntSize;
}
}
namespace {
enum CopyAction : unsigned {
// RemoteLaneToThread: Copy over a Reduce list from a remote lane in
// the warp using shuffle instructions.
RemoteLaneToThread,
// ThreadCopy: Make a copy of a Reduce list on the thread's stack.
ThreadCopy,
// ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
ThreadToScratchpad,
// ScratchpadToThread: Copy from a scratchpad array in global memory
// containing team-reduced data to a thread's stack.
ScratchpadToThread,
};
} // namespace
struct CopyOptionsTy {
llvm::Value *RemoteLaneOffset;
llvm::Value *ScratchpadIndex;
llvm::Value *ScratchpadWidth;
};
/// Emit instructions to copy a Reduce list, which contains partially
/// aggregated values, in the specified direction.
static void emitReductionListCopy(
CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
CodeGenModule &CGM = CGF.CGM;
ASTContext &C = CGM.getContext();
CGBuilderTy &Bld = CGF.Builder;
llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
// Iterates, element-by-element, through the source Reduce list and
// make a copy.
unsigned Idx = 0;
unsigned Size = Privates.size();
for (const Expr *Private : Privates) {
Address SrcElementAddr = Address::invalid();
Address DestElementAddr = Address::invalid();
Address DestElementPtrAddr = Address::invalid();
// Should we shuffle in an element from a remote lane?
bool ShuffleInElement = false;
// Set to true to update the pointer in the dest Reduce list to a
// newly created element.
bool UpdateDestListPtr = false;
// Increment the src or dest pointer to the scratchpad, for each
// new element.
bool IncrScratchpadSrc = false;
bool IncrScratchpadDest = false;
switch (Action) {
case RemoteLaneToThread: {
// Step 1.1: Get the address for the src element in the Reduce list.
Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
SrcElementAddr = CGF.EmitLoadOfPointer(
SrcElementPtrAddr,
C.getPointerType(Private->getType())->castAs<PointerType>());
// Step 1.2: Create a temporary to store the element in the destination
// Reduce list.
DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
DestElementAddr =
CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
ShuffleInElement = true;
UpdateDestListPtr = true;
break;
}
case ThreadCopy: {
// Step 1.1: Get the address for the src element in the Reduce list.
Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
SrcElementAddr = CGF.EmitLoadOfPointer(
SrcElementPtrAddr,
C.getPointerType(Private->getType())->castAs<PointerType>());
// Step 1.2: Get the address for dest element. The destination
// element has already been created on the thread's stack.
DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
DestElementAddr = CGF.EmitLoadOfPointer(
DestElementPtrAddr,
C.getPointerType(Private->getType())->castAs<PointerType>());
break;
}
case ThreadToScratchpad: {
// Step 1.1: Get the address for the src element in the Reduce list.
Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
SrcElementAddr = CGF.EmitLoadOfPointer(
SrcElementPtrAddr,
C.getPointerType(Private->getType())->castAs<PointerType>());
// Step 1.2: Get the address for dest element:
// address = base + index * ElementSizeInChars.
llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
llvm::Value *CurrentOffset =
Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
llvm::Value *ScratchPadElemAbsolutePtrVal =
Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
ScratchPadElemAbsolutePtrVal =
Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
C.getTypeAlignInChars(Private->getType()));
IncrScratchpadDest = true;
break;
}
case ScratchpadToThread: {
// Step 1.1: Get the address for the src element in the scratchpad.
// address = base + index * ElementSizeInChars.
llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
llvm::Value *CurrentOffset =
Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
llvm::Value *ScratchPadElemAbsolutePtrVal =
Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
ScratchPadElemAbsolutePtrVal =
Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
C.getTypeAlignInChars(Private->getType()));
IncrScratchpadSrc = true;
// Step 1.2: Create a temporary to store the element in the destination
// Reduce list.
DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
DestElementAddr =
CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
UpdateDestListPtr = true;
break;
}
}
// Regardless of src and dest of copy, we emit the load of src
// element as this is required in all directions
SrcElementAddr = Bld.CreateElementBitCast(
SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
SrcElementAddr.getElementType());
// Now that all active lanes have read the element in the
// Reduce list, shuffle over the value from the remote lane.
if (ShuffleInElement) {
shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
RemoteLaneOffset, Private->getExprLoc());
} else {
switch (CGF.getEvaluationKind(Private->getType())) {
case TEK_Scalar: {
llvm::Value *Elem =
CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
Private->getType(), Private->getExprLoc());
// Store the source element value to the dest element address.
CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
Private->getType());
break;
}
case TEK_Complex: {
CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
Private->getExprLoc());
CGF.EmitStoreOfComplex(
Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
/*isInit=*/false);
break;
}
case TEK_Aggregate:
CGF.EmitAggregateCopy(
CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
Private->getType(), AggValueSlot::DoesNotOverlap);
break;
}
}
// Step 3.1: Modify reference in dest Reduce list as needed.
// Modifying the reference in Reduce list to point to the newly
// created element. The element is live in the current function
// scope and that of functions it invokes (i.e., reduce_function).
// RemoteReduceData[i] = (void*)&RemoteElem
if (UpdateDestListPtr) {
CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
DestElementAddr.getPointer(), CGF.VoidPtrTy),
DestElementPtrAddr, /*Volatile=*/false,
C.VoidPtrTy);
}
// Step 4.1: Increment SrcBase/DestBase so that it points to the starting
// address of the next element in scratchpad memory, unless we're currently
// processing the last one. Memory alignment is also taken care of here.
if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
llvm::Value *ScratchpadBasePtr =
IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
ScratchpadBasePtr = Bld.CreateNUWAdd(
ScratchpadBasePtr,
Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
// Take care of global memory alignment for performance
ScratchpadBasePtr = Bld.CreateNUWSub(
ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
ScratchpadBasePtr = Bld.CreateUDiv(
ScratchpadBasePtr,
llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
ScratchpadBasePtr = Bld.CreateNUWAdd(
ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
ScratchpadBasePtr = Bld.CreateNUWMul(
ScratchpadBasePtr,
llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
if (IncrScratchpadDest)
DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
else /* IncrScratchpadSrc = true */
SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
}
++Idx;
}
}
/// This function emits a helper that gathers Reduce lists from the first
/// lane of every active warp to lanes in the first warp.
///
/// void inter_warp_copy_func(void* reduce_data, num_warps)
/// shared smem[warp_size];
/// For all data entries D in reduce_data:
/// sync
/// If (I am the first lane in each warp)
/// Copy my local D to smem[warp_id]
/// sync
/// if (I am the first warp)
/// Copy smem[thread_id] to my local D
static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
ArrayRef<const Expr *> Privates,
QualType ReductionArrayTy,
SourceLocation Loc) {
ASTContext &C = CGM.getContext();
llvm::Module &M = CGM.getModule();
// ReduceList: thread local Reduce list.
// At the stage of the computation when this function is called, partially
// aggregated values reside in the first lane of every active warp.
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
// NumWarps: number of warps active in the parallel region. This could
// be smaller than 32 (max warps in a CTA) for partial block reduction.
ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getIntTypeForBitwidth(32, /* Signed */ true),
ImplicitParamDecl::Other);
FunctionArgList Args;
Args.push_back(&ReduceListArg);
Args.push_back(&NumWarpsArg);
const CGFunctionInfo &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
llvm::GlobalValue::InternalLinkage,
"_omp_reduction_inter_warp_copy_func", &M);
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
CGBuilderTy &Bld = CGF.Builder;
// This array is used as a medium to transfer, one reduce element at a time,
// the data from the first lane of every warp to lanes in the first warp
// in order to perform the final step of a reduction in a parallel region
// (reduction across warps). The array is placed in NVPTX __shared__ memory
// for reduced latency, as well as to have a distinct copy for concurrently
// executing target regions. The array is declared with common linkage so
// as to be shared across compilation units.
StringRef TransferMediumName =
"__openmp_nvptx_data_transfer_temporary_storage";
llvm::GlobalVariable *TransferMedium =
M.getGlobalVariable(TransferMediumName);
if (!TransferMedium) {
auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
TransferMedium = new llvm::GlobalVariable(
M, Ty, /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
llvm::Constant::getNullValue(Ty), TransferMediumName,
/*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
SharedAddressSpace);
CGM.addCompilerUsedGlobal(TransferMedium);
}
// Get the CUDA thread id of the current OpenMP thread on the GPU.
llvm::Value *ThreadID = getNVPTXThreadID(CGF);
// nvptx_lane_id = nvptx_id % warpsize
llvm::Value *LaneID = getNVPTXLaneID(CGF);
// nvptx_warp_id = nvptx_id / warpsize
llvm::Value *WarpID = getNVPTXWarpID(CGF);
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
Address LocalReduceList(
Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
C.VoidPtrTy, Loc),
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
CGF.getPointerAlign());
unsigned Idx = 0;
for (const Expr *Private : Privates) {
//
// Warp master copies reduce element to transfer medium in __shared__
// memory.
//
unsigned RealTySize =
C.getTypeSizeInChars(Private->getType())
.alignTo(C.getTypeAlignInChars(Private->getType()))
.getQuantity();
for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
unsigned NumIters = RealTySize / TySize;
if (NumIters == 0)
continue;
QualType CType = C.getIntTypeForBitwidth(
C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
CharUnits Align = CharUnits::fromQuantity(TySize);
llvm::Value *Cnt = nullptr;
Address CntAddr = Address::invalid();
llvm::BasicBlock *PrecondBB = nullptr;
llvm::BasicBlock *ExitBB = nullptr;
if (NumIters > 1) {
CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
/*Volatile=*/false, C.IntTy);
PrecondBB = CGF.createBasicBlock("precond");
ExitBB = CGF.createBasicBlock("exit");
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(PrecondBB);
Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
llvm::Value *Cmp =
Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
CGF.EmitBlock(BodyBB);
}
// kmpc_barrier.
CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
/*EmitChecks=*/false,
/*ForceSimpleCall=*/true);
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
// if (lane_id == 0)
llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
CGF.EmitBlock(ThenBB);
// Reduce element = LocalReduceList[i]
Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
// elemptr = ((CopyType*)(elemptrptr)) + I
Address ElemPtr = Address(ElemPtrPtr, Align);
ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
if (NumIters > 1) {
ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
ElemPtr.getAlignment());
}
// Get pointer to location in transfer medium.
// MediumPtr = &medium[warp_id]
llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
Address MediumPtr(MediumPtrVal, Align);
// Casting to actual data type.
// MediumPtr = (CopyType*)MediumPtrAddr;
MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
// elem = *elemptr
//*MediumPtr = elem
llvm::Value *Elem =
CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false, CType, Loc);
// Store the source element value to the dest element address.
CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType);
Bld.CreateBr(MergeBB);
CGF.EmitBlock(ElseBB);
Bld.CreateBr(MergeBB);
CGF.EmitBlock(MergeBB);
// kmpc_barrier.
CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
/*EmitChecks=*/false,
/*ForceSimpleCall=*/true);
//
// Warp 0 copies reduce element from transfer medium.
//
llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
// Up to 32 threads in warp 0 are active.
llvm::Value *IsActiveThread =
Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
CGF.EmitBlock(W0ThenBB);
// SrcMediumPtr = &medium[tid]
llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
TransferMedium,
{llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
Address SrcMediumPtr(SrcMediumPtrVal, Align);
// SrcMediumVal = *SrcMediumPtr;
SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
// TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
Address TargetElemPtr = Address(TargetElemPtrVal, Align);
TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
if (NumIters > 1) {
TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
TargetElemPtr.getAlignment());
}
// *TargetElemPtr = SrcMediumVal;
llvm::Value *SrcMediumValue =
CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
CType);
Bld.CreateBr(W0MergeBB);
CGF.EmitBlock(W0ElseBB);
Bld.CreateBr(W0MergeBB);
CGF.EmitBlock(W0MergeBB);
if (NumIters > 1) {
Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
CGF.EmitBranch(PrecondBB);
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ExitBB);
}
RealTySize %= TySize;
}
++Idx;
}
CGF.FinishFunction();
return Fn;
}
/// Emit a helper that reduces data across two OpenMP threads (lanes)
/// in the same warp. It uses shuffle instructions to copy over data from
/// a remote lane's stack. The reduction algorithm performed is specified
/// by the fourth parameter.
///
/// Algorithm Versions.
/// Full Warp Reduce (argument value 0):
/// This algorithm assumes that all 32 lanes are active and gathers
/// data from these 32 lanes, producing a single resultant value.
/// Contiguous Partial Warp Reduce (argument value 1):
/// This algorithm assumes that only a *contiguous* subset of lanes
/// are active. This happens for the last warp in a parallel region
/// when the user specified num_threads is not an integer multiple of
/// 32. This contiguous subset always starts with the zeroth lane.
/// Partial Warp Reduce (argument value 2):
/// This algorithm gathers data from any number of lanes at any position.
/// All reduced values are stored in the lowest possible lane. The set
/// of problems every algorithm addresses is a super set of those
/// addressable by algorithms with a lower version number. Overhead
/// increases as algorithm version increases.
///
/// Terminology
/// Reduce element:
/// Reduce element refers to the individual data field with primitive
/// data types to be combined and reduced across threads.
/// Reduce list:
/// Reduce list refers to a collection of local, thread-private
/// reduce elements.
/// Remote Reduce list:
/// Remote Reduce list refers to a collection of remote (relative to
/// the current thread) reduce elements.
///
/// We distinguish between three states of threads that are important to
/// the implementation of this function.
/// Alive threads:
/// Threads in a warp executing the SIMT instruction, as distinguished from
/// threads that are inactive due to divergent control flow.
/// Active threads:
/// The minimal set of threads that has to be alive upon entry to this
/// function. The computation is correct iff active threads are alive.
/// Some threads are alive but they are not active because they do not
/// contribute to the computation in any useful manner. Turning them off
/// may introduce control flow overheads without any tangible benefits.
/// Effective threads:
/// In order to comply with the argument requirements of the shuffle
/// function, we must keep all lanes holding data alive. But at most
/// half of them perform value aggregation; we refer to this half of
/// threads as effective. The other half is simply handing off their
/// data.
///
/// Procedure
/// Value shuffle:
/// In this step active threads transfer data from higher lane positions
/// in the warp to lower lane positions, creating Remote Reduce list.
/// Value aggregation:
/// In this step, effective threads combine their thread local Reduce list
/// with Remote Reduce list and store the result in the thread local
/// Reduce list.
/// Value copy:
/// In this step, we deal with the assumption made by algorithm 2
/// (i.e. contiguity assumption). When we have an odd number of lanes
/// active, say 2k+1, only k threads will be effective and therefore k
/// new values will be produced. However, the Reduce list owned by the
/// (2k+1)th thread is ignored in the value aggregation. Therefore
/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
/// that the contiguity assumption still holds.
static llvm::Function *emitShuffleAndReduceFunction(
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
ASTContext &C = CGM.getContext();
// Thread local Reduce list used to host the values of data to be reduced.
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
// Current lane id; could be logical.
ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
ImplicitParamDecl::Other);
// Offset of the remote source lane relative to the current lane.
ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.ShortTy, ImplicitParamDecl::Other);
// Algorithm version. This is expected to be known at compile time.
ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.ShortTy, ImplicitParamDecl::Other);
FunctionArgList Args;
Args.push_back(&ReduceListArg);
Args.push_back(&LaneIDArg);
Args.push_back(&RemoteLaneOffsetArg);
Args.push_back(&AlgoVerArg);
const CGFunctionInfo &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
"_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
if (CGM.getLangOpts().Optimize) {
Fn->removeFnAttr(llvm::Attribute::NoInline);
Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
Fn->addFnAttr(llvm::Attribute::AlwaysInline);
}
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
CGBuilderTy &Bld = CGF.Builder;
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
Address LocalReduceList(
Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
C.VoidPtrTy, SourceLocation()),
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
CGF.getPointerAlign());
Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
// Create a local thread-private variable to host the Reduce list
// from a remote lane.
Address RemoteReduceList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
// This loop iterates through the list of reduce elements and copies,
// element by element, from a remote lane in the warp to RemoteReduceList,
// hosted on the thread's stack.
emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
LocalReduceList, RemoteReduceList,
{/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
/*ScratchpadIndex=*/nullptr,
/*ScratchpadWidth=*/nullptr});
// The actions to be performed on the Remote Reduce list is dependent
// on the algorithm version.
//
// if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
// LaneId % 2 == 0 && Offset > 0):
// do the reduction value aggregation
//
// The thread local variable Reduce list is mutated in place to host the
// reduced data, which is the aggregated value produced from local and
// remote lanes.
//
// Note that AlgoVer is expected to be a constant integer known at compile
// time.
// When AlgoVer==0, the first conjunction evaluates to true, making
// the entire predicate true during compile time.
// When AlgoVer==1, the second conjunction has only the second part to be
// evaluated during runtime. Other conjunctions evaluates to false
// during compile time.
// When AlgoVer==2, the third conjunction has only the second part to be
// evaluated during runtime. Other conjunctions evaluates to false
// during compile time.
llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
llvm::Value *CondAlgo1 = Bld.CreateAnd(
Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
llvm::Value *CondAlgo2 = Bld.CreateAnd(
Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
CondAlgo2 = Bld.CreateAnd(
CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
CGF.EmitBlock(ThenBB);
// reduce_function(LocalReduceList, RemoteReduceList)
llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
LocalReduceList.getPointer(), CGF.VoidPtrTy);
llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
RemoteReduceList.getPointer(), CGF.VoidPtrTy);
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
Bld.CreateBr(MergeBB);
CGF.EmitBlock(ElseBB);
Bld.CreateBr(MergeBB);
CGF.EmitBlock(MergeBB);
// if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
// Reduce list.
Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
llvm::Value *CondCopy = Bld.CreateAnd(
Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
CGF.EmitBlock(CpyThenBB);
emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
RemoteReduceList, LocalReduceList);
Bld.CreateBr(CpyMergeBB);
CGF.EmitBlock(CpyElseBB);
Bld.CreateBr(CpyMergeBB);
CGF.EmitBlock(CpyMergeBB);
CGF.FinishFunction();
return Fn;
}
/// This function emits a helper that copies all the reduction variables from
/// the team into the provided global buffer for the reduction variables.
///
/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
/// For all data entries D in reduce_data:
/// Copy local D to buffer.D[Idx]
static llvm::Value *emitListToGlobalCopyFunction(
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
QualType ReductionArrayTy, SourceLocation Loc,
const RecordDecl *TeamReductionRec,
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
&VarFieldMap) {
ASTContext &C = CGM.getContext();
// Buffer: global reduction buffer.
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
// Idx: index of the buffer.
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
ImplicitParamDecl::Other);
// ReduceList: thread local Reduce list.
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
FunctionArgList Args;
Args.push_back(&BufferArg);
Args.push_back(&IdxArg);
Args.push_back(&ReduceListArg);
const CGFunctionInfo &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
"_omp_reduction_list_to_global_copy_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
CGBuilderTy &Bld = CGF.Builder;
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
Address LocalReduceList(
Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
C.VoidPtrTy, Loc),
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
CGF.getPointerAlign());
QualType StaticTy = C.getRecordType(TeamReductionRec);
llvm::Type *LLVMReductionsBufferTy =
CGM.getTypes().ConvertTypeForMem(StaticTy);
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
LLVMReductionsBufferTy->getPointerTo());
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
/*Volatile=*/false, C.IntTy,
Loc)};
unsigned Idx = 0;
for (const Expr *Private : Privates) {
// Reduce element = LocalReduceList[i]
Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
// elemptr = ((CopyType*)(elemptrptr)) + I
ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
Address ElemPtr =
Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
// Global = Buffer.VD[Idx];
const FieldDecl *FD = VarFieldMap.lookup(VD);
LValue GlobLVal = CGF.EmitLValueForField(
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
llvm::Value *BufferPtr =
Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
switch (CGF.getEvaluationKind(Private->getType())) {
case TEK_Scalar: {
llvm::Value *V = CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false,
Private->getType(), Loc);
CGF.EmitStoreOfScalar(V, GlobLVal);
break;
}
case TEK_Complex: {
CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
break;
}
case TEK_Aggregate:
CGF.EmitAggregateCopy(GlobLVal,
CGF.MakeAddrLValue(ElemPtr, Private->getType()),
Private->getType(), AggValueSlot::DoesNotOverlap);
break;
}
++Idx;
}
CGF.FinishFunction();
return Fn;
}
/// This function emits a helper that reduces all the reduction variables from
/// the team into the provided global buffer for the reduction variables.
///
/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
/// void *GlobPtrs[];
/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
/// ...
/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
/// reduce_function(GlobPtrs, reduce_data);
static llvm::Value *emitListToGlobalReduceFunction(
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
QualType ReductionArrayTy, SourceLocation Loc,
const RecordDecl *TeamReductionRec,
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
&VarFieldMap,
llvm::Function *ReduceFn) {
ASTContext &C = CGM.getContext();
// Buffer: global reduction buffer.
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
// Idx: index of the buffer.
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
ImplicitParamDecl::Other);
// ReduceList: thread local Reduce list.
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
FunctionArgList Args;
Args.push_back(&BufferArg);
Args.push_back(&IdxArg);
Args.push_back(&ReduceListArg);
const CGFunctionInfo &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
"_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
CGBuilderTy &Bld = CGF.Builder;
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
QualType StaticTy = C.getRecordType(TeamReductionRec);
llvm::Type *LLVMReductionsBufferTy =
CGM.getTypes().ConvertTypeForMem(StaticTy);
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
LLVMReductionsBufferTy->getPointerTo());
// 1. Build a list of reduction variables.
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
Address ReductionList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
auto IPriv = Privates.begin();
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
/*Volatile=*/false, C.IntTy,
Loc)};
unsigned Idx = 0;
for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
// Global = Buffer.VD[Idx];
const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
const FieldDecl *FD = VarFieldMap.lookup(VD);
LValue GlobLVal = CGF.EmitLValueForField(
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
llvm::Value *BufferPtr =
Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
if ((*IPriv)->getType()->isVariablyModifiedType()) {
// Store array size.
++Idx;
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
llvm::Value *Size = CGF.Builder.CreateIntCast(
CGF.getVLASize(
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
.NumElts,
CGF.SizeTy, /*isSigned=*/false);
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
Elem);
}
}
// Call reduce_function(GlobalReduceList, ReduceList)
llvm::Value *GlobalReduceList =
CGF.EmitCastToVoidPtr(ReductionList.getPointer());
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
CGF.FinishFunction();
return Fn;
}
/// This function emits a helper that copies all the reduction variables from
/// the team into the provided global buffer for the reduction variables.
///
/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
/// For all data entries D in reduce_data:
/// Copy buffer.D[Idx] to local D;
static llvm::Value *emitGlobalToListCopyFunction(
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
QualType ReductionArrayTy, SourceLocation Loc,
const RecordDecl *TeamReductionRec,
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
&VarFieldMap) {
ASTContext &C = CGM.getContext();
// Buffer: global reduction buffer.
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
// Idx: index of the buffer.
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
ImplicitParamDecl::Other);
// ReduceList: thread local Reduce list.
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
FunctionArgList Args;
Args.push_back(&BufferArg);
Args.push_back(&IdxArg);
Args.push_back(&ReduceListArg);
const CGFunctionInfo &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
"_omp_reduction_global_to_list_copy_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
CGBuilderTy &Bld = CGF.Builder;
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
Address LocalReduceList(
Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
C.VoidPtrTy, Loc),
CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
CGF.getPointerAlign());
QualType StaticTy = C.getRecordType(TeamReductionRec);
llvm::Type *LLVMReductionsBufferTy =
CGM.getTypes().ConvertTypeForMem(StaticTy);
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
LLVMReductionsBufferTy->getPointerTo());
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
/*Volatile=*/false, C.IntTy,
Loc)};
unsigned Idx = 0;
for (const Expr *Private : Privates) {
// Reduce element = LocalReduceList[i]
Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
// elemptr = ((CopyType*)(elemptrptr)) + I
ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
Address ElemPtr =
Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
// Global = Buffer.VD[Idx];
const FieldDecl *FD = VarFieldMap.lookup(VD);
LValue GlobLVal = CGF.EmitLValueForField(
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
llvm::Value *BufferPtr =
Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
switch (CGF.getEvaluationKind(Private->getType())) {
case TEK_Scalar: {
llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType());
break;
}
case TEK_Complex: {
CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
/*isInit=*/false);
break;
}
case TEK_Aggregate:
CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
GlobLVal, Private->getType(),
AggValueSlot::DoesNotOverlap);
break;
}
++Idx;
}
CGF.FinishFunction();
return Fn;
}
/// This function emits a helper that reduces all the reduction variables from
/// the team into the provided global buffer for the reduction variables.
///
/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
/// void *GlobPtrs[];
/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
/// ...
/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
/// reduce_function(reduce_data, GlobPtrs);
static llvm::Value *emitGlobalToListReduceFunction(
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
QualType ReductionArrayTy, SourceLocation Loc,
const RecordDecl *TeamReductionRec,
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
&VarFieldMap,
llvm::Function *ReduceFn) {
ASTContext &C = CGM.getContext();
// Buffer: global reduction buffer.
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
// Idx: index of the buffer.
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
ImplicitParamDecl::Other);
// ReduceList: thread local Reduce list.
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
FunctionArgList Args;
Args.push_back(&BufferArg);
Args.push_back(&IdxArg);
Args.push_back(&ReduceListArg);
const CGFunctionInfo &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
"_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
CGBuilderTy &Bld = CGF.Builder;
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
QualType StaticTy = C.getRecordType(TeamReductionRec);
llvm::Type *LLVMReductionsBufferTy =
CGM.getTypes().ConvertTypeForMem(StaticTy);
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
LLVMReductionsBufferTy->getPointerTo());
// 1. Build a list of reduction variables.
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
Address ReductionList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
auto IPriv = Privates.begin();
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
/*Volatile=*/false, C.IntTy,
Loc)};
unsigned Idx = 0;
for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
// Global = Buffer.VD[Idx];
const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
const FieldDecl *FD = VarFieldMap.lookup(VD);
LValue GlobLVal = CGF.EmitLValueForField(
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
llvm::Value *BufferPtr =
Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
if ((*IPriv)->getType()->isVariablyModifiedType()) {
// Store array size.
++Idx;
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
llvm::Value *Size = CGF.Builder.CreateIntCast(
CGF.getVLASize(
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
.NumElts,
CGF.SizeTy, /*isSigned=*/false);
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
Elem);
}
}
// Call reduce_function(ReduceList, GlobalReduceList)
llvm::Value *GlobalReduceList =
CGF.EmitCastToVoidPtr(ReductionList.getPointer());
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
CGF.FinishFunction();
return Fn;
}
///
/// Design of OpenMP reductions on the GPU
///
/// Consider a typical OpenMP program with one or more reduction
/// clauses:
///
/// float foo;
/// double bar;
/// #pragma omp target teams distribute parallel for \
/// reduction(+:foo) reduction(*:bar)
/// for (int i = 0; i < N; i++) {
/// foo += A[i]; bar *= B[i];
/// }
///
/// where 'foo' and 'bar' are reduced across all OpenMP threads in
/// all teams. In our OpenMP implementation on the NVPTX device an
/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
/// within a team are mapped to CUDA threads within a threadblock.
/// Our goal is to efficiently aggregate values across all OpenMP
/// threads such that:
///
/// - the compiler and runtime are logically concise, and
/// - the reduction is performed efficiently in a hierarchical
/// manner as follows: within OpenMP threads in the same warp,
/// across warps in a threadblock, and finally across teams on
/// the NVPTX device.
///
/// Introduction to Decoupling
///
/// We would like to decouple the compiler and the runtime so that the
/// latter is ignorant of the reduction variables (number, data types)
/// and the reduction operators. This allows a simpler interface
/// and implementation while still attaining good performance.
///
/// Pseudocode for the aforementioned OpenMP program generated by the
/// compiler is as follows:
///
/// 1. Create private copies of reduction variables on each OpenMP
/// thread: 'foo_private', 'bar_private'
/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
/// to it and writes the result in 'foo_private' and 'bar_private'
/// respectively.
/// 3. Call the OpenMP runtime on the GPU to reduce within a team
/// and store the result on the team master:
///
/// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
/// reduceData, shuffleReduceFn, interWarpCpyFn)
///
/// where:
/// struct ReduceData {
/// double *foo;
/// double *bar;
/// } reduceData
/// reduceData.foo = &foo_private
/// reduceData.bar = &bar_private
///
/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
/// auxiliary functions generated by the compiler that operate on
/// variables of type 'ReduceData'. They aid the runtime perform
/// algorithmic steps in a data agnostic manner.
///
/// 'shuffleReduceFn' is a pointer to a function that reduces data
/// of type 'ReduceData' across two OpenMP threads (lanes) in the
/// same warp. It takes the following arguments as input:
///
/// a. variable of type 'ReduceData' on the calling lane,
/// b. its lane_id,
/// c. an offset relative to the current lane_id to generate a
/// remote_lane_id. The remote lane contains the second
/// variable of type 'ReduceData' that is to be reduced.
/// d. an algorithm version parameter determining which reduction
/// algorithm to use.
///
/// 'shuffleReduceFn' retrieves data from the remote lane using
/// efficient GPU shuffle intrinsics and reduces, using the
/// algorithm specified by the 4th parameter, the two operands
/// element-wise. The result is written to the first operand.
///
/// Different reduction algorithms are implemented in different
/// runtime functions, all calling 'shuffleReduceFn' to perform
/// the essential reduction step. Therefore, based on the 4th
/// parameter, this function behaves slightly differently to
/// cooperate with the runtime to ensure correctness under
/// different circumstances.
///
/// 'InterWarpCpyFn' is a pointer to a function that transfers
/// reduced variables across warps. It tunnels, through CUDA
/// shared memory, the thread-private data of type 'ReduceData'
/// from lane 0 of each warp to a lane in the first warp.
/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
/// The last team writes the global reduced value to memory.
///
/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
/// reduceData, shuffleReduceFn, interWarpCpyFn,
/// scratchpadCopyFn, loadAndReduceFn)
///
/// 'scratchpadCopyFn' is a helper that stores reduced
/// data from the team master to a scratchpad array in
/// global memory.
///
/// 'loadAndReduceFn' is a helper that loads data from
/// the scratchpad array and reduces it with the input
/// operand.
///
/// These compiler generated functions hide address
/// calculation and alignment information from the runtime.
/// 5. if ret == 1:
/// The team master of the last team stores the reduced
/// result to the globals in memory.
/// foo += reduceData.foo; bar *= reduceData.bar
///
///
/// Warp Reduction Algorithms
///
/// On the warp level, we have three algorithms implemented in the
/// OpenMP runtime depending on the number of active lanes:
///
/// Full Warp Reduction
///
/// The reduce algorithm within a warp where all lanes are active
/// is implemented in the runtime as follows:
///
/// full_warp_reduce(void *reduce_data,
/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
/// ShuffleReduceFn(reduce_data, 0, offset, 0);
/// }
///
/// The algorithm completes in log(2, WARPSIZE) steps.
///
/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
/// not used therefore we save instructions by not retrieving lane_id
/// from the corresponding special registers. The 4th parameter, which
/// represents the version of the algorithm being used, is set to 0 to
/// signify full warp reduction.
///
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
///
/// #reduce_elem refers to an element in the local lane's data structure
/// #remote_elem is retrieved from a remote lane
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
///
/// Contiguous Partial Warp Reduction
///
/// This reduce algorithm is used within a warp where only the first
/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
/// number of OpenMP threads in a parallel region is not a multiple of
/// WARPSIZE. The algorithm is implemented in the runtime as follows:
///
/// void
/// contiguous_partial_reduce(void *reduce_data,
/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
/// int size, int lane_id) {
/// int curr_size;
/// int offset;
/// curr_size = size;
/// mask = curr_size/2;
/// while (offset>0) {
/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
/// curr_size = (curr_size+1)/2;
/// offset = curr_size/2;
/// }
/// }
///
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
///
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
/// if (lane_id < offset)
/// reduce_elem = reduce_elem REDUCE_OP remote_elem
/// else
/// reduce_elem = remote_elem
///
/// This algorithm assumes that the data to be reduced are located in a
/// contiguous subset of lanes starting from the first. When there is
/// an odd number of active lanes, the data in the last lane is not
/// aggregated with any other lane's dat but is instead copied over.
///
/// Dispersed Partial Warp Reduction
///
/// This algorithm is used within a warp when any discontiguous subset of
/// lanes are active. It is used to implement the reduction operation
/// across lanes in an OpenMP simd region or in a nested parallel region.
///
/// void
/// dispersed_partial_reduce(void *reduce_data,
/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
/// int size, remote_id;
/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
/// do {
/// remote_id = next_active_lane_id_right_after_me();
/// # the above function returns 0 of no active lane
/// # is present right after the current lane.
/// size = number_of_active_lanes_in_this_warp();
/// logical_lane_id /= 2;
/// ShuffleReduceFn(reduce_data, logical_lane_id,
/// remote_id-1-threadIdx.x, 2);
/// } while (logical_lane_id % 2 == 0 && size > 1);
/// }
///
/// There is no assumption made about the initial state of the reduction.
/// Any number of lanes (>=1) could be active at any position. The reduction
/// result is returned in the first active lane.
///
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
///
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
/// if (lane_id % 2 == 0 && offset > 0)
/// reduce_elem = reduce_elem REDUCE_OP remote_elem
/// else
/// reduce_elem = remote_elem
///
///
/// Intra-Team Reduction
///
/// This function, as implemented in the runtime call
/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
/// threads in a team. It first reduces within a warp using the
/// aforementioned algorithms. We then proceed to gather all such
/// reduced values at the first warp.
///
/// The runtime makes use of the function 'InterWarpCpyFn', which copies
/// data from each of the "warp master" (zeroth lane of each warp, where
/// warp-reduced data is held) to the zeroth warp. This step reduces (in
/// a mathematical sense) the problem of reduction across warp masters in
/// a block to the problem of warp reduction.
///
///
/// Inter-Team Reduction
///
/// Once a team has reduced its data to a single value, it is stored in
/// a global scratchpad array. Since each team has a distinct slot, this
/// can be done without locking.
///
/// The last team to write to the scratchpad array proceeds to reduce the
/// scratchpad array. One or more workers in the last team use the helper
/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
/// the k'th worker reduces every k'th element.
///
/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
/// reduce across workers and compute a globally reduced value.
///
void CGOpenMPRuntimeNVPTX::emitReduction(
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
if (!CGF.HaveInsertPoint())
return;
bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
#ifndef NDEBUG
bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
#endif
if (Options.SimpleReduction) {
assert(!TeamsReduction && !ParallelReduction &&
"Invalid reduction selection in emitReduction.");
CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
ReductionOps, Options);
return;
}
assert((TeamsReduction || ParallelReduction) &&
"Invalid reduction selection in emitReduction.");
// Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
// RedList, shuffle_reduce_func, interwarp_copy_func);
// or
// Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *ThreadId = getThreadID(CGF, Loc);
llvm::Value *Res;
ASTContext &C = CGM.getContext();
// 1. Build a list of reduction variables.
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
auto Size = RHSExprs.size();
for (const Expr *E : Privates) {
if (E->getType()->isVariablyModifiedType())
// Reserve place for array size.
++Size;
}
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
QualType ReductionArrayTy =
C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Address ReductionList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
auto IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
Elem);
if ((*IPriv)->getType()->isVariablyModifiedType()) {
// Store array size.
++Idx;
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
llvm::Value *Size = CGF.Builder.CreateIntCast(
CGF.getVLASize(
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
.NumElts,
CGF.SizeTy, /*isSigned=*/false);
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
Elem);
}
}
llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
ReductionList.getPointer(), CGF.VoidPtrTy);
llvm::Function *ReductionFn = emitReductionFunction(
Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
LHSExprs, RHSExprs, ReductionOps);
llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
llvm::Value *InterWarpCopyFn =
emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
if (ParallelReduction) {
llvm::Value *Args[] = {RTLoc,
ThreadId,
CGF.Builder.getInt32(RHSExprs.size()),
ReductionArrayTySize,
RL,
ShuffleAndReduceFn,
InterWarpCopyFn};
Res = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_nvptx_parallel_reduce_nowait_v2),
Args);
} else {
assert(TeamsReduction && "expected teams reduction.");
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
int Cnt = 0;
for (const Expr *DRE : Privates) {
PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
++Cnt;
}
const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
C.getLangOpts().OpenMPCUDAReductionBufNum);
TeamsReductions.push_back(TeamReductionRec);
if (!KernelTeamsReductionPtr) {
KernelTeamsReductionPtr = new llvm::GlobalVariable(
CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
llvm::GlobalValue::InternalLinkage, nullptr,
"_openmp_teams_reductions_buffer_$_$ptr");
}
llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
ReductionFn);
llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
ReductionFn);
llvm::Value *Args[] = {
RTLoc,
ThreadId,
GlobalBufferPtr,
CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
RL,
ShuffleAndReduceFn,
InterWarpCopyFn,
GlobalToBufferCpyFn,
GlobalToBufferRedFn,
BufferToGlobalCpyFn,
BufferToGlobalRedFn};
Res = CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(
OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_v2),
Args);
}
// 5. Build if (res == 1)
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
// 6. Build then branch: where we have reduced values in the master
// thread in each team.
// __kmpc_end_reduce{_nowait}(<gtid>);
// break;
CGF.EmitBlock(ThenBB);
// Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
this](CodeGenFunction &CGF, PrePostActionTy &Action) {
auto IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (const Expr *E : ReductionOps) {
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
cast<DeclRefExpr>(*IRHS));
++IPriv;
++ILHS;
++IRHS;
}
};
llvm::Value *EndArgs[] = {ThreadId};
RegionCodeGenTy RCG(CodeGen);
NVPTXActionTy Action(
nullptr, llvm::None,
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
EndArgs);
RCG.setAction(Action);
RCG(CGF);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
}
const VarDecl *
CGOpenMPRuntimeNVPTX::translateParameter(const FieldDecl *FD,
const VarDecl *NativeParam) const {
if (!NativeParam->getType()->isReferenceType())
return NativeParam;
QualType ArgType = NativeParam->getType();
QualifierCollector QC;
const Type *NonQualTy = QC.strip(ArgType);
QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
if (Attr->getCaptureKind() == OMPC_map) {
PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
LangAS::opencl_global);
} else if (Attr->getCaptureKind() == OMPC_firstprivate &&
PointeeTy.isConstant(CGM.getContext())) {
PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
LangAS::opencl_generic);
}
}
ArgType = CGM.getContext().getPointerType(PointeeTy);
QC.addRestrict();
enum { NVPTX_local_addr = 5 };
QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
ArgType = QC.apply(CGM.getContext(), ArgType);
if (isa<ImplicitParamDecl>(NativeParam))
return ImplicitParamDecl::Create(
CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
return ParmVarDecl::Create(
CGM.getContext(),
const_cast<DeclContext *>(NativeParam->getDeclContext()),
NativeParam->getBeginLoc(), NativeParam->getLocation(),
NativeParam->getIdentifier(), ArgType,
/*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
}
Address
CGOpenMPRuntimeNVPTX::getParameterAddress(CodeGenFunction &CGF,
const VarDecl *NativeParam,
const VarDecl *TargetParam) const {
assert(NativeParam != TargetParam &&
NativeParam->getType()->isReferenceType() &&
"Native arg must not be the same as target arg.");
Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
QualType NativeParamType = NativeParam->getType();
QualifierCollector QC;
const Type *NonQualTy = QC.strip(NativeParamType);
QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
unsigned NativePointeeAddrSpace =
CGF.getContext().getTargetAddressSpace(NativePointeeTy);
QualType TargetTy = TargetParam->getType();
llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
// First cast to generic.
TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
/*AddrSpace=*/0));
// Cast from generic to native address space.
TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
NativePointeeAddrSpace));
Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
NativeParamType);
return NativeParamAddr;
}
void CGOpenMPRuntimeNVPTX::emitOutlinedFunctionCall(
CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
ArrayRef<llvm::Value *> Args) const {
SmallVector<llvm::Value *, 4> TargetArgs;
TargetArgs.reserve(Args.size());
auto *FnType = OutlinedFn.getFunctionType();
for (unsigned I = 0, E = Args.size(); I < E; ++I) {
if (FnType->isVarArg() && FnType->getNumParams() <= I) {
TargetArgs.append(std::next(Args.begin(), I), Args.end());
break;
}
llvm::Type *TargetType = FnType->getParamType(I);
llvm::Value *NativeArg = Args[I];
if (!TargetType->isPointerTy()) {
TargetArgs.emplace_back(NativeArg);
continue;
}
llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
NativeArg,
NativeArg->getType()->getPointerElementType()->getPointerTo());
TargetArgs.emplace_back(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
}
CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
}
/// Emit function which wraps the outline parallel region
/// and controls the arguments which are passed to this function.
/// The wrapper ensures that the outlined function is called
/// with the correct arguments when data is shared.
llvm::Function *CGOpenMPRuntimeNVPTX::createParallelDataSharingWrapper(
llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
ASTContext &Ctx = CGM.getContext();
const auto &CS = *D.getCapturedStmt(OMPD_parallel);
// Create a function that takes as argument the source thread.
FunctionArgList WrapperArgs;
QualType Int16QTy =
Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
QualType Int32QTy =
Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
/*Id=*/nullptr, Int16QTy,
ImplicitParamDecl::Other);
ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
/*Id=*/nullptr, Int32QTy,
ImplicitParamDecl::Other);
WrapperArgs.emplace_back(&ParallelLevelArg);
WrapperArgs.emplace_back(&WrapperArg);
const CGFunctionInfo &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
auto *Fn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
D.getBeginLoc(), D.getBeginLoc());
const auto *RD = CS.getCapturedRecordDecl();
auto CurField = RD->field_begin();
Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".zero.addr");
CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
// Get the array of arguments.
SmallVector<llvm::Value *, 8> Args;
Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
Args.emplace_back(ZeroAddr.getPointer());
CGBuilderTy &Bld = CGF.Builder;
auto CI = CS.capture_begin();
// Use global memory for data sharing.
// Handle passing of global args to workers.
Address GlobalArgs =
CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
CGF.EmitRuntimeCall(
createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_get_shared_variables),
DataSharingArgs);
// Retrieve the shared variables from the list of references returned
// by the runtime. Pass the variables to the outlined function.
Address SharedArgListAddress = Address::invalid();
if (CS.capture_size() > 0 ||
isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
SharedArgListAddress = CGF.EmitLoadOfPointer(
GlobalArgs, CGF.getContext()
.getPointerType(CGF.getContext().getPointerType(
CGF.getContext().VoidPtrTy))
.castAs<PointerType>());
}
unsigned Idx = 0;
if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
Src, CGF.SizeTy->getPointerTo());
llvm::Value *LB = CGF.EmitLoadOfScalar(
TypedAddress,
/*Volatile=*/false,
CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
Args.emplace_back(LB);
++Idx;
Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
Src, CGF.SizeTy->getPointerTo());
llvm::Value *UB = CGF.EmitLoadOfScalar(
TypedAddress,
/*Volatile=*/false,
CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
Args.emplace_back(UB);
++Idx;
}
if (CS.capture_size() > 0) {
ASTContext &CGFContext = CGF.getContext();
for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
QualType ElemTy = CurField->getType();
Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
/*Volatile=*/false,
CGFContext.getPointerType(ElemTy),
CI->getLocation());
if (CI->capturesVariableByCopy() &&
!CI->getCapturedVar()->getType()->isAnyPointerType()) {
Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
CI->getLocation());
}
Args.emplace_back(Arg);
}
}
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntimeNVPTX::emitFunctionProlog(CodeGenFunction &CGF,
const Decl *D) {
if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
return;
assert(D && "Expected function or captured|block decl.");
assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
"Function is registered already.");
assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
"Team is set but not processed.");
const Stmt *Body = nullptr;
bool NeedToDelayGlobalization = false;
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
Body = FD->getBody();
} else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
Body = BD->getBody();
} else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
Body = CD->getBody();
NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
if (NeedToDelayGlobalization &&
getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
return;
}
if (!Body)
return;
CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
VarChecker.Visit(Body);
const RecordDecl *GlobalizedVarsRecord =
VarChecker.getGlobalizedRecord(IsInTTDRegion);
TeamAndReductions.first = nullptr;
TeamAndReductions.second.clear();
ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
VarChecker.getEscapedVariableLengthDecls();
if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
return;
auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
I->getSecond().MappedParams =
std::make_unique<CodeGenFunction::OMPMapVars>();
I->getSecond().GlobalRecord = GlobalizedVarsRecord;
I->getSecond().EscapedParameters.insert(
VarChecker.getEscapedParameters().begin(),
VarChecker.getEscapedParameters().end());
I->getSecond().EscapedVariableLengthDecls.append(
EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
assert(VD->isCanonicalDecl() && "Expected canonical declaration");
const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
}
if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
VarChecker.Visit(Body);
I->getSecond().SecondaryGlobalRecord =
VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
I->getSecond().SecondaryLocalVarData.emplace();
DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
assert(VD->isCanonicalDecl() && "Expected canonical declaration");
const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
Data.insert(
std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
}
}
if (!NeedToDelayGlobalization) {
emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
struct GlobalizationScope final : EHScopeStack::Cleanup {
GlobalizationScope() = default;
void Emit(CodeGenFunction &CGF, Flags flags) override {
static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
.emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
}
};
CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
}
}
Address CGOpenMPRuntimeNVPTX::getAddressOfLocalVariable(CodeGenFunction &CGF,
const VarDecl *VD) {
if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
switch (A->getAllocatorType()) {
// Use the default allocator here as by default local vars are
// threadlocal.
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
// Follow the user decision - use default allocation.
return Address::invalid();
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
// TODO: implement aupport for user-defined allocators.
return Address::invalid();
case OMPAllocateDeclAttr::OMPConstMemAlloc: {
llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), VarTy, /*isConstant=*/false,
llvm::GlobalValue::InternalLinkage,
llvm::Constant::getNullValue(VarTy), VD->getName(),
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant));
CharUnits Align = CGM.getContext().getDeclAlign(VD);
GV->setAlignment(Align.getAsAlign());
return Address(GV, Align);
}
case OMPAllocateDeclAttr::OMPPTeamMemAlloc: {
llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), VarTy, /*isConstant=*/false,
llvm::GlobalValue::InternalLinkage,
llvm::Constant::getNullValue(VarTy), VD->getName(),
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
CharUnits Align = CGM.getContext().getDeclAlign(VD);
GV->setAlignment(Align.getAsAlign());
return Address(GV, Align);
}
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
case OMPAllocateDeclAttr::OMPCGroupMemAlloc: {
llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), VarTy, /*isConstant=*/false,
llvm::GlobalValue::InternalLinkage,
llvm::Constant::getNullValue(VarTy), VD->getName());
CharUnits Align = CGM.getContext().getDeclAlign(VD);
GV->setAlignment(Align.getAsAlign());
return Address(GV, Align);
}
}
}
if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
return Address::invalid();
VD = VD->getCanonicalDecl();
auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
if (I == FunctionGlobalizedDecls.end())
return Address::invalid();
auto VDI = I->getSecond().LocalVarData.find(VD);
if (VDI != I->getSecond().LocalVarData.end())
return VDI->second.PrivateAddr;
if (VD->hasAttrs()) {
for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
E(VD->attr_end());
IT != E; ++IT) {
auto VDI = I->getSecond().LocalVarData.find(
cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
->getCanonicalDecl());
if (VDI != I->getSecond().LocalVarData.end())
return VDI->second.PrivateAddr;
}
}
return Address::invalid();
}
void CGOpenMPRuntimeNVPTX::functionFinished(CodeGenFunction &CGF) {
FunctionGlobalizedDecls.erase(CGF.CurFn);
CGOpenMPRuntime::functionFinished(CGF);
}
void CGOpenMPRuntimeNVPTX::getDefaultDistScheduleAndChunk(
CodeGenFunction &CGF, const OMPLoopDirective &S,
OpenMPDistScheduleClauseKind &ScheduleKind,
llvm::Value *&Chunk) const {
if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
ScheduleKind = OMPC_DIST_SCHEDULE_static;
Chunk = CGF.EmitScalarConversion(getNVPTXNumThreads(CGF),
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
S.getIterationVariable()->getType(), S.getBeginLoc());
return;
}
CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
CGF, S, ScheduleKind, Chunk);
}
void CGOpenMPRuntimeNVPTX::getDefaultScheduleAndChunk(
CodeGenFunction &CGF, const OMPLoopDirective &S,
OpenMPScheduleClauseKind &ScheduleKind,
const Expr *&ChunkExpr) const {
ScheduleKind = OMPC_SCHEDULE_static;
// Chunk size is 1 in this case.
llvm::APInt ChunkSize(32, 1);
ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
SourceLocation());
}
void CGOpenMPRuntimeNVPTX::adjustTargetSpecificDataForLambdas(
CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
" Expected target-based directive.");
const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
for (const CapturedStmt::Capture &C : CS->captures()) {
// Capture variables captured by reference in lambdas for target-based
// directives.
if (!C.capturesVariable())
continue;
const VarDecl *VD = C.getCapturedVar();
const auto *RD = VD->getType()
.getCanonicalType()
.getNonReferenceType()
->getAsCXXRecordDecl();
if (!RD || !RD->isLambda())
continue;
Address VDAddr = CGF.GetAddrOfLocalVar(VD);
LValue VDLVal;
if (VD->getType().getCanonicalType()->isReferenceType())
VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
else
VDLVal = CGF.MakeAddrLValue(
VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
FieldDecl *ThisCapture = nullptr;
RD->getCaptureFields(Captures, ThisCapture);
if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
LValue ThisLVal =
CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
llvm::Value *CXXThis = CGF.LoadCXXThis();
CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
}
for (const LambdaCapture &LC : RD->captures()) {
if (LC.getCaptureKind() != LCK_ByRef)
continue;
const VarDecl *VD = LC.getCapturedVar();
if (!CS->capturesVariable(VD))
continue;
auto It = Captures.find(VD);
assert(It != Captures.end() && "Found lambda capture without field.");
LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
Address VDAddr = CGF.GetAddrOfLocalVar(VD);
if (VD->getType().getCanonicalType()->isReferenceType())
VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
VD->getType().getCanonicalType())
.getAddress(CGF);
CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
}
}
}
unsigned CGOpenMPRuntimeNVPTX::getDefaultFirstprivateAddressSpace() const {
return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
}
bool CGOpenMPRuntimeNVPTX::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
LangAS &AS) {
if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
return false;
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
switch(A->getAllocatorType()) {
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
// Not supported, fallback to the default mem space.
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
AS = LangAS::Default;
return true;
case OMPAllocateDeclAttr::OMPConstMemAlloc:
AS = LangAS::cuda_constant;
return true;
case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
AS = LangAS::cuda_shared;
return true;
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
llvm_unreachable("Expected predefined allocator for the variables with the "
"static storage.");
}
return false;
}
// Get current CudaArch and ignore any unknown values
static CudaArch getCudaArch(CodeGenModule &CGM) {
if (!CGM.getTarget().hasFeature("ptx"))
return CudaArch::UNKNOWN;
llvm::StringMap<bool> Features;
CGM.getTarget().initFeatureMap(Features, CGM.getDiags(),
CGM.getTarget().getTargetOpts().CPU,
CGM.getTarget().getTargetOpts().Features);
for (const auto &Feature : Features) {
if (Feature.getValue()) {
CudaArch Arch = StringToCudaArch(Feature.getKey());
if (Arch != CudaArch::UNKNOWN)
return Arch;
}
}
return CudaArch::UNKNOWN;
}
/// Check to see if target architecture supports unified addressing which is
/// a restriction for OpenMP requires clause "unified_shared_memory".
void CGOpenMPRuntimeNVPTX::checkArchForUnifiedAddressing(
const OMPRequiresDecl *D) {
for (const OMPClause *Clause : D->clauselists()) {
if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
CudaArch Arch = getCudaArch(CGM);
switch (Arch) {
case CudaArch::SM_20:
case CudaArch::SM_21:
case CudaArch::SM_30:
case CudaArch::SM_32:
case CudaArch::SM_35:
case CudaArch::SM_37:
case CudaArch::SM_50:
case CudaArch::SM_52:
case CudaArch::SM_53:
case CudaArch::SM_60:
case CudaArch::SM_61:
case CudaArch::SM_62: {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << "Target architecture " << CudaArchToString(Arch)
<< " does not support unified addressing";
CGM.Error(Clause->getBeginLoc(), Out.str());
return;
}
case CudaArch::SM_70:
case CudaArch::SM_72:
case CudaArch::SM_75:
case CudaArch::GFX600:
case CudaArch::GFX601:
case CudaArch::GFX700:
case CudaArch::GFX701:
case CudaArch::GFX702:
case CudaArch::GFX703:
case CudaArch::GFX704:
case CudaArch::GFX801:
case CudaArch::GFX802:
case CudaArch::GFX803:
case CudaArch::GFX810:
case CudaArch::GFX900:
case CudaArch::GFX902:
case CudaArch::GFX904:
case CudaArch::GFX906:
case CudaArch::GFX908:
case CudaArch::GFX909:
case CudaArch::GFX1010:
case CudaArch::GFX1011:
case CudaArch::GFX1012:
case CudaArch::UNKNOWN:
break;
case CudaArch::LAST:
llvm_unreachable("Unexpected Cuda arch.");
}
}
}
CGOpenMPRuntime::checkArchForUnifiedAddressing(D);
}
/// Get number of SMs and number of blocks per SM.
static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
std::pair<unsigned, unsigned> Data;
if (CGM.getLangOpts().OpenMPCUDANumSMs)
Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
if (Data.first && Data.second)
return Data;
switch (getCudaArch(CGM)) {
case CudaArch::SM_20:
case CudaArch::SM_21:
case CudaArch::SM_30:
case CudaArch::SM_32:
case CudaArch::SM_35:
case CudaArch::SM_37:
case CudaArch::SM_50:
case CudaArch::SM_52:
case CudaArch::SM_53:
return {16, 16};
case CudaArch::SM_60:
case CudaArch::SM_61:
case CudaArch::SM_62:
return {56, 32};
case CudaArch::SM_70:
case CudaArch::SM_72:
case CudaArch::SM_75:
return {84, 32};
case CudaArch::GFX600:
case CudaArch::GFX601:
case CudaArch::GFX700:
case CudaArch::GFX701:
case CudaArch::GFX702:
case CudaArch::GFX703:
case CudaArch::GFX704:
case CudaArch::GFX801:
case CudaArch::GFX802:
case CudaArch::GFX803:
case CudaArch::GFX810:
case CudaArch::GFX900:
case CudaArch::GFX902:
case CudaArch::GFX904:
case CudaArch::GFX906:
case CudaArch::GFX908:
case CudaArch::GFX909:
case CudaArch::GFX1010:
case CudaArch::GFX1011:
case CudaArch::GFX1012:
case CudaArch::UNKNOWN:
break;
case CudaArch::LAST:
llvm_unreachable("Unexpected Cuda arch.");
}
llvm_unreachable("Unexpected NVPTX target without ptx feature.");
}
void CGOpenMPRuntimeNVPTX::clear() {
if (!GlobalizedRecords.empty()) {
ASTContext &C = CGM.getContext();
llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
RecordDecl *StaticRD = C.buildImplicitRecord(
"_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
StaticRD->startDefinition();
RecordDecl *SharedStaticRD = C.buildImplicitRecord(
"_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
SharedStaticRD->startDefinition();
for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
if (Records.Records.empty())
continue;
unsigned Size = 0;
unsigned RecAlignment = 0;
for (const RecordDecl *RD : Records.Records) {
QualType RDTy = C.getRecordType(RD);
unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
RecAlignment = std::max(RecAlignment, Alignment);
unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
Size =
llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
}
Size = llvm::alignTo(Size, RecAlignment);
llvm::APInt ArySize(/*numBits=*/64, Size);
QualType SubTy = C.getConstantArrayType(
C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
const bool UseSharedMemory = Size <= SharedMemorySize;
auto *Field =
FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
SourceLocation(), SourceLocation(), nullptr, SubTy,
C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false,
/*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
if (UseSharedMemory) {
SharedStaticRD->addDecl(Field);
SharedRecs.push_back(&Records);
} else {
StaticRD->addDecl(Field);
GlobalRecs.push_back(&Records);
}
Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
Records.UseSharedMemory->setInitializer(
llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
}
// Allocate SharedMemorySize buffer for the shared memory.
// FIXME: nvlink does not handle weak linkage correctly (object with the
// different size are reported as erroneous).
// Restore this code as sson as nvlink is fixed.
if (!SharedStaticRD->field_empty()) {
llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
QualType SubTy = C.getConstantArrayType(
C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
auto *Field = FieldDecl::Create(
C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false,
/*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
SharedStaticRD->addDecl(Field);
}
SharedStaticRD->completeDefinition();
if (!SharedStaticRD->field_empty()) {
QualType StaticTy = C.getRecordType(SharedStaticRD);
llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), LLVMStaticTy,
/*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
llvm::Constant::getNullValue(LLVMStaticTy),
"_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
llvm::GlobalValue::NotThreadLocal,
C.getTargetAddressSpace(LangAS::cuda_shared));
auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
GV, CGM.VoidPtrTy);
for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
Rec->Buffer->replaceAllUsesWith(Replacement);
Rec->Buffer->eraseFromParent();
}
}
StaticRD->completeDefinition();
if (!StaticRD->field_empty()) {
QualType StaticTy = C.getRecordType(StaticRD);
std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
llvm::APInt Size1(32, SMsBlockPerSM.second);
QualType Arr1Ty =
C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
llvm::APInt Size2(32, SMsBlockPerSM.first);
QualType Arr2Ty =
C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
// FIXME: nvlink does not handle weak linkage correctly (object with the
// different size are reported as erroneous).
// Restore CommonLinkage as soon as nvlink is fixed.
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), LLVMArr2Ty,
/*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
llvm::Constant::getNullValue(LLVMArr2Ty),
"_openmp_static_glob_rd_$_");
auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
GV, CGM.VoidPtrTy);
for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
Rec->Buffer->replaceAllUsesWith(Replacement);
Rec->Buffer->eraseFromParent();
}
}
}
if (!TeamsReductions.empty()) {
ASTContext &C = CGM.getContext();
RecordDecl *StaticRD = C.buildImplicitRecord(
"_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
StaticRD->startDefinition();
for (const RecordDecl *TeamReductionRec : TeamsReductions) {
QualType RecTy = C.getRecordType(TeamReductionRec);
auto *Field = FieldDecl::Create(
C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false,
/*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
StaticRD->addDecl(Field);
}
StaticRD->completeDefinition();
QualType StaticTy = C.getRecordType(StaticRD);
llvm::Type *LLVMReductionsBufferTy =
CGM.getTypes().ConvertTypeForMem(StaticTy);
// FIXME: nvlink does not handle weak linkage correctly (object with the
// different size are reported as erroneous).
// Restore CommonLinkage as soon as nvlink is fixed.
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), LLVMReductionsBufferTy,
/*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
llvm::Constant::getNullValue(LLVMReductionsBufferTy),
"_openmp_teams_reductions_buffer_$_");
KernelTeamsReductionPtr->setInitializer(
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
CGM.VoidPtrTy));
}
CGOpenMPRuntime::clear();
}