llvm-project/llvm/lib/IR/AsmWriter.cpp

3447 lines
114 KiB
C++

//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/IR/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cctype>
using namespace llvm;
// Make virtual table appear in this compilation unit.
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
namespace {
struct OrderMap {
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
unsigned size() const { return IDs.size(); }
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
std::pair<unsigned, bool> lookup(const Value *V) const {
return IDs.lookup(V);
}
void index(const Value *V) {
// Explicitly sequence get-size and insert-value operations to avoid UB.
unsigned ID = IDs.size() + 1;
IDs[V].first = ID;
}
};
}
static void orderValue(const Value *V, OrderMap &OM) {
if (OM.lookup(V).first)
return;
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands() && !isa<GlobalValue>(C))
for (const Value *Op : C->operands())
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
orderValue(Op, OM);
// Note: we cannot cache this lookup above, since inserting into the map
// changes the map's size, and thus affects the other IDs.
OM.index(V);
}
static OrderMap orderModule(const Module *M) {
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
// and ValueEnumerator::incorporateFunction().
OrderMap OM;
for (const GlobalVariable &G : M->globals()) {
if (G.hasInitializer())
if (!isa<GlobalValue>(G.getInitializer()))
orderValue(G.getInitializer(), OM);
orderValue(&G, OM);
}
for (const GlobalAlias &A : M->aliases()) {
if (!isa<GlobalValue>(A.getAliasee()))
orderValue(A.getAliasee(), OM);
orderValue(&A, OM);
}
for (const Function &F : *M) {
if (F.hasPrefixData())
if (!isa<GlobalValue>(F.getPrefixData()))
orderValue(F.getPrefixData(), OM);
if (F.hasPrologueData())
if (!isa<GlobalValue>(F.getPrologueData()))
orderValue(F.getPrologueData(), OM);
if (F.hasPersonalityFn())
if (!isa<GlobalValue>(F.getPersonalityFn()))
orderValue(F.getPersonalityFn(), OM);
orderValue(&F, OM);
if (F.isDeclaration())
continue;
for (const Argument &A : F.args())
orderValue(&A, OM);
for (const BasicBlock &BB : F) {
orderValue(&BB, OM);
for (const Instruction &I : BB) {
for (const Value *Op : I.operands())
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
isa<InlineAsm>(*Op))
orderValue(Op, OM);
orderValue(&I, OM);
}
}
}
return OM;
}
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
unsigned ID, const OrderMap &OM,
UseListOrderStack &Stack) {
// Predict use-list order for this one.
typedef std::pair<const Use *, unsigned> Entry;
SmallVector<Entry, 64> List;
for (const Use &U : V->uses())
// Check if this user will be serialized.
if (OM.lookup(U.getUser()).first)
List.push_back(std::make_pair(&U, List.size()));
if (List.size() < 2)
// We may have lost some users.
return;
bool GetsReversed =
!isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
if (auto *BA = dyn_cast<BlockAddress>(V))
ID = OM.lookup(BA->getBasicBlock()).first;
std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
const Use *LU = L.first;
const Use *RU = R.first;
if (LU == RU)
return false;
auto LID = OM.lookup(LU->getUser()).first;
auto RID = OM.lookup(RU->getUser()).first;
// If ID is 4, then expect: 7 6 5 1 2 3.
if (LID < RID) {
if (GetsReversed)
if (RID <= ID)
return true;
return false;
}
if (RID < LID) {
if (GetsReversed)
if (LID <= ID)
return false;
return true;
}
// LID and RID are equal, so we have different operands of the same user.
// Assume operands are added in order for all instructions.
if (GetsReversed)
if (LID <= ID)
return LU->getOperandNo() < RU->getOperandNo();
return LU->getOperandNo() > RU->getOperandNo();
});
if (std::is_sorted(
List.begin(), List.end(),
[](const Entry &L, const Entry &R) { return L.second < R.second; }))
// Order is already correct.
return;
// Store the shuffle.
Stack.emplace_back(V, F, List.size());
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
for (size_t I = 0, E = List.size(); I != E; ++I)
Stack.back().Shuffle[I] = List[I].second;
}
static void predictValueUseListOrder(const Value *V, const Function *F,
OrderMap &OM, UseListOrderStack &Stack) {
auto &IDPair = OM[V];
assert(IDPair.first && "Unmapped value");
if (IDPair.second)
// Already predicted.
return;
// Do the actual prediction.
IDPair.second = true;
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
// Recursive descent into constants.
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands()) // Visit GlobalValues.
for (const Value *Op : C->operands())
if (isa<Constant>(Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, F, OM, Stack);
}
static UseListOrderStack predictUseListOrder(const Module *M) {
OrderMap OM = orderModule(M);
// Use-list orders need to be serialized after all the users have been added
// to a value, or else the shuffles will be incomplete. Store them per
// function in a stack.
//
// Aside from function order, the order of values doesn't matter much here.
UseListOrderStack Stack;
// We want to visit the functions backward now so we can list function-local
// constants in the last Function they're used in. Module-level constants
// have already been visited above.
for (const Function &F : make_range(M->rbegin(), M->rend())) {
if (F.isDeclaration())
continue;
for (const BasicBlock &BB : F)
predictValueUseListOrder(&BB, &F, OM, Stack);
for (const Argument &A : F.args())
predictValueUseListOrder(&A, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
for (const Value *Op : I.operands())
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
predictValueUseListOrder(&I, &F, OM, Stack);
}
// Visit globals last.
for (const GlobalVariable &G : M->globals())
predictValueUseListOrder(&G, nullptr, OM, Stack);
for (const Function &F : *M)
predictValueUseListOrder(&F, nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(&A, nullptr, OM, Stack);
for (const GlobalVariable &G : M->globals())
if (G.hasInitializer())
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
for (const Function &F : *M)
if (F.hasPrefixData())
predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
return Stack;
}
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : nullptr;
if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
return M ? M->getParent() : nullptr;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
for (const User *U : MAV->users())
if (isa<Instruction>(U))
if (const Module *M = getModuleFromVal(U))
return M;
return nullptr;
}
return nullptr;
}
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
switch (cc) {
default: Out << "cc" << cc; break;
case CallingConv::Fast: Out << "fastcc"; break;
case CallingConv::Cold: Out << "coldcc"; break;
case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
case CallingConv::AnyReg: Out << "anyregcc"; break;
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
case CallingConv::GHC: Out << "ghccc"; break;
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
case CallingConv::PTX_Device: Out << "ptx_device"; break;
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
}
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
unsigned char C = Name[i];
if (isprint(C) && C != '\\' && C != '"')
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
enum PrefixType {
GlobalPrefix,
ComdatPrefix,
LabelPrefix,
LocalPrefix,
NoPrefix
};
void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
assert(!Name.empty() && "Cannot get empty name!");
// Scan the name to see if it needs quotes first.
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
if (!NeedsQuotes) {
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
// By making this unsigned, the value passed in to isalnum will always be
// in the range 0-255. This is important when building with MSVC because
// its implementation will assert. This situation can arise when dealing
// with UTF-8 multibyte characters.
unsigned char C = Name[i];
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
C != '_') {
NeedsQuotes = true;
break;
}
}
}
// If we didn't need any quotes, just write out the name in one blast.
if (!NeedsQuotes) {
OS << Name;
return;
}
// Okay, we need quotes. Output the quotes and escape any scary characters as
// needed.
OS << '"';
PrintEscapedString(Name, OS);
OS << '"';
}
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
/// (if the string only contains simple characters) or is surrounded with ""'s
/// (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
switch (Prefix) {
case NoPrefix:
break;
case GlobalPrefix:
OS << '@';
break;
case ComdatPrefix:
OS << '$';
break;
case LabelPrefix:
break;
case LocalPrefix:
OS << '%';
break;
}
printLLVMNameWithoutPrefix(OS, Name);
}
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
/// (if the string only contains simple characters) or is surrounded with ""'s
/// (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
PrintLLVMName(OS, V->getName(),
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}
namespace {
class TypePrinting {
TypePrinting(const TypePrinting &) = delete;
void operator=(const TypePrinting&) = delete;
public:
/// NamedTypes - The named types that are used by the current module.
TypeFinder NamedTypes;
/// NumberedTypes - The numbered types, along with their value.
DenseMap<StructType*, unsigned> NumberedTypes;
TypePrinting() = default;
void incorporateTypes(const Module &M);
void print(Type *Ty, raw_ostream &OS);
void printStructBody(StructType *Ty, raw_ostream &OS);
};
} // namespace
void TypePrinting::incorporateTypes(const Module &M) {
NamedTypes.run(M, false);
// The list of struct types we got back includes all the struct types, split
// the unnamed ones out to a numbering and remove the anonymous structs.
unsigned NextNumber = 0;
std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
StructType *STy = *I;
// Ignore anonymous types.
if (STy->isLiteral())
continue;
if (STy->getName().empty())
NumberedTypes[STy] = NextNumber++;
else
*NextToUse++ = STy;
}
NamedTypes.erase(NextToUse, NamedTypes.end());
}
/// CalcTypeName - Write the specified type to the specified raw_ostream, making
/// use of type names or up references to shorten the type name where possible.
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: OS << "void"; return;
case Type::HalfTyID: OS << "half"; return;
case Type::FloatTyID: OS << "float"; return;
case Type::DoubleTyID: OS << "double"; return;
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
case Type::FP128TyID: OS << "fp128"; return;
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
case Type::LabelTyID: OS << "label"; return;
case Type::MetadataTyID: OS << "metadata"; return;
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
case Type::IntegerTyID:
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
return;
case Type::FunctionTyID: {
FunctionType *FTy = cast<FunctionType>(Ty);
print(FTy->getReturnType(), OS);
OS << " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
OS << ", ";
print(*I, OS);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) OS << ", ";
OS << "...";
}
OS << ')';
return;
}
case Type::StructTyID: {
StructType *STy = cast<StructType>(Ty);
if (STy->isLiteral())
return printStructBody(STy, OS);
if (!STy->getName().empty())
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
if (I != NumberedTypes.end())
OS << '%' << I->second;
else // Not enumerated, print the hex address.
OS << "%\"type " << STy << '\"';
return;
}
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(Ty);
print(PTy->getElementType(), OS);
if (unsigned AddressSpace = PTy->getAddressSpace())
OS << " addrspace(" << AddressSpace << ')';
OS << '*';
return;
}
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
OS << '[' << ATy->getNumElements() << " x ";
print(ATy->getElementType(), OS);
OS << ']';
return;
}
case Type::VectorTyID: {
VectorType *PTy = cast<VectorType>(Ty);
OS << "<" << PTy->getNumElements() << " x ";
print(PTy->getElementType(), OS);
OS << '>';
return;
}
}
llvm_unreachable("Invalid TypeID");
}
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
if (STy->isOpaque()) {
OS << "opaque";
return;
}
if (STy->isPacked())
OS << '<';
if (STy->getNumElements() == 0) {
OS << "{}";
} else {
StructType::element_iterator I = STy->element_begin();
OS << "{ ";
print(*I++, OS);
for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
OS << ", ";
print(*I, OS);
}
OS << " }";
}
if (STy->isPacked())
OS << '>';
}
namespace llvm {
//===----------------------------------------------------------------------===//
// SlotTracker Class: Enumerate slot numbers for unnamed values
//===----------------------------------------------------------------------===//
/// This class provides computation of slot numbers for LLVM Assembly writing.
///
class SlotTracker {
public:
/// ValueMap - A mapping of Values to slot numbers.
typedef DenseMap<const Value*, unsigned> ValueMap;
private:
/// TheModule - The module for which we are holding slot numbers.
const Module* TheModule;
/// TheFunction - The function for which we are holding slot numbers.
const Function* TheFunction;
bool FunctionProcessed;
bool ShouldInitializeAllMetadata;
/// mMap - The slot map for the module level data.
ValueMap mMap;
unsigned mNext;
/// fMap - The slot map for the function level data.
ValueMap fMap;
unsigned fNext;
/// mdnMap - Map for MDNodes.
DenseMap<const MDNode*, unsigned> mdnMap;
unsigned mdnNext;
/// asMap - The slot map for attribute sets.
DenseMap<AttributeSet, unsigned> asMap;
unsigned asNext;
public:
/// Construct from a module.
///
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
/// functions, giving correct numbering for metadata referenced only from
/// within a function (even if no functions have been initialized).
explicit SlotTracker(const Module *M,
bool ShouldInitializeAllMetadata = false);
/// Construct from a function, starting out in incorp state.
///
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
/// functions, giving correct numbering for metadata referenced only from
/// within a function (even if no functions have been initialized).
explicit SlotTracker(const Function *F,
bool ShouldInitializeAllMetadata = false);
/// Return the slot number of the specified value in it's type
/// plane. If something is not in the SlotTracker, return -1.
int getLocalSlot(const Value *V);
int getGlobalSlot(const GlobalValue *V);
int getMetadataSlot(const MDNode *N);
int getAttributeGroupSlot(AttributeSet AS);
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotTracker.
void incorporateFunction(const Function *F) {
TheFunction = F;
FunctionProcessed = false;
}
const Function *getFunction() const { return TheFunction; }
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotTracker. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
/// MDNode map iterators.
typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_iterator mdn_end() { return mdnMap.end(); }
unsigned mdn_size() const { return mdnMap.size(); }
bool mdn_empty() const { return mdnMap.empty(); }
/// AttributeSet map iterators.
typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
as_iterator as_begin() { return asMap.begin(); }
as_iterator as_end() { return asMap.end(); }
unsigned as_size() const { return asMap.size(); }
bool as_empty() const { return asMap.empty(); }
/// This function does the actual initialization.
inline void initialize();
// Implementation Details
private:
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void CreateModuleSlot(const GlobalValue *V);
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
void CreateMetadataSlot(const MDNode *N);
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
void CreateFunctionSlot(const Value *V);
/// \brief Insert the specified AttributeSet into the slot table.
void CreateAttributeSetSlot(AttributeSet AS);
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
/// Add all of the functions arguments, basic blocks, and instructions.
void processFunction();
/// Add all of the metadata from a function.
void processFunctionMetadata(const Function &F);
/// Add all of the metadata from an instruction.
void processInstructionMetadata(const Instruction &I);
SlotTracker(const SlotTracker &) = delete;
void operator=(const SlotTracker &) = delete;
};
} // namespace llvm
ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
const Function *F)
: M(M), F(F), Machine(&Machine) {}
ModuleSlotTracker::ModuleSlotTracker(const Module *M,
bool ShouldInitializeAllMetadata)
: MachineStorage(M ? new SlotTracker(M, ShouldInitializeAllMetadata)
: nullptr),
M(M), Machine(MachineStorage.get()) {}
ModuleSlotTracker::~ModuleSlotTracker() {}
void ModuleSlotTracker::incorporateFunction(const Function &F) {
if (!Machine)
return;
// Nothing to do if this is the right function already.
if (this->F == &F)
return;
if (this->F)
Machine->purgeFunction();
Machine->incorporateFunction(&F);
this->F = &F;
}
int ModuleSlotTracker::getLocalSlot(const Value *V) {
assert(F && "No function incorporated");
return Machine->getLocalSlot(V);
}
static SlotTracker *createSlotTracker(const Module *M) {
return new SlotTracker(M);
}
static SlotTracker *createSlotTracker(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V))
return new SlotTracker(FA->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V))
if (I->getParent())
return new SlotTracker(I->getParent()->getParent());
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return new SlotTracker(BB->getParent());
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return new SlotTracker(GV->getParent());
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return new SlotTracker(GA->getParent());
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
return nullptr;
}
#if 0
#define ST_DEBUG(X) dbgs() << X
#else
#define ST_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
: TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
fNext(0), mdnNext(0), asNext(0) {}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
: TheModule(F ? F->getParent() : nullptr), TheFunction(F),
FunctionProcessed(false),
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
fNext(0), mdnNext(0), asNext(0) {}
inline void SlotTracker::initialize() {
if (TheModule) {
processModule();
TheModule = nullptr; ///< Prevent re-processing next time we're called.
}
if (TheFunction && !FunctionProcessed)
processFunction();
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
ST_DEBUG("begin processModule!\n");
// Add all of the unnamed global variables to the value table.
for (const GlobalVariable &Var : TheModule->globals()) {
if (!Var.hasName())
CreateModuleSlot(&Var);
}
for (const GlobalAlias &A : TheModule->aliases()) {
if (!A.hasName())
CreateModuleSlot(&A);
}
// Add metadata used by named metadata.
for (const NamedMDNode &NMD : TheModule->named_metadata()) {
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
CreateMetadataSlot(NMD.getOperand(i));
}
for (const Function &F : *TheModule) {
if (!F.hasName())
// Add all the unnamed functions to the table.
CreateModuleSlot(&F);
if (ShouldInitializeAllMetadata)
processFunctionMetadata(F);
// Add all the function attributes to the table.
// FIXME: Add attributes of other objects?
AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
CreateAttributeSetSlot(FnAttrs);
}
ST_DEBUG("end processModule!\n");
}
// Process the arguments, basic blocks, and instructions of a function.
void SlotTracker::processFunction() {
ST_DEBUG("begin processFunction!\n");
fNext = 0;
// Add all the function arguments with no names.
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
AE = TheFunction->arg_end(); AI != AE; ++AI)
if (!AI->hasName())
CreateFunctionSlot(AI);
ST_DEBUG("Inserting Instructions:\n");
// Add all of the basic blocks and instructions with no names.
for (auto &BB : *TheFunction) {
if (!BB.hasName())
CreateFunctionSlot(&BB);
processFunctionMetadata(*TheFunction);
for (auto &I : BB) {
if (!I.getType()->isVoidTy() && !I.hasName())
CreateFunctionSlot(&I);
// We allow direct calls to any llvm.foo function here, because the
// target may not be linked into the optimizer.
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Add all the call attributes to the table.
AttributeSet Attrs = CI->getAttributes().getFnAttributes();
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
CreateAttributeSetSlot(Attrs);
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
// Add all the call attributes to the table.
AttributeSet Attrs = II->getAttributes().getFnAttributes();
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
CreateAttributeSetSlot(Attrs);
}
}
}
FunctionProcessed = true;
ST_DEBUG("end processFunction!\n");
}
void SlotTracker::processFunctionMetadata(const Function &F) {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
for (auto &BB : F) {
F.getAllMetadata(MDs);
for (auto &MD : MDs)
CreateMetadataSlot(MD.second);
for (auto &I : BB)
processInstructionMetadata(I);
}
}
void SlotTracker::processInstructionMetadata(const Instruction &I) {
// Process metadata used directly by intrinsics.
if (const CallInst *CI = dyn_cast<CallInst>(&I))
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (auto &Op : I.operands())
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
CreateMetadataSlot(N);
// Process metadata attached to this instruction.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
I.getAllMetadata(MDs);
for (auto &MD : MDs)
CreateMetadataSlot(MD.second);
}
/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
void SlotTracker::purgeFunction() {
ST_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
TheFunction = nullptr;
FunctionProcessed = false;
ST_DEBUG("end purgeFunction!\n");
}
/// getGlobalSlot - Get the slot number of a global value.
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the value in the module map
ValueMap::iterator MI = mMap.find(V);
return MI == mMap.end() ? -1 : (int)MI->second;
}
/// getMetadataSlot - Get the slot number of a MDNode.
int SlotTracker::getMetadataSlot(const MDNode *N) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the MDNode in the module map
mdn_iterator MI = mdnMap.find(N);
return MI == mdnMap.end() ? -1 : (int)MI->second;
}
/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
// Check for uninitialized state and do lazy initialization.
initialize();
ValueMap::iterator FI = fMap.find(V);
return FI == fMap.end() ? -1 : (int)FI->second;
}
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the AttributeSet in the module map.
as_iterator AI = asMap.find(AS);
return AI == asMap.end() ? -1 : (int)AI->second;
}
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
assert(V && "Can't insert a null Value into SlotTracker!");
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
assert(!V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = mNext++;
mMap[V] = DestSlot;
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, F = Function, A = Alias, o = other
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
(isa<Function>(V) ? 'F' :
(isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
}
/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = fNext++;
fMap[V] = DestSlot;
// G = Global, F = Function, o = other
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [o]\n");
}
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
assert(N && "Can't insert a null Value into SlotTracker!");
unsigned DestSlot = mdnNext;
if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
return;
++mdnNext;
// Recursively add any MDNodes referenced by operands.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
CreateMetadataSlot(Op);
}
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
"Doesn't need a slot!");
as_iterator I = asMap.find(AS);
if (I != asMap.end())
return;
unsigned DestSlot = asNext++;
asMap[AS] = DestSlot;
}
//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context);
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue = false);
static const char *getPredicateText(unsigned predicate) {
const char * pred = "unknown";
switch (predicate) {
case FCmpInst::FCMP_FALSE: pred = "false"; break;
case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
case FCmpInst::FCMP_OGT: pred = "ogt"; break;
case FCmpInst::FCMP_OGE: pred = "oge"; break;
case FCmpInst::FCMP_OLT: pred = "olt"; break;
case FCmpInst::FCMP_OLE: pred = "ole"; break;
case FCmpInst::FCMP_ONE: pred = "one"; break;
case FCmpInst::FCMP_ORD: pred = "ord"; break;
case FCmpInst::FCMP_UNO: pred = "uno"; break;
case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
case FCmpInst::FCMP_UGT: pred = "ugt"; break;
case FCmpInst::FCMP_UGE: pred = "uge"; break;
case FCmpInst::FCMP_ULT: pred = "ult"; break;
case FCmpInst::FCMP_ULE: pred = "ule"; break;
case FCmpInst::FCMP_UNE: pred = "une"; break;
case FCmpInst::FCMP_TRUE: pred = "true"; break;
case ICmpInst::ICMP_EQ: pred = "eq"; break;
case ICmpInst::ICMP_NE: pred = "ne"; break;
case ICmpInst::ICMP_SGT: pred = "sgt"; break;
case ICmpInst::ICMP_SGE: pred = "sge"; break;
case ICmpInst::ICMP_SLT: pred = "slt"; break;
case ICmpInst::ICMP_SLE: pred = "sle"; break;
case ICmpInst::ICMP_UGT: pred = "ugt"; break;
case ICmpInst::ICMP_UGE: pred = "uge"; break;
case ICmpInst::ICMP_ULT: pred = "ult"; break;
case ICmpInst::ICMP_ULE: pred = "ule"; break;
}
return pred;
}
static void writeAtomicRMWOperation(raw_ostream &Out,
AtomicRMWInst::BinOp Op) {
switch (Op) {
default: Out << " <unknown operation " << Op << ">"; break;
case AtomicRMWInst::Xchg: Out << " xchg"; break;
case AtomicRMWInst::Add: Out << " add"; break;
case AtomicRMWInst::Sub: Out << " sub"; break;
case AtomicRMWInst::And: Out << " and"; break;
case AtomicRMWInst::Nand: Out << " nand"; break;
case AtomicRMWInst::Or: Out << " or"; break;
case AtomicRMWInst::Xor: Out << " xor"; break;
case AtomicRMWInst::Max: Out << " max"; break;
case AtomicRMWInst::Min: Out << " min"; break;
case AtomicRMWInst::UMax: Out << " umax"; break;
case AtomicRMWInst::UMin: Out << " umin"; break;
}
}
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
// Unsafe algebra implies all the others, no need to write them all out
if (FPO->hasUnsafeAlgebra())
Out << " fast";
else {
if (FPO->hasNoNaNs())
Out << " nnan";
if (FPO->hasNoInfs())
Out << " ninf";
if (FPO->hasNoSignedZeros())
Out << " nsz";
if (FPO->hasAllowReciprocal())
Out << " arcp";
}
}
if (const OverflowingBinaryOperator *OBO =
dyn_cast<OverflowingBinaryOperator>(U)) {
if (OBO->hasNoUnsignedWrap())
Out << " nuw";
if (OBO->hasNoSignedWrap())
Out << " nsw";
} else if (const PossiblyExactOperator *Div =
dyn_cast<PossiblyExactOperator>(U)) {
if (Div->isExact())
Out << " exact";
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
if (GEP->isInBounds())
Out << " inbounds";
}
}
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
TypePrinting &TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType()->isIntegerTy(1)) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
Out << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
bool ignored;
bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
bool isInf = CFP->getValueAPF().isInfinity();
bool isNaN = CFP->getValueAPF().isNaN();
if (!isHalf && !isInf && !isNaN) {
double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
CFP->getValueAPF().convertToFloat();
SmallString<128> StrVal;
raw_svector_ostream(StrVal) << Val;
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) {
// Reparse stringized version!
if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
Out << StrVal;
return;
}
}
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format! Note that loading and storing
// floating point types changes the bits of NaNs on some hosts, notably
// x86, so we must not use these types.
static_assert(sizeof(double) == sizeof(uint64_t),
"assuming that double is 64 bits!");
char Buffer[40];
APFloat apf = CFP->getValueAPF();
// Halves and floats are represented in ASCII IR as double, convert.
if (!isDouble)
apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
Out << "0x" <<
utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
Buffer+40);
return;
}
// Either half, or some form of long double.
// These appear as a magic letter identifying the type, then a
// fixed number of hex digits.
Out << "0x";
// Bit position, in the current word, of the next nibble to print.
int shiftcount;
if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
Out << 'K';
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
uint64_t word = p[1];
shiftcount = 12;
int width = api.getBitWidth();
for (int j=0; j<width; j+=4, shiftcount-=4) {
unsigned int nibble = (word>>shiftcount) & 15;
if (nibble < 10)
Out << (unsigned char)(nibble + '0');
else
Out << (unsigned char)(nibble - 10 + 'A');
if (shiftcount == 0 && j+4 < width) {
word = *p;
shiftcount = 64;
if (width-j-4 < 64)
shiftcount = width-j-4;
}
}
return;
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
shiftcount = 60;
Out << 'L';
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
shiftcount = 60;
Out << 'M';
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
shiftcount = 12;
Out << 'H';
} else
llvm_unreachable("Unsupported floating point type");
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
uint64_t word = *p;
int width = api.getBitWidth();
for (int j=0; j<width; j+=4, shiftcount-=4) {
unsigned int nibble = (word>>shiftcount) & 15;
if (nibble < 10)
Out << (unsigned char)(nibble + '0');
else
Out << (unsigned char)(nibble - 10 + 'A');
if (shiftcount == 0 && j+4 < width) {
word = *(++p);
shiftcount = 64;
if (width-j-4 < 64)
shiftcount = width-j-4;
}
}
return;
}
if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
return;
}
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
Out << "blockaddress(";
WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
Context);
Out << ", ";
WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
Context);
Out << ")";
return;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ']';
return;
}
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// i8 with ConstantInt values.
if (CA->isString()) {
Out << "c\"";
PrintEscapedString(CA->getAsString(), Out);
Out << '"';
return;
}
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
Machine, Context);
}
Out << ']';
return;
}
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getType()->isPacked())
Out << '<';
Out << '{';
unsigned N = CS->getNumOperands();
if (N) {
Out << ' ';
TypePrinter.print(CS->getOperand(0)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
Context);
for (unsigned i = 1; i < N; i++) {
Out << ", ";
TypePrinter.print(CS->getOperand(i)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ' ';
}
Out << '}';
if (CS->getType()->isPacked())
Out << '>';
return;
}
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
Type *ETy = CV->getType()->getVectorElementType();
Out << '<';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
Machine, Context);
for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
Machine, Context);
}
Out << '>';
return;
}
if (isa<ConstantPointerNull>(CV)) {
Out << "null";
return;
}
if (isa<UndefValue>(CV)) {
Out << "undef";
return;
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
WriteOptimizationInfo(Out, CE);
if (CE->isCompare())
Out << ' ' << getPredicateText(CE->getPredicate());
Out << " (";
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
TypePrinter.print(GEP->getSourceElementType(), Out);
Out << ", ";
}
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
TypePrinter.print((*OI)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->hasIndices()) {
ArrayRef<unsigned> Indices = CE->getIndices();
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
Out << ", " << Indices[i];
}
if (CE->isCast()) {
Out << " to ";
TypePrinter.print(CE->getType(), Out);
}
Out << ')';
return;
}
Out << "<placeholder or erroneous Constant>";
}
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!{";
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
const Metadata *MD = Node->getOperand(mi);
if (!MD)
Out << "null";
else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
Value *V = MDV->getValue();
TypePrinter->print(V->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
} else {
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
if (mi + 1 != me)
Out << ", ";
}
Out << "}";
}
namespace {
struct FieldSeparator {
bool Skip;
const char *Sep;
FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
};
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
if (FS.Skip) {
FS.Skip = false;
return OS;
}
return OS << FS.Sep;
}
struct MDFieldPrinter {
raw_ostream &Out;
FieldSeparator FS;
TypePrinting *TypePrinter;
SlotTracker *Machine;
const Module *Context;
explicit MDFieldPrinter(raw_ostream &Out)
: Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context)
: Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
}
void printTag(const DINode *N);
void printString(StringRef Name, StringRef Value,
bool ShouldSkipEmpty = true);
void printMetadata(StringRef Name, const Metadata *MD,
bool ShouldSkipNull = true);
template <class IntTy>
void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
void printBool(StringRef Name, bool Value);
void printDIFlags(StringRef Name, unsigned Flags);
template <class IntTy, class Stringifier>
void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
bool ShouldSkipZero = true);
};
} // end namespace
void MDFieldPrinter::printTag(const DINode *N) {
Out << FS << "tag: ";
if (const char *Tag = dwarf::TagString(N->getTag()))
Out << Tag;
else
Out << N->getTag();
}
void MDFieldPrinter::printString(StringRef Name, StringRef Value,
bool ShouldSkipEmpty) {
if (ShouldSkipEmpty && Value.empty())
return;
Out << FS << Name << ": \"";
PrintEscapedString(Value, Out);
Out << "\"";
}
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (!MD) {
Out << "null";
return;
}
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
bool ShouldSkipNull) {
if (ShouldSkipNull && !MD)
return;
Out << FS << Name << ": ";
writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
}
template <class IntTy>
void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
if (ShouldSkipZero && !Int)
return;
Out << FS << Name << ": " << Int;
}
void MDFieldPrinter::printBool(StringRef Name, bool Value) {
Out << FS << Name << ": " << (Value ? "true" : "false");
}
void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
if (!Flags)
return;
Out << FS << Name << ": ";
SmallVector<unsigned, 8> SplitFlags;
unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
FieldSeparator FlagsFS(" | ");
for (unsigned F : SplitFlags) {
const char *StringF = DINode::getFlagString(F);
assert(StringF && "Expected valid flag");
Out << FlagsFS << StringF;
}
if (Extra || SplitFlags.empty())
Out << FlagsFS << Extra;
}
template <class IntTy, class Stringifier>
void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
Stringifier toString, bool ShouldSkipZero) {
if (!Value)
return;
Out << FS << Name << ": ";
if (const char *S = toString(Value))
Out << S;
else
Out << Value;
}
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!GenericDINode(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("header", N->getHeader());
if (N->getNumDwarfOperands()) {
Out << Printer.FS << "operands: {";
FieldSeparator IFS;
for (auto &I : N->dwarf_operands()) {
Out << IFS;
writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
}
Out << "}";
}
Out << ")";
}
static void writeDILocation(raw_ostream &Out, const DILocation *DL,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DILocation(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
// Always output the line, since 0 is a relevant and important value for it.
Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
Printer.printInt("column", DL->getColumn());
Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
Out << ")";
}
static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!DISubrange(";
MDFieldPrinter Printer(Out);
Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
Printer.printInt("lowerBound", N->getLowerBound());
Out << ")";
}
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!DIEnumerator(";
MDFieldPrinter Printer(Out);
Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
Out << ")";
}
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!DIBasicType(";
MDFieldPrinter Printer(Out);
if (N->getTag() != dwarf::DW_TAG_base_type)
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printDwarfEnum("encoding", N->getEncoding(),
dwarf::AttributeEncodingString);
Out << ")";
}
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIDerivedType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("baseType", N->getRawBaseType(),
/* ShouldSkipNull */ false);
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printInt("offset", N->getOffsetInBits());
Printer.printDIFlags("flags", N->getFlags());
Printer.printMetadata("extraData", N->getRawExtraData());
Out << ")";
}
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DICompositeType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("baseType", N->getRawBaseType());
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printInt("offset", N->getOffsetInBits());
Printer.printDIFlags("flags", N->getFlags());
Printer.printMetadata("elements", N->getRawElements());
Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
dwarf::LanguageString);
Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
Printer.printMetadata("templateParams", N->getRawTemplateParams());
Printer.printString("identifier", N->getIdentifier());
Out << ")";
}
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DISubroutineType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printDIFlags("flags", N->getFlags());
Printer.printMetadata("types", N->getRawTypeArray(),
/* ShouldSkipNull */ false);
Out << ")";
}
static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
SlotTracker *, const Module *) {
Out << "!DIFile(";
MDFieldPrinter Printer(Out);
Printer.printString("filename", N->getFilename(),
/* ShouldSkipEmpty */ false);
Printer.printString("directory", N->getDirectory(),
/* ShouldSkipEmpty */ false);
Out << ")";
}
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DICompileUnit(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printDwarfEnum("language", N->getSourceLanguage(),
dwarf::LanguageString, /* ShouldSkipZero */ false);
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
Printer.printString("producer", N->getProducer());
Printer.printBool("isOptimized", N->isOptimized());
Printer.printString("flags", N->getFlags());
Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
/* ShouldSkipZero */ false);
Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
Printer.printInt("emissionKind", N->getEmissionKind(),
/* ShouldSkipZero */ false);
Printer.printMetadata("enums", N->getRawEnumTypes());
Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
Printer.printMetadata("subprograms", N->getRawSubprograms());
Printer.printMetadata("globals", N->getRawGlobalVariables());
Printer.printMetadata("imports", N->getRawImportedEntities());
Printer.printInt("dwoId", N->getDWOId());
Out << ")";
}
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DISubprogram(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printString("linkageName", N->getLinkageName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printBool("isLocal", N->isLocalToUnit());
Printer.printBool("isDefinition", N->isDefinition());
Printer.printInt("scopeLine", N->getScopeLine());
Printer.printMetadata("containingType", N->getRawContainingType());
Printer.printDwarfEnum("virtuality", N->getVirtuality(),
dwarf::VirtualityString);
Printer.printInt("virtualIndex", N->getVirtualIndex());
Printer.printDIFlags("flags", N->getFlags());
Printer.printBool("isOptimized", N->isOptimized());
Printer.printMetadata("function", N->getRawFunction());
Printer.printMetadata("templateParams", N->getRawTemplateParams());
Printer.printMetadata("declaration", N->getRawDeclaration());
Printer.printMetadata("variables", N->getRawVariables());
Out << ")";
}
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DILexicalBlock(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printInt("column", N->getColumn());
Out << ")";
}
static void writeDILexicalBlockFile(raw_ostream &Out,
const DILexicalBlockFile *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DILexicalBlockFile(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("discriminator", N->getDiscriminator(),
/* ShouldSkipZero */ false);
Out << ")";
}
static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DINamespace(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Out << ")";
}
static void writeDIModule(raw_ostream &Out, const DIModule *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIModule(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printString("name", N->getName());
Printer.printString("configMacros", N->getConfigurationMacros());
Printer.printString("includePath", N->getIncludePath());
Printer.printString("isysroot", N->getISysRoot());
Out << ")";
}
static void writeDITemplateTypeParameter(raw_ostream &Out,
const DITemplateTypeParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DITemplateTypeParameter(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
Out << ")";
}
static void writeDITemplateValueParameter(raw_ostream &Out,
const DITemplateValueParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DITemplateValueParameter(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("type", N->getRawType());
Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
Out << ")";
}
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DIGlobalVariable(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printString("linkageName", N->getLinkageName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printBool("isLocal", N->isLocalToUnit());
Printer.printBool("isDefinition", N->isDefinition());
Printer.printMetadata("variable", N->getRawVariable());
Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
Out << ")";
}
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DILocalVariable(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printInt("arg", N->getArg());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printDIFlags("flags", N->getFlags());
Out << ")";
}
static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIExpression(";
FieldSeparator FS;
if (N->isValid()) {
for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
const char *OpStr = dwarf::OperationEncodingString(I->getOp());
assert(OpStr && "Expected valid opcode");
Out << FS << OpStr;
for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
Out << FS << I->getArg(A);
}
} else {
for (const auto &I : N->getElements())
Out << FS << I;
}
Out << ")";
}
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIObjCProperty(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printString("setter", N->getSetterName());
Printer.printString("getter", N->getGetterName());
Printer.printInt("attributes", N->getAttributes());
Printer.printMetadata("type", N->getRawType());
Out << ")";
}
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DIImportedEntity(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("entity", N->getRawEntity());
Printer.printInt("line", N->getLine());
Out << ")";
}
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (Node->isDistinct())
Out << "distinct ";
else if (Node->isTemporary())
Out << "<temporary!> "; // Handle broken code.
switch (Node->getMetadataID()) {
default:
llvm_unreachable("Expected uniquable MDNode");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
break;
#include "llvm/IR/Metadata.def"
}
}
// Full implementation of printing a Value as an operand with support for
// TypePrinting, etc.
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (V->hasName()) {
PrintLLVMName(Out, V);
return;
}
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV)) {
assert(TypePrinter && "Constants require TypePrinting!");
WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
return;
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Out << "asm ";
if (IA->hasSideEffects())
Out << "sideeffect ";
if (IA->isAlignStack())
Out << "alignstack ";
// We don't emit the AD_ATT dialect as it's the assumed default.
if (IA->getDialect() == InlineAsm::AD_Intel)
Out << "inteldialect ";
Out << '"';
PrintEscapedString(IA->getAsmString(), Out);
Out << "\", \"";
PrintEscapedString(IA->getConstraintString(), Out);
Out << '"';
return;
}
if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
Context, /* FromValue */ true);
return;
}
char Prefix = '%';
int Slot;
// If we have a SlotTracker, use it.
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
// If the local value didn't succeed, then we may be referring to a value
// from a different function. Translate it, as this can happen when using
// address of blocks.
if (Slot == -1)
if ((Machine = createSlotTracker(V))) {
Slot = Machine->getLocalSlot(V);
delete Machine;
}
}
} else if ((Machine = createSlotTracker(V))) {
// Otherwise, create one to get the # and then destroy it.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
delete Machine;
Machine = nullptr;
} else {
Slot = -1;
}
if (Slot != -1)
Out << Prefix << Slot;
else
Out << "<badref>";
}
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue) {
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
std::unique_ptr<SlotTracker> MachineStorage;
if (!Machine) {
MachineStorage = make_unique<SlotTracker>(Context);
Machine = MachineStorage.get();
}
int Slot = Machine->getMetadataSlot(N);
if (Slot == -1)
// Give the pointer value instead of "badref", since this comes up all
// the time when debugging.
Out << "<" << N << ">";
else
Out << '!' << Slot;
return;
}
if (const MDString *MDS = dyn_cast<MDString>(MD)) {
Out << "!\"";
PrintEscapedString(MDS->getString(), Out);
Out << '"';
return;
}
auto *V = cast<ValueAsMetadata>(MD);
assert(TypePrinter && "TypePrinter required for metadata values");
assert((FromValue || !isa<LocalAsMetadata>(V)) &&
"Unexpected function-local metadata outside of value argument");
TypePrinter->print(V->getValue()->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
}
namespace {
class AssemblyWriter {
formatted_raw_ostream &Out;
const Module *TheModule;
std::unique_ptr<SlotTracker> SlotTrackerStorage;
SlotTracker &Machine;
TypePrinting TypePrinter;
AssemblyAnnotationWriter *AnnotationWriter;
SetVector<const Comdat *> Comdats;
bool ShouldPreserveUseListOrder;
UseListOrderStack UseListOrders;
SmallVector<StringRef, 8> MDNames;
public:
/// Construct an AssemblyWriter with an external SlotTracker
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder = false);
/// Construct an AssemblyWriter with an internally allocated SlotTracker
AssemblyWriter(formatted_raw_ostream &o, const Module *M,
AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder = false);
void printMDNodeBody(const MDNode *MD);
void printNamedMDNode(const NamedMDNode *NMD);
void printModule(const Module *M);
void writeOperand(const Value *Op, bool PrintType);
void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope);
void writeAllMDNodes();
void writeMDNode(unsigned Slot, const MDNode *Node);
void writeAllAttributeGroups();
void printTypeIdentities();
void printGlobal(const GlobalVariable *GV);
void printAlias(const GlobalAlias *GV);
void printComdat(const Comdat *C);
void printFunction(const Function *F);
void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
void printBasicBlock(const BasicBlock *BB);
void printInstructionLine(const Instruction &I);
void printInstruction(const Instruction &I);
void printUseListOrder(const UseListOrder &Order);
void printUseLists(const Function *F);
private:
void init();
/// \brief Print out metadata attachments.
void printMetadataAttachments(
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
StringRef Separator);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
// printGCRelocateComment - print comment after call to the gc.relocate
// intrinsic indicating base and derived pointer names.
void printGCRelocateComment(const Value &V);
};
} // namespace
void AssemblyWriter::init() {
if (!TheModule)
return;
TypePrinter.incorporateTypes(*TheModule);
for (const Function &F : *TheModule)
if (const Comdat *C = F.getComdat())
Comdats.insert(C);
for (const GlobalVariable &GV : TheModule->globals())
if (const Comdat *C = GV.getComdat())
Comdats.insert(C);
}
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const Module *M, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder)
: Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
init();
}
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder)
: Out(o), TheModule(M), SlotTrackerStorage(createSlotTracker(M)),
Machine(*SlotTrackerStorage), AnnotationWriter(AAW),
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
init();
}
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
if (!Operand) {
Out << "<null operand!>";
return;
}
if (PrintType) {
TypePrinter.print(Operand->getType(), Out);
Out << ' ';
}
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
if (Ordering == NotAtomic)
return;
switch (SynchScope) {
case SingleThread: Out << " singlethread"; break;
case CrossThread: break;
}
switch (Ordering) {
default: Out << " <bad ordering " << int(Ordering) << ">"; break;
case Unordered: Out << " unordered"; break;
case Monotonic: Out << " monotonic"; break;
case Acquire: Out << " acquire"; break;
case Release: Out << " release"; break;
case AcquireRelease: Out << " acq_rel"; break;
case SequentiallyConsistent: Out << " seq_cst"; break;
}
}
void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope) {
assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
switch (SynchScope) {
case SingleThread: Out << " singlethread"; break;
case CrossThread: break;
}
switch (SuccessOrdering) {
default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
case Unordered: Out << " unordered"; break;
case Monotonic: Out << " monotonic"; break;
case Acquire: Out << " acquire"; break;
case Release: Out << " release"; break;
case AcquireRelease: Out << " acq_rel"; break;
case SequentiallyConsistent: Out << " seq_cst"; break;
}
switch (FailureOrdering) {
default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
case Unordered: Out << " unordered"; break;
case Monotonic: Out << " monotonic"; break;
case Acquire: Out << " acquire"; break;
case Release: Out << " release"; break;
case AcquireRelease: Out << " acq_rel"; break;
case SequentiallyConsistent: Out << " seq_cst"; break;
}
}
void AssemblyWriter::writeParamOperand(const Value *Operand,
AttributeSet Attrs, unsigned Idx) {
if (!Operand) {
Out << "<null operand!>";
return;
}
// Print the type
TypePrinter.print(Operand->getType(), Out);
// Print parameter attributes list
if (Attrs.hasAttributes(Idx))
Out << ' ' << Attrs.getAsString(Idx);
Out << ' ';
// Print the operand
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::printModule(const Module *M) {
Machine.initialize();
if (ShouldPreserveUseListOrder)
UseListOrders = predictUseListOrder(M);
if (!M->getModuleIdentifier().empty() &&
// Don't print the ID if it will start a new line (which would
// require a comment char before it).
M->getModuleIdentifier().find('\n') == std::string::npos)
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
const std::string &DL = M->getDataLayoutStr();
if (!DL.empty())
Out << "target datalayout = \"" << DL << "\"\n";
if (!M->getTargetTriple().empty())
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
if (!M->getModuleInlineAsm().empty()) {
Out << '\n';
// Split the string into lines, to make it easier to read the .ll file.
StringRef Asm = M->getModuleInlineAsm();
do {
StringRef Front;
std::tie(Front, Asm) = Asm.split('\n');
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "module asm \"";
PrintEscapedString(Front, Out);
Out << "\"\n";
} while (!Asm.empty());
}
printTypeIdentities();
// Output all comdats.
if (!Comdats.empty())
Out << '\n';
for (const Comdat *C : Comdats) {
printComdat(C);
if (C != Comdats.back())
Out << '\n';
}
// Output all globals.
if (!M->global_empty()) Out << '\n';
for (const GlobalVariable &GV : M->globals()) {
printGlobal(&GV); Out << '\n';
}
// Output all aliases.
if (!M->alias_empty()) Out << "\n";
for (const GlobalAlias &GA : M->aliases())
printAlias(&GA);
// Output global use-lists.
printUseLists(nullptr);
// Output all of the functions.
for (const Function &F : *M)
printFunction(&F);
assert(UseListOrders.empty() && "All use-lists should have been consumed");
// Output all attribute groups.
if (!Machine.as_empty()) {
Out << '\n';
writeAllAttributeGroups();
}
// Output named metadata.
if (!M->named_metadata_empty()) Out << '\n';
for (const NamedMDNode &Node : M->named_metadata())
printNamedMDNode(&Node);
// Output metadata.
if (!Machine.mdn_empty()) {
Out << '\n';
writeAllMDNodes();
}
}
static void printMetadataIdentifier(StringRef Name,
formatted_raw_ostream &Out) {
if (Name.empty()) {
Out << "<empty name> ";
} else {
if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
Out << Name[0];
else
Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
unsigned char C = Name[i];
if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
C == '.' || C == '_')
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
}
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
Out << '!';
printMetadataIdentifier(NMD->getName(), Out);
Out << " = !{";
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
if (i)
Out << ", ";
int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
if (Slot == -1)
Out << "<badref>";
else
Out << '!' << Slot;
}
Out << "}\n";
}
static void PrintLinkage(GlobalValue::LinkageTypes LT,
formatted_raw_ostream &Out) {
switch (LT) {
case GlobalValue::ExternalLinkage: break;
case GlobalValue::PrivateLinkage: Out << "private "; break;
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
case GlobalValue::CommonLinkage: Out << "common "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
case GlobalValue::AvailableExternallyLinkage:
Out << "available_externally ";
break;
}
}
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
formatted_raw_ostream &Out) {
switch (Vis) {
case GlobalValue::DefaultVisibility: break;
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
}
}
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
formatted_raw_ostream &Out) {
switch (SCT) {
case GlobalValue::DefaultStorageClass: break;
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
}
}
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
formatted_raw_ostream &Out) {
switch (TLM) {
case GlobalVariable::NotThreadLocal:
break;
case GlobalVariable::GeneralDynamicTLSModel:
Out << "thread_local ";
break;
case GlobalVariable::LocalDynamicTLSModel:
Out << "thread_local(localdynamic) ";
break;
case GlobalVariable::InitialExecTLSModel:
Out << "thread_local(initialexec) ";
break;
case GlobalVariable::LocalExecTLSModel:
Out << "thread_local(localexec) ";
break;
}
}
static void maybePrintComdat(formatted_raw_ostream &Out,
const GlobalObject &GO) {
const Comdat *C = GO.getComdat();
if (!C)
return;
if (isa<GlobalVariable>(GO))
Out << ',';
Out << " comdat";
if (GO.getName() == C->getName())
return;
Out << '(';
PrintLLVMName(Out, C->getName(), ComdatPrefix);
Out << ')';
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->isMaterializable())
Out << "; Materializable\n";
WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
Out << " = ";
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
PrintLinkage(GV->getLinkage(), Out);
PrintVisibility(GV->getVisibility(), Out);
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
if (GV->hasUnnamedAddr())
Out << "unnamed_addr ";
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
Out << "addrspace(" << AddressSpace << ") ";
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
Out << (GV->isConstant() ? "constant " : "global ");
TypePrinter.print(GV->getType()->getElementType(), Out);
if (GV->hasInitializer()) {
Out << ' ';
writeOperand(GV->getInitializer(), false);
}
if (GV->hasSection()) {
Out << ", section \"";
PrintEscapedString(GV->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *GV);
if (GV->getAlignment())
Out << ", align " << GV->getAlignment();
printInfoComment(*GV);
}
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
if (GA->isMaterializable())
Out << "; Materializable\n";
WriteAsOperandInternal(Out, GA, &TypePrinter, &Machine, GA->getParent());
Out << " = ";
PrintLinkage(GA->getLinkage(), Out);
PrintVisibility(GA->getVisibility(), Out);
PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
if (GA->hasUnnamedAddr())
Out << "unnamed_addr ";
Out << "alias ";
const Constant *Aliasee = GA->getAliasee();
if (!Aliasee) {
TypePrinter.print(GA->getType(), Out);
Out << " <<NULL ALIASEE>>";
} else {
writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
}
printInfoComment(*GA);
Out << '\n';
}
void AssemblyWriter::printComdat(const Comdat *C) {
C->print(Out);
}
void AssemblyWriter::printTypeIdentities() {
if (TypePrinter.NumberedTypes.empty() &&
TypePrinter.NamedTypes.empty())
return;
Out << '\n';
// We know all the numbers that each type is used and we know that it is a
// dense assignment. Convert the map to an index table.
std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
for (DenseMap<StructType*, unsigned>::iterator I =
TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
I != E; ++I) {
assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
NumberedTypes[I->second] = I->first;
}
// Emit all numbered types.
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
Out << '%' << i << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %2 = type %2
TypePrinter.printStructBody(NumberedTypes[i], Out);
Out << '\n';
}
for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
Out << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
Out << '\n';
}
}
/// printFunction - Print all aspects of a function.
///
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name.
Out << '\n';
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
if (F->isMaterializable())
Out << "; Materializable\n";
const AttributeSet &Attrs = F->getAttributes();
if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
AttributeSet AS = Attrs.getFnAttributes();
std::string AttrStr;
unsigned Idx = 0;
for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
break;
for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
I != E; ++I) {
Attribute Attr = *I;
if (!Attr.isStringAttribute()) {
if (!AttrStr.empty()) AttrStr += ' ';
AttrStr += Attr.getAsString();
}
}
if (!AttrStr.empty())
Out << "; Function Attrs: " << AttrStr << '\n';
}
if (F->isDeclaration())
Out << "declare ";
else
Out << "define ";
PrintLinkage(F->getLinkage(), Out);
PrintVisibility(F->getVisibility(), Out);
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
// Print the calling convention.
if (F->getCallingConv() != CallingConv::C) {
PrintCallingConv(F->getCallingConv(), Out);
Out << " ";
}
FunctionType *FT = F->getFunctionType();
if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
TypePrinter.print(F->getReturnType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
Out << '(';
Machine.incorporateFunction(F);
// Loop over the arguments, printing them...
unsigned Idx = 1;
if (!F->isDeclaration()) {
// If this isn't a declaration, print the argument names as well.
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I) {
// Insert commas as we go... the first arg doesn't get a comma
if (I != F->arg_begin()) Out << ", ";
printArgument(I, Attrs, Idx);
Idx++;
}
} else {
// Otherwise, print the types from the function type.
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
// Insert commas as we go... the first arg doesn't get a comma
if (i) Out << ", ";
// Output type...
TypePrinter.print(FT->getParamType(i), Out);
if (Attrs.hasAttributes(i+1))
Out << ' ' << Attrs.getAsString(i+1);
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getNumParams()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ')';
if (F->hasUnnamedAddr())
Out << " unnamed_addr";
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
if (F->hasSection()) {
Out << " section \"";
PrintEscapedString(F->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *F);
if (F->getAlignment())
Out << " align " << F->getAlignment();
if (F->hasGC())
Out << " gc \"" << F->getGC() << '"';
if (F->hasPrefixData()) {
Out << " prefix ";
writeOperand(F->getPrefixData(), true);
}
if (F->hasPrologueData()) {
Out << " prologue ";
writeOperand(F->getPrologueData(), true);
}
if (F->hasPersonalityFn()) {
Out << " personality ";
writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
}
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F->getAllMetadata(MDs);
printMetadataAttachments(MDs, " ");
if (F->isDeclaration()) {
Out << '\n';
} else {
Out << " {";
// Output all of the function's basic blocks.
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
// Output the function's use-lists.
printUseLists(F);
Out << "}\n";
}
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
///
void AssemblyWriter::printArgument(const Argument *Arg,
AttributeSet Attrs, unsigned Idx) {
// Output type...
TypePrinter.print(Arg->getType(), Out);
// Output parameter attributes list
if (Attrs.hasAttributes(Idx))
Out << ' ' << Attrs.getAsString(Idx);
// Output name, if available...
if (Arg->hasName()) {
Out << ' ';
PrintLLVMName(Out, Arg);
}
}
/// printBasicBlock - This member is called for each basic block in a method.
///
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n";
PrintLLVMName(Out, BB->getName(), LabelPrefix);
Out << ':';
} else if (!BB->use_empty()) { // Don't print block # of no uses...
Out << "\n; <label>:";
int Slot = Machine.getLocalSlot(BB);
if (Slot != -1)
Out << Slot;
else
Out << "<badref>";
}
if (!BB->getParent()) {
Out.PadToColumn(50);
Out << "; Error: Block without parent!";
} else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
// Output predecessors for the block.
Out.PadToColumn(50);
Out << ";";
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds = ";
writeOperand(*PI, false);
for (++PI; PI != PE; ++PI) {
Out << ", ";
writeOperand(*PI, false);
}
}
}
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
printInstructionLine(*I);
}
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
/// printInstructionLine - Print an instruction and a newline character.
void AssemblyWriter::printInstructionLine(const Instruction &I) {
printInstruction(I);
Out << '\n';
}
/// printGCRelocateComment - print comment after call to the gc.relocate
/// intrinsic indicating base and derived pointer names.
void AssemblyWriter::printGCRelocateComment(const Value &V) {
assert(isGCRelocate(&V));
GCRelocateOperands GCOps(cast<Instruction>(&V));
Out << " ; (";
writeOperand(GCOps.getBasePtr(), false);
Out << ", ";
writeOperand(GCOps.getDerivedPtr(), false);
Out << ")";
}
/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
if (isGCRelocate(&V))
printGCRelocateComment(V);
if (AnnotationWriter)
AnnotationWriter->printInfoComment(V, Out);
}
// This member is called for each Instruction in a function..
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
// Print out indentation for an instruction.
Out << " ";
// Print out name if it exists...
if (I.hasName()) {
PrintLLVMName(Out, &I);
Out << " = ";
} else if (!I.getType()->isVoidTy()) {
// Print out the def slot taken.
int SlotNum = Machine.getLocalSlot(&I);
if (SlotNum == -1)
Out << "<badref> = ";
else
Out << '%' << SlotNum << " = ";
}
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
if (CI->isMustTailCall())
Out << "musttail ";
else if (CI->isTailCall())
Out << "tail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// If this is an atomic load or store, print out the atomic marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
Out << " atomic";
if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
Out << " weak";
// If this is a volatile operation, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
Out << " volatile";
// Print out optimization information.
WriteOptimizationInfo(Out, &I);
// Print out the compare instruction predicates
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
Out << ' ' << getPredicateText(CI->getPredicate());
// Print out the atomicrmw operation
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
writeAtomicRMWOperation(Out, RMWI->getOperation());
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
const BranchInst &BI(cast<BranchInst>(I));
Out << ' ';
writeOperand(BI.getCondition(), true);
Out << ", ";
writeOperand(BI.getSuccessor(0), true);
Out << ", ";
writeOperand(BI.getSuccessor(1), true);
} else if (isa<SwitchInst>(I)) {
const SwitchInst& SI(cast<SwitchInst>(I));
// Special case switch instruction to get formatting nice and correct.
Out << ' ';
writeOperand(SI.getCondition(), true);
Out << ", ";
writeOperand(SI.getDefaultDest(), true);
Out << " [";
for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
i != e; ++i) {
Out << "\n ";
writeOperand(i.getCaseValue(), true);
Out << ", ";
writeOperand(i.getCaseSuccessor(), true);
}
Out << "\n ]";
} else if (isa<IndirectBrInst>(I)) {
// Special case indirectbr instruction to get formatting nice and correct.
Out << ' ';
writeOperand(Operand, true);
Out << ", [";
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
if (i != 1)
Out << ", ";
writeOperand(I.getOperand(i), true);
}
Out << ']';
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << ' ';
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
if (op) Out << ", ";
Out << "[ ";
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
}
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true); Out << ", ";
writeOperand(I.getOperand(1), true);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
if (LPI->isCleanup() || LPI->getNumClauses() != 0)
Out << '\n';
if (LPI->isCleanup())
Out << " cleanup";
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
if (i != 0 || LPI->isCleanup()) Out << "\n";
if (LPI->isCatch(i))
Out << " catch ";
else
Out << " filter ";
writeOperand(LPI->getClause(i), true);
}
} else if (const auto *CPI = dyn_cast<CatchPadInst>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << " [";
for (unsigned Op = 0, NumOps = CPI->getNumArgOperands(); Op < NumOps;
++Op) {
if (Op > 0)
Out << ", ";
writeOperand(CPI->getArgOperand(Op), /*PrintType=*/true);
}
Out << "] to ";
writeOperand(CPI->getNormalDest(), /*PrintType=*/true);
Out << " unwind ";
writeOperand(CPI->getUnwindDest(), /*PrintType=*/true);
} else if (const auto *TPI = dyn_cast<TerminatePadInst>(&I)) {
Out << " [";
for (unsigned Op = 0, NumOps = TPI->getNumArgOperands(); Op < NumOps;
++Op) {
if (Op > 0)
Out << ", ";
writeOperand(TPI->getArgOperand(Op), /*PrintType=*/true);
}
Out << "] unwind ";
if (TPI->hasUnwindDest())
writeOperand(TPI->getUnwindDest(), /*PrintType=*/true);
else
Out << "to caller";
} else if (const auto *CPI = dyn_cast<CleanupPadInst>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << " [";
for (unsigned Op = 0, NumOps = CPI->getNumOperands(); Op < NumOps; ++Op) {
if (Op > 0)
Out << ", ";
writeOperand(CPI->getOperand(Op), /*PrintType=*/true);
}
Out << "]";
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
if (CRI->hasReturnValue()) {
Out << ' ';
writeOperand(CRI->getReturnValue(), /*PrintType=*/true);
} else {
Out << " void";
}
Out << " unwind ";
if (CRI->hasUnwindDest())
writeOperand(CRI->getUnwindDest(), /*PrintType=*/true);
else
Out << "to caller";
} else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(&I)) {
Out << " unwind ";
if (CEPI->hasUnwindDest())
writeOperand(CEPI->getUnwindDest(), /*PrintType=*/true);
else
Out << "to caller";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
if (CI->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(CI->getCallingConv(), Out);
}
Operand = CI->getCalledValue();
FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
Type *RetTy = FTy->getReturnType();
const AttributeSet &PAL = CI->getAttributes();
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
Out << '(';
for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
if (op > 0)
Out << ", ";
writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
}
// Emit an ellipsis if this is a musttail call in a vararg function. This
// is only to aid readability, musttail calls forward varargs by default.
if (CI->isMustTailCall() && CI->getParent() &&
CI->getParent()->getParent() &&
CI->getParent()->getParent()->isVarArg())
Out << ", ...";
Out << ')';
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
Operand = II->getCalledValue();
FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
Type *RetTy = FTy->getReturnType();
const AttributeSet &PAL = II->getAttributes();
// Print the calling convention being used.
if (II->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(II->getCallingConv(), Out);
}
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
Out << '(';
for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
if (op)
Out << ", ";
writeParamOperand(II->getArgOperand(op), PAL, op + 1);
}
Out << ')';
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
Out << "\n to ";
writeOperand(II->getNormalDest(), true);
Out << " unwind ";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
Out << ' ';
if (AI->isUsedWithInAlloca())
Out << "inalloca ";
TypePrinter.print(AI->getAllocatedType(), Out);
// Explicitly write the array size if the code is broken, if it's an array
// allocation, or if the type is not canonical for scalar allocations. The
// latter case prevents the type from mutating when round-tripping through
// assembly.
if (!AI->getArraySize() || AI->isArrayAllocation() ||
!AI->getArraySize()->getType()->isIntegerTy(32)) {
Out << ", ";
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
} else if (isa<CastInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << " to ";
TypePrinter.print(I.getType(), Out);
} else if (isa<VAArgInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << ", ";
TypePrinter.print(I.getType(), Out);
} else if (Operand) { // Print the normal way.
if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
Out << ' ';
TypePrinter.print(GEP->getSourceElementType(), Out);
Out << ',';
} else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
Out << ' ';
TypePrinter.print(LI->getType(), Out);
Out << ',';
}
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
Type *TheType = Operand->getType();
// Select, Store and ShuffleVector always print all types.
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|| isa<ReturnInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
// note that Operand shouldn't be null, but the test helps make dump()
// more tolerant of malformed IR
if (Operand && Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
TypePrinter.print(TheType, Out);
}
Out << ' ';
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ", ";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
// Print atomic ordering/alignment for memory operations
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (LI->isAtomic())
writeAtomic(LI->getOrdering(), LI->getSynchScope());
if (LI->getAlignment())
Out << ", align " << LI->getAlignment();
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
if (SI->isAtomic())
writeAtomic(SI->getOrdering(), SI->getSynchScope());
if (SI->getAlignment())
Out << ", align " << SI->getAlignment();
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
CXI->getSynchScope());
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
writeAtomic(FI->getOrdering(), FI->getSynchScope());
}
// Print Metadata info.
SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
I.getAllMetadata(InstMD);
printMetadataAttachments(InstMD, ", ");
// Print a nice comment.
printInfoComment(I);
}
void AssemblyWriter::printMetadataAttachments(
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
StringRef Separator) {
if (MDs.empty())
return;
if (MDNames.empty())
TheModule->getMDKindNames(MDNames);
for (const auto &I : MDs) {
unsigned Kind = I.first;
Out << Separator;
if (Kind < MDNames.size()) {
Out << "!";
printMetadataIdentifier(MDNames[Kind], Out);
} else
Out << "!<unknown kind #" << Kind << ">";
Out << ' ';
WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
}
}
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
Out << '!' << Slot << " = ";
printMDNodeBody(Node);
Out << "\n";
}
void AssemblyWriter::writeAllMDNodes() {
SmallVector<const MDNode *, 16> Nodes;
Nodes.resize(Machine.mdn_size());
for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
I != E; ++I)
Nodes[I->second] = cast<MDNode>(I->first);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
writeMDNode(i, Nodes[i]);
}
}
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeAllAttributeGroups() {
std::vector<std::pair<AttributeSet, unsigned> > asVec;
asVec.resize(Machine.as_size());
for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
I != E; ++I)
asVec[I->second] = *I;
for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
I = asVec.begin(), E = asVec.end(); I != E; ++I)
Out << "attributes #" << I->second << " = { "
<< I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
}
void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
bool IsInFunction = Machine.getFunction();
if (IsInFunction)
Out << " ";
Out << "uselistorder";
if (const BasicBlock *BB =
IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
Out << "_bb ";
writeOperand(BB->getParent(), false);
Out << ", ";
writeOperand(BB, false);
} else {
Out << " ";
writeOperand(Order.V, true);
}
Out << ", { ";
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
Out << Order.Shuffle[0];
for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
Out << ", " << Order.Shuffle[I];
Out << " }\n";
}
void AssemblyWriter::printUseLists(const Function *F) {
auto hasMore =
[&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
if (!hasMore())
// Nothing to do.
return;
Out << "\n; uselistorder directives\n";
while (hasMore()) {
printUseListOrder(UseListOrders.back());
UseListOrders.pop_back();
}
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
SlotTracker SlotTable(this->getParent());
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this->getParent(), AAW);
W.printFunction(this);
}
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder) const {
SlotTracker SlotTable(this);
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this, AAW, ShouldPreserveUseListOrder);
W.printModule(this);
}
void NamedMDNode::print(raw_ostream &ROS) const {
SlotTracker SlotTable(getParent());
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
W.printNamedMDNode(this);
}
void Comdat::print(raw_ostream &ROS) const {
PrintLLVMName(ROS, getName(), ComdatPrefix);
ROS << " = comdat ";
switch (getSelectionKind()) {
case Comdat::Any:
ROS << "any";
break;
case Comdat::ExactMatch:
ROS << "exactmatch";
break;
case Comdat::Largest:
ROS << "largest";
break;
case Comdat::NoDuplicates:
ROS << "noduplicates";
break;
case Comdat::SameSize:
ROS << "samesize";
break;
}
ROS << '\n';
}
void Type::print(raw_ostream &OS) const {
TypePrinting TP;
TP.print(const_cast<Type*>(this), OS);
// If the type is a named struct type, print the body as well.
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
if (!STy->isLiteral()) {
OS << " = type ";
TP.printStructBody(STy, OS);
}
}
static bool isReferencingMDNode(const Instruction &I) {
if (const auto *CI = dyn_cast<CallInst>(&I))
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (auto &Op : I.operands())
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
if (isa<MDNode>(V->getMetadata()))
return true;
return false;
}
void Value::print(raw_ostream &ROS) const {
bool ShouldInitializeAllMetadata = false;
if (auto *I = dyn_cast<Instruction>(this))
ShouldInitializeAllMetadata = isReferencingMDNode(*I);
else if (isa<Function>(this) || isa<MetadataAsValue>(this))
ShouldInitializeAllMetadata = true;
ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
print(ROS, MST);
}
void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST) const {
formatted_raw_ostream OS(ROS);
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
SlotTracker &SlotTable =
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
auto incorporateFunction = [&](const Function *F) {
if (F)
MST.incorporateFunction(*F);
};
if (const Instruction *I = dyn_cast<Instruction>(this)) {
incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
W.printInstruction(*I);
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
incorporateFunction(BB->getParent());
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
W.printBasicBlock(BB);
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
W.printGlobal(V);
else if (const Function *F = dyn_cast<Function>(GV))
W.printFunction(F);
else
W.printAlias(cast<GlobalAlias>(GV));
} else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
} else if (const Constant *C = dyn_cast<Constant>(this)) {
TypePrinting TypePrinter;
TypePrinter.print(C->getType(), OS);
OS << ' ';
WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
} else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
this->printAsOperand(OS, /* PrintType */ true, MST);
} else {
llvm_unreachable("Unknown value to print out!");
}
}
/// Print without a type, skipping the TypePrinting object.
///
/// \return \c true iff printing was succesful.
static bool printWithoutType(const Value &V, raw_ostream &O,
SlotTracker *Machine, const Module *M) {
if (V.hasName() || isa<GlobalValue>(V) ||
(!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
WriteAsOperandInternal(O, &V, nullptr, Machine, M);
return true;
}
return false;
}
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
ModuleSlotTracker &MST) {
TypePrinting TypePrinter;
if (const Module *M = MST.getModule())
TypePrinter.incorporateTypes(*M);
if (PrintType) {
TypePrinter.print(V.getType(), O);
O << ' ';
}
WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
MST.getModule());
}
void Value::printAsOperand(raw_ostream &O, bool PrintType,
const Module *M) const {
if (!M)
M = getModuleFromVal(this);
if (!PrintType)
if (printWithoutType(*this, O, nullptr, M))
return;
SlotTracker Machine(
M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
ModuleSlotTracker MST(Machine, M);
printAsOperandImpl(*this, O, PrintType, MST);
}
void Value::printAsOperand(raw_ostream &O, bool PrintType,
ModuleSlotTracker &MST) const {
if (!PrintType)
if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
return;
printAsOperandImpl(*this, O, PrintType, MST);
}
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
ModuleSlotTracker &MST, const Module *M,
bool OnlyAsOperand) {
formatted_raw_ostream OS(ROS);
TypePrinting TypePrinter;
if (M)
TypePrinter.incorporateTypes(*M);
WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
/* FromValue */ true);
auto *N = dyn_cast<MDNode>(&MD);
if (OnlyAsOperand || !N)
return;
OS << " = ";
WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
}
void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
ModuleSlotTracker MST(M, isa<MDNode>(this));
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
}
void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
const Module *M) const {
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
}
void Metadata::print(raw_ostream &OS, const Module *M) const {
ModuleSlotTracker MST(M, isa<MDNode>(this));
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
}
void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
const Module *M) const {
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
}
// Value::dump - allow easy printing of Values from the debugger.
LLVM_DUMP_METHOD
void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
// Type::dump - allow easy printing of Types from the debugger.
LLVM_DUMP_METHOD
void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
// Module::dump() - Allow printing of Modules from the debugger.
LLVM_DUMP_METHOD
void Module::dump() const { print(dbgs(), nullptr); }
// \brief Allow printing of Comdats from the debugger.
LLVM_DUMP_METHOD
void Comdat::dump() const { print(dbgs()); }
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
LLVM_DUMP_METHOD
void NamedMDNode::dump() const { print(dbgs()); }
LLVM_DUMP_METHOD
void Metadata::dump() const { dump(nullptr); }
LLVM_DUMP_METHOD
void Metadata::dump(const Module *M) const {
print(dbgs(), M);
dbgs() << '\n';
}