llvm-project/llvm/examples/Kaleidoscope/Chapter7/toy.cpp

1243 lines
33 KiB
C++

#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Transforms/Scalar.h"
#include <cctype>
#include <cstdio>
#include <map>
#include <string>
#include <vector>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
// of these for known things.
enum Token {
tok_eof = -1,
// commands
tok_def = -2,
tok_extern = -3,
// primary
tok_identifier = -4,
tok_number = -5,
// control
tok_if = -6,
tok_then = -7,
tok_else = -8,
tok_for = -9,
tok_in = -10,
// operators
tok_binary = -11,
tok_unary = -12,
// var definition
tok_var = -13
};
static std::string IdentifierStr; // Filled in if tok_identifier
static double NumVal; // Filled in if tok_number
/// gettok - Return the next token from standard input.
static int gettok() {
static int LastChar = ' ';
// Skip any whitespace.
while (isspace(LastChar))
LastChar = getchar();
if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
IdentifierStr = LastChar;
while (isalnum((LastChar = getchar())))
IdentifierStr += LastChar;
if (IdentifierStr == "def")
return tok_def;
if (IdentifierStr == "extern")
return tok_extern;
if (IdentifierStr == "if")
return tok_if;
if (IdentifierStr == "then")
return tok_then;
if (IdentifierStr == "else")
return tok_else;
if (IdentifierStr == "for")
return tok_for;
if (IdentifierStr == "in")
return tok_in;
if (IdentifierStr == "binary")
return tok_binary;
if (IdentifierStr == "unary")
return tok_unary;
if (IdentifierStr == "var")
return tok_var;
return tok_identifier;
}
if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
std::string NumStr;
do {
NumStr += LastChar;
LastChar = getchar();
} while (isdigit(LastChar) || LastChar == '.');
NumVal = strtod(NumStr.c_str(), 0);
return tok_number;
}
if (LastChar == '#') {
// Comment until end of line.
do
LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
if (LastChar != EOF)
return gettok();
}
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
// Otherwise, just return the character as its ascii value.
int ThisChar = LastChar;
LastChar = getchar();
return ThisChar;
}
//===----------------------------------------------------------------------===//
// Abstract Syntax Tree (aka Parse Tree)
//===----------------------------------------------------------------------===//
namespace {
/// ExprAST - Base class for all expression nodes.
class ExprAST {
public:
virtual ~ExprAST() {}
virtual Value *Codegen() = 0;
};
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
public:
NumberExprAST(double val) : Val(val) {}
Value *Codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
VariableExprAST(const std::string &name) : Name(name) {}
const std::string &getName() const { return Name; }
Value *Codegen() override;
};
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
ExprAST *Operand;
public:
UnaryExprAST(char opcode, ExprAST *operand)
: Opcode(opcode), Operand(operand) {}
Value *Codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
ExprAST *LHS, *RHS;
public:
BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
: Op(op), LHS(lhs), RHS(rhs) {}
Value *Codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
std::vector<ExprAST *> Args;
public:
CallExprAST(const std::string &callee, std::vector<ExprAST *> &args)
: Callee(callee), Args(args) {}
Value *Codegen() override;
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
ExprAST *Cond, *Then, *Else;
public:
IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
: Cond(cond), Then(then), Else(_else) {}
Value *Codegen() override;
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
ExprAST *Start, *End, *Step, *Body;
public:
ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
ExprAST *step, ExprAST *body)
: VarName(varname), Start(start), End(end), Step(step), Body(body) {}
Value *Codegen() override;
};
/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
std::vector<std::pair<std::string, ExprAST *> > VarNames;
ExprAST *Body;
public:
VarExprAST(const std::vector<std::pair<std::string, ExprAST *> > &varnames,
ExprAST *body)
: VarNames(varnames), Body(body) {}
Value *Codegen() override;
};
/// PrototypeAST - This class represents the "prototype" for a function,
/// which captures its argument names as well as if it is an operator.
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
bool isOperator;
unsigned Precedence; // Precedence if a binary op.
public:
PrototypeAST(const std::string &name, const std::vector<std::string> &args,
bool isoperator = false, unsigned prec = 0)
: Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
bool isUnaryOp() const { return isOperator && Args.size() == 1; }
bool isBinaryOp() const { return isOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size() - 1];
}
unsigned getBinaryPrecedence() const { return Precedence; }
Function *Codegen();
void CreateArgumentAllocas(Function *F);
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
PrototypeAST *Proto;
ExprAST *Body;
public:
FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
Function *Codegen();
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//
/// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
/// token the parser is looking at. getNextToken reads another token from the
/// lexer and updates CurTok with its results.
static int CurTok;
static int getNextToken() { return CurTok = gettok(); }
/// BinopPrecedence - This holds the precedence for each binary operator that is
/// defined.
static std::map<char, int> BinopPrecedence;
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0)
return -1;
return TokPrec;
}
/// Error* - These are little helper functions for error handling.
ExprAST *Error(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
return 0;
}
PrototypeAST *ErrorP(const char *Str) {
Error(Str);
return 0;
}
FunctionAST *ErrorF(const char *Str) {
Error(Str);
return 0;
}
static ExprAST *ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
static ExprAST *ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
return new VariableExprAST(IdName);
// Call.
getNextToken(); // eat (
std::vector<ExprAST *> Args;
if (CurTok != ')') {
while (1) {
ExprAST *Arg = ParseExpression();
if (!Arg)
return 0;
Args.push_back(Arg);
if (CurTok == ')')
break;
if (CurTok != ',')
return Error("Expected ')' or ',' in argument list");
getNextToken();
}
}
// Eat the ')'.
getNextToken();
return new CallExprAST(IdName, Args);
}
/// numberexpr ::= number
static ExprAST *ParseNumberExpr() {
ExprAST *Result = new NumberExprAST(NumVal);
getNextToken(); // consume the number
return Result;
}
/// parenexpr ::= '(' expression ')'
static ExprAST *ParseParenExpr() {
getNextToken(); // eat (.
ExprAST *V = ParseExpression();
if (!V)
return 0;
if (CurTok != ')')
return Error("expected ')'");
getNextToken(); // eat ).
return V;
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static ExprAST *ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
ExprAST *Cond = ParseExpression();
if (!Cond)
return 0;
if (CurTok != tok_then)
return Error("expected then");
getNextToken(); // eat the then
ExprAST *Then = ParseExpression();
if (Then == 0)
return 0;
if (CurTok != tok_else)
return Error("expected else");
getNextToken();
ExprAST *Else = ParseExpression();
if (!Else)
return 0;
return new IfExprAST(Cond, Then, Else);
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
static ExprAST *ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return Error("expected identifier after for");
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '=')
return Error("expected '=' after for");
getNextToken(); // eat '='.
ExprAST *Start = ParseExpression();
if (Start == 0)
return 0;
if (CurTok != ',')
return Error("expected ',' after for start value");
getNextToken();
ExprAST *End = ParseExpression();
if (End == 0)
return 0;
// The step value is optional.
ExprAST *Step = 0;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
if (Step == 0)
return 0;
}
if (CurTok != tok_in)
return Error("expected 'in' after for");
getNextToken(); // eat 'in'.
ExprAST *Body = ParseExpression();
if (Body == 0)
return 0;
return new ForExprAST(IdName, Start, End, Step, Body);
}
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static ExprAST *ParseVarExpr() {
getNextToken(); // eat the var.
std::vector<std::pair<std::string, ExprAST *> > VarNames;
// At least one variable name is required.
if (CurTok != tok_identifier)
return Error("expected identifier after var");
while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
// Read the optional initializer.
ExprAST *Init = 0;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
if (Init == 0)
return 0;
}
VarNames.push_back(std::make_pair(Name, Init));
// End of var list, exit loop.
if (CurTok != ',')
break;
getNextToken(); // eat the ','.
if (CurTok != tok_identifier)
return Error("expected identifier list after var");
}
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return Error("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
ExprAST *Body = ParseExpression();
if (Body == 0)
return 0;
return new VarExprAST(VarNames, Body);
}
/// primary
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
static ExprAST *ParsePrimary() {
switch (CurTok) {
default:
return Error("unknown token when expecting an expression");
case tok_identifier:
return ParseIdentifierExpr();
case tok_number:
return ParseNumberExpr();
case '(':
return ParseParenExpr();
case tok_if:
return ParseIfExpr();
case tok_for:
return ParseForExpr();
case tok_var:
return ParseVarExpr();
}
}
/// unary
/// ::= primary
/// ::= '!' unary
static ExprAST *ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
if (ExprAST *Operand = ParseUnary())
return new UnaryExprAST(Opc, Operand);
return 0;
}
/// binoprhs
/// ::= ('+' unary)*
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
ExprAST *RHS = ParseUnary();
if (!RHS)
return 0;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
RHS = ParseBinOpRHS(TokPrec + 1, RHS);
if (RHS == 0)
return 0;
}
// Merge LHS/RHS.
LHS = new BinaryExprAST(BinOp, LHS, RHS);
}
}
/// expression
/// ::= unary binoprhs
///
static ExprAST *ParseExpression() {
ExprAST *LHS = ParseUnary();
if (!LHS)
return 0;
return ParseBinOpRHS(0, LHS);
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
static PrototypeAST *ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
switch (CurTok) {
default:
return ErrorP("Expected function name in prototype");
case tok_identifier:
FnName = IdentifierStr;
Kind = 0;
getNextToken();
break;
case tok_unary:
getNextToken();
if (!isascii(CurTok))
return ErrorP("Expected unary operator");
FnName = "unary";
FnName += (char)CurTok;
Kind = 1;
getNextToken();
break;
case tok_binary:
getNextToken();
if (!isascii(CurTok))
return ErrorP("Expected binary operator");
FnName = "binary";
FnName += (char)CurTok;
Kind = 2;
getNextToken();
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
return ErrorP("Invalid precedecnce: must be 1..100");
BinaryPrecedence = (unsigned)NumVal;
getNextToken();
}
break;
}
if (CurTok != '(')
return ErrorP("Expected '(' in prototype");
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorP("Expected ')' in prototype");
// success.
getNextToken(); // eat ')'.
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return ErrorP("Invalid number of operands for operator");
return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
static FunctionAST *ParseDefinition() {
getNextToken(); // eat def.
PrototypeAST *Proto = ParsePrototype();
if (Proto == 0)
return 0;
if (ExprAST *E = ParseExpression())
return new FunctionAST(Proto, E);
return 0;
}
/// toplevelexpr ::= expression
static FunctionAST *ParseTopLevelExpr() {
if (ExprAST *E = ParseExpression()) {
// Make an anonymous proto.
PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
return new FunctionAST(Proto, E);
}
return 0;
}
/// external ::= 'extern' prototype
static PrototypeAST *ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
//===----------------------------------------------------------------------===//
// Code Generation
//===----------------------------------------------------------------------===//
static Module *TheModule;
static IRBuilder<> Builder(getGlobalContext());
static std::map<std::string, AllocaInst *> NamedValues;
static legacy::FunctionPassManager *TheFPM;
Value *ErrorV(const char *Str) {
Error(Str);
return 0;
}
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
/// the function. This is used for mutable variables etc.
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
const std::string &VarName) {
IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
TheFunction->getEntryBlock().begin());
return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
VarName.c_str());
}
Value *NumberExprAST::Codegen() {
return ConstantFP::get(getGlobalContext(), APFloat(Val));
}
Value *VariableExprAST::Codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
if (V == 0)
return ErrorV("Unknown variable name");
// Load the value.
return Builder.CreateLoad(V, Name.c_str());
}
Value *UnaryExprAST::Codegen() {
Value *OperandV = Operand->Codegen();
if (OperandV == 0)
return 0;
Function *F = TheModule->getFunction(std::string("unary") + Opcode);
if (F == 0)
return ErrorV("Unknown unary operator");
return Builder.CreateCall(F, OperandV, "unop");
}
Value *BinaryExprAST::Codegen() {
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS);
if (!LHSE)
return ErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->Codegen();
if (Val == 0)
return 0;
// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
if (Variable == 0)
return ErrorV("Unknown variable name");
Builder.CreateStore(Val, Variable);
return Val;
}
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
if (L == 0 || R == 0)
return 0;
switch (Op) {
case '+':
return Builder.CreateFAdd(L, R, "addtmp");
case '-':
return Builder.CreateFSub(L, R, "subtmp");
case '*':
return Builder.CreateFMul(L, R, "multmp");
case '<':
L = Builder.CreateFCmpULT(L, R, "cmptmp");
// Convert bool 0/1 to double 0.0 or 1.0
return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
"booltmp");
default:
break;
}
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
Function *F = TheModule->getFunction(std::string("binary") + Op);
assert(F && "binary operator not found!");
Value *Ops[] = { L, R };
return Builder.CreateCall(F, Ops, "binop");
}
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
if (CalleeF == 0)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
if (CalleeF->arg_size() != Args.size())
return ErrorV("Incorrect # arguments passed");
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
if (ArgsV.back() == 0)
return 0;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::Codegen() {
Value *CondV = Cond->Codegen();
if (CondV == 0)
return 0;
// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(
CondV, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "ifcond");
Function *TheFunction = Builder.GetInsertBlock()->getParent();
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB =
BasicBlock::Create(getGlobalContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
Builder.CreateCondBr(CondV, ThenBB, ElseBB);
// Emit then value.
Builder.SetInsertPoint(ThenBB);
Value *ThenV = Then->Codegen();
if (ThenV == 0)
return 0;
Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = Builder.GetInsertBlock();
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
Builder.SetInsertPoint(ElseBB);
Value *ElseV = Else->Codegen();
if (ElseV == 0)
return 0;
Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = Builder.GetInsertBlock();
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
Builder.SetInsertPoint(MergeBB);
PHINode *PN =
Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, "iftmp");
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
}
Value *ForExprAST::Codegen() {
// Output this as:
// var = alloca double
// ...
// start = startexpr
// store start -> var
// goto loop
// loop:
// ...
// bodyexpr
// ...
// loopend:
// step = stepexpr
// endcond = endexpr
//
// curvar = load var
// nextvar = curvar + step
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
Function *TheFunction = Builder.GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->Codegen();
if (StartVal == 0)
return 0;
// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB =
BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
// Insert an explicit fall through from the current block to the LoopBB.
Builder.CreateBr(LoopBB);
// Start insertion in LoopBB.
Builder.SetInsertPoint(LoopBB);
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = NamedValues[VarName];
NamedValues[VarName] = Alloca;
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (Body->Codegen() == 0)
return 0;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->Codegen();
if (StepVal == 0)
return 0;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
// Compute the end condition.
Value *EndCond = End->Codegen();
if (EndCond == 0)
return EndCond;
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
Builder.CreateStore(NextVar, Alloca);
// Convert condition to a bool by comparing equal to 0.0.
EndCond = Builder.CreateFCmpONE(
EndCond, ConstantFP::get(getGlobalContext(), APFloat(0.0)), "loopcond");
// Create the "after loop" block and insert it.
BasicBlock *AfterBB =
BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
// Insert the conditional branch into the end of LoopEndBB.
Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
// Any new code will be inserted in AfterBB.
Builder.SetInsertPoint(AfterBB);
// Restore the unshadowed variable.
if (OldVal)
NamedValues[VarName] = OldVal;
else
NamedValues.erase(VarName);
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Value *VarExprAST::Codegen() {
std::vector<AllocaInst *> OldBindings;
Function *TheFunction = Builder.GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
ExprAST *Init = VarNames[i].second;
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
// var a = 1 in
// var a = a in ... # refers to outer 'a'.
Value *InitVal;
if (Init) {
InitVal = Init->Codegen();
if (InitVal == 0)
return 0;
} else { // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
}
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
Builder.CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(NamedValues[VarName]);
// Remember this binding.
NamedValues[VarName] = Alloca;
}
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->Codegen();
if (BodyVal == 0)
return 0;
// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
NamedValues[VarNames[i].first] = OldBindings[i];
// Return the body computation.
return BodyVal;
}
Function *PrototypeAST::Codegen() {
// Make the function type: double(double,double) etc.
std::vector<Type *> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT =
FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
Function *F =
Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
// If F conflicted, there was already something named 'Name'. If it has a
// body, don't allow redefinition or reextern.
if (F->getName() != Name) {
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = TheModule->getFunction(Name);
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
return 0;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
return 0;
}
}
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx)
AI->setName(Args[Idx]);
return F;
}
/// CreateArgumentAllocas - Create an alloca for each argument and register the
/// argument in the symbol table so that references to it will succeed.
void PrototypeAST::CreateArgumentAllocas(Function *F) {
Function::arg_iterator AI = F->arg_begin();
for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
// Create an alloca for this variable.
AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
// Store the initial value into the alloca.
Builder.CreateStore(AI, Alloca);
// Add arguments to variable symbol table.
NamedValues[Args[Idx]] = Alloca;
}
}
Function *FunctionAST::Codegen() {
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
if (TheFunction == 0)
return 0;
// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
Builder.SetInsertPoint(BB);
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction);
if (Value *RetVal = Body->Codegen()) {
// Finish off the function.
Builder.CreateRet(RetVal);
// Validate the generated code, checking for consistency.
verifyFunction(*TheFunction);
// Optimize the function.
TheFPM->run(*TheFunction);
return TheFunction;
}
// Error reading body, remove function.
TheFunction->eraseFromParent();
if (Proto->isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());
return 0;
}
//===----------------------------------------------------------------------===//
// Top-Level parsing and JIT Driver
//===----------------------------------------------------------------------===//
static ExecutionEngine *TheExecutionEngine;
static void HandleDefinition() {
if (FunctionAST *F = ParseDefinition()) {
if (Function *LF = F->Codegen()) {
fprintf(stderr, "Read function definition:");
LF->dump();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleExtern() {
if (PrototypeAST *P = ParseExtern()) {
if (Function *F = P->Codegen()) {
fprintf(stderr, "Read extern: ");
F->dump();
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
if (FunctionAST *F = ParseTopLevelExpr()) {
if (Function *LF = F->Codegen()) {
TheExecutionEngine->finalizeObject();
// JIT the function, returning a function pointer.
void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)FPtr;
fprintf(stderr, "Evaluated to %f\n", FP());
}
} else {
// Skip token for error recovery.
getNextToken();
}
}
/// top ::= definition | external | expression | ';'
static void MainLoop() {
while (1) {
fprintf(stderr, "ready> ");
switch (CurTok) {
case tok_eof:
return;
case ';':
getNextToken();
break; // ignore top-level semicolons.
case tok_def:
HandleDefinition();
break;
case tok_extern:
HandleExtern();
break;
default:
HandleTopLevelExpression();
break;
}
}
}
//===----------------------------------------------------------------------===//
// "Library" functions that can be "extern'd" from user code.
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
extern "C" double putchard(double X) {
putchar((char)X);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
extern "C" double printd(double X) {
printf("%f\n", X);
return 0;
}
//===----------------------------------------------------------------------===//
// Main driver code.
//===----------------------------------------------------------------------===//
int main() {
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
LLVMContext &Context = getGlobalContext();
// Install standard binary operators.
// 1 is lowest precedence.
BinopPrecedence['='] = 2;
BinopPrecedence['<'] = 10;
BinopPrecedence['+'] = 20;
BinopPrecedence['-'] = 20;
BinopPrecedence['*'] = 40; // highest.
// Prime the first token.
fprintf(stderr, "ready> ");
getNextToken();
// Make the module, which holds all the code.
std::unique_ptr<Module> Owner = make_unique<Module>("my cool jit", Context);
TheModule = Owner.get();
// Create the JIT. This takes ownership of the module.
std::string ErrStr;
TheExecutionEngine =
EngineBuilder(std::move(Owner))
.setErrorStr(&ErrStr)
.setMCJITMemoryManager(llvm::make_unique<SectionMemoryManager>())
.create();
if (!TheExecutionEngine) {
fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
exit(1);
}
legacy::FunctionPassManager OurFPM(TheModule);
// Set up the optimizer pipeline. Start with registering info about how the
// target lays out data structures.
TheModule->setDataLayout(TheExecutionEngine->getDataLayout());
// Provide basic AliasAnalysis support for GVN.
OurFPM.add(createBasicAliasAnalysisPass());
// Promote allocas to registers.
OurFPM.add(createPromoteMemoryToRegisterPass());
// Do simple "peephole" optimizations and bit-twiddling optzns.
OurFPM.add(createInstructionCombiningPass());
// Reassociate expressions.
OurFPM.add(createReassociatePass());
// Eliminate Common SubExpressions.
OurFPM.add(createGVNPass());
// Simplify the control flow graph (deleting unreachable blocks, etc).
OurFPM.add(createCFGSimplificationPass());
OurFPM.doInitialization();
// Set the global so the code gen can use this.
TheFPM = &OurFPM;
// Run the main "interpreter loop" now.
MainLoop();
TheFPM = 0;
// Print out all of the generated code.
TheModule->dump();
return 0;
}