forked from OSchip/llvm-project
2178 lines
78 KiB
C++
2178 lines
78 KiB
C++
//===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that performs load / store related peephole
|
|
// optimizations. This pass should be run after register allocation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <limits>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aarch64-ldst-opt"
|
|
|
|
STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
|
|
STATISTIC(NumPostFolded, "Number of post-index updates folded");
|
|
STATISTIC(NumPreFolded, "Number of pre-index updates folded");
|
|
STATISTIC(NumUnscaledPairCreated,
|
|
"Number of load/store from unscaled generated");
|
|
STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
|
|
STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
|
|
|
|
DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming",
|
|
"Controls which pairs are considered for renaming");
|
|
|
|
// The LdStLimit limits how far we search for load/store pairs.
|
|
static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
|
|
cl::init(20), cl::Hidden);
|
|
|
|
// The UpdateLimit limits how far we search for update instructions when we form
|
|
// pre-/post-index instructions.
|
|
static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
|
|
cl::Hidden);
|
|
|
|
// Enable register renaming to find additional store pairing opportunities.
|
|
static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
#define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
|
|
|
|
namespace {
|
|
|
|
using LdStPairFlags = struct LdStPairFlags {
|
|
// If a matching instruction is found, MergeForward is set to true if the
|
|
// merge is to remove the first instruction and replace the second with
|
|
// a pair-wise insn, and false if the reverse is true.
|
|
bool MergeForward = false;
|
|
|
|
// SExtIdx gives the index of the result of the load pair that must be
|
|
// extended. The value of SExtIdx assumes that the paired load produces the
|
|
// value in this order: (I, returned iterator), i.e., -1 means no value has
|
|
// to be extended, 0 means I, and 1 means the returned iterator.
|
|
int SExtIdx = -1;
|
|
|
|
// If not none, RenameReg can be used to rename the result register of the
|
|
// first store in a pair. Currently this only works when merging stores
|
|
// forward.
|
|
Optional<MCPhysReg> RenameReg = None;
|
|
|
|
LdStPairFlags() = default;
|
|
|
|
void setMergeForward(bool V = true) { MergeForward = V; }
|
|
bool getMergeForward() const { return MergeForward; }
|
|
|
|
void setSExtIdx(int V) { SExtIdx = V; }
|
|
int getSExtIdx() const { return SExtIdx; }
|
|
|
|
void setRenameReg(MCPhysReg R) { RenameReg = R; }
|
|
void clearRenameReg() { RenameReg = None; }
|
|
Optional<MCPhysReg> getRenameReg() const { return RenameReg; }
|
|
};
|
|
|
|
struct AArch64LoadStoreOpt : public MachineFunctionPass {
|
|
static char ID;
|
|
|
|
AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
|
|
initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
AliasAnalysis *AA;
|
|
const AArch64InstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
const AArch64Subtarget *Subtarget;
|
|
|
|
// Track which register units have been modified and used.
|
|
LiveRegUnits ModifiedRegUnits, UsedRegUnits;
|
|
LiveRegUnits DefinedInBB;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
// Scan the instructions looking for a load/store that can be combined
|
|
// with the current instruction into a load/store pair.
|
|
// Return the matching instruction if one is found, else MBB->end().
|
|
MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
|
|
LdStPairFlags &Flags,
|
|
unsigned Limit,
|
|
bool FindNarrowMerge);
|
|
|
|
// Scan the instructions looking for a store that writes to the address from
|
|
// which the current load instruction reads. Return true if one is found.
|
|
bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
|
|
MachineBasicBlock::iterator &StoreI);
|
|
|
|
// Merge the two instructions indicated into a wider narrow store instruction.
|
|
MachineBasicBlock::iterator
|
|
mergeNarrowZeroStores(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator MergeMI,
|
|
const LdStPairFlags &Flags);
|
|
|
|
// Merge the two instructions indicated into a single pair-wise instruction.
|
|
MachineBasicBlock::iterator
|
|
mergePairedInsns(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator Paired,
|
|
const LdStPairFlags &Flags);
|
|
|
|
// Promote the load that reads directly from the address stored to.
|
|
MachineBasicBlock::iterator
|
|
promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
|
|
MachineBasicBlock::iterator StoreI);
|
|
|
|
// Scan the instruction list to find a base register update that can
|
|
// be combined with the current instruction (a load or store) using
|
|
// pre or post indexed addressing with writeback. Scan forwards.
|
|
MachineBasicBlock::iterator
|
|
findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
|
|
int UnscaledOffset, unsigned Limit);
|
|
|
|
// Scan the instruction list to find a base register update that can
|
|
// be combined with the current instruction (a load or store) using
|
|
// pre or post indexed addressing with writeback. Scan backwards.
|
|
MachineBasicBlock::iterator
|
|
findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
|
|
|
|
// Find an instruction that updates the base register of the ld/st
|
|
// instruction.
|
|
bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
|
|
unsigned BaseReg, int Offset);
|
|
|
|
// Merge a pre- or post-index base register update into a ld/st instruction.
|
|
MachineBasicBlock::iterator
|
|
mergeUpdateInsn(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator Update, bool IsPreIdx);
|
|
|
|
// Find and merge zero store instructions.
|
|
bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI);
|
|
|
|
// Find and pair ldr/str instructions.
|
|
bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
|
|
|
|
// Find and promote load instructions which read directly from store.
|
|
bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
|
|
|
|
// Find and merge a base register updates before or after a ld/st instruction.
|
|
bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI);
|
|
|
|
bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt);
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; }
|
|
};
|
|
|
|
char AArch64LoadStoreOpt::ID = 0;
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
|
|
AARCH64_LOAD_STORE_OPT_NAME, false, false)
|
|
|
|
static bool isNarrowStore(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case AArch64::STRBBui:
|
|
case AArch64::STURBBi:
|
|
case AArch64::STRHHui:
|
|
case AArch64::STURHHi:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// These instruction set memory tag and either keep memory contents unchanged or
|
|
// set it to zero, ignoring the address part of the source register.
|
|
static bool isTagStore(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::STGOffset:
|
|
case AArch64::STZGOffset:
|
|
case AArch64::ST2GOffset:
|
|
case AArch64::STZ2GOffset:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static unsigned getMatchingNonSExtOpcode(unsigned Opc,
|
|
bool *IsValidLdStrOpc = nullptr) {
|
|
if (IsValidLdStrOpc)
|
|
*IsValidLdStrOpc = true;
|
|
switch (Opc) {
|
|
default:
|
|
if (IsValidLdStrOpc)
|
|
*IsValidLdStrOpc = false;
|
|
return std::numeric_limits<unsigned>::max();
|
|
case AArch64::STRDui:
|
|
case AArch64::STURDi:
|
|
case AArch64::STRQui:
|
|
case AArch64::STURQi:
|
|
case AArch64::STRBBui:
|
|
case AArch64::STURBBi:
|
|
case AArch64::STRHHui:
|
|
case AArch64::STURHHi:
|
|
case AArch64::STRWui:
|
|
case AArch64::STURWi:
|
|
case AArch64::STRXui:
|
|
case AArch64::STURXi:
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDURDi:
|
|
case AArch64::LDRQui:
|
|
case AArch64::LDURQi:
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDURXi:
|
|
case AArch64::STRSui:
|
|
case AArch64::STURSi:
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDURSi:
|
|
return Opc;
|
|
case AArch64::LDRSWui:
|
|
return AArch64::LDRWui;
|
|
case AArch64::LDURSWi:
|
|
return AArch64::LDURWi;
|
|
}
|
|
}
|
|
|
|
static unsigned getMatchingWideOpcode(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Opcode has no wide equivalent!");
|
|
case AArch64::STRBBui:
|
|
return AArch64::STRHHui;
|
|
case AArch64::STRHHui:
|
|
return AArch64::STRWui;
|
|
case AArch64::STURBBi:
|
|
return AArch64::STURHHi;
|
|
case AArch64::STURHHi:
|
|
return AArch64::STURWi;
|
|
case AArch64::STURWi:
|
|
return AArch64::STURXi;
|
|
case AArch64::STRWui:
|
|
return AArch64::STRXui;
|
|
}
|
|
}
|
|
|
|
static unsigned getMatchingPairOpcode(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Opcode has no pairwise equivalent!");
|
|
case AArch64::STRSui:
|
|
case AArch64::STURSi:
|
|
return AArch64::STPSi;
|
|
case AArch64::STRDui:
|
|
case AArch64::STURDi:
|
|
return AArch64::STPDi;
|
|
case AArch64::STRQui:
|
|
case AArch64::STURQi:
|
|
return AArch64::STPQi;
|
|
case AArch64::STRWui:
|
|
case AArch64::STURWi:
|
|
return AArch64::STPWi;
|
|
case AArch64::STRXui:
|
|
case AArch64::STURXi:
|
|
return AArch64::STPXi;
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDURSi:
|
|
return AArch64::LDPSi;
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDURDi:
|
|
return AArch64::LDPDi;
|
|
case AArch64::LDRQui:
|
|
case AArch64::LDURQi:
|
|
return AArch64::LDPQi;
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDURWi:
|
|
return AArch64::LDPWi;
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDURXi:
|
|
return AArch64::LDPXi;
|
|
case AArch64::LDRSWui:
|
|
case AArch64::LDURSWi:
|
|
return AArch64::LDPSWi;
|
|
}
|
|
}
|
|
|
|
static unsigned isMatchingStore(MachineInstr &LoadInst,
|
|
MachineInstr &StoreInst) {
|
|
unsigned LdOpc = LoadInst.getOpcode();
|
|
unsigned StOpc = StoreInst.getOpcode();
|
|
switch (LdOpc) {
|
|
default:
|
|
llvm_unreachable("Unsupported load instruction!");
|
|
case AArch64::LDRBBui:
|
|
return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
|
|
StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
|
|
case AArch64::LDURBBi:
|
|
return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
|
|
StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
|
|
case AArch64::LDRHHui:
|
|
return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
|
|
StOpc == AArch64::STRXui;
|
|
case AArch64::LDURHHi:
|
|
return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
|
|
StOpc == AArch64::STURXi;
|
|
case AArch64::LDRWui:
|
|
return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
|
|
case AArch64::LDURWi:
|
|
return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
|
|
case AArch64::LDRXui:
|
|
return StOpc == AArch64::STRXui;
|
|
case AArch64::LDURXi:
|
|
return StOpc == AArch64::STURXi;
|
|
}
|
|
}
|
|
|
|
static unsigned getPreIndexedOpcode(unsigned Opc) {
|
|
// FIXME: We don't currently support creating pre-indexed loads/stores when
|
|
// the load or store is the unscaled version. If we decide to perform such an
|
|
// optimization in the future the cases for the unscaled loads/stores will
|
|
// need to be added here.
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Opcode has no pre-indexed equivalent!");
|
|
case AArch64::STRSui:
|
|
return AArch64::STRSpre;
|
|
case AArch64::STRDui:
|
|
return AArch64::STRDpre;
|
|
case AArch64::STRQui:
|
|
return AArch64::STRQpre;
|
|
case AArch64::STRBBui:
|
|
return AArch64::STRBBpre;
|
|
case AArch64::STRHHui:
|
|
return AArch64::STRHHpre;
|
|
case AArch64::STRWui:
|
|
return AArch64::STRWpre;
|
|
case AArch64::STRXui:
|
|
return AArch64::STRXpre;
|
|
case AArch64::LDRSui:
|
|
return AArch64::LDRSpre;
|
|
case AArch64::LDRDui:
|
|
return AArch64::LDRDpre;
|
|
case AArch64::LDRQui:
|
|
return AArch64::LDRQpre;
|
|
case AArch64::LDRBBui:
|
|
return AArch64::LDRBBpre;
|
|
case AArch64::LDRHHui:
|
|
return AArch64::LDRHHpre;
|
|
case AArch64::LDRWui:
|
|
return AArch64::LDRWpre;
|
|
case AArch64::LDRXui:
|
|
return AArch64::LDRXpre;
|
|
case AArch64::LDRSWui:
|
|
return AArch64::LDRSWpre;
|
|
case AArch64::LDPSi:
|
|
return AArch64::LDPSpre;
|
|
case AArch64::LDPSWi:
|
|
return AArch64::LDPSWpre;
|
|
case AArch64::LDPDi:
|
|
return AArch64::LDPDpre;
|
|
case AArch64::LDPQi:
|
|
return AArch64::LDPQpre;
|
|
case AArch64::LDPWi:
|
|
return AArch64::LDPWpre;
|
|
case AArch64::LDPXi:
|
|
return AArch64::LDPXpre;
|
|
case AArch64::STPSi:
|
|
return AArch64::STPSpre;
|
|
case AArch64::STPDi:
|
|
return AArch64::STPDpre;
|
|
case AArch64::STPQi:
|
|
return AArch64::STPQpre;
|
|
case AArch64::STPWi:
|
|
return AArch64::STPWpre;
|
|
case AArch64::STPXi:
|
|
return AArch64::STPXpre;
|
|
case AArch64::STGOffset:
|
|
return AArch64::STGPreIndex;
|
|
case AArch64::STZGOffset:
|
|
return AArch64::STZGPreIndex;
|
|
case AArch64::ST2GOffset:
|
|
return AArch64::ST2GPreIndex;
|
|
case AArch64::STZ2GOffset:
|
|
return AArch64::STZ2GPreIndex;
|
|
case AArch64::STGPi:
|
|
return AArch64::STGPpre;
|
|
}
|
|
}
|
|
|
|
static unsigned getPostIndexedOpcode(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Opcode has no post-indexed wise equivalent!");
|
|
case AArch64::STRSui:
|
|
case AArch64::STURSi:
|
|
return AArch64::STRSpost;
|
|
case AArch64::STRDui:
|
|
case AArch64::STURDi:
|
|
return AArch64::STRDpost;
|
|
case AArch64::STRQui:
|
|
case AArch64::STURQi:
|
|
return AArch64::STRQpost;
|
|
case AArch64::STRBBui:
|
|
return AArch64::STRBBpost;
|
|
case AArch64::STRHHui:
|
|
return AArch64::STRHHpost;
|
|
case AArch64::STRWui:
|
|
case AArch64::STURWi:
|
|
return AArch64::STRWpost;
|
|
case AArch64::STRXui:
|
|
case AArch64::STURXi:
|
|
return AArch64::STRXpost;
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDURSi:
|
|
return AArch64::LDRSpost;
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDURDi:
|
|
return AArch64::LDRDpost;
|
|
case AArch64::LDRQui:
|
|
case AArch64::LDURQi:
|
|
return AArch64::LDRQpost;
|
|
case AArch64::LDRBBui:
|
|
return AArch64::LDRBBpost;
|
|
case AArch64::LDRHHui:
|
|
return AArch64::LDRHHpost;
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDURWi:
|
|
return AArch64::LDRWpost;
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDURXi:
|
|
return AArch64::LDRXpost;
|
|
case AArch64::LDRSWui:
|
|
return AArch64::LDRSWpost;
|
|
case AArch64::LDPSi:
|
|
return AArch64::LDPSpost;
|
|
case AArch64::LDPSWi:
|
|
return AArch64::LDPSWpost;
|
|
case AArch64::LDPDi:
|
|
return AArch64::LDPDpost;
|
|
case AArch64::LDPQi:
|
|
return AArch64::LDPQpost;
|
|
case AArch64::LDPWi:
|
|
return AArch64::LDPWpost;
|
|
case AArch64::LDPXi:
|
|
return AArch64::LDPXpost;
|
|
case AArch64::STPSi:
|
|
return AArch64::STPSpost;
|
|
case AArch64::STPDi:
|
|
return AArch64::STPDpost;
|
|
case AArch64::STPQi:
|
|
return AArch64::STPQpost;
|
|
case AArch64::STPWi:
|
|
return AArch64::STPWpost;
|
|
case AArch64::STPXi:
|
|
return AArch64::STPXpost;
|
|
case AArch64::STGOffset:
|
|
return AArch64::STGPostIndex;
|
|
case AArch64::STZGOffset:
|
|
return AArch64::STZGPostIndex;
|
|
case AArch64::ST2GOffset:
|
|
return AArch64::ST2GPostIndex;
|
|
case AArch64::STZ2GOffset:
|
|
return AArch64::STZ2GPostIndex;
|
|
case AArch64::STGPi:
|
|
return AArch64::STGPpost;
|
|
}
|
|
}
|
|
|
|
static bool isPairedLdSt(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::LDPSi:
|
|
case AArch64::LDPSWi:
|
|
case AArch64::LDPDi:
|
|
case AArch64::LDPQi:
|
|
case AArch64::LDPWi:
|
|
case AArch64::LDPXi:
|
|
case AArch64::STPSi:
|
|
case AArch64::STPDi:
|
|
case AArch64::STPQi:
|
|
case AArch64::STPWi:
|
|
case AArch64::STPXi:
|
|
case AArch64::STGPi:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Returns the scale and offset range of pre/post indexed variants of MI.
|
|
static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale,
|
|
int &MinOffset, int &MaxOffset) {
|
|
bool IsPaired = isPairedLdSt(MI);
|
|
bool IsTagStore = isTagStore(MI);
|
|
// ST*G and all paired ldst have the same scale in pre/post-indexed variants
|
|
// as in the "unsigned offset" variant.
|
|
// All other pre/post indexed ldst instructions are unscaled.
|
|
Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1;
|
|
|
|
if (IsPaired) {
|
|
MinOffset = -64;
|
|
MaxOffset = 63;
|
|
} else {
|
|
MinOffset = -256;
|
|
MaxOffset = 255;
|
|
}
|
|
}
|
|
|
|
static MachineOperand &getLdStRegOp(MachineInstr &MI,
|
|
unsigned PairedRegOp = 0) {
|
|
assert(PairedRegOp < 2 && "Unexpected register operand idx.");
|
|
unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0;
|
|
return MI.getOperand(Idx);
|
|
}
|
|
|
|
static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) {
|
|
unsigned Idx = isPairedLdSt(MI) ? 2 : 1;
|
|
return MI.getOperand(Idx);
|
|
}
|
|
|
|
static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) {
|
|
unsigned Idx = isPairedLdSt(MI) ? 3 : 2;
|
|
return MI.getOperand(Idx);
|
|
}
|
|
|
|
static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst,
|
|
MachineInstr &StoreInst,
|
|
const AArch64InstrInfo *TII) {
|
|
assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
|
|
int LoadSize = TII->getMemScale(LoadInst);
|
|
int StoreSize = TII->getMemScale(StoreInst);
|
|
int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst)
|
|
? getLdStOffsetOp(StoreInst).getImm()
|
|
: getLdStOffsetOp(StoreInst).getImm() * StoreSize;
|
|
int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst)
|
|
? getLdStOffsetOp(LoadInst).getImm()
|
|
: getLdStOffsetOp(LoadInst).getImm() * LoadSize;
|
|
return (UnscaledStOffset <= UnscaledLdOffset) &&
|
|
(UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
|
|
}
|
|
|
|
static bool isPromotableZeroStoreInst(MachineInstr &MI) {
|
|
unsigned Opc = MI.getOpcode();
|
|
return (Opc == AArch64::STRWui || Opc == AArch64::STURWi ||
|
|
isNarrowStore(Opc)) &&
|
|
getLdStRegOp(MI).getReg() == AArch64::WZR;
|
|
}
|
|
|
|
static bool isPromotableLoadFromStore(MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
// Scaled instructions.
|
|
case AArch64::LDRBBui:
|
|
case AArch64::LDRHHui:
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDRXui:
|
|
// Unscaled instructions.
|
|
case AArch64::LDURBBi:
|
|
case AArch64::LDURHHi:
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDURXi:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool isMergeableLdStUpdate(MachineInstr &MI) {
|
|
unsigned Opc = MI.getOpcode();
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
// Scaled instructions.
|
|
case AArch64::STRSui:
|
|
case AArch64::STRDui:
|
|
case AArch64::STRQui:
|
|
case AArch64::STRXui:
|
|
case AArch64::STRWui:
|
|
case AArch64::STRHHui:
|
|
case AArch64::STRBBui:
|
|
case AArch64::LDRSui:
|
|
case AArch64::LDRDui:
|
|
case AArch64::LDRQui:
|
|
case AArch64::LDRXui:
|
|
case AArch64::LDRWui:
|
|
case AArch64::LDRHHui:
|
|
case AArch64::LDRBBui:
|
|
case AArch64::STGOffset:
|
|
case AArch64::STZGOffset:
|
|
case AArch64::ST2GOffset:
|
|
case AArch64::STZ2GOffset:
|
|
case AArch64::STGPi:
|
|
// Unscaled instructions.
|
|
case AArch64::STURSi:
|
|
case AArch64::STURDi:
|
|
case AArch64::STURQi:
|
|
case AArch64::STURWi:
|
|
case AArch64::STURXi:
|
|
case AArch64::LDURSi:
|
|
case AArch64::LDURDi:
|
|
case AArch64::LDURQi:
|
|
case AArch64::LDURWi:
|
|
case AArch64::LDURXi:
|
|
// Paired instructions.
|
|
case AArch64::LDPSi:
|
|
case AArch64::LDPSWi:
|
|
case AArch64::LDPDi:
|
|
case AArch64::LDPQi:
|
|
case AArch64::LDPWi:
|
|
case AArch64::LDPXi:
|
|
case AArch64::STPSi:
|
|
case AArch64::STPDi:
|
|
case AArch64::STPQi:
|
|
case AArch64::STPWi:
|
|
case AArch64::STPXi:
|
|
// Make sure this is a reg+imm (as opposed to an address reloc).
|
|
if (!getLdStOffsetOp(MI).isImm())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator MergeMI,
|
|
const LdStPairFlags &Flags) {
|
|
assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) &&
|
|
"Expected promotable zero stores.");
|
|
|
|
MachineBasicBlock::iterator E = I->getParent()->end();
|
|
MachineBasicBlock::iterator NextI = next_nodbg(I, E);
|
|
// If NextI is the second of the two instructions to be merged, we need
|
|
// to skip one further. Either way we merge will invalidate the iterator,
|
|
// and we don't need to scan the new instruction, as it's a pairwise
|
|
// instruction, which we're not considering for further action anyway.
|
|
if (NextI == MergeMI)
|
|
NextI = next_nodbg(NextI, E);
|
|
|
|
unsigned Opc = I->getOpcode();
|
|
bool IsScaled = !TII->isUnscaledLdSt(Opc);
|
|
int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I);
|
|
|
|
bool MergeForward = Flags.getMergeForward();
|
|
// Insert our new paired instruction after whichever of the paired
|
|
// instructions MergeForward indicates.
|
|
MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
|
|
// Also based on MergeForward is from where we copy the base register operand
|
|
// so we get the flags compatible with the input code.
|
|
const MachineOperand &BaseRegOp =
|
|
MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I);
|
|
|
|
// Which register is Rt and which is Rt2 depends on the offset order.
|
|
MachineInstr *RtMI;
|
|
if (getLdStOffsetOp(*I).getImm() ==
|
|
getLdStOffsetOp(*MergeMI).getImm() + OffsetStride)
|
|
RtMI = &*MergeMI;
|
|
else
|
|
RtMI = &*I;
|
|
|
|
int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
|
|
// Change the scaled offset from small to large type.
|
|
if (IsScaled) {
|
|
assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge");
|
|
OffsetImm /= 2;
|
|
}
|
|
|
|
// Construct the new instruction.
|
|
DebugLoc DL = I->getDebugLoc();
|
|
MachineBasicBlock *MBB = I->getParent();
|
|
MachineInstrBuilder MIB;
|
|
MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
|
|
.addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
|
|
.add(BaseRegOp)
|
|
.addImm(OffsetImm)
|
|
.cloneMergedMemRefs({&*I, &*MergeMI})
|
|
.setMIFlags(I->mergeFlagsWith(*MergeMI));
|
|
(void)MIB;
|
|
|
|
LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n ");
|
|
LLVM_DEBUG(I->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " ");
|
|
LLVM_DEBUG(MergeMI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " with instruction:\n ");
|
|
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
// Erase the old instructions.
|
|
I->eraseFromParent();
|
|
MergeMI->eraseFromParent();
|
|
return NextI;
|
|
}
|
|
|
|
// Apply Fn to all instructions between MI and the beginning of the block, until
|
|
// a def for DefReg is reached. Returns true, iff Fn returns true for all
|
|
// visited instructions. Stop after visiting Limit iterations.
|
|
static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg,
|
|
const TargetRegisterInfo *TRI, unsigned Limit,
|
|
std::function<bool(MachineInstr &, bool)> &Fn) {
|
|
auto MBB = MI.getParent();
|
|
for (MachineInstr &I :
|
|
instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) {
|
|
if (!Limit)
|
|
return false;
|
|
--Limit;
|
|
|
|
bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) {
|
|
return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() &&
|
|
TRI->regsOverlap(MOP.getReg(), DefReg);
|
|
});
|
|
if (!Fn(I, isDef))
|
|
return false;
|
|
if (isDef)
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units,
|
|
const TargetRegisterInfo *TRI) {
|
|
|
|
for (const MachineOperand &MOP : phys_regs_and_masks(MI))
|
|
if (MOP.isReg() && MOP.isKill())
|
|
Units.removeReg(MOP.getReg());
|
|
|
|
for (const MachineOperand &MOP : phys_regs_and_masks(MI))
|
|
if (MOP.isReg() && !MOP.isKill())
|
|
Units.addReg(MOP.getReg());
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator Paired,
|
|
const LdStPairFlags &Flags) {
|
|
MachineBasicBlock::iterator E = I->getParent()->end();
|
|
MachineBasicBlock::iterator NextI = next_nodbg(I, E);
|
|
// If NextI is the second of the two instructions to be merged, we need
|
|
// to skip one further. Either way we merge will invalidate the iterator,
|
|
// and we don't need to scan the new instruction, as it's a pairwise
|
|
// instruction, which we're not considering for further action anyway.
|
|
if (NextI == Paired)
|
|
NextI = next_nodbg(NextI, E);
|
|
|
|
int SExtIdx = Flags.getSExtIdx();
|
|
unsigned Opc =
|
|
SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
|
|
bool IsUnscaled = TII->isUnscaledLdSt(Opc);
|
|
int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1;
|
|
|
|
bool MergeForward = Flags.getMergeForward();
|
|
|
|
Optional<MCPhysReg> RenameReg = Flags.getRenameReg();
|
|
if (MergeForward && RenameReg) {
|
|
MCRegister RegToRename = getLdStRegOp(*I).getReg();
|
|
DefinedInBB.addReg(*RenameReg);
|
|
|
|
// Return the sub/super register for RenameReg, matching the size of
|
|
// OriginalReg.
|
|
auto GetMatchingSubReg = [this,
|
|
RenameReg](MCPhysReg OriginalReg) -> MCPhysReg {
|
|
for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg))
|
|
if (TRI->getMinimalPhysRegClass(OriginalReg) ==
|
|
TRI->getMinimalPhysRegClass(SubOrSuper))
|
|
return SubOrSuper;
|
|
llvm_unreachable("Should have found matching sub or super register!");
|
|
};
|
|
|
|
std::function<bool(MachineInstr &, bool)> UpdateMIs =
|
|
[this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) {
|
|
if (IsDef) {
|
|
bool SeenDef = false;
|
|
for (auto &MOP : MI.operands()) {
|
|
// Rename the first explicit definition and all implicit
|
|
// definitions matching RegToRename.
|
|
if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
|
|
(!SeenDef || (MOP.isDef() && MOP.isImplicit())) &&
|
|
TRI->regsOverlap(MOP.getReg(), RegToRename)) {
|
|
assert((MOP.isImplicit() ||
|
|
(MOP.isRenamable() && !MOP.isEarlyClobber())) &&
|
|
"Need renamable operands");
|
|
MOP.setReg(GetMatchingSubReg(MOP.getReg()));
|
|
SeenDef = true;
|
|
}
|
|
}
|
|
} else {
|
|
for (auto &MOP : MI.operands()) {
|
|
if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
|
|
TRI->regsOverlap(MOP.getReg(), RegToRename)) {
|
|
assert((MOP.isImplicit() ||
|
|
(MOP.isRenamable() && !MOP.isEarlyClobber())) &&
|
|
"Need renamable operands");
|
|
MOP.setReg(GetMatchingSubReg(MOP.getReg()));
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n");
|
|
return true;
|
|
};
|
|
forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs);
|
|
|
|
#if !defined(NDEBUG)
|
|
// Make sure the register used for renaming is not used between the paired
|
|
// instructions. That would trash the content before the new paired
|
|
// instruction.
|
|
for (auto &MI :
|
|
iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>(
|
|
std::next(I), std::next(Paired)))
|
|
assert(all_of(MI.operands(),
|
|
[this, &RenameReg](const MachineOperand &MOP) {
|
|
return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
|
|
!TRI->regsOverlap(MOP.getReg(), *RenameReg);
|
|
}) &&
|
|
"Rename register used between paired instruction, trashing the "
|
|
"content");
|
|
#endif
|
|
}
|
|
|
|
// Insert our new paired instruction after whichever of the paired
|
|
// instructions MergeForward indicates.
|
|
MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
|
|
// Also based on MergeForward is from where we copy the base register operand
|
|
// so we get the flags compatible with the input code.
|
|
const MachineOperand &BaseRegOp =
|
|
MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I);
|
|
|
|
int Offset = getLdStOffsetOp(*I).getImm();
|
|
int PairedOffset = getLdStOffsetOp(*Paired).getImm();
|
|
bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode());
|
|
if (IsUnscaled != PairedIsUnscaled) {
|
|
// We're trying to pair instructions that differ in how they are scaled. If
|
|
// I is scaled then scale the offset of Paired accordingly. Otherwise, do
|
|
// the opposite (i.e., make Paired's offset unscaled).
|
|
int MemSize = TII->getMemScale(*Paired);
|
|
if (PairedIsUnscaled) {
|
|
// If the unscaled offset isn't a multiple of the MemSize, we can't
|
|
// pair the operations together.
|
|
assert(!(PairedOffset % TII->getMemScale(*Paired)) &&
|
|
"Offset should be a multiple of the stride!");
|
|
PairedOffset /= MemSize;
|
|
} else {
|
|
PairedOffset *= MemSize;
|
|
}
|
|
}
|
|
|
|
// Which register is Rt and which is Rt2 depends on the offset order.
|
|
MachineInstr *RtMI, *Rt2MI;
|
|
if (Offset == PairedOffset + OffsetStride) {
|
|
RtMI = &*Paired;
|
|
Rt2MI = &*I;
|
|
// Here we swapped the assumption made for SExtIdx.
|
|
// I.e., we turn ldp I, Paired into ldp Paired, I.
|
|
// Update the index accordingly.
|
|
if (SExtIdx != -1)
|
|
SExtIdx = (SExtIdx + 1) % 2;
|
|
} else {
|
|
RtMI = &*I;
|
|
Rt2MI = &*Paired;
|
|
}
|
|
int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
|
|
// Scale the immediate offset, if necessary.
|
|
if (TII->isUnscaledLdSt(RtMI->getOpcode())) {
|
|
assert(!(OffsetImm % TII->getMemScale(*RtMI)) &&
|
|
"Unscaled offset cannot be scaled.");
|
|
OffsetImm /= TII->getMemScale(*RtMI);
|
|
}
|
|
|
|
// Construct the new instruction.
|
|
MachineInstrBuilder MIB;
|
|
DebugLoc DL = I->getDebugLoc();
|
|
MachineBasicBlock *MBB = I->getParent();
|
|
MachineOperand RegOp0 = getLdStRegOp(*RtMI);
|
|
MachineOperand RegOp1 = getLdStRegOp(*Rt2MI);
|
|
// Kill flags may become invalid when moving stores for pairing.
|
|
if (RegOp0.isUse()) {
|
|
if (!MergeForward) {
|
|
// Clear kill flags on store if moving upwards. Example:
|
|
// STRWui %w0, ...
|
|
// USE %w1
|
|
// STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards
|
|
RegOp0.setIsKill(false);
|
|
RegOp1.setIsKill(false);
|
|
} else {
|
|
// Clear kill flags of the first stores register. Example:
|
|
// STRWui %w1, ...
|
|
// USE kill %w1 ; need to clear kill flag when moving STRWui downwards
|
|
// STRW %w0
|
|
Register Reg = getLdStRegOp(*I).getReg();
|
|
for (MachineInstr &MI : make_range(std::next(I), Paired))
|
|
MI.clearRegisterKills(Reg, TRI);
|
|
}
|
|
}
|
|
MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc)))
|
|
.add(RegOp0)
|
|
.add(RegOp1)
|
|
.add(BaseRegOp)
|
|
.addImm(OffsetImm)
|
|
.cloneMergedMemRefs({&*I, &*Paired})
|
|
.setMIFlags(I->mergeFlagsWith(*Paired));
|
|
|
|
(void)MIB;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Creating pair load/store. Replacing instructions:\n ");
|
|
LLVM_DEBUG(I->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " ");
|
|
LLVM_DEBUG(Paired->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " with instruction:\n ");
|
|
if (SExtIdx != -1) {
|
|
// Generate the sign extension for the proper result of the ldp.
|
|
// I.e., with X1, that would be:
|
|
// %w1 = KILL %w1, implicit-def %x1
|
|
// %x1 = SBFMXri killed %x1, 0, 31
|
|
MachineOperand &DstMO = MIB->getOperand(SExtIdx);
|
|
// Right now, DstMO has the extended register, since it comes from an
|
|
// extended opcode.
|
|
Register DstRegX = DstMO.getReg();
|
|
// Get the W variant of that register.
|
|
Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
|
|
// Update the result of LDP to use the W instead of the X variant.
|
|
DstMO.setReg(DstRegW);
|
|
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
// Make the machine verifier happy by providing a definition for
|
|
// the X register.
|
|
// Insert this definition right after the generated LDP, i.e., before
|
|
// InsertionPoint.
|
|
MachineInstrBuilder MIBKill =
|
|
BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
|
|
.addReg(DstRegW)
|
|
.addReg(DstRegX, RegState::Define);
|
|
MIBKill->getOperand(2).setImplicit();
|
|
// Create the sign extension.
|
|
MachineInstrBuilder MIBSXTW =
|
|
BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
|
|
.addReg(DstRegX)
|
|
.addImm(0)
|
|
.addImm(31);
|
|
(void)MIBSXTW;
|
|
LLVM_DEBUG(dbgs() << " Extend operand:\n ");
|
|
LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
|
|
} else {
|
|
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
if (MergeForward)
|
|
for (const MachineOperand &MOP : phys_regs_and_masks(*I))
|
|
if (MOP.isReg() && MOP.isKill())
|
|
DefinedInBB.addReg(MOP.getReg());
|
|
|
|
// Erase the old instructions.
|
|
I->eraseFromParent();
|
|
Paired->eraseFromParent();
|
|
|
|
return NextI;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
|
|
MachineBasicBlock::iterator StoreI) {
|
|
MachineBasicBlock::iterator NextI =
|
|
next_nodbg(LoadI, LoadI->getParent()->end());
|
|
|
|
int LoadSize = TII->getMemScale(*LoadI);
|
|
int StoreSize = TII->getMemScale(*StoreI);
|
|
Register LdRt = getLdStRegOp(*LoadI).getReg();
|
|
const MachineOperand &StMO = getLdStRegOp(*StoreI);
|
|
Register StRt = getLdStRegOp(*StoreI).getReg();
|
|
bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
|
|
|
|
assert((IsStoreXReg ||
|
|
TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
|
|
"Unexpected RegClass");
|
|
|
|
MachineInstr *BitExtMI;
|
|
if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
|
|
// Remove the load, if the destination register of the loads is the same
|
|
// register for stored value.
|
|
if (StRt == LdRt && LoadSize == 8) {
|
|
for (MachineInstr &MI : make_range(StoreI->getIterator(),
|
|
LoadI->getIterator())) {
|
|
if (MI.killsRegister(StRt, TRI)) {
|
|
MI.clearRegisterKills(StRt, TRI);
|
|
break;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Remove load instruction:\n ");
|
|
LLVM_DEBUG(LoadI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
LoadI->eraseFromParent();
|
|
return NextI;
|
|
}
|
|
// Replace the load with a mov if the load and store are in the same size.
|
|
BitExtMI =
|
|
BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
|
|
TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
|
|
.addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
|
|
.add(StMO)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
|
|
.setMIFlags(LoadI->getFlags());
|
|
} else {
|
|
// FIXME: Currently we disable this transformation in big-endian targets as
|
|
// performance and correctness are verified only in little-endian.
|
|
if (!Subtarget->isLittleEndian())
|
|
return NextI;
|
|
bool IsUnscaled = TII->isUnscaledLdSt(*LoadI);
|
|
assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) &&
|
|
"Unsupported ld/st match");
|
|
assert(LoadSize <= StoreSize && "Invalid load size");
|
|
int UnscaledLdOffset = IsUnscaled
|
|
? getLdStOffsetOp(*LoadI).getImm()
|
|
: getLdStOffsetOp(*LoadI).getImm() * LoadSize;
|
|
int UnscaledStOffset = IsUnscaled
|
|
? getLdStOffsetOp(*StoreI).getImm()
|
|
: getLdStOffsetOp(*StoreI).getImm() * StoreSize;
|
|
int Width = LoadSize * 8;
|
|
unsigned DestReg =
|
|
IsStoreXReg ? Register(TRI->getMatchingSuperReg(
|
|
LdRt, AArch64::sub_32, &AArch64::GPR64RegClass))
|
|
: LdRt;
|
|
|
|
assert((UnscaledLdOffset >= UnscaledStOffset &&
|
|
(UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
|
|
"Invalid offset");
|
|
|
|
int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
|
|
int Imms = Immr + Width - 1;
|
|
if (UnscaledLdOffset == UnscaledStOffset) {
|
|
uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
|
|
| ((Immr) << 6) // immr
|
|
| ((Imms) << 0) // imms
|
|
;
|
|
|
|
BitExtMI =
|
|
BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
|
|
TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
|
|
DestReg)
|
|
.add(StMO)
|
|
.addImm(AndMaskEncoded)
|
|
.setMIFlags(LoadI->getFlags());
|
|
} else {
|
|
BitExtMI =
|
|
BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
|
|
TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
|
|
DestReg)
|
|
.add(StMO)
|
|
.addImm(Immr)
|
|
.addImm(Imms)
|
|
.setMIFlags(LoadI->getFlags());
|
|
}
|
|
}
|
|
|
|
// Clear kill flags between store and load.
|
|
for (MachineInstr &MI : make_range(StoreI->getIterator(),
|
|
BitExtMI->getIterator()))
|
|
if (MI.killsRegister(StRt, TRI)) {
|
|
MI.clearRegisterKills(StRt, TRI);
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n ");
|
|
LLVM_DEBUG(StoreI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " ");
|
|
LLVM_DEBUG(LoadI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " with instructions:\n ");
|
|
LLVM_DEBUG(StoreI->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " ");
|
|
LLVM_DEBUG((BitExtMI)->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
// Erase the old instructions.
|
|
LoadI->eraseFromParent();
|
|
return NextI;
|
|
}
|
|
|
|
static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
|
|
// Convert the byte-offset used by unscaled into an "element" offset used
|
|
// by the scaled pair load/store instructions.
|
|
if (IsUnscaled) {
|
|
// If the byte-offset isn't a multiple of the stride, there's no point
|
|
// trying to match it.
|
|
if (Offset % OffsetStride)
|
|
return false;
|
|
Offset /= OffsetStride;
|
|
}
|
|
return Offset <= 63 && Offset >= -64;
|
|
}
|
|
|
|
// Do alignment, specialized to power of 2 and for signed ints,
|
|
// avoiding having to do a C-style cast from uint_64t to int when
|
|
// using alignTo from include/llvm/Support/MathExtras.h.
|
|
// FIXME: Move this function to include/MathExtras.h?
|
|
static int alignTo(int Num, int PowOf2) {
|
|
return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
|
|
}
|
|
|
|
static bool mayAlias(MachineInstr &MIa,
|
|
SmallVectorImpl<MachineInstr *> &MemInsns,
|
|
AliasAnalysis *AA) {
|
|
for (MachineInstr *MIb : MemInsns)
|
|
if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AArch64LoadStoreOpt::findMatchingStore(
|
|
MachineBasicBlock::iterator I, unsigned Limit,
|
|
MachineBasicBlock::iterator &StoreI) {
|
|
MachineBasicBlock::iterator B = I->getParent()->begin();
|
|
MachineBasicBlock::iterator MBBI = I;
|
|
MachineInstr &LoadMI = *I;
|
|
Register BaseReg = getLdStBaseOp(LoadMI).getReg();
|
|
|
|
// If the load is the first instruction in the block, there's obviously
|
|
// not any matching store.
|
|
if (MBBI == B)
|
|
return false;
|
|
|
|
// Track which register units have been modified and used between the first
|
|
// insn and the second insn.
|
|
ModifiedRegUnits.clear();
|
|
UsedRegUnits.clear();
|
|
|
|
unsigned Count = 0;
|
|
do {
|
|
MBBI = prev_nodbg(MBBI, B);
|
|
MachineInstr &MI = *MBBI;
|
|
|
|
// Don't count transient instructions towards the search limit since there
|
|
// may be different numbers of them if e.g. debug information is present.
|
|
if (!MI.isTransient())
|
|
++Count;
|
|
|
|
// If the load instruction reads directly from the address to which the
|
|
// store instruction writes and the stored value is not modified, we can
|
|
// promote the load. Since we do not handle stores with pre-/post-index,
|
|
// it's unnecessary to check if BaseReg is modified by the store itself.
|
|
// Also we can't handle stores without an immediate offset operand,
|
|
// while the operand might be the address for a global variable.
|
|
if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
|
|
BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() &&
|
|
isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
|
|
ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) {
|
|
StoreI = MBBI;
|
|
return true;
|
|
}
|
|
|
|
if (MI.isCall())
|
|
return false;
|
|
|
|
// Update modified / uses register units.
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
|
|
|
|
// Otherwise, if the base register is modified, we have no match, so
|
|
// return early.
|
|
if (!ModifiedRegUnits.available(BaseReg))
|
|
return false;
|
|
|
|
// If we encounter a store aliased with the load, return early.
|
|
if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false))
|
|
return false;
|
|
} while (MBBI != B && Count < Limit);
|
|
return false;
|
|
}
|
|
|
|
// Returns true if FirstMI and MI are candidates for merging or pairing.
|
|
// Otherwise, returns false.
|
|
static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI,
|
|
LdStPairFlags &Flags,
|
|
const AArch64InstrInfo *TII) {
|
|
// If this is volatile or if pairing is suppressed, not a candidate.
|
|
if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
|
|
return false;
|
|
|
|
// We should have already checked FirstMI for pair suppression and volatility.
|
|
assert(!FirstMI.hasOrderedMemoryRef() &&
|
|
!TII->isLdStPairSuppressed(FirstMI) &&
|
|
"FirstMI shouldn't get here if either of these checks are true.");
|
|
|
|
unsigned OpcA = FirstMI.getOpcode();
|
|
unsigned OpcB = MI.getOpcode();
|
|
|
|
// Opcodes match: nothing more to check.
|
|
if (OpcA == OpcB)
|
|
return true;
|
|
|
|
// Try to match a sign-extended load/store with a zero-extended load/store.
|
|
bool IsValidLdStrOpc, PairIsValidLdStrOpc;
|
|
unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
|
|
assert(IsValidLdStrOpc &&
|
|
"Given Opc should be a Load or Store with an immediate");
|
|
// OpcA will be the first instruction in the pair.
|
|
if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
|
|
Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
|
|
return true;
|
|
}
|
|
|
|
// If the second instruction isn't even a mergable/pairable load/store, bail
|
|
// out.
|
|
if (!PairIsValidLdStrOpc)
|
|
return false;
|
|
|
|
// FIXME: We don't support merging narrow stores with mixed scaled/unscaled
|
|
// offsets.
|
|
if (isNarrowStore(OpcA) || isNarrowStore(OpcB))
|
|
return false;
|
|
|
|
// Try to match an unscaled load/store with a scaled load/store.
|
|
return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) &&
|
|
getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
|
|
|
|
// FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
|
|
}
|
|
|
|
static bool
|
|
canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween,
|
|
SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (!FirstMI.mayStore())
|
|
return false;
|
|
|
|
// Check if we can find an unused register which we can use to rename
|
|
// the register used by the first load/store.
|
|
auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
|
|
MachineFunction &MF = *FirstMI.getParent()->getParent();
|
|
if (!RegClass || !MF.getRegInfo().tracksLiveness())
|
|
return false;
|
|
|
|
auto RegToRename = getLdStRegOp(FirstMI).getReg();
|
|
// For now, we only rename if the store operand gets killed at the store.
|
|
if (!getLdStRegOp(FirstMI).isKill() &&
|
|
!any_of(FirstMI.operands(),
|
|
[TRI, RegToRename](const MachineOperand &MOP) {
|
|
return MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
|
|
MOP.isImplicit() && MOP.isKill() &&
|
|
TRI->regsOverlap(RegToRename, MOP.getReg());
|
|
})) {
|
|
LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n");
|
|
return false;
|
|
}
|
|
auto canRenameMOP = [TRI](const MachineOperand &MOP) {
|
|
if (MOP.isReg()) {
|
|
auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg());
|
|
// Renaming registers with multiple disjunct sub-registers (e.g. the
|
|
// result of a LD3) means that all sub-registers are renamed, potentially
|
|
// impacting other instructions we did not check. Bail out.
|
|
// Note that this relies on the structure of the AArch64 register file. In
|
|
// particular, a subregister cannot be written without overwriting the
|
|
// whole register.
|
|
if (RegClass->HasDisjunctSubRegs) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< " Cannot rename operands with multiple disjunct subregisters ("
|
|
<< MOP << ")\n");
|
|
return false;
|
|
}
|
|
}
|
|
return MOP.isImplicit() ||
|
|
(MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied());
|
|
};
|
|
|
|
bool FoundDef = false;
|
|
|
|
// For each instruction between FirstMI and the previous def for RegToRename,
|
|
// we
|
|
// * check if we can rename RegToRename in this instruction
|
|
// * collect the registers used and required register classes for RegToRename.
|
|
std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI,
|
|
bool IsDef) {
|
|
LLVM_DEBUG(dbgs() << "Checking " << MI << "\n");
|
|
// Currently we do not try to rename across frame-setup instructions.
|
|
if (MI.getFlag(MachineInstr::FrameSetup)) {
|
|
LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently ("
|
|
<< MI << ")\n");
|
|
return false;
|
|
}
|
|
|
|
UsedInBetween.accumulate(MI);
|
|
|
|
// For a definition, check that we can rename the definition and exit the
|
|
// loop.
|
|
FoundDef = IsDef;
|
|
|
|
// For defs, check if we can rename the first def of RegToRename.
|
|
if (FoundDef) {
|
|
// For some pseudo instructions, we might not generate code in the end
|
|
// (e.g. KILL) and we would end up without a correct def for the rename
|
|
// register.
|
|
// TODO: This might be overly conservative and we could handle those cases
|
|
// in multiple ways:
|
|
// 1. Insert an extra copy, to materialize the def.
|
|
// 2. Skip pseudo-defs until we find an non-pseudo def.
|
|
if (MI.isPseudo()) {
|
|
LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
|
|
for (auto &MOP : MI.operands()) {
|
|
if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() ||
|
|
!TRI->regsOverlap(MOP.getReg(), RegToRename))
|
|
continue;
|
|
if (!canRenameMOP(MOP)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< " Cannot rename " << MOP << " in " << MI << "\n");
|
|
return false;
|
|
}
|
|
RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
|
|
}
|
|
return true;
|
|
} else {
|
|
for (auto &MOP : MI.operands()) {
|
|
if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
|
|
!TRI->regsOverlap(MOP.getReg(), RegToRename))
|
|
continue;
|
|
|
|
if (!canRenameMOP(MOP)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< " Cannot rename " << MOP << " in " << MI << "\n");
|
|
return false;
|
|
}
|
|
RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs))
|
|
return false;
|
|
|
|
if (!FoundDef) {
|
|
LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check if we can find a physical register for renaming. This register must:
|
|
// * not be defined up to FirstMI (checking DefinedInBB)
|
|
// * not used between the MI and the defining instruction of the register to
|
|
// rename (checked using UsedInBetween).
|
|
// * is available in all used register classes (checked using RequiredClasses).
|
|
static Optional<MCPhysReg> tryToFindRegisterToRename(
|
|
MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB,
|
|
LiveRegUnits &UsedInBetween,
|
|
SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
|
|
const TargetRegisterInfo *TRI) {
|
|
auto &MF = *FirstMI.getParent()->getParent();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
|
|
// Checks if any sub- or super-register of PR is callee saved.
|
|
auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) {
|
|
return any_of(TRI->sub_and_superregs_inclusive(PR),
|
|
[&MF, TRI](MCPhysReg SubOrSuper) {
|
|
return TRI->isCalleeSavedPhysReg(SubOrSuper, MF);
|
|
});
|
|
};
|
|
|
|
// Check if PR or one of its sub- or super-registers can be used for all
|
|
// required register classes.
|
|
auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) {
|
|
return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) {
|
|
return any_of(TRI->sub_and_superregs_inclusive(PR),
|
|
[C, TRI](MCPhysReg SubOrSuper) {
|
|
return C == TRI->getMinimalPhysRegClass(SubOrSuper);
|
|
});
|
|
});
|
|
};
|
|
|
|
auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
|
|
for (const MCPhysReg &PR : *RegClass) {
|
|
if (DefinedInBB.available(PR) && UsedInBetween.available(PR) &&
|
|
!RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) &&
|
|
CanBeUsedForAllClasses(PR)) {
|
|
DefinedInBB.addReg(PR);
|
|
LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI)
|
|
<< "\n");
|
|
return {PR};
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "No rename register found from "
|
|
<< TRI->getRegClassName(RegClass) << "\n");
|
|
return None;
|
|
}
|
|
|
|
/// Scan the instructions looking for a load/store that can be combined with the
|
|
/// current instruction into a wider equivalent or a load/store pair.
|
|
MachineBasicBlock::iterator
|
|
AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
|
|
LdStPairFlags &Flags, unsigned Limit,
|
|
bool FindNarrowMerge) {
|
|
MachineBasicBlock::iterator E = I->getParent()->end();
|
|
MachineBasicBlock::iterator MBBI = I;
|
|
MachineBasicBlock::iterator MBBIWithRenameReg;
|
|
MachineInstr &FirstMI = *I;
|
|
MBBI = next_nodbg(MBBI, E);
|
|
|
|
bool MayLoad = FirstMI.mayLoad();
|
|
bool IsUnscaled = TII->isUnscaledLdSt(FirstMI);
|
|
Register Reg = getLdStRegOp(FirstMI).getReg();
|
|
Register BaseReg = getLdStBaseOp(FirstMI).getReg();
|
|
int Offset = getLdStOffsetOp(FirstMI).getImm();
|
|
int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1;
|
|
bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
|
|
|
|
Optional<bool> MaybeCanRename = None;
|
|
if (!EnableRenaming)
|
|
MaybeCanRename = {false};
|
|
|
|
SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses;
|
|
LiveRegUnits UsedInBetween;
|
|
UsedInBetween.init(*TRI);
|
|
|
|
Flags.clearRenameReg();
|
|
|
|
// Track which register units have been modified and used between the first
|
|
// insn (inclusive) and the second insn.
|
|
ModifiedRegUnits.clear();
|
|
UsedRegUnits.clear();
|
|
|
|
// Remember any instructions that read/write memory between FirstMI and MI.
|
|
SmallVector<MachineInstr *, 4> MemInsns;
|
|
|
|
for (unsigned Count = 0; MBBI != E && Count < Limit;
|
|
MBBI = next_nodbg(MBBI, E)) {
|
|
MachineInstr &MI = *MBBI;
|
|
|
|
UsedInBetween.accumulate(MI);
|
|
|
|
// Don't count transient instructions towards the search limit since there
|
|
// may be different numbers of them if e.g. debug information is present.
|
|
if (!MI.isTransient())
|
|
++Count;
|
|
|
|
Flags.setSExtIdx(-1);
|
|
if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
|
|
getLdStOffsetOp(MI).isImm()) {
|
|
assert(MI.mayLoadOrStore() && "Expected memory operation.");
|
|
// If we've found another instruction with the same opcode, check to see
|
|
// if the base and offset are compatible with our starting instruction.
|
|
// These instructions all have scaled immediate operands, so we just
|
|
// check for +1/-1. Make sure to check the new instruction offset is
|
|
// actually an immediate and not a symbolic reference destined for
|
|
// a relocation.
|
|
Register MIBaseReg = getLdStBaseOp(MI).getReg();
|
|
int MIOffset = getLdStOffsetOp(MI).getImm();
|
|
bool MIIsUnscaled = TII->isUnscaledLdSt(MI);
|
|
if (IsUnscaled != MIIsUnscaled) {
|
|
// We're trying to pair instructions that differ in how they are scaled.
|
|
// If FirstMI is scaled then scale the offset of MI accordingly.
|
|
// Otherwise, do the opposite (i.e., make MI's offset unscaled).
|
|
int MemSize = TII->getMemScale(MI);
|
|
if (MIIsUnscaled) {
|
|
// If the unscaled offset isn't a multiple of the MemSize, we can't
|
|
// pair the operations together: bail and keep looking.
|
|
if (MIOffset % MemSize) {
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
|
|
UsedRegUnits, TRI);
|
|
MemInsns.push_back(&MI);
|
|
continue;
|
|
}
|
|
MIOffset /= MemSize;
|
|
} else {
|
|
MIOffset *= MemSize;
|
|
}
|
|
}
|
|
|
|
if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
|
|
(Offset + OffsetStride == MIOffset))) {
|
|
int MinOffset = Offset < MIOffset ? Offset : MIOffset;
|
|
if (FindNarrowMerge) {
|
|
// If the alignment requirements of the scaled wide load/store
|
|
// instruction can't express the offset of the scaled narrow input,
|
|
// bail and keep looking. For promotable zero stores, allow only when
|
|
// the stored value is the same (i.e., WZR).
|
|
if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
|
|
(IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
|
|
UsedRegUnits, TRI);
|
|
MemInsns.push_back(&MI);
|
|
continue;
|
|
}
|
|
} else {
|
|
// Pairwise instructions have a 7-bit signed offset field. Single
|
|
// insns have a 12-bit unsigned offset field. If the resultant
|
|
// immediate offset of merging these instructions is out of range for
|
|
// a pairwise instruction, bail and keep looking.
|
|
if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
|
|
UsedRegUnits, TRI);
|
|
MemInsns.push_back(&MI);
|
|
continue;
|
|
}
|
|
// If the alignment requirements of the paired (scaled) instruction
|
|
// can't express the offset of the unscaled input, bail and keep
|
|
// looking.
|
|
if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
|
|
UsedRegUnits, TRI);
|
|
MemInsns.push_back(&MI);
|
|
continue;
|
|
}
|
|
}
|
|
// If the destination register of one load is the same register or a
|
|
// sub/super register of the other load, bail and keep looking. A
|
|
// load-pair instruction with both destination registers the same is
|
|
// UNPREDICTABLE and will result in an exception.
|
|
if (MayLoad &&
|
|
TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) {
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
|
|
TRI);
|
|
MemInsns.push_back(&MI);
|
|
continue;
|
|
}
|
|
|
|
// If the BaseReg has been modified, then we cannot do the optimization.
|
|
// For example, in the following pattern
|
|
// ldr x1 [x2]
|
|
// ldr x2 [x3]
|
|
// ldr x4 [x2, #8],
|
|
// the first and third ldr cannot be converted to ldp x1, x4, [x2]
|
|
if (!ModifiedRegUnits.available(BaseReg))
|
|
return E;
|
|
|
|
// If the Rt of the second instruction was not modified or used between
|
|
// the two instructions and none of the instructions between the second
|
|
// and first alias with the second, we can combine the second into the
|
|
// first.
|
|
if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) &&
|
|
!(MI.mayLoad() &&
|
|
!UsedRegUnits.available(getLdStRegOp(MI).getReg())) &&
|
|
!mayAlias(MI, MemInsns, AA)) {
|
|
|
|
Flags.setMergeForward(false);
|
|
Flags.clearRenameReg();
|
|
return MBBI;
|
|
}
|
|
|
|
// Likewise, if the Rt of the first instruction is not modified or used
|
|
// between the two instructions and none of the instructions between the
|
|
// first and the second alias with the first, we can combine the first
|
|
// into the second.
|
|
if (!(MayLoad &&
|
|
!UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) &&
|
|
!mayAlias(FirstMI, MemInsns, AA)) {
|
|
|
|
if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) {
|
|
Flags.setMergeForward(true);
|
|
Flags.clearRenameReg();
|
|
return MBBI;
|
|
}
|
|
|
|
if (DebugCounter::shouldExecute(RegRenamingCounter)) {
|
|
if (!MaybeCanRename)
|
|
MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween,
|
|
RequiredClasses, TRI)};
|
|
|
|
if (*MaybeCanRename) {
|
|
Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename(
|
|
FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses,
|
|
TRI);
|
|
if (MaybeRenameReg) {
|
|
Flags.setRenameReg(*MaybeRenameReg);
|
|
Flags.setMergeForward(true);
|
|
MBBIWithRenameReg = MBBI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Unable to combine these instructions due to interference in between.
|
|
// Keep looking.
|
|
}
|
|
}
|
|
|
|
if (Flags.getRenameReg())
|
|
return MBBIWithRenameReg;
|
|
|
|
// If the instruction wasn't a matching load or store. Stop searching if we
|
|
// encounter a call instruction that might modify memory.
|
|
if (MI.isCall())
|
|
return E;
|
|
|
|
// Update modified / uses register units.
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
|
|
|
|
// Otherwise, if the base register is modified, we have no match, so
|
|
// return early.
|
|
if (!ModifiedRegUnits.available(BaseReg))
|
|
return E;
|
|
|
|
// Update list of instructions that read/write memory.
|
|
if (MI.mayLoadOrStore())
|
|
MemInsns.push_back(&MI);
|
|
}
|
|
return E;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator Update,
|
|
bool IsPreIdx) {
|
|
assert((Update->getOpcode() == AArch64::ADDXri ||
|
|
Update->getOpcode() == AArch64::SUBXri) &&
|
|
"Unexpected base register update instruction to merge!");
|
|
MachineBasicBlock::iterator E = I->getParent()->end();
|
|
MachineBasicBlock::iterator NextI = next_nodbg(I, E);
|
|
// Return the instruction following the merged instruction, which is
|
|
// the instruction following our unmerged load. Unless that's the add/sub
|
|
// instruction we're merging, in which case it's the one after that.
|
|
if (NextI == Update)
|
|
NextI = next_nodbg(NextI, E);
|
|
|
|
int Value = Update->getOperand(2).getImm();
|
|
assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
|
|
"Can't merge 1 << 12 offset into pre-/post-indexed load / store");
|
|
if (Update->getOpcode() == AArch64::SUBXri)
|
|
Value = -Value;
|
|
|
|
unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
|
|
: getPostIndexedOpcode(I->getOpcode());
|
|
MachineInstrBuilder MIB;
|
|
int Scale, MinOffset, MaxOffset;
|
|
getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset);
|
|
if (!isPairedLdSt(*I)) {
|
|
// Non-paired instruction.
|
|
MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
|
|
.add(getLdStRegOp(*Update))
|
|
.add(getLdStRegOp(*I))
|
|
.add(getLdStBaseOp(*I))
|
|
.addImm(Value / Scale)
|
|
.setMemRefs(I->memoperands())
|
|
.setMIFlags(I->mergeFlagsWith(*Update));
|
|
} else {
|
|
// Paired instruction.
|
|
MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
|
|
.add(getLdStRegOp(*Update))
|
|
.add(getLdStRegOp(*I, 0))
|
|
.add(getLdStRegOp(*I, 1))
|
|
.add(getLdStBaseOp(*I))
|
|
.addImm(Value / Scale)
|
|
.setMemRefs(I->memoperands())
|
|
.setMIFlags(I->mergeFlagsWith(*Update));
|
|
}
|
|
(void)MIB;
|
|
|
|
if (IsPreIdx) {
|
|
++NumPreFolded;
|
|
LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store.");
|
|
} else {
|
|
++NumPostFolded;
|
|
LLVM_DEBUG(dbgs() << "Creating post-indexed load/store.");
|
|
}
|
|
LLVM_DEBUG(dbgs() << " Replacing instructions:\n ");
|
|
LLVM_DEBUG(I->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " ");
|
|
LLVM_DEBUG(Update->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << " with instruction:\n ");
|
|
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
// Erase the old instructions for the block.
|
|
I->eraseFromParent();
|
|
Update->eraseFromParent();
|
|
|
|
return NextI;
|
|
}
|
|
|
|
bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
|
|
MachineInstr &MI,
|
|
unsigned BaseReg, int Offset) {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64::SUBXri:
|
|
case AArch64::ADDXri:
|
|
// Make sure it's a vanilla immediate operand, not a relocation or
|
|
// anything else we can't handle.
|
|
if (!MI.getOperand(2).isImm())
|
|
break;
|
|
// Watch out for 1 << 12 shifted value.
|
|
if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
|
|
break;
|
|
|
|
// The update instruction source and destination register must be the
|
|
// same as the load/store base register.
|
|
if (MI.getOperand(0).getReg() != BaseReg ||
|
|
MI.getOperand(1).getReg() != BaseReg)
|
|
break;
|
|
|
|
int UpdateOffset = MI.getOperand(2).getImm();
|
|
if (MI.getOpcode() == AArch64::SUBXri)
|
|
UpdateOffset = -UpdateOffset;
|
|
|
|
// The immediate must be a multiple of the scaling factor of the pre/post
|
|
// indexed instruction.
|
|
int Scale, MinOffset, MaxOffset;
|
|
getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset);
|
|
if (UpdateOffset % Scale != 0)
|
|
break;
|
|
|
|
// Scaled offset must fit in the instruction immediate.
|
|
int ScaledOffset = UpdateOffset / Scale;
|
|
if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset)
|
|
break;
|
|
|
|
// If we have a non-zero Offset, we check that it matches the amount
|
|
// we're adding to the register.
|
|
if (!Offset || Offset == UpdateOffset)
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool needsWinCFI(const MachineFunction *MF) {
|
|
return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() &&
|
|
MF->getFunction().needsUnwindTableEntry();
|
|
}
|
|
|
|
MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
|
|
MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
|
|
MachineBasicBlock::iterator E = I->getParent()->end();
|
|
MachineInstr &MemMI = *I;
|
|
MachineBasicBlock::iterator MBBI = I;
|
|
|
|
Register BaseReg = getLdStBaseOp(MemMI).getReg();
|
|
int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI);
|
|
|
|
// Scan forward looking for post-index opportunities. Updating instructions
|
|
// can't be formed if the memory instruction doesn't have the offset we're
|
|
// looking for.
|
|
if (MIUnscaledOffset != UnscaledOffset)
|
|
return E;
|
|
|
|
// If the base register overlaps a source/destination register, we can't
|
|
// merge the update. This does not apply to tag store instructions which
|
|
// ignore the address part of the source register.
|
|
// This does not apply to STGPi as well, which does not have unpredictable
|
|
// behavior in this case unlike normal stores, and always performs writeback
|
|
// after reading the source register value.
|
|
if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) {
|
|
bool IsPairedInsn = isPairedLdSt(MemMI);
|
|
for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
|
|
Register DestReg = getLdStRegOp(MemMI, i).getReg();
|
|
if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
|
|
return E;
|
|
}
|
|
}
|
|
|
|
// Track which register units have been modified and used between the first
|
|
// insn (inclusive) and the second insn.
|
|
ModifiedRegUnits.clear();
|
|
UsedRegUnits.clear();
|
|
MBBI = next_nodbg(MBBI, E);
|
|
|
|
// We can't post-increment the stack pointer if any instruction between
|
|
// the memory access (I) and the increment (MBBI) can access the memory
|
|
// region defined by [SP, MBBI].
|
|
const bool BaseRegSP = BaseReg == AArch64::SP;
|
|
if (BaseRegSP && needsWinCFI(I->getMF())) {
|
|
// FIXME: For now, we always block the optimization over SP in windows
|
|
// targets as it requires to adjust the unwind/debug info, messing up
|
|
// the unwind info can actually cause a miscompile.
|
|
return E;
|
|
}
|
|
|
|
for (unsigned Count = 0; MBBI != E && Count < Limit;
|
|
MBBI = next_nodbg(MBBI, E)) {
|
|
MachineInstr &MI = *MBBI;
|
|
|
|
// Don't count transient instructions towards the search limit since there
|
|
// may be different numbers of them if e.g. debug information is present.
|
|
if (!MI.isTransient())
|
|
++Count;
|
|
|
|
// If we found a match, return it.
|
|
if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
|
|
return MBBI;
|
|
|
|
// Update the status of what the instruction clobbered and used.
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
|
|
|
|
// Otherwise, if the base register is used or modified, we have no match, so
|
|
// return early.
|
|
// If we are optimizing SP, do not allow instructions that may load or store
|
|
// in between the load and the optimized value update.
|
|
if (!ModifiedRegUnits.available(BaseReg) ||
|
|
!UsedRegUnits.available(BaseReg) ||
|
|
(BaseRegSP && MBBI->mayLoadOrStore()))
|
|
return E;
|
|
}
|
|
return E;
|
|
}
|
|
|
|
MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
|
|
MachineBasicBlock::iterator I, unsigned Limit) {
|
|
MachineBasicBlock::iterator B = I->getParent()->begin();
|
|
MachineBasicBlock::iterator E = I->getParent()->end();
|
|
MachineInstr &MemMI = *I;
|
|
MachineBasicBlock::iterator MBBI = I;
|
|
|
|
Register BaseReg = getLdStBaseOp(MemMI).getReg();
|
|
int Offset = getLdStOffsetOp(MemMI).getImm();
|
|
|
|
// If the load/store is the first instruction in the block, there's obviously
|
|
// not any matching update. Ditto if the memory offset isn't zero.
|
|
if (MBBI == B || Offset != 0)
|
|
return E;
|
|
// If the base register overlaps a destination register, we can't
|
|
// merge the update.
|
|
if (!isTagStore(MemMI)) {
|
|
bool IsPairedInsn = isPairedLdSt(MemMI);
|
|
for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
|
|
Register DestReg = getLdStRegOp(MemMI, i).getReg();
|
|
if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
|
|
return E;
|
|
}
|
|
}
|
|
|
|
const bool BaseRegSP = BaseReg == AArch64::SP;
|
|
if (BaseRegSP && needsWinCFI(I->getMF())) {
|
|
// FIXME: For now, we always block the optimization over SP in windows
|
|
// targets as it requires to adjust the unwind/debug info, messing up
|
|
// the unwind info can actually cause a miscompile.
|
|
return E;
|
|
}
|
|
|
|
// Track which register units have been modified and used between the first
|
|
// insn (inclusive) and the second insn.
|
|
ModifiedRegUnits.clear();
|
|
UsedRegUnits.clear();
|
|
unsigned Count = 0;
|
|
do {
|
|
MBBI = prev_nodbg(MBBI, B);
|
|
MachineInstr &MI = *MBBI;
|
|
|
|
// Don't count transient instructions towards the search limit since there
|
|
// may be different numbers of them if e.g. debug information is present.
|
|
if (!MI.isTransient())
|
|
++Count;
|
|
|
|
// If we found a match, return it.
|
|
if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset))
|
|
return MBBI;
|
|
|
|
// Update the status of what the instruction clobbered and used.
|
|
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
|
|
|
|
// Otherwise, if the base register is used or modified, we have no match, so
|
|
// return early.
|
|
if (!ModifiedRegUnits.available(BaseReg) ||
|
|
!UsedRegUnits.available(BaseReg))
|
|
return E;
|
|
} while (MBBI != B && Count < Limit);
|
|
return E;
|
|
}
|
|
|
|
bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
|
|
MachineBasicBlock::iterator &MBBI) {
|
|
MachineInstr &MI = *MBBI;
|
|
// If this is a volatile load, don't mess with it.
|
|
if (MI.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Make sure this is a reg+imm.
|
|
// FIXME: It is possible to extend it to handle reg+reg cases.
|
|
if (!getLdStOffsetOp(MI).isImm())
|
|
return false;
|
|
|
|
// Look backward up to LdStLimit instructions.
|
|
MachineBasicBlock::iterator StoreI;
|
|
if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
|
|
++NumLoadsFromStoresPromoted;
|
|
// Promote the load. Keeping the iterator straight is a
|
|
// pain, so we let the merge routine tell us what the next instruction
|
|
// is after it's done mucking about.
|
|
MBBI = promoteLoadFromStore(MBBI, StoreI);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Merge adjacent zero stores into a wider store.
|
|
bool AArch64LoadStoreOpt::tryToMergeZeroStInst(
|
|
MachineBasicBlock::iterator &MBBI) {
|
|
assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store.");
|
|
MachineInstr &MI = *MBBI;
|
|
MachineBasicBlock::iterator E = MI.getParent()->end();
|
|
|
|
if (!TII->isCandidateToMergeOrPair(MI))
|
|
return false;
|
|
|
|
// Look ahead up to LdStLimit instructions for a mergable instruction.
|
|
LdStPairFlags Flags;
|
|
MachineBasicBlock::iterator MergeMI =
|
|
findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
|
|
if (MergeMI != E) {
|
|
++NumZeroStoresPromoted;
|
|
|
|
// Keeping the iterator straight is a pain, so we let the merge routine tell
|
|
// us what the next instruction is after it's done mucking about.
|
|
MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Find loads and stores that can be merged into a single load or store pair
|
|
// instruction.
|
|
bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
|
|
MachineInstr &MI = *MBBI;
|
|
MachineBasicBlock::iterator E = MI.getParent()->end();
|
|
|
|
if (!TII->isCandidateToMergeOrPair(MI))
|
|
return false;
|
|
|
|
// Early exit if the offset is not possible to match. (6 bits of positive
|
|
// range, plus allow an extra one in case we find a later insn that matches
|
|
// with Offset-1)
|
|
bool IsUnscaled = TII->isUnscaledLdSt(MI);
|
|
int Offset = getLdStOffsetOp(MI).getImm();
|
|
int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1;
|
|
// Allow one more for offset.
|
|
if (Offset > 0)
|
|
Offset -= OffsetStride;
|
|
if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
|
|
return false;
|
|
|
|
// Look ahead up to LdStLimit instructions for a pairable instruction.
|
|
LdStPairFlags Flags;
|
|
MachineBasicBlock::iterator Paired =
|
|
findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
|
|
if (Paired != E) {
|
|
++NumPairCreated;
|
|
if (TII->isUnscaledLdSt(MI))
|
|
++NumUnscaledPairCreated;
|
|
// Keeping the iterator straight is a pain, so we let the merge routine tell
|
|
// us what the next instruction is after it's done mucking about.
|
|
auto Prev = std::prev(MBBI);
|
|
MBBI = mergePairedInsns(MBBI, Paired, Flags);
|
|
// Collect liveness info for instructions between Prev and the new position
|
|
// MBBI.
|
|
for (auto I = std::next(Prev); I != MBBI; I++)
|
|
updateDefinedRegisters(*I, DefinedInBB, TRI);
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64LoadStoreOpt::tryToMergeLdStUpdate
|
|
(MachineBasicBlock::iterator &MBBI) {
|
|
MachineInstr &MI = *MBBI;
|
|
MachineBasicBlock::iterator E = MI.getParent()->end();
|
|
MachineBasicBlock::iterator Update;
|
|
|
|
// Look forward to try to form a post-index instruction. For example,
|
|
// ldr x0, [x20]
|
|
// add x20, x20, #32
|
|
// merged into:
|
|
// ldr x0, [x20], #32
|
|
Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
|
|
if (Update != E) {
|
|
// Merge the update into the ld/st.
|
|
MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
|
|
return true;
|
|
}
|
|
|
|
// Don't know how to handle unscaled pre/post-index versions below, so bail.
|
|
if (TII->isUnscaledLdSt(MI.getOpcode()))
|
|
return false;
|
|
|
|
// Look back to try to find a pre-index instruction. For example,
|
|
// add x0, x0, #8
|
|
// ldr x1, [x0]
|
|
// merged into:
|
|
// ldr x1, [x0, #8]!
|
|
Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
|
|
if (Update != E) {
|
|
// Merge the update into the ld/st.
|
|
MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
|
|
return true;
|
|
}
|
|
|
|
// The immediate in the load/store is scaled by the size of the memory
|
|
// operation. The immediate in the add we're looking for,
|
|
// however, is not, so adjust here.
|
|
int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI);
|
|
|
|
// Look forward to try to find a pre-index instruction. For example,
|
|
// ldr x1, [x0, #64]
|
|
// add x0, x0, #64
|
|
// merged into:
|
|
// ldr x1, [x0, #64]!
|
|
Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
|
|
if (Update != E) {
|
|
// Merge the update into the ld/st.
|
|
MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
|
|
bool EnableNarrowZeroStOpt) {
|
|
|
|
bool Modified = false;
|
|
// Four tranformations to do here:
|
|
// 1) Find loads that directly read from stores and promote them by
|
|
// replacing with mov instructions. If the store is wider than the load,
|
|
// the load will be replaced with a bitfield extract.
|
|
// e.g.,
|
|
// str w1, [x0, #4]
|
|
// ldrh w2, [x0, #6]
|
|
// ; becomes
|
|
// str w1, [x0, #4]
|
|
// lsr w2, w1, #16
|
|
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
|
MBBI != E;) {
|
|
if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI))
|
|
Modified = true;
|
|
else
|
|
++MBBI;
|
|
}
|
|
// 2) Merge adjacent zero stores into a wider store.
|
|
// e.g.,
|
|
// strh wzr, [x0]
|
|
// strh wzr, [x0, #2]
|
|
// ; becomes
|
|
// str wzr, [x0]
|
|
// e.g.,
|
|
// str wzr, [x0]
|
|
// str wzr, [x0, #4]
|
|
// ; becomes
|
|
// str xzr, [x0]
|
|
if (EnableNarrowZeroStOpt)
|
|
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
|
MBBI != E;) {
|
|
if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI))
|
|
Modified = true;
|
|
else
|
|
++MBBI;
|
|
}
|
|
// 3) Find loads and stores that can be merged into a single load or store
|
|
// pair instruction.
|
|
// e.g.,
|
|
// ldr x0, [x2]
|
|
// ldr x1, [x2, #8]
|
|
// ; becomes
|
|
// ldp x0, x1, [x2]
|
|
|
|
if (MBB.getParent()->getRegInfo().tracksLiveness()) {
|
|
DefinedInBB.clear();
|
|
DefinedInBB.addLiveIns(MBB);
|
|
}
|
|
|
|
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
|
MBBI != E;) {
|
|
// Track currently live registers up to this point, to help with
|
|
// searching for a rename register on demand.
|
|
updateDefinedRegisters(*MBBI, DefinedInBB, TRI);
|
|
if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI))
|
|
Modified = true;
|
|
else
|
|
++MBBI;
|
|
}
|
|
// 4) Find base register updates that can be merged into the load or store
|
|
// as a base-reg writeback.
|
|
// e.g.,
|
|
// ldr x0, [x2]
|
|
// add x2, x2, #4
|
|
// ; becomes
|
|
// ldr x0, [x2], #4
|
|
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
|
MBBI != E;) {
|
|
if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI))
|
|
Modified = true;
|
|
else
|
|
++MBBI;
|
|
}
|
|
|
|
return Modified;
|
|
}
|
|
|
|
bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
|
|
if (skipFunction(Fn.getFunction()))
|
|
return false;
|
|
|
|
Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget());
|
|
TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
|
|
TRI = Subtarget->getRegisterInfo();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
// Resize the modified and used register unit trackers. We do this once
|
|
// per function and then clear the register units each time we optimize a load
|
|
// or store.
|
|
ModifiedRegUnits.init(*TRI);
|
|
UsedRegUnits.init(*TRI);
|
|
DefinedInBB.init(*TRI);
|
|
|
|
bool Modified = false;
|
|
bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign();
|
|
for (auto &MBB : Fn) {
|
|
auto M = optimizeBlock(MBB, enableNarrowZeroStOpt);
|
|
Modified |= M;
|
|
}
|
|
|
|
return Modified;
|
|
}
|
|
|
|
// FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and
|
|
// stores near one another? Note: The pre-RA instruction scheduler already has
|
|
// hooks to try and schedule pairable loads/stores together to improve pairing
|
|
// opportunities. Thus, pre-RA pairing pass may not be worth the effort.
|
|
|
|
// FIXME: When pairing store instructions it's very possible for this pass to
|
|
// hoist a store with a KILL marker above another use (without a KILL marker).
|
|
// The resulting IR is invalid, but nothing uses the KILL markers after this
|
|
// pass, so it's never caused a problem in practice.
|
|
|
|
/// createAArch64LoadStoreOptimizationPass - returns an instance of the
|
|
/// load / store optimization pass.
|
|
FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
|
|
return new AArch64LoadStoreOpt();
|
|
}
|