llvm-project/llvm/lib/Target/AArch64/AArch64SpeculationHardening...

702 lines
30 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- AArch64SpeculationHardening.cpp - Harden Against Missspeculation --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass to insert code to mitigate against side channel
// vulnerabilities that may happen under control flow miss-speculation.
//
// The pass implements tracking of control flow miss-speculation into a "taint"
// register. That taint register can then be used to mask off registers with
// sensitive data when executing under miss-speculation, a.k.a. "transient
// execution".
// This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
//
// It also implements speculative load hardening, i.e. using the taint register
// to automatically mask off loaded data.
//
// As a possible follow-on improvement, also an intrinsics-based approach as
// explained at https://lwn.net/Articles/759423/ could be implemented on top of
// the current design.
//
// For AArch64, the following implementation choices are made to implement the
// tracking of control flow miss-speculation into a taint register:
// Some of these are different than the implementation choices made in
// the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
// the instruction set characteristics result in different trade-offs.
// - The speculation hardening is done after register allocation. With a
// relative abundance of registers, one register is reserved (X16) to be
// the taint register. X16 is expected to not clash with other register
// reservation mechanisms with very high probability because:
// . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
// . The only way to request X16 to be used as a programmer is through
// inline assembly. In the rare case a function explicitly demands to
// use X16/W16, this pass falls back to hardening against speculation
// by inserting a DSB SYS/ISB barrier pair which will prevent control
// flow speculation.
// - It is easy to insert mask operations at this late stage as we have
// mask operations available that don't set flags.
// - The taint variable contains all-ones when no miss-speculation is detected,
// and contains all-zeros when miss-speculation is detected. Therefore, when
// masking, an AND instruction (which only changes the register to be masked,
// no other side effects) can easily be inserted anywhere that's needed.
// - The tracking of miss-speculation is done by using a data-flow conditional
// select instruction (CSEL) to evaluate the flags that were also used to
// make conditional branch direction decisions. Speculation of the CSEL
// instruction can be limited with a CSDB instruction - so the combination of
// CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
// aren't speculated. When conditional branch direction gets miss-speculated,
// the semantics of the inserted CSEL instruction is such that the taint
// register will contain all zero bits.
// One key requirement for this to work is that the conditional branch is
// followed by an execution of the CSEL instruction, where the CSEL
// instruction needs to use the same flags status as the conditional branch.
// This means that the conditional branches must not be implemented as one
// of the AArch64 conditional branches that do not use the flags as input
// (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
// selectors to not produce these instructions when speculation hardening
// is enabled. This pass will assert if it does encounter such an instruction.
// - On function call boundaries, the miss-speculation state is transferred from
// the taint register X16 to be encoded in the SP register as value 0.
//
// For the aspect of automatically hardening loads, using the taint register,
// (a.k.a. speculative load hardening, see
// https://llvm.org/docs/SpeculativeLoadHardening.html), the following
// implementation choices are made for AArch64:
// - Many of the optimizations described at
// https://llvm.org/docs/SpeculativeLoadHardening.html to harden fewer
// loads haven't been implemented yet - but for some of them there are
// FIXMEs in the code.
// - loads that load into general purpose (X or W) registers get hardened by
// masking the loaded data. For loads that load into other registers, the
// address loaded from gets hardened. It is expected that hardening the
// loaded data may be more efficient; but masking data in registers other
// than X or W is not easy and may result in being slower than just
// hardening the X address register loaded from.
// - On AArch64, CSDB instructions are inserted between the masking of the
// register and its first use, to ensure there's no non-control-flow
// speculation that might undermine the hardening mechanism.
//
// Future extensions/improvements could be:
// - Implement this functionality using full speculation barriers, akin to the
// x86-slh-lfence option. This may be more useful for the intrinsics-based
// approach than for the SLH approach to masking.
// Note that this pass already inserts the full speculation barriers if the
// function for some niche reason makes use of X16/W16.
// - no indirect branch misprediction gets protected/instrumented; but this
// could be done for some indirect branches, such as switch jump tables.
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "aarch64-speculation-hardening"
#define AARCH64_SPECULATION_HARDENING_NAME "AArch64 speculation hardening pass"
cl::opt<bool> HardenLoads("aarch64-slh-loads", cl::Hidden,
cl::desc("Sanitize loads from memory."),
cl::init(true));
namespace {
class AArch64SpeculationHardening : public MachineFunctionPass {
public:
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
static char ID;
AArch64SpeculationHardening() : MachineFunctionPass(ID) {
initializeAArch64SpeculationHardeningPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &Fn) override;
StringRef getPassName() const override {
return AARCH64_SPECULATION_HARDENING_NAME;
}
private:
unsigned MisspeculatingTaintReg;
unsigned MisspeculatingTaintReg32Bit;
bool UseControlFlowSpeculationBarrier;
BitVector RegsNeedingCSDBBeforeUse;
BitVector RegsAlreadyMasked;
bool functionUsesHardeningRegister(MachineFunction &MF) const;
bool instrumentControlFlow(MachineBasicBlock &MBB,
bool &UsesFullSpeculationBarrier);
bool endsWithCondControlFlow(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
AArch64CC::CondCode &CondCode) const;
void insertTrackingCode(MachineBasicBlock &SplitEdgeBB,
AArch64CC::CondCode &CondCode, DebugLoc DL) const;
void insertSPToRegTaintPropagation(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) const;
void insertRegToSPTaintPropagation(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned TmpReg) const;
void insertFullSpeculationBarrier(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
DebugLoc DL) const;
bool slhLoads(MachineBasicBlock &MBB);
bool makeGPRSpeculationSafe(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineInstr &MI, unsigned Reg);
bool lowerSpeculationSafeValuePseudos(MachineBasicBlock &MBB,
bool UsesFullSpeculationBarrier);
bool expandSpeculationSafeValue(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
bool UsesFullSpeculationBarrier);
bool insertCSDB(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
DebugLoc DL);
};
} // end anonymous namespace
char AArch64SpeculationHardening::ID = 0;
INITIALIZE_PASS(AArch64SpeculationHardening, "aarch64-speculation-hardening",
AARCH64_SPECULATION_HARDENING_NAME, false, false)
bool AArch64SpeculationHardening::endsWithCondControlFlow(
MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
AArch64CC::CondCode &CondCode) const {
SmallVector<MachineOperand, 1> analyzeBranchCondCode;
if (TII->analyzeBranch(MBB, TBB, FBB, analyzeBranchCondCode, false))
return false;
// Ignore if the BB ends in an unconditional branch/fall-through.
if (analyzeBranchCondCode.empty())
return false;
// If the BB ends with a single conditional branch, FBB will be set to
// nullptr (see API docs for TII->analyzeBranch). For the rest of the
// analysis we want the FBB block to be set always.
assert(TBB != nullptr);
if (FBB == nullptr)
FBB = MBB.getFallThrough();
// If both the true and the false condition jump to the same basic block,
// there isn't need for any protection - whether the branch is speculated
// correctly or not, we end up executing the architecturally correct code.
if (TBB == FBB)
return false;
assert(MBB.succ_size() == 2);
// translate analyzeBranchCondCode to CondCode.
assert(analyzeBranchCondCode.size() == 1 && "unknown Cond array format");
CondCode = AArch64CC::CondCode(analyzeBranchCondCode[0].getImm());
return true;
}
void AArch64SpeculationHardening::insertFullSpeculationBarrier(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
DebugLoc DL) const {
// A full control flow speculation barrier consists of (DSB SYS + ISB)
BuildMI(MBB, MBBI, DL, TII->get(AArch64::DSB)).addImm(0xf);
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ISB)).addImm(0xf);
}
void AArch64SpeculationHardening::insertTrackingCode(
MachineBasicBlock &SplitEdgeBB, AArch64CC::CondCode &CondCode,
DebugLoc DL) const {
if (UseControlFlowSpeculationBarrier) {
insertFullSpeculationBarrier(SplitEdgeBB, SplitEdgeBB.begin(), DL);
} else {
BuildMI(SplitEdgeBB, SplitEdgeBB.begin(), DL, TII->get(AArch64::CSELXr))
.addDef(MisspeculatingTaintReg)
.addUse(MisspeculatingTaintReg)
.addUse(AArch64::XZR)
.addImm(CondCode);
SplitEdgeBB.addLiveIn(AArch64::NZCV);
}
}
bool AArch64SpeculationHardening::instrumentControlFlow(
MachineBasicBlock &MBB, bool &UsesFullSpeculationBarrier) {
LLVM_DEBUG(dbgs() << "Instrument control flow tracking on MBB: " << MBB);
bool Modified = false;
MachineBasicBlock *TBB = nullptr;
MachineBasicBlock *FBB = nullptr;
AArch64CC::CondCode CondCode;
if (!endsWithCondControlFlow(MBB, TBB, FBB, CondCode)) {
LLVM_DEBUG(dbgs() << "... doesn't end with CondControlFlow\n");
} else {
// Now insert:
// "CSEL MisSpeculatingR, MisSpeculatingR, XZR, cond" on the True edge and
// "CSEL MisSpeculatingR, MisSpeculatingR, XZR, Invertcond" on the False
// edge.
AArch64CC::CondCode InvCondCode = AArch64CC::getInvertedCondCode(CondCode);
MachineBasicBlock *SplitEdgeTBB = MBB.SplitCriticalEdge(TBB, *this);
MachineBasicBlock *SplitEdgeFBB = MBB.SplitCriticalEdge(FBB, *this);
assert(SplitEdgeTBB != nullptr);
assert(SplitEdgeFBB != nullptr);
DebugLoc DL;
if (MBB.instr_end() != MBB.instr_begin())
DL = (--MBB.instr_end())->getDebugLoc();
insertTrackingCode(*SplitEdgeTBB, CondCode, DL);
insertTrackingCode(*SplitEdgeFBB, InvCondCode, DL);
LLVM_DEBUG(dbgs() << "SplitEdgeTBB: " << *SplitEdgeTBB << "\n");
LLVM_DEBUG(dbgs() << "SplitEdgeFBB: " << *SplitEdgeFBB << "\n");
Modified = true;
}
// Perform correct code generation around function calls and before returns.
// The below variables record the return/terminator instructions and the call
// instructions respectively; including which register is available as a
// temporary register just before the recorded instructions.
SmallVector<std::pair<MachineInstr *, unsigned>, 4> ReturnInstructions;
SmallVector<std::pair<MachineInstr *, unsigned>, 4> CallInstructions;
// if a temporary register is not available for at least one of the
// instructions for which we need to transfer taint to the stack pointer, we
// need to insert a full speculation barrier.
// TmpRegisterNotAvailableEverywhere tracks that condition.
bool TmpRegisterNotAvailableEverywhere = false;
RegScavenger RS;
RS.enterBasicBlock(MBB);
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); I++) {
MachineInstr &MI = *I;
if (!MI.isReturn() && !MI.isCall())
continue;
// The RegScavenger represents registers available *after* the MI
// instruction pointed to by RS.getCurrentPosition().
// We need to have a register that is available *before* the MI is executed.
if (I != MBB.begin())
RS.forward(std::prev(I));
// FIXME: The below just finds *a* unused register. Maybe code could be
// optimized more if this looks for the register that isn't used for the
// longest time around this place, to enable more scheduling freedom. Not
// sure if that would actually result in a big performance difference
// though. Maybe RegisterScavenger::findSurvivorBackwards has some logic
// already to do this - but it's unclear if that could easily be used here.
unsigned TmpReg = RS.FindUnusedReg(&AArch64::GPR64commonRegClass);
LLVM_DEBUG(dbgs() << "RS finds "
<< ((TmpReg == 0) ? "no register " : "register ");
if (TmpReg != 0) dbgs() << printReg(TmpReg, TRI) << " ";
dbgs() << "to be available at MI " << MI);
if (TmpReg == 0)
TmpRegisterNotAvailableEverywhere = true;
if (MI.isReturn())
ReturnInstructions.push_back({&MI, TmpReg});
else if (MI.isCall())
CallInstructions.push_back({&MI, TmpReg});
}
if (TmpRegisterNotAvailableEverywhere) {
// When a temporary register is not available everywhere in this basic
// basic block where a propagate-taint-to-sp operation is needed, just
// emit a full speculation barrier at the start of this basic block, which
// renders the taint/speculation tracking in this basic block unnecessary.
insertFullSpeculationBarrier(MBB, MBB.begin(),
(MBB.begin())->getDebugLoc());
UsesFullSpeculationBarrier = true;
Modified = true;
} else {
for (auto MI_Reg : ReturnInstructions) {
assert(MI_Reg.second != 0);
LLVM_DEBUG(
dbgs()
<< " About to insert Reg to SP taint propagation with temp register "
<< printReg(MI_Reg.second, TRI)
<< " on instruction: " << *MI_Reg.first);
insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
Modified = true;
}
for (auto MI_Reg : CallInstructions) {
assert(MI_Reg.second != 0);
LLVM_DEBUG(dbgs() << " About to insert Reg to SP and back taint "
"propagation with temp register "
<< printReg(MI_Reg.second, TRI)
<< " around instruction: " << *MI_Reg.first);
// Just after the call:
insertSPToRegTaintPropagation(
MBB, std::next((MachineBasicBlock::iterator)MI_Reg.first));
// Just before the call:
insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
Modified = true;
}
}
return Modified;
}
void AArch64SpeculationHardening::insertSPToRegTaintPropagation(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
// If full control flow speculation barriers are used, emit a control flow
// barrier to block potential miss-speculation in flight coming in to this
// function.
if (UseControlFlowSpeculationBarrier) {
insertFullSpeculationBarrier(MBB, MBBI, DebugLoc());
return;
}
// CMP SP, #0 === SUBS xzr, SP, #0
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::SUBSXri))
.addDef(AArch64::XZR)
.addUse(AArch64::SP)
.addImm(0)
.addImm(0); // no shift
// CSETM x16, NE === CSINV x16, xzr, xzr, EQ
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::CSINVXr))
.addDef(MisspeculatingTaintReg)
.addUse(AArch64::XZR)
.addUse(AArch64::XZR)
.addImm(AArch64CC::EQ);
}
void AArch64SpeculationHardening::insertRegToSPTaintPropagation(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned TmpReg) const {
// If full control flow speculation barriers are used, there will not be
// miss-speculation when returning from this function, and therefore, also
// no need to encode potential miss-speculation into the stack pointer.
if (UseControlFlowSpeculationBarrier)
return;
// mov Xtmp, SP === ADD Xtmp, SP, #0
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
.addDef(TmpReg)
.addUse(AArch64::SP)
.addImm(0)
.addImm(0); // no shift
// and Xtmp, Xtmp, TaintReg === AND Xtmp, Xtmp, TaintReg, #0
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ANDXrs))
.addDef(TmpReg, RegState::Renamable)
.addUse(TmpReg, RegState::Kill | RegState::Renamable)
.addUse(MisspeculatingTaintReg, RegState::Kill)
.addImm(0);
// mov SP, Xtmp === ADD SP, Xtmp, #0
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
.addDef(AArch64::SP)
.addUse(TmpReg, RegState::Kill)
.addImm(0)
.addImm(0); // no shift
}
bool AArch64SpeculationHardening::functionUsesHardeningRegister(
MachineFunction &MF) const {
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
// treat function calls specially, as the hardening register does not
// need to remain live across function calls.
if (MI.isCall())
continue;
if (MI.readsRegister(MisspeculatingTaintReg, TRI) ||
MI.modifiesRegister(MisspeculatingTaintReg, TRI))
return true;
}
}
return false;
}
// Make GPR register Reg speculation-safe by putting it through the
// SpeculationSafeValue pseudo instruction, if we can't prove that
// the value in the register has already been hardened.
bool AArch64SpeculationHardening::makeGPRSpeculationSafe(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineInstr &MI,
unsigned Reg) {
assert(AArch64::GPR32allRegClass.contains(Reg) ||
AArch64::GPR64allRegClass.contains(Reg));
// Loads cannot directly load a value into the SP (nor WSP).
// Therefore, if Reg is SP or WSP, it is because the instruction loads from
// the stack through the stack pointer.
//
// Since the stack pointer is never dynamically controllable, don't harden it.
if (Reg == AArch64::SP || Reg == AArch64::WSP)
return false;
// Do not harden the register again if already hardened before.
if (RegsAlreadyMasked[Reg])
return false;
const bool Is64Bit = AArch64::GPR64allRegClass.contains(Reg);
LLVM_DEBUG(dbgs() << "About to harden register : " << Reg << "\n");
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Is64Bit ? AArch64::SpeculationSafeValueX
: AArch64::SpeculationSafeValueW))
.addDef(Reg)
.addUse(Reg);
RegsAlreadyMasked.set(Reg);
return true;
}
bool AArch64SpeculationHardening::slhLoads(MachineBasicBlock &MBB) {
bool Modified = false;
LLVM_DEBUG(dbgs() << "slhLoads running on MBB: " << MBB);
RegsAlreadyMasked.reset();
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MachineBasicBlock::iterator NextMBBI;
for (; MBBI != E; MBBI = NextMBBI) {
MachineInstr &MI = *MBBI;
NextMBBI = std::next(MBBI);
// Only harden loaded values or addresses used in loads.
if (!MI.mayLoad())
continue;
LLVM_DEBUG(dbgs() << "About to harden: " << MI);
// For general purpose register loads, harden the registers loaded into.
// For other loads, harden the address loaded from.
// Masking the loaded value is expected to result in less performance
// overhead, as the load can still execute speculatively in comparison to
// when the address loaded from gets masked. However, masking is only
// easy to do efficiently on GPR registers, so for loads into non-GPR
// registers (e.g. floating point loads), mask the address loaded from.
bool AllDefsAreGPR = llvm::all_of(MI.defs(), [&](MachineOperand &Op) {
return Op.isReg() && (AArch64::GPR32allRegClass.contains(Op.getReg()) ||
AArch64::GPR64allRegClass.contains(Op.getReg()));
});
// FIXME: it might be a worthwhile optimization to not mask loaded
// values if all the registers involved in address calculation are already
// hardened, leading to this load not able to execute on a miss-speculated
// path.
bool HardenLoadedData = AllDefsAreGPR;
bool HardenAddressLoadedFrom = !HardenLoadedData;
// First remove registers from AlreadyMaskedRegisters if their value is
// updated by this instruction - it makes them contain a new value that is
// not guaranteed to already have been masked.
for (MachineOperand Op : MI.defs())
for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
RegsAlreadyMasked.reset(*AI);
// FIXME: loads from the stack with an immediate offset from the stack
// pointer probably shouldn't be hardened, which could result in a
// significant optimization. See section "Dont check loads from
// compile-time constant stack offsets", in
// https://llvm.org/docs/SpeculativeLoadHardening.html
if (HardenLoadedData)
for (auto Def : MI.defs()) {
if (Def.isDead())
// Do not mask a register that is not used further.
continue;
// FIXME: For pre/post-increment addressing modes, the base register
// used in address calculation is also defined by this instruction.
// It might be a worthwhile optimization to not harden that
// base register increment/decrement when the increment/decrement is
// an immediate.
Modified |= makeGPRSpeculationSafe(MBB, NextMBBI, MI, Def.getReg());
}
if (HardenAddressLoadedFrom)
for (auto Use : MI.uses()) {
if (!Use.isReg())
continue;
Register Reg = Use.getReg();
// Some loads of floating point data have implicit defs/uses on a
// super register of that floating point data. Some examples:
// $s0 = LDRSui $sp, 22, implicit-def $q0
// $q0 = LD1i64 $q0, 1, renamable $x0
// We need to filter out these uses for non-GPR register which occur
// because the load partially fills a non-GPR register with the loaded
// data. Just skipping all non-GPR registers is safe (for now) as all
// AArch64 load instructions only use GPR registers to perform the
// address calculation. FIXME: However that might change once we can
// produce SVE gather instructions.
if (!(AArch64::GPR32allRegClass.contains(Reg) ||
AArch64::GPR64allRegClass.contains(Reg)))
continue;
Modified |= makeGPRSpeculationSafe(MBB, MBBI, MI, Reg);
}
}
return Modified;
}
/// \brief If MBBI references a pseudo instruction that should be expanded
/// here, do the expansion and return true. Otherwise return false.
bool AArch64SpeculationHardening::expandSpeculationSafeValue(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
bool UsesFullSpeculationBarrier) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
bool Is64Bit = true;
switch (Opcode) {
default:
break;
case AArch64::SpeculationSafeValueW:
Is64Bit = false;
LLVM_FALLTHROUGH;
case AArch64::SpeculationSafeValueX:
// Just remove the SpeculationSafe pseudo's if control flow
// miss-speculation isn't happening because we're already inserting barriers
// to guarantee that.
if (!UseControlFlowSpeculationBarrier && !UsesFullSpeculationBarrier) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
// Mark this register and all its aliasing registers as needing to be
// value speculation hardened before its next use, by using a CSDB
// barrier instruction.
for (MachineOperand Op : MI.defs())
for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
RegsNeedingCSDBBeforeUse.set(*AI);
// Mask off with taint state.
BuildMI(MBB, MBBI, MI.getDebugLoc(),
Is64Bit ? TII->get(AArch64::ANDXrs) : TII->get(AArch64::ANDWrs))
.addDef(DstReg)
.addUse(SrcReg, RegState::Kill)
.addUse(Is64Bit ? MisspeculatingTaintReg
: MisspeculatingTaintReg32Bit)
.addImm(0);
}
MI.eraseFromParent();
return true;
}
return false;
}
bool AArch64SpeculationHardening::insertCSDB(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
DebugLoc DL) {
assert(!UseControlFlowSpeculationBarrier && "No need to insert CSDBs when "
"control flow miss-speculation "
"is already blocked");
// insert data value speculation barrier (CSDB)
BuildMI(MBB, MBBI, DL, TII->get(AArch64::HINT)).addImm(0x14);
RegsNeedingCSDBBeforeUse.reset();
return true;
}
bool AArch64SpeculationHardening::lowerSpeculationSafeValuePseudos(
MachineBasicBlock &MBB, bool UsesFullSpeculationBarrier) {
bool Modified = false;
RegsNeedingCSDBBeforeUse.reset();
// The following loop iterates over all instructions in the basic block,
// and performs 2 operations:
// 1. Insert a CSDB at this location if needed.
// 2. Expand the SpeculationSafeValuePseudo if the current instruction is
// one.
//
// The insertion of the CSDB is done as late as possible (i.e. just before
// the use of a masked register), in the hope that that will reduce the
// total number of CSDBs in a block when there are multiple masked registers
// in the block.
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
DebugLoc DL;
while (MBBI != E) {
MachineInstr &MI = *MBBI;
DL = MI.getDebugLoc();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// First check if a CSDB needs to be inserted due to earlier registers
// that were masked and that are used by the next instruction.
// Also emit the barrier on any potential control flow changes.
bool NeedToEmitBarrier = false;
if (RegsNeedingCSDBBeforeUse.any() && (MI.isCall() || MI.isTerminator()))
NeedToEmitBarrier = true;
if (!NeedToEmitBarrier)
for (MachineOperand Op : MI.uses())
if (Op.isReg() && RegsNeedingCSDBBeforeUse[Op.getReg()]) {
NeedToEmitBarrier = true;
break;
}
if (NeedToEmitBarrier && !UsesFullSpeculationBarrier)
Modified |= insertCSDB(MBB, MBBI, DL);
Modified |=
expandSpeculationSafeValue(MBB, MBBI, UsesFullSpeculationBarrier);
MBBI = NMBBI;
}
if (RegsNeedingCSDBBeforeUse.any() && !UsesFullSpeculationBarrier)
Modified |= insertCSDB(MBB, MBBI, DL);
return Modified;
}
bool AArch64SpeculationHardening::runOnMachineFunction(MachineFunction &MF) {
if (!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
return false;
MisspeculatingTaintReg = AArch64::X16;
MisspeculatingTaintReg32Bit = AArch64::W16;
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
RegsNeedingCSDBBeforeUse.resize(TRI->getNumRegs());
RegsAlreadyMasked.resize(TRI->getNumRegs());
UseControlFlowSpeculationBarrier = functionUsesHardeningRegister(MF);
bool Modified = false;
// Step 1: Enable automatic insertion of SpeculationSafeValue.
if (HardenLoads) {
LLVM_DEBUG(
dbgs() << "***** AArch64SpeculationHardening - automatic insertion of "
"SpeculationSafeValue intrinsics *****\n");
for (auto &MBB : MF)
Modified |= slhLoads(MBB);
}
// 2. Add instrumentation code to function entry and exits.
LLVM_DEBUG(
dbgs()
<< "***** AArch64SpeculationHardening - track control flow *****\n");
SmallVector<MachineBasicBlock *, 2> EntryBlocks;
EntryBlocks.push_back(&MF.front());
for (const LandingPadInfo &LPI : MF.getLandingPads())
EntryBlocks.push_back(LPI.LandingPadBlock);
for (auto Entry : EntryBlocks)
insertSPToRegTaintPropagation(
*Entry, Entry->SkipPHIsLabelsAndDebug(Entry->begin()));
// 3. Add instrumentation code to every basic block.
for (auto &MBB : MF) {
bool UsesFullSpeculationBarrier = false;
Modified |= instrumentControlFlow(MBB, UsesFullSpeculationBarrier);
Modified |=
lowerSpeculationSafeValuePseudos(MBB, UsesFullSpeculationBarrier);
}
return Modified;
}
/// \brief Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createAArch64SpeculationHardeningPass() {
return new AArch64SpeculationHardening();
}