llvm-project/lldb/source/Plugins/ABI/MacOSX-arm/ABIMacOSX_arm.cpp

845 lines
47 KiB
C++

//===-- ABIMacOSX_arm.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ABIMacOSX_arm.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "llvm/ADT/Triple.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_GCC_Registers.h"
#include "Plugins/Process/Utility/ARMDefines.h"
#include <vector>
using namespace lldb;
using namespace lldb_private;
static RegisterInfo g_register_infos[] =
{
// NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB NATIVE VALUE REGS INVALIDATE REGS
// ========== ======= == === ============= ============ ======================= =================== =========================== ======================= ====================== ========== ===============
{ "r0", "arg1", 4, 0, eEncodingUint , eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1, gdb_arm_r0, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r1", "arg2", 4, 0, eEncodingUint , eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2, gdb_arm_r1, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r2", "arg3", 4, 0, eEncodingUint , eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3, gdb_arm_r2, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r3", "arg4", 4, 0, eEncodingUint , eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4, gdb_arm_r3, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r4", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, gdb_arm_r4, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r5", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, gdb_arm_r5, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r6", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, gdb_arm_r6, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r7", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, gdb_arm_r7, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r8", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, gdb_arm_r8, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r9", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, gdb_arm_r9, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r10", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, gdb_arm_r10, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r11", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, gdb_arm_r11, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r12", NULL, 4, 0, eEncodingUint , eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, gdb_arm_r12, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "sp", "r13", 4, 0, eEncodingUint , eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, gdb_arm_sp, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "lr", "r14", 4, 0, eEncodingUint , eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, gdb_arm_lr, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "pc", "r15", 4, 0, eEncodingUint , eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, gdb_arm_pc, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "cpsr", "psr", 4, 0, eEncodingUint , eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_REGNUM_GENERIC_FLAGS, gdb_arm_cpsr, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s0", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, gdb_arm_s0, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s1", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, gdb_arm_s1, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s2", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, gdb_arm_s2, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s3", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, gdb_arm_s3, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s4", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, gdb_arm_s4, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s5", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, gdb_arm_s5, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s6", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, gdb_arm_s6, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s7", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, gdb_arm_s7, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s8", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, gdb_arm_s8, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s9", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, gdb_arm_s9, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s10", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, gdb_arm_s10, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s11", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, gdb_arm_s11, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s12", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, gdb_arm_s12, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s13", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, gdb_arm_s13, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s14", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, gdb_arm_s14, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s15", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, gdb_arm_s15, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s16", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, gdb_arm_s16, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s17", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, gdb_arm_s17, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s18", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, gdb_arm_s18, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s19", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, gdb_arm_s19, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s20", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, gdb_arm_s20, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s21", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, gdb_arm_s21, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s22", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, gdb_arm_s22, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s23", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, gdb_arm_s23, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s24", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, gdb_arm_s24, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s25", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, gdb_arm_s25, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s26", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, gdb_arm_s26, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s27", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, gdb_arm_s27, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s28", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, gdb_arm_s28, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s29", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, gdb_arm_s29, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s30", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, gdb_arm_s30, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "s31", NULL, 4, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, gdb_arm_s31, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "fpscr", NULL, 4, 0, eEncodingUint , eFormatHex , { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,LLDB_INVALID_REGNUM, gdb_arm_fpscr, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d0", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, gdb_arm_d0, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d1", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, gdb_arm_d1, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d2", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, gdb_arm_d2, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d3", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, gdb_arm_d3, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d4", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, gdb_arm_d4, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d5", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, gdb_arm_d5, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d6", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, gdb_arm_d6, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d7", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, gdb_arm_d7, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d8", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, gdb_arm_d8, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d9", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, gdb_arm_d9, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d10", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, gdb_arm_d10, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d11", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, gdb_arm_d11, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d12", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, gdb_arm_d12, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d13", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, gdb_arm_d13, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d14", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, gdb_arm_d14, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d15", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, gdb_arm_d15, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d16", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, gdb_arm_d16, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d17", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, gdb_arm_d17, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d18", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, gdb_arm_d18, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d19", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, gdb_arm_d19, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d20", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, gdb_arm_d20, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d21", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, gdb_arm_d21, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d22", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, gdb_arm_d22, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d23", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, gdb_arm_d23, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d24", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, gdb_arm_d24, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d25", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, gdb_arm_d25, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d26", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, gdb_arm_d26, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d27", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, gdb_arm_d27, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d28", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, gdb_arm_d28, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d29", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, gdb_arm_d29, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d30", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, gdb_arm_d30, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "d31", NULL, 8, 0, eEncodingIEEE754 , eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, gdb_arm_d31, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r8_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r8_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r9_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r9_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r10_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r10_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r11_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r11_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r12_usr", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r12_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r13_usr", "sp_usr", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r14_usr", "lr_usr", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_usr, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r8_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r8_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r9_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r9_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r10_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r10_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r11_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r11_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r12_fiq", NULL, 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r12_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r13_fiq", "sp_fiq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r14_fiq", "lr_fiq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_fiq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r13_irq", "sp_irq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_irq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r14_irq", "lr_irq", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_irq, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r13_abt", "sp_abt", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_abt, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r14_abt", "lr_abt", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_abt, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r13_und", "sp_und", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_und, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r14_und", "lr_und", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_und, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r13_svc", "sp_svc", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r13_svc, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL},
{ "r14_svc", "lr_svc", 4, 0, eEncodingUint , eFormatHex, { LLDB_INVALID_REGNUM, dwarf_r14_svc, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM }, NULL, NULL}
};
static const uint32_t k_num_register_infos = sizeof(g_register_infos)/sizeof(RegisterInfo);
static bool g_register_info_names_constified = false;
const lldb_private::RegisterInfo *
ABIMacOSX_arm::GetRegisterInfoArray (uint32_t &count)
{
// Make the C-string names and alt_names for the register infos into const
// C-string values by having the ConstString unique the names in the global
// constant C-string pool.
if (!g_register_info_names_constified)
{
g_register_info_names_constified = true;
for (uint32_t i=0; i<k_num_register_infos; ++i)
{
if (g_register_infos[i].name)
g_register_infos[i].name = ConstString(g_register_infos[i].name).GetCString();
if (g_register_infos[i].alt_name)
g_register_infos[i].alt_name = ConstString(g_register_infos[i].alt_name).GetCString();
}
}
count = k_num_register_infos;
return g_register_infos;
}
size_t
ABIMacOSX_arm::GetRedZoneSize () const
{
return 0;
}
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABIMacOSX_arm::CreateInstance (const ArchSpec &arch)
{
static ABISP g_abi_sp;
const llvm::Triple::ArchType arch_type = arch.GetTriple().getArch();
if ((arch_type == llvm::Triple::arm) ||
(arch_type == llvm::Triple::thumb))
{
if (!g_abi_sp)
g_abi_sp.reset (new ABIMacOSX_arm);
return g_abi_sp;
}
return ABISP();
}
bool
ABIMacOSX_arm::PrepareTrivialCall (Thread &thread,
addr_t sp,
addr_t function_addr,
addr_t return_addr,
llvm::ArrayRef<addr_t> args) const
{
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
const uint32_t ra_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
RegisterValue reg_value;
const char *reg_names[] = { "r0", "r1", "r2", "r3" };
llvm::ArrayRef<addr_t>::iterator ai = args.begin(), ae = args.end();
for (size_t i = 0; i < (sizeof(reg_names) / sizeof(reg_names[0])); ++i)
{
if (ai == ae)
break;
reg_value.SetUInt32(*ai);
if (!reg_ctx->WriteRegister(reg_ctx->GetRegisterInfoByName(reg_names[i]), reg_value))
return false;
++ai;
}
if (ai != ae)
{
// Spill onto the stack
size_t num_stack_regs = ae - ai;
sp -= (num_stack_regs * 4);
// Keep the stack 8 byte aligned, not that we need to
sp &= ~(8ull-1ull);
// just using arg1 to get the right size
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1);
addr_t arg_pos = sp;
for (; ai != ae; ++ai)
{
reg_value.SetUInt32(*ai);
if (reg_ctx->WriteRegisterValueToMemory(reg_info, arg_pos, reg_info->byte_size, reg_value).Fail())
return false;
arg_pos += reg_info->byte_size;
}
}
TargetSP target_sp (thread.CalculateTarget());
Address so_addr;
// Figure out if our return address is ARM or Thumb by using the
// Address::GetCallableLoadAddress(Target*) which will figure out the ARM
// thumb-ness and set the correct address bits for us.
so_addr.SetLoadAddress (return_addr, target_sp.get());
return_addr = so_addr.GetCallableLoadAddress (target_sp.get());
// Set "lr" to the return address
if (!reg_ctx->WriteRegisterFromUnsigned (ra_reg_num, return_addr))
return false;
// Set "sp" to the requested value
if (!reg_ctx->WriteRegisterFromUnsigned (sp_reg_num, sp))
return false;
// If bit zero or 1 is set, this must be a thumb function, no need to figure
// this out from the symbols.
so_addr.SetLoadAddress (function_addr, target_sp.get());
function_addr = so_addr.GetCallableLoadAddress (target_sp.get());
const RegisterInfo *cpsr_reg_info = reg_ctx->GetRegisterInfoByName("cpsr");
const uint32_t curr_cpsr = reg_ctx->ReadRegisterAsUnsigned(cpsr_reg_info, 0);
// Make a new CPSR and mask out any Thumb IT (if/then) bits
uint32_t new_cpsr = curr_cpsr & ~MASK_CPSR_IT_MASK;
// If bit zero or 1 is set, this must be thumb...
if (function_addr & 1ull)
new_cpsr |= MASK_CPSR_T; // Set T bit in CPSR
else
new_cpsr &= ~MASK_CPSR_T; // Clear T bit in CPSR
if (new_cpsr != curr_cpsr)
{
if (!reg_ctx->WriteRegisterFromUnsigned (cpsr_reg_info, new_cpsr))
return false;
}
function_addr &= ~1ull; // clear bit zero since the CPSR will take care of the mode for us
// Set "pc" to the address requested
if (!reg_ctx->WriteRegisterFromUnsigned (pc_reg_num, function_addr))
return false;
return true;
}
bool
ABIMacOSX_arm::GetArgumentValues (Thread &thread,
ValueList &values) const
{
uint32_t num_values = values.GetSize();
ExecutionContext exe_ctx (thread.shared_from_this());
// For now, assume that the types in the AST values come from the Target's
// scratch AST.
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
addr_t sp = 0;
for (uint32_t value_idx = 0; value_idx < num_values; ++value_idx)
{
// We currently only support extracting values with Clang QualTypes.
// Do we care about others?
Value *value = values.GetValueAtIndex(value_idx);
if (!value)
return false;
ClangASTType clang_type = value->GetClangType();
if (clang_type)
{
bool is_signed = false;
size_t bit_width = 0;
if (clang_type.IsIntegerType (is_signed))
{
bit_width = clang_type.GetBitSize();
}
else if (clang_type.IsPointerOrReferenceType ())
{
bit_width = clang_type.GetBitSize();
}
else
{
// We only handle integer, pointer and reference types currently...
return false;
}
if (bit_width <= (exe_ctx.GetProcessRef().GetAddressByteSize() * 8))
{
if (value_idx < 4)
{
// Arguments 1-4 are in r0-r3...
const RegisterInfo *arg_reg_info = NULL;
// Search by generic ID first, then fall back to by name
uint32_t arg_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1 + value_idx);
if (arg_reg_num != LLDB_INVALID_REGNUM)
{
arg_reg_info = reg_ctx->GetRegisterInfoAtIndex(arg_reg_num);
}
else
{
switch (value_idx)
{
case 0: arg_reg_info = reg_ctx->GetRegisterInfoByName("r0"); break;
case 1: arg_reg_info = reg_ctx->GetRegisterInfoByName("r1"); break;
case 2: arg_reg_info = reg_ctx->GetRegisterInfoByName("r2"); break;
case 3: arg_reg_info = reg_ctx->GetRegisterInfoByName("r3"); break;
}
}
if (arg_reg_info)
{
RegisterValue reg_value;
if (reg_ctx->ReadRegister(arg_reg_info, reg_value))
{
if (is_signed)
reg_value.SignExtend(bit_width);
if (!reg_value.GetScalarValue(value->GetScalar()))
return false;
continue;
}
}
return false;
}
else
{
if (sp == 0)
{
// Read the stack pointer if it already hasn't been read
sp = reg_ctx->GetSP(0);
if (sp == 0)
return false;
}
// Arguments 5 on up are on the stack
const uint32_t arg_byte_size = (bit_width + (8-1)) / 8;
Error error;
if (!exe_ctx.GetProcessRef().ReadScalarIntegerFromMemory(sp, arg_byte_size, is_signed, value->GetScalar(), error))
return false;
sp += arg_byte_size;
}
}
}
}
return true;
}
ValueObjectSP
ABIMacOSX_arm::GetReturnValueObjectImpl (Thread &thread,
lldb_private::ClangASTType &clang_type) const
{
Value value;
ValueObjectSP return_valobj_sp;
if (!clang_type)
return return_valobj_sp;
clang::ASTContext *ast_context = clang_type.GetASTContext();
if (!ast_context)
return return_valobj_sp;
//value.SetContext (Value::eContextTypeClangType, clang_type.GetOpaqueQualType());
value.SetClangType (clang_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
bool is_signed;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
const RegisterInfo *r0_reg_info = reg_ctx->GetRegisterInfoByName("r0", 0);
if (clang_type.IsIntegerType (is_signed))
{
size_t bit_width = clang_type.GetBitSize();
switch (bit_width)
{
default:
return return_valobj_sp;
case 64:
{
const RegisterInfo *r1_reg_info = reg_ctx->GetRegisterInfoByName("r1", 0);
uint64_t raw_value;
raw_value = reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX;
raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(r1_reg_info, 0) & UINT32_MAX)) << 32;
if (is_signed)
value.GetScalar() = (int64_t)raw_value;
else
value.GetScalar() = (uint64_t)raw_value;
}
break;
case 32:
if (is_signed)
value.GetScalar() = (int32_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX);
break;
case 16:
if (is_signed)
value.GetScalar() = (int16_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT16_MAX);
break;
case 8:
if (is_signed)
value.GetScalar() = (int8_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(reg_ctx->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT8_MAX);
break;
}
}
else if (clang_type.IsPointerType ())
{
uint32_t ptr = thread.GetRegisterContext()->ReadRegisterAsUnsigned(r0_reg_info, 0) & UINT32_MAX;
value.GetScalar() = ptr;
}
else
{
// not handled yet
return return_valobj_sp;
}
// If we get here, we have a valid Value, so make our ValueObject out of it:
return_valobj_sp = ValueObjectConstResult::Create(thread.GetStackFrameAtIndex(0).get(),
value,
ConstString(""));
return return_valobj_sp;
}
Error
ABIMacOSX_arm::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp)
{
Error error;
if (!new_value_sp)
{
error.SetErrorString("Empty value object for return value.");
return error;
}
ClangASTType clang_type = new_value_sp->GetClangType();
if (!clang_type)
{
error.SetErrorString ("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (clang_type.IsIntegerType (is_signed) || clang_type.IsPointerType())
{
DataExtractor data;
Error data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail())
{
error.SetErrorStringWithFormat("Couldn't convert return value to raw data: %s", data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8)
{
const RegisterInfo *r0_info = reg_ctx->GetRegisterInfoByName("r0", 0);
if (num_bytes <= 4)
{
uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned (r0_info, raw_value))
set_it_simple = true;
}
else
{
uint32_t raw_value = data.GetMaxU32(&offset, 4);
if (reg_ctx->WriteRegisterFromUnsigned (r0_info, raw_value))
{
const RegisterInfo *r1_info = reg_ctx->GetRegisterInfoByName("r1", 0);
uint32_t raw_value = data.GetMaxU32(&offset, num_bytes - offset);
if (reg_ctx->WriteRegisterFromUnsigned (r1_info, raw_value))
set_it_simple = true;
}
}
}
else
{
error.SetErrorString("We don't support returning longer than 64 bit integer values at present.");
}
}
else if (clang_type.IsFloatingPointType (count, is_complex))
{
if (is_complex)
error.SetErrorString ("We don't support returning complex values at present");
else
error.SetErrorString ("We don't support returning float values at present");
}
if (!set_it_simple)
error.SetErrorString ("We only support setting simple integer return types at present.");
return error;
}
bool
ABIMacOSX_arm::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
unwind_plan.Clear();
unwind_plan.SetRegisterKind (eRegisterKindDWARF);
uint32_t lr_reg_num = dwarf_lr;
uint32_t sp_reg_num = dwarf_sp;
uint32_t pc_reg_num = dwarf_pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
// Our Call Frame Address is the stack pointer value
row->SetCFARegister (sp_reg_num);
// The previous PC is in the LR
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
unwind_plan.AppendRow (row);
// All other registers are the same.
unwind_plan.SetSourceName ("arm at-func-entry default");
unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
return true;
}
bool
ABIMacOSX_arm::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
unwind_plan.Clear ();
unwind_plan.SetRegisterKind (eRegisterKindDWARF);
uint32_t fp_reg_num = dwarf_r7; // apple uses r7 for all frames. Normal arm uses r11
uint32_t pc_reg_num = dwarf_pc;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 4;
row->SetCFARegister (fp_reg_num);
row->SetCFAOffset (2 * ptr_size);
row->SetOffset (0);
row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
unwind_plan.AppendRow (row);
unwind_plan.SetSourceName ("arm-apple-ios default unwind plan");
unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
return true;
}
// cf. "ARMv6 Function Calling Conventions"
// https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARMv6FunctionCallingConventions.html
// and "ARMv7 Function Calling Conventions"
// https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARMv7FunctionCallingConventions.html
// ARMv7 on iOS general purpose reg rules:
// r0-r3 not preserved (used for argument passing)
// r4-r6 preserved
// r7 preserved (frame pointer)
// r8 preserved
// r9 not preserved (usable as volatile scratch register with iOS 3.x and later)
// r10-r11 preserved
// r12 not presrved
// r13 preserved (stack pointer)
// r14 not preserved (link register)
// r15 preserved (pc)
// cpsr not preserved (different rules for different bits)
// ARMv7 on iOS floating point rules:
// d0-d7 not preserved (aka s0-s15, q0-q3)
// d8-d15 preserved (aka s16-s31, q4-q7)
// d16-d31 not preserved (aka q8-q15)
bool
ABIMacOSX_arm::RegisterIsVolatile (const RegisterInfo *reg_info)
{
if (reg_info)
{
// Volatile registers are: r0, r1, r2, r3, r9, r12, r13 (aka sp)
const char *name = reg_info->name;
if (name[0] == 'r')
{
switch (name[1])
{
case '0': return name[2] == '\0'; // r0
case '1':
switch (name[2])
{
case '\0':
return true; // r1
case '2':
case '3':
return name[3] == '\0'; // r12, r13 (sp)
default:
break;
}
break;
case '2': return name[2] == '\0'; // r2
case '3': return name[2] == '\0'; // r3
case '9': return name[2] == '\0'; // r9 (apple-ios only...)
break;
}
}
else if (name[0] == 'd')
{
switch (name[1])
{
case '0':
return name[2] == '\0'; // d0 is volatile
case '1':
switch (name[2])
{
case '\0':
return true; // d1 is volatile
case '6':
case '7':
case '8':
case '9':
return name[3] == '\0'; // d16 - d19 are volatile
default:
break;
}
break;
case '2':
switch (name[2])
{
case '\0':
return true; // d2 is volatile
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return name[3] == '\0'; // d20 - d29 are volatile
default:
break;
}
break;
case '3':
switch (name[2])
{
case '\0':
return true; // d3 is volatile
case '0':
case '1':
return name[3] == '\0'; // d30 - d31 are volatile
default:
break;
}
case '4':
case '5':
case '6':
case '7':
return name[2] == '\0'; // d4 - d7 are volatile
default:
break;
}
}
else if (name[0] == 's')
{
switch (name[1])
{
case '0':
return name[2] == '\0'; // s0 is volatile
case '1':
switch (name[2])
{
case '\0':
return true; // s1 is volatile
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
return name[3] == '\0'; // s10 - s15 are volatile
default:
break;
}
break;
case '2':
switch (name[2])
{
case '\0':
return true; // s2 is volatile
default:
break;
}
break;
case '3':
switch (name[2])
{
case '\0':
return true; // s3 is volatile
default:
break;
}
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return name[2] == '\0'; // s4 - s9 are volatile
default:
break;
}
}
else if (name[0] == 's' && name[1] == 'p' && name[2] == '\0')
return true;
}
return false;
}
void
ABIMacOSX_arm::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
"Mac OS X ABI for arm targets",
CreateInstance);
}
void
ABIMacOSX_arm::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
lldb_private::ConstString
ABIMacOSX_arm::GetPluginNameStatic()
{
static ConstString g_name("macosx-arm");
return g_name;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString
ABIMacOSX_arm::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ABIMacOSX_arm::GetPluginVersion()
{
return 1;
}