llvm-project/mlir/lib/Dialect/Affine/Utils/Utils.cpp

275 lines
12 KiB
C++

//===- Utils.cpp ---- Utilities for affine dialect transformation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous transformation utilities for the Affine
// dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
/// Promotes the `then` or the `else` block of `ifOp` (depending on whether
/// `elseBlock` is false or true) into `ifOp`'s containing block, and discards
/// the rest of the op.
static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) {
if (elseBlock)
assert(ifOp.hasElse() && "else block expected");
Block *destBlock = ifOp->getBlock();
Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock();
destBlock->getOperations().splice(
Block::iterator(ifOp), srcBlock->getOperations(), srcBlock->begin(),
std::prev(srcBlock->end()));
ifOp.erase();
}
/// Returns the outermost affine.for/parallel op that the `ifOp` is invariant
/// on. The `ifOp` could be hoisted and placed right before such an operation.
/// This method assumes that the ifOp has been canonicalized (to be correct and
/// effective).
static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) {
// Walk up the parents past all for op that this conditional is invariant on.
auto ifOperands = ifOp.getOperands();
auto *res = ifOp.getOperation();
while (!isa<FuncOp>(res->getParentOp())) {
auto *parentOp = res->getParentOp();
if (auto forOp = dyn_cast<AffineForOp>(parentOp)) {
if (llvm::is_contained(ifOperands, forOp.getInductionVar()))
break;
} else if (auto parallelOp = dyn_cast<AffineParallelOp>(parentOp)) {
for (auto iv : parallelOp.getIVs())
if (llvm::is_contained(ifOperands, iv))
break;
} else if (!isa<AffineIfOp>(parentOp)) {
// Won't walk up past anything other than affine.for/if ops.
break;
}
// You can always hoist up past any affine.if ops.
res = parentOp;
}
return res;
}
/// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over
/// `hoistOverOp`. Returns the new hoisted op if any hoisting happened,
/// otherwise the same `ifOp`.
static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) {
// No hoisting to do.
if (hoistOverOp == ifOp)
return ifOp;
// Create the hoisted 'if' first. Then, clone the op we are hoisting over for
// the else block. Then drop the else block of the original 'if' in the 'then'
// branch while promoting its then block, and analogously drop the 'then'
// block of the original 'if' from the 'else' branch while promoting its else
// block.
BlockAndValueMapping operandMap;
OpBuilder b(hoistOverOp);
auto hoistedIfOp = b.create<AffineIfOp>(ifOp.getLoc(), ifOp.getIntegerSet(),
ifOp.getOperands(),
/*elseBlock=*/true);
// Create a clone of hoistOverOp to use for the else branch of the hoisted
// conditional. The else block may get optimized away if empty.
Operation *hoistOverOpClone = nullptr;
// We use this unique name to identify/find `ifOp`'s clone in the else
// version.
Identifier idForIfOp = b.getIdentifier("__mlir_if_hoisting");
operandMap.clear();
b.setInsertionPointAfter(hoistOverOp);
// We'll set an attribute to identify this op in a clone of this sub-tree.
ifOp->setAttr(idForIfOp, b.getBoolAttr(true));
hoistOverOpClone = b.clone(*hoistOverOp, operandMap);
// Promote the 'then' block of the original affine.if in the then version.
promoteIfBlock(ifOp, /*elseBlock=*/false);
// Move the then version to the hoisted if op's 'then' block.
auto *thenBlock = hoistedIfOp.getThenBlock();
thenBlock->getOperations().splice(thenBlock->begin(),
hoistOverOp->getBlock()->getOperations(),
Block::iterator(hoistOverOp));
// Find the clone of the original affine.if op in the else version.
AffineIfOp ifCloneInElse;
hoistOverOpClone->walk([&](AffineIfOp ifClone) {
if (!ifClone->getAttr(idForIfOp))
return WalkResult::advance();
ifCloneInElse = ifClone;
return WalkResult::interrupt();
});
assert(ifCloneInElse && "if op clone should exist");
// For the else block, promote the else block of the original 'if' if it had
// one; otherwise, the op itself is to be erased.
if (!ifCloneInElse.hasElse())
ifCloneInElse.erase();
else
promoteIfBlock(ifCloneInElse, /*elseBlock=*/true);
// Move the else version into the else block of the hoisted if op.
auto *elseBlock = hoistedIfOp.getElseBlock();
elseBlock->getOperations().splice(
elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(),
Block::iterator(hoistOverOpClone));
return hoistedIfOp;
}
/// Replace affine.for with a 1-d affine.parallel and clone the former's body
/// into the latter while remapping values. Parallelizes the specified
/// reductions. Parallelization will fail in presence of loop iteration
/// arguments that are not listed in `parallelReductions`.
LogicalResult
mlir::affineParallelize(AffineForOp forOp,
ArrayRef<LoopReduction> parallelReductions) {
// Fail early if there are iter arguments that are not reductions.
unsigned numReductions = parallelReductions.size();
if (numReductions != forOp.getNumIterOperands())
return failure();
Location loc = forOp.getLoc();
OpBuilder outsideBuilder(forOp);
AffineMap lowerBoundMap = forOp.getLowerBoundMap();
ValueRange lowerBoundOperands = forOp.getLowerBoundOperands();
AffineMap upperBoundMap = forOp.getUpperBoundMap();
ValueRange upperBoundOperands = forOp.getUpperBoundOperands();
// Creating empty 1-D affine.parallel op.
auto reducedValues = llvm::to_vector<4>(llvm::map_range(
parallelReductions, [](const LoopReduction &red) { return red.value; }));
auto reductionKinds = llvm::to_vector<4>(llvm::map_range(
parallelReductions, [](const LoopReduction &red) { return red.kind; }));
AffineParallelOp newPloop = outsideBuilder.create<AffineParallelOp>(
loc, ValueRange(reducedValues).getTypes(), reductionKinds,
llvm::makeArrayRef(lowerBoundMap), lowerBoundOperands,
llvm::makeArrayRef(upperBoundMap), upperBoundOperands,
llvm::makeArrayRef(forOp.getStep()));
// Steal the body of the old affine for op.
newPloop.region().takeBody(forOp.region());
Operation *yieldOp = &newPloop.getBody()->back();
// Handle the initial values of reductions because the parallel loop always
// starts from the neutral value.
SmallVector<Value> newResults;
newResults.reserve(numReductions);
for (unsigned i = 0; i < numReductions; ++i) {
Value init = forOp.getIterOperands()[i];
// This works because we are only handling single-op reductions at the
// moment. A switch on reduction kind or a mechanism to collect operations
// participating in the reduction will be necessary for multi-op reductions.
Operation *reductionOp = yieldOp->getOperand(i).getDefiningOp();
assert(reductionOp && "yielded value is expected to be produced by an op");
outsideBuilder.getInsertionBlock()->getOperations().splice(
outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(),
reductionOp);
reductionOp->setOperands({init, newPloop->getResult(i)});
forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(0));
}
// Update the loop terminator to yield reduced values bypassing the reduction
// operation itself (now moved outside of the loop) and erase the block
// arguments that correspond to reductions. Note that the loop always has one
// "main" induction variable whenc coming from a non-parallel for.
unsigned numIVs = 1;
yieldOp->setOperands(reducedValues);
newPloop.getBody()->eraseArguments(
llvm::to_vector<4>(llvm::seq<unsigned>(numIVs, numReductions + numIVs)));
forOp.erase();
return success();
}
// Returns success if any hoisting happened.
LogicalResult mlir::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) {
// Bail out early if the ifOp returns a result. TODO: Consider how to
// properly support this case.
if (ifOp.getNumResults() != 0)
return failure();
// Apply canonicalization patterns and folding - this is necessary for the
// hoisting check to be correct (operands should be composed), and to be more
// effective (no unused operands). Since the pattern rewriter's folding is
// entangled with application of patterns, we may fold/end up erasing the op,
// in which case we return with `folded` being set.
RewritePatternSet patterns(ifOp.getContext());
AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext());
bool erased;
FrozenRewritePatternSet frozenPatterns(std::move(patterns));
(void)applyOpPatternsAndFold(ifOp, frozenPatterns, &erased);
if (erased) {
if (folded)
*folded = true;
return failure();
}
if (folded)
*folded = false;
// The folding above should have ensured this, but the affine.if's
// canonicalization is missing composition of affine.applys into it.
assert(llvm::all_of(ifOp.getOperands(),
[](Value v) {
return isTopLevelValue(v) || isForInductionVar(v);
}) &&
"operands not composed");
// We are going hoist as high as possible.
// TODO: this could be customized in the future.
auto *hoistOverOp = getOutermostInvariantForOp(ifOp);
AffineIfOp hoistedIfOp = ::hoistAffineIfOp(ifOp, hoistOverOp);
// Nothing to hoist over.
if (hoistedIfOp == ifOp)
return failure();
// Canonicalize to remove dead else blocks (happens whenever an 'if' moves up
// a sequence of affine.fors that are all perfectly nested).
(void)applyPatternsAndFoldGreedily(
hoistedIfOp->getParentWithTrait<OpTrait::IsIsolatedFromAbove>(),
frozenPatterns);
return success();
}
// Return the min expr after replacing the given dim.
AffineExpr mlir::substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min,
AffineExpr max, bool positivePath) {
if (e == dim)
return positivePath ? min : max;
if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) {
AffineExpr lhs = bin.getLHS();
AffineExpr rhs = bin.getRHS();
if (bin.getKind() == mlir::AffineExprKind::Add)
return substWithMin(lhs, dim, min, max, positivePath) +
substWithMin(rhs, dim, min, max, positivePath);
auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>();
auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>();
if (c1 && c1.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath));
if (c2 && c2.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2);
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, positivePath),
substWithMin(rhs, dim, min, max, positivePath));
}
return e;
}