forked from OSchip/llvm-project
280 lines
9.4 KiB
C++
280 lines
9.4 KiB
C++
//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements an _extremely_ simple interprocedural constant
|
|
// propagation pass. It could certainly be improved in many different ways,
|
|
// like using a worklist. This pass makes arguments dead, but does not remove
|
|
// them. The existing dead argument elimination pass should be run after this
|
|
// to clean up the mess.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "ipconstprop"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumArgumentsProped, "Number of args turned into constants");
|
|
STATISTIC(NumReturnValProped, "Number of return values turned into constants");
|
|
|
|
namespace {
|
|
/// IPCP - The interprocedural constant propagation pass
|
|
///
|
|
struct IPCP : public ModulePass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
IPCP() : ModulePass(ID) {
|
|
initializeIPCPPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M);
|
|
private:
|
|
bool PropagateConstantsIntoArguments(Function &F);
|
|
bool PropagateConstantReturn(Function &F);
|
|
};
|
|
}
|
|
|
|
char IPCP::ID = 0;
|
|
INITIALIZE_PASS(IPCP, "ipconstprop",
|
|
"Interprocedural constant propagation", false, false)
|
|
|
|
ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
|
|
|
|
bool IPCP::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
bool LocalChange = true;
|
|
|
|
// FIXME: instead of using smart algorithms, we just iterate until we stop
|
|
// making changes.
|
|
while (LocalChange) {
|
|
LocalChange = false;
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
if (!I->isDeclaration()) {
|
|
// Delete any klingons.
|
|
I->removeDeadConstantUsers();
|
|
if (I->hasLocalLinkage())
|
|
LocalChange |= PropagateConstantsIntoArguments(*I);
|
|
Changed |= PropagateConstantReturn(*I);
|
|
}
|
|
Changed |= LocalChange;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// PropagateConstantsIntoArguments - Look at all uses of the specified
|
|
/// function. If all uses are direct call sites, and all pass a particular
|
|
/// constant in for an argument, propagate that constant in as the argument.
|
|
///
|
|
bool IPCP::PropagateConstantsIntoArguments(Function &F) {
|
|
if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
|
|
|
|
// For each argument, keep track of its constant value and whether it is a
|
|
// constant or not. The bool is driven to true when found to be non-constant.
|
|
SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
|
|
ArgumentConstants.resize(F.arg_size());
|
|
|
|
unsigned NumNonconstant = 0;
|
|
for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
|
|
User *U = *UI;
|
|
// Ignore blockaddress uses.
|
|
if (isa<BlockAddress>(U)) continue;
|
|
|
|
// Used by a non-instruction, or not the callee of a function, do not
|
|
// transform.
|
|
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
|
|
return false;
|
|
|
|
CallSite CS(cast<Instruction>(U));
|
|
if (!CS.isCallee(UI))
|
|
return false;
|
|
|
|
// Check out all of the potentially constant arguments. Note that we don't
|
|
// inspect varargs here.
|
|
CallSite::arg_iterator AI = CS.arg_begin();
|
|
Function::arg_iterator Arg = F.arg_begin();
|
|
for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
|
|
++i, ++AI, ++Arg) {
|
|
|
|
// If this argument is known non-constant, ignore it.
|
|
if (ArgumentConstants[i].second)
|
|
continue;
|
|
|
|
Constant *C = dyn_cast<Constant>(*AI);
|
|
if (C && ArgumentConstants[i].first == 0) {
|
|
ArgumentConstants[i].first = C; // First constant seen.
|
|
} else if (C && ArgumentConstants[i].first == C) {
|
|
// Still the constant value we think it is.
|
|
} else if (*AI == &*Arg) {
|
|
// Ignore recursive calls passing argument down.
|
|
} else {
|
|
// Argument became non-constant. If all arguments are non-constant now,
|
|
// give up on this function.
|
|
if (++NumNonconstant == ArgumentConstants.size())
|
|
return false;
|
|
ArgumentConstants[i].second = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we got to this point, there is a constant argument!
|
|
assert(NumNonconstant != ArgumentConstants.size());
|
|
bool MadeChange = false;
|
|
Function::arg_iterator AI = F.arg_begin();
|
|
for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
|
|
// Do we have a constant argument?
|
|
if (ArgumentConstants[i].second || AI->use_empty() ||
|
|
(AI->hasByValAttr() && !F.onlyReadsMemory()))
|
|
continue;
|
|
|
|
Value *V = ArgumentConstants[i].first;
|
|
if (V == 0) V = UndefValue::get(AI->getType());
|
|
AI->replaceAllUsesWith(V);
|
|
++NumArgumentsProped;
|
|
MadeChange = true;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
|
|
// Check to see if this function returns one or more constants. If so, replace
|
|
// all callers that use those return values with the constant value. This will
|
|
// leave in the actual return values and instructions, but deadargelim will
|
|
// clean that up.
|
|
//
|
|
// Additionally if a function always returns one of its arguments directly,
|
|
// callers will be updated to use the value they pass in directly instead of
|
|
// using the return value.
|
|
bool IPCP::PropagateConstantReturn(Function &F) {
|
|
if (F.getReturnType()->isVoidTy())
|
|
return false; // No return value.
|
|
|
|
// If this function could be overridden later in the link stage, we can't
|
|
// propagate information about its results into callers.
|
|
if (F.mayBeOverridden())
|
|
return false;
|
|
|
|
// Check to see if this function returns a constant.
|
|
SmallVector<Value *,4> RetVals;
|
|
StructType *STy = dyn_cast<StructType>(F.getReturnType());
|
|
if (STy)
|
|
for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
|
|
RetVals.push_back(UndefValue::get(STy->getElementType(i)));
|
|
else
|
|
RetVals.push_back(UndefValue::get(F.getReturnType()));
|
|
|
|
unsigned NumNonConstant = 0;
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
|
|
for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
|
|
// Already found conflicting return values?
|
|
Value *RV = RetVals[i];
|
|
if (!RV)
|
|
continue;
|
|
|
|
// Find the returned value
|
|
Value *V;
|
|
if (!STy)
|
|
V = RI->getOperand(0);
|
|
else
|
|
V = FindInsertedValue(RI->getOperand(0), i);
|
|
|
|
if (V) {
|
|
// Ignore undefs, we can change them into anything
|
|
if (isa<UndefValue>(V))
|
|
continue;
|
|
|
|
// Try to see if all the rets return the same constant or argument.
|
|
if (isa<Constant>(V) || isa<Argument>(V)) {
|
|
if (isa<UndefValue>(RV)) {
|
|
// No value found yet? Try the current one.
|
|
RetVals[i] = V;
|
|
continue;
|
|
}
|
|
// Returning the same value? Good.
|
|
if (RV == V)
|
|
continue;
|
|
}
|
|
}
|
|
// Different or no known return value? Don't propagate this return
|
|
// value.
|
|
RetVals[i] = 0;
|
|
// All values non constant? Stop looking.
|
|
if (++NumNonConstant == RetVals.size())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we got here, the function returns at least one constant value. Loop
|
|
// over all users, replacing any uses of the return value with the returned
|
|
// constant.
|
|
bool MadeChange = false;
|
|
for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
|
|
CallSite CS(*UI);
|
|
Instruction* Call = CS.getInstruction();
|
|
|
|
// Not a call instruction or a call instruction that's not calling F
|
|
// directly?
|
|
if (!Call || !CS.isCallee(UI))
|
|
continue;
|
|
|
|
// Call result not used?
|
|
if (Call->use_empty())
|
|
continue;
|
|
|
|
MadeChange = true;
|
|
|
|
if (STy == 0) {
|
|
Value* New = RetVals[0];
|
|
if (Argument *A = dyn_cast<Argument>(New))
|
|
// Was an argument returned? Then find the corresponding argument in
|
|
// the call instruction and use that.
|
|
New = CS.getArgument(A->getArgNo());
|
|
Call->replaceAllUsesWith(New);
|
|
continue;
|
|
}
|
|
|
|
for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
|
|
I != E;) {
|
|
Instruction *Ins = cast<Instruction>(*I);
|
|
|
|
// Increment now, so we can remove the use
|
|
++I;
|
|
|
|
// Find the index of the retval to replace with
|
|
int index = -1;
|
|
if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
|
|
if (EV->hasIndices())
|
|
index = *EV->idx_begin();
|
|
|
|
// If this use uses a specific return value, and we have a replacement,
|
|
// replace it.
|
|
if (index != -1) {
|
|
Value *New = RetVals[index];
|
|
if (New) {
|
|
if (Argument *A = dyn_cast<Argument>(New))
|
|
// Was an argument returned? Then find the corresponding argument in
|
|
// the call instruction and use that.
|
|
New = CS.getArgument(A->getArgNo());
|
|
Ins->replaceAllUsesWith(New);
|
|
Ins->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MadeChange) ++NumReturnValProped;
|
|
return MadeChange;
|
|
}
|