llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp

385 lines
14 KiB
C++

//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass (at IR level) to replace atomic instructions with
// appropriate (intrinsic-based) ldrex/strex loops.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
#define DEBUG_TYPE "atomic-expand"
namespace {
class AtomicExpand: public FunctionPass {
const TargetMachine *TM;
public:
static char ID; // Pass identification, replacement for typeid
explicit AtomicExpand(const TargetMachine *TM = nullptr)
: FunctionPass(ID), TM(TM) {
initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
bool expandAtomicInsts(Function &F);
bool expandAtomicLoad(LoadInst *LI);
bool expandAtomicStore(StoreInst *LI);
bool expandAtomicRMW(AtomicRMWInst *AI);
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
AtomicOrdering insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
void insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
};
}
char AtomicExpand::ID = 0;
char &llvm::AtomicExpandID = AtomicExpand::ID;
INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
"Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
false, false)
FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
return new AtomicExpand(TM);
}
bool AtomicExpand::runOnFunction(Function &F) {
if (!TM || !TM->getSubtargetImpl()->enableAtomicExpand())
return false;
SmallVector<Instruction *, 1> AtomicInsts;
// Changing control-flow while iterating through it is a bad idea, so gather a
// list of all atomic instructions before we start.
for (BasicBlock &BB : F)
for (Instruction &Inst : BB) {
if (isa<AtomicRMWInst>(&Inst) || isa<AtomicCmpXchgInst>(&Inst) ||
(isa<LoadInst>(&Inst) && cast<LoadInst>(&Inst)->isAtomic()) ||
(isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
AtomicInsts.push_back(&Inst);
}
bool MadeChange = false;
for (Instruction *Inst : AtomicInsts) {
if (!TM->getSubtargetImpl()->getTargetLowering()->shouldExpandAtomicInIR(
Inst))
continue;
if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
MadeChange |= expandAtomicRMW(AI);
else if (AtomicCmpXchgInst *CI = dyn_cast<AtomicCmpXchgInst>(Inst))
MadeChange |= expandAtomicCmpXchg(CI);
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
MadeChange |= expandAtomicLoad(LI);
else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
MadeChange |= expandAtomicStore(SI);
else
llvm_unreachable("Unknown atomic instruction");
}
return MadeChange;
}
bool AtomicExpand::expandAtomicLoad(LoadInst *LI) {
// Load instructions don't actually need a leading fence, even in the
// SequentiallyConsistent case.
AtomicOrdering MemOpOrder =
TM->getSubtargetImpl()->getTargetLowering()->getInsertFencesForAtomic()
? Monotonic
: LI->getOrdering();
// The only 64-bit load guaranteed to be single-copy atomic by the ARM is
// an ldrexd (A3.5.3).
IRBuilder<> Builder(LI);
Value *Val = TM->getSubtargetImpl()->getTargetLowering()->emitLoadLinked(
Builder, LI->getPointerOperand(), MemOpOrder);
insertTrailingFence(Builder, LI->getOrdering());
LI->replaceAllUsesWith(Val);
LI->eraseFromParent();
return true;
}
bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
// The only atomic 64-bit store on ARM is an strexd that succeeds, which means
// we need a loop and the entire instruction is essentially an "atomicrmw
// xchg" that ignores the value loaded.
IRBuilder<> Builder(SI);
AtomicRMWInst *AI =
Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
SI->getValueOperand(), SI->getOrdering());
SI->eraseFromParent();
// Now we have an appropriate swap instruction, lower it as usual.
return expandAtomicRMW(AI);
}
bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) {
AtomicOrdering Order = AI->getOrdering();
Value *Addr = AI->getPointerOperand();
BasicBlock *BB = AI->getParent();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
//
// The standard expansion we produce is:
// [...]
// fence?
// atomicrmw.start:
// %loaded = @load.linked(%addr)
// %new = some_op iN %loaded, %incr
// %stored = @store_conditional(%new, %addr)
// %try_again = icmp i32 ne %stored, 0
// br i1 %try_again, label %loop, label %atomicrmw.end
// atomicrmw.end:
// fence?
// [...]
BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
// This grabs the DebugLoc from AI.
IRBuilder<> Builder(AI);
// The split call above "helpfully" added a branch at the end of BB (to the
// wrong place), but we might want a fence too. It's easiest to just remove
// the branch entirely.
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
AtomicOrdering MemOpOrder = insertLeadingFence(Builder, Order);
Builder.CreateBr(LoopBB);
// Start the main loop block now that we've taken care of the preliminaries.
Builder.SetInsertPoint(LoopBB);
Value *Loaded = TM->getSubtargetImpl()->getTargetLowering()->emitLoadLinked(
Builder, Addr, MemOpOrder);
Value *NewVal;
switch (AI->getOperation()) {
case AtomicRMWInst::Xchg:
NewVal = AI->getValOperand();
break;
case AtomicRMWInst::Add:
NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::Sub:
NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::And:
NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::Nand:
NewVal = Builder.CreateNot(Builder.CreateAnd(Loaded, AI->getValOperand()),
"new");
break;
case AtomicRMWInst::Or:
NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::Xor:
NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::Max:
NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand());
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::Min:
NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand());
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::UMax:
NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand());
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
break;
case AtomicRMWInst::UMin:
NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand());
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
break;
default:
llvm_unreachable("Unknown atomic op");
}
Value *StoreSuccess =
TM->getSubtargetImpl()->getTargetLowering()->emitStoreConditional(
Builder, NewVal, Addr, MemOpOrder);
Value *TryAgain = Builder.CreateICmpNE(
StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
insertTrailingFence(Builder, Order);
AI->replaceAllUsesWith(Loaded);
AI->eraseFromParent();
return true;
}
bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
AtomicOrdering FailureOrder = CI->getFailureOrdering();
Value *Addr = CI->getPointerOperand();
BasicBlock *BB = CI->getParent();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
//
// The full expansion we produce is:
// [...]
// fence?
// cmpxchg.start:
// %loaded = @load.linked(%addr)
// %should_store = icmp eq %loaded, %desired
// br i1 %should_store, label %cmpxchg.trystore,
// label %cmpxchg.failure
// cmpxchg.trystore:
// %stored = @store_conditional(%new, %addr)
// %success = icmp eq i32 %stored, 0
// br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
// cmpxchg.success:
// fence?
// br label %cmpxchg.end
// cmpxchg.failure:
// fence?
// br label %cmpxchg.end
// cmpxchg.end:
// %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
// %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
// %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
// [...]
BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
// This grabs the DebugLoc from CI
IRBuilder<> Builder(CI);
// The split call above "helpfully" added a branch at the end of BB (to the
// wrong place), but we might want a fence too. It's easiest to just remove
// the branch entirely.
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
AtomicOrdering MemOpOrder = insertLeadingFence(Builder, SuccessOrder);
Builder.CreateBr(LoopBB);
// Start the main loop block now that we've taken care of the preliminaries.
Builder.SetInsertPoint(LoopBB);
Value *Loaded = TM->getSubtargetImpl()->getTargetLowering()->emitLoadLinked(
Builder, Addr, MemOpOrder);
Value *ShouldStore =
Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
// If the the cmpxchg doesn't actually need any ordering when it fails, we can
// jump straight past that fence instruction (if it exists).
Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
Builder.SetInsertPoint(TryStoreBB);
Value *StoreSuccess =
TM->getSubtargetImpl()->getTargetLowering()->emitStoreConditional(
Builder, CI->getNewValOperand(), Addr, MemOpOrder);
StoreSuccess = Builder.CreateICmpEQ(
StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
Builder.CreateCondBr(StoreSuccess, SuccessBB,
CI->isWeak() ? FailureBB : LoopBB);
// Make sure later instructions don't get reordered with a fence if necessary.
Builder.SetInsertPoint(SuccessBB);
insertTrailingFence(Builder, SuccessOrder);
Builder.CreateBr(ExitBB);
Builder.SetInsertPoint(FailureBB);
insertTrailingFence(Builder, FailureOrder);
Builder.CreateBr(ExitBB);
// Finally, we have control-flow based knowledge of whether the cmpxchg
// succeeded or not. We expose this to later passes by converting any
// subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
// Setup the builder so we can create any PHIs we need.
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
// Look for any users of the cmpxchg that are just comparing the loaded value
// against the desired one, and replace them with the CFG-derived version.
SmallVector<ExtractValueInst *, 2> PrunedInsts;
for (auto User : CI->users()) {
ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
if (!EV)
continue;
assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
"weird extraction from { iN, i1 }");
if (EV->getIndices()[0] == 0)
EV->replaceAllUsesWith(Loaded);
else
EV->replaceAllUsesWith(Success);
PrunedInsts.push_back(EV);
}
// We can remove the instructions now we're no longer iterating through them.
for (auto EV : PrunedInsts)
EV->eraseFromParent();
if (!CI->use_empty()) {
// Some use of the full struct return that we don't understand has happened,
// so we've got to reconstruct it properly.
Value *Res;
Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
Res = Builder.CreateInsertValue(Res, Success, 1);
CI->replaceAllUsesWith(Res);
}
CI->eraseFromParent();
return true;
}
AtomicOrdering AtomicExpand::insertLeadingFence(IRBuilder<> &Builder,
AtomicOrdering Ord) {
if (!TM->getSubtargetImpl()->getTargetLowering()->getInsertFencesForAtomic())
return Ord;
if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
Builder.CreateFence(Release);
// The exclusive operations don't need any barrier if we're adding separate
// fences.
return Monotonic;
}
void AtomicExpand::insertTrailingFence(IRBuilder<> &Builder,
AtomicOrdering Ord) {
if (!TM->getSubtargetImpl()->getTargetLowering()->getInsertFencesForAtomic())
return;
if (Ord == Acquire || Ord == AcquireRelease)
Builder.CreateFence(Acquire);
else if (Ord == SequentiallyConsistent)
Builder.CreateFence(SequentiallyConsistent);
}