llvm-project/clang/lib/Driver/Driver.cpp

2664 lines
98 KiB
C++

//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "clang/Driver/Driver.h"
#include "InputInfo.h"
#include "ToolChains.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/VirtualFileSystem.h"
#include "clang/Config/config.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/Tool.h"
#include "clang/Driver/ToolChain.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptSpecifier.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <memory>
#include <utility>
using namespace clang::driver;
using namespace clang;
using namespace llvm::opt;
Driver::Driver(StringRef ClangExecutable, StringRef DefaultTargetTriple,
DiagnosticsEngine &Diags,
IntrusiveRefCntPtr<vfs::FileSystem> VFS)
: Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
SysRoot(DEFAULT_SYSROOT), UseStdLib(true),
DefaultTargetTriple(DefaultTargetTriple),
DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr),
CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
CCCPrintBindings(false), CCPrintHeaders(false), CCLogDiagnostics(false),
CCGenDiagnostics(false), CCCGenericGCCName(""), CheckInputsExist(true),
CCCUsePCH(true), SuppressMissingInputWarning(false) {
// Provide a sane fallback if no VFS is specified.
if (!this->VFS)
this->VFS = vfs::getRealFileSystem();
Name = llvm::sys::path::filename(ClangExecutable);
Dir = llvm::sys::path::parent_path(ClangExecutable);
InstalledDir = Dir; // Provide a sensible default installed dir.
// Compute the path to the resource directory.
StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
SmallString<128> P(Dir);
if (ClangResourceDir != "") {
llvm::sys::path::append(P, ClangResourceDir);
} else {
StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
llvm::sys::path::append(P, "..", Twine("lib") + ClangLibdirSuffix, "clang",
CLANG_VERSION_STRING);
}
ResourceDir = P.str();
}
Driver::~Driver() {
delete Opts;
llvm::DeleteContainerSeconds(ToolChains);
}
void Driver::ParseDriverMode(ArrayRef<const char *> Args) {
const std::string OptName =
getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
for (const char *ArgPtr : Args) {
// Ingore nullptrs, they are response file's EOL markers
if (ArgPtr == nullptr)
continue;
const StringRef Arg = ArgPtr;
if (!Arg.startswith(OptName))
continue;
const StringRef Value = Arg.drop_front(OptName.size());
const unsigned M = llvm::StringSwitch<unsigned>(Value)
.Case("gcc", GCCMode)
.Case("g++", GXXMode)
.Case("cpp", CPPMode)
.Case("cl", CLMode)
.Default(~0U);
if (M != ~0U)
Mode = static_cast<DriverMode>(M);
else
Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
}
}
InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings) {
llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks();
unsigned MissingArgIndex, MissingArgCount;
InputArgList Args =
getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
IncludedFlagsBitmask, ExcludedFlagsBitmask);
// Check for missing argument error.
if (MissingArgCount)
Diag(clang::diag::err_drv_missing_argument)
<< Args.getArgString(MissingArgIndex) << MissingArgCount;
// Check for unsupported options.
for (const Arg *A : Args) {
if (A->getOption().hasFlag(options::Unsupported)) {
Diag(clang::diag::err_drv_unsupported_opt) << A->getAsString(Args);
continue;
}
// Warn about -mcpu= without an argument.
if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
Diag(clang::diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
}
}
for (const Arg *A : Args.filtered(options::OPT_UNKNOWN))
Diags.Report(IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl :
diag::err_drv_unknown_argument)
<< A->getAsString(Args);
return Args;
}
// Determine which compilation mode we are in. We look for options which
// affect the phase, starting with the earliest phases, and record which
// option we used to determine the final phase.
phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
Arg **FinalPhaseArg) const {
Arg *PhaseArg = nullptr;
phases::ID FinalPhase;
// -{E,EP,P,M,MM} only run the preprocessor.
if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
(PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
FinalPhase = phases::Preprocess;
// -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
(PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
(PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
(PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
(PhaseArg = DAL.getLastArg(options::OPT__analyze,
options::OPT__analyze_auto)) ||
(PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
FinalPhase = phases::Compile;
// -S only runs up to the backend.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
FinalPhase = phases::Backend;
// -c compilation only runs up to the assembler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
FinalPhase = phases::Assemble;
// Otherwise do everything.
} else
FinalPhase = phases::Link;
if (FinalPhaseArg)
*FinalPhaseArg = PhaseArg;
return FinalPhase;
}
static Arg *MakeInputArg(DerivedArgList &Args, OptTable *Opts,
StringRef Value) {
Arg *A = new Arg(Opts->getOption(options::OPT_INPUT), Value,
Args.getBaseArgs().MakeIndex(Value), Value.data());
Args.AddSynthesizedArg(A);
A->claim();
return A;
}
DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
DerivedArgList *DAL = new DerivedArgList(Args);
bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
for (Arg *A : Args) {
// Unfortunately, we have to parse some forwarding options (-Xassembler,
// -Xlinker, -Xpreprocessor) because we either integrate their functionality
// (assembler and preprocessor), or bypass a previous driver ('collect2').
// Rewrite linker options, to replace --no-demangle with a custom internal
// option.
if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
A->getOption().matches(options::OPT_Xlinker)) &&
A->containsValue("--no-demangle")) {
// Add the rewritten no-demangle argument.
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
// Add the remaining values as Xlinker arguments.
for (StringRef Val : A->getValues())
if (Val != "--no-demangle")
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
continue;
}
// Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
// some build systems. We don't try to be complete here because we don't
// care to encourage this usage model.
if (A->getOption().matches(options::OPT_Wp_COMMA) &&
(A->getValue(0) == StringRef("-MD") ||
A->getValue(0) == StringRef("-MMD"))) {
// Rewrite to -MD/-MMD along with -MF.
if (A->getValue(0) == StringRef("-MD"))
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
else
DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
if (A->getNumValues() == 2)
DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
A->getValue(1));
continue;
}
// Rewrite reserved library names.
if (A->getOption().matches(options::OPT_l)) {
StringRef Value = A->getValue();
// Rewrite unless -nostdlib is present.
if (!HasNostdlib && !HasNodefaultlib && Value == "stdc++") {
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
continue;
}
// Rewrite unconditionally.
if (Value == "cc_kext") {
DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
continue;
}
}
// Pick up inputs via the -- option.
if (A->getOption().matches(options::OPT__DASH_DASH)) {
A->claim();
for (StringRef Val : A->getValues())
DAL->append(MakeInputArg(*DAL, Opts, Val));
continue;
}
DAL->append(A);
}
// Enforce -static if -miamcu is present.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
// Add a default value of -mlinker-version=, if one was given and the user
// didn't specify one.
#if defined(HOST_LINK_VERSION)
if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
strlen(HOST_LINK_VERSION) > 0) {
DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
HOST_LINK_VERSION);
DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
}
#endif
return DAL;
}
/// \brief Compute target triple from args.
///
/// This routine provides the logic to compute a target triple from various
/// args passed to the driver and the default triple string.
static llvm::Triple computeTargetTriple(const Driver &D,
StringRef DefaultTargetTriple,
const ArgList &Args,
StringRef DarwinArchName = "") {
// FIXME: Already done in Compilation *Driver::BuildCompilation
if (const Arg *A = Args.getLastArg(options::OPT_target))
DefaultTargetTriple = A->getValue();
llvm::Triple Target(llvm::Triple::normalize(DefaultTargetTriple));
// Handle Apple-specific options available here.
if (Target.isOSBinFormatMachO()) {
// If an explict Darwin arch name is given, that trumps all.
if (!DarwinArchName.empty()) {
tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
return Target;
}
// Handle the Darwin '-arch' flag.
if (Arg *A = Args.getLastArg(options::OPT_arch)) {
StringRef ArchName = A->getValue();
tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
}
}
// Handle pseudo-target flags '-mlittle-endian'/'-EL' and
// '-mbig-endian'/'-EB'.
if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
options::OPT_mbig_endian)) {
if (A->getOption().matches(options::OPT_mlittle_endian)) {
llvm::Triple LE = Target.getLittleEndianArchVariant();
if (LE.getArch() != llvm::Triple::UnknownArch)
Target = std::move(LE);
} else {
llvm::Triple BE = Target.getBigEndianArchVariant();
if (BE.getArch() != llvm::Triple::UnknownArch)
Target = std::move(BE);
}
}
// Skip further flag support on OSes which don't support '-m32' or '-m64'.
if (Target.getArch() == llvm::Triple::tce ||
Target.getOS() == llvm::Triple::Minix)
return Target;
// Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
options::OPT_m32, options::OPT_m16);
if (A) {
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
if (A->getOption().matches(options::OPT_m64)) {
AT = Target.get64BitArchVariant().getArch();
if (Target.getEnvironment() == llvm::Triple::GNUX32)
Target.setEnvironment(llvm::Triple::GNU);
} else if (A->getOption().matches(options::OPT_mx32) &&
Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
AT = llvm::Triple::x86_64;
Target.setEnvironment(llvm::Triple::GNUX32);
} else if (A->getOption().matches(options::OPT_m32)) {
AT = Target.get32BitArchVariant().getArch();
if (Target.getEnvironment() == llvm::Triple::GNUX32)
Target.setEnvironment(llvm::Triple::GNU);
} else if (A->getOption().matches(options::OPT_m16) &&
Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
AT = llvm::Triple::x86;
Target.setEnvironment(llvm::Triple::CODE16);
}
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
Target.setArch(AT);
}
// Handle -miamcu flag.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
<< Target.str();
if (A && !A->getOption().matches(options::OPT_m32))
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "-miamcu" << A->getBaseArg().getAsString(Args);
Target.setArch(llvm::Triple::x86);
Target.setArchName("i586");
Target.setEnvironment(llvm::Triple::UnknownEnvironment);
Target.setEnvironmentName("");
Target.setOS(llvm::Triple::ELFIAMCU);
Target.setVendor(llvm::Triple::UnknownVendor);
Target.setVendorName("intel");
}
return Target;
}
// \brief Parse the LTO options and record the type of LTO compilation
// based on which -f(no-)?lto(=.*)? option occurs last.
void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
LTOMode = LTOK_None;
if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
options::OPT_fno_lto, false))
return;
StringRef LTOName("full");
const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
if (A)
LTOName = A->getValue();
LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
.Case("full", LTOK_Full)
.Case("thin", LTOK_Thin)
.Default(LTOK_Unknown);
if (LTOMode == LTOK_Unknown) {
assert(A);
Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
<< A->getValue();
}
}
void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
InputList &Inputs) {
//
// CUDA
//
// We need to generate a CUDA toolchain if any of the inputs has a CUDA type.
if (llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
return types::isCuda(I.first);
})) {
const ToolChain &TC = getToolChain(
C.getInputArgs(),
llvm::Triple(C.getOffloadingHostToolChain()->getTriple().isArch64Bit()
? "nvptx64-nvidia-cuda"
: "nvptx-nvidia-cuda"));
C.addOffloadDeviceToolChain(&TC, Action::OFK_Cuda);
}
//
// TODO: Add support for other offloading programming models here.
//
return;
}
Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
// FIXME: Handle environment options which affect driver behavior, somewhere
// (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
if (char *env = ::getenv("COMPILER_PATH")) {
StringRef CompilerPath = env;
while (!CompilerPath.empty()) {
std::pair<StringRef, StringRef> Split =
CompilerPath.split(llvm::sys::EnvPathSeparator);
PrefixDirs.push_back(Split.first);
CompilerPath = Split.second;
}
}
// We look for the driver mode option early, because the mode can affect
// how other options are parsed.
ParseDriverMode(ArgList.slice(1));
// FIXME: What are we going to do with -V and -b?
// FIXME: This stuff needs to go into the Compilation, not the driver.
bool CCCPrintPhases;
InputArgList Args = ParseArgStrings(ArgList.slice(1));
// Silence driver warnings if requested
Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
// -no-canonical-prefixes is used very early in main.
Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
// Ignore -pipe.
Args.ClaimAllArgs(options::OPT_pipe);
// Extract -ccc args.
//
// FIXME: We need to figure out where this behavior should live. Most of it
// should be outside in the client; the parts that aren't should have proper
// options, either by introducing new ones or by overloading gcc ones like -V
// or -b.
CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
CCCGenericGCCName = A->getValue();
CCCUsePCH =
Args.hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth);
// FIXME: DefaultTargetTriple is used by the target-prefixed calls to as/ld
// and getToolChain is const.
if (IsCLMode()) {
// clang-cl targets MSVC-style Win32.
llvm::Triple T(DefaultTargetTriple);
T.setOS(llvm::Triple::Win32);
T.setVendor(llvm::Triple::PC);
T.setEnvironment(llvm::Triple::MSVC);
DefaultTargetTriple = T.str();
}
if (const Arg *A = Args.getLastArg(options::OPT_target))
DefaultTargetTriple = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
Dir = InstalledDir = A->getValue();
for (const Arg *A : Args.filtered(options::OPT_B)) {
A->claim();
PrefixDirs.push_back(A->getValue(0));
}
if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
SysRoot = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
DyldPrefix = A->getValue();
if (Args.hasArg(options::OPT_nostdlib))
UseStdLib = false;
if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
ResourceDir = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
.Case("cwd", SaveTempsCwd)
.Case("obj", SaveTempsObj)
.Default(SaveTempsCwd);
}
setLTOMode(Args);
// Ignore -fembed-bitcode options with LTO
// since the output will be bitcode anyway.
if (getLTOMode() == LTOK_None) {
if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
StringRef Name = A->getValue();
unsigned Model = llvm::StringSwitch<unsigned>(Name)
.Case("off", EmbedNone)
.Case("all", EmbedBitcode)
.Case("bitcode", EmbedBitcode)
.Case("marker", EmbedMarker)
.Default(~0U);
if (Model == ~0U) {
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
<< Name;
} else
BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
}
} else {
// claim the bitcode option under LTO so no warning is issued.
Args.ClaimAllArgs(options::OPT_fembed_bitcode_EQ);
}
std::unique_ptr<llvm::opt::InputArgList> UArgs =
llvm::make_unique<InputArgList>(std::move(Args));
// Perform the default argument translations.
DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
// Owned by the host.
const ToolChain &TC = getToolChain(
*UArgs, computeTargetTriple(*this, DefaultTargetTriple, *UArgs));
// The compilation takes ownership of Args.
Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs);
if (!HandleImmediateArgs(*C))
return C;
// Construct the list of inputs.
InputList Inputs;
BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
// Populate the tool chains for the offloading devices, if any.
CreateOffloadingDeviceToolChains(*C, Inputs);
// Construct the list of abstract actions to perform for this compilation. On
// MachO targets this uses the driver-driver and universal actions.
if (TC.getTriple().isOSBinFormatMachO())
BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
else
BuildActions(*C, C->getArgs(), Inputs, C->getActions());
if (CCCPrintPhases) {
PrintActions(*C);
return C;
}
BuildJobs(*C);
return C;
}
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
llvm::opt::ArgStringList ASL;
for (const auto *A : Args)
A->render(Args, ASL);
for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
if (I != ASL.begin())
OS << ' ';
Command::printArg(OS, *I, true);
}
OS << '\n';
}
// When clang crashes, produce diagnostic information including the fully
// preprocessed source file(s). Request that the developer attach the
// diagnostic information to a bug report.
void Driver::generateCompilationDiagnostics(Compilation &C,
const Command &FailingCommand) {
if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
return;
// Don't try to generate diagnostics for link or dsymutil jobs.
if (FailingCommand.getCreator().isLinkJob() ||
FailingCommand.getCreator().isDsymutilJob())
return;
// Print the version of the compiler.
PrintVersion(C, llvm::errs());
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
"crash backtrace, preprocessed source, and associated run script.";
// Suppress driver output and emit preprocessor output to temp file.
Mode = CPPMode;
CCGenDiagnostics = true;
// Save the original job command(s).
Command Cmd = FailingCommand;
// Keep track of whether we produce any errors while trying to produce
// preprocessed sources.
DiagnosticErrorTrap Trap(Diags);
// Suppress tool output.
C.initCompilationForDiagnostics();
// Construct the list of inputs.
InputList Inputs;
BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
bool IgnoreInput = false;
// Ignore input from stdin or any inputs that cannot be preprocessed.
// Check type first as not all linker inputs have a value.
if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
IgnoreInput = true;
} else if (!strcmp(it->second->getValue(), "-")) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - "
"ignoring input from stdin.";
IgnoreInput = true;
}
if (IgnoreInput) {
it = Inputs.erase(it);
ie = Inputs.end();
} else {
++it;
}
}
if (Inputs.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - "
"no preprocessable inputs.";
return;
}
// Don't attempt to generate preprocessed files if multiple -arch options are
// used, unless they're all duplicates.
llvm::StringSet<> ArchNames;
for (const Arg *A : C.getArgs()) {
if (A->getOption().matches(options::OPT_arch)) {
StringRef ArchName = A->getValue();
ArchNames.insert(ArchName);
}
}
if (ArchNames.size() > 1) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - cannot generate "
"preprocessed source with multiple -arch options.";
return;
}
// Construct the list of abstract actions to perform for this compilation. On
// Darwin OSes this uses the driver-driver and builds universal actions.
const ToolChain &TC = C.getDefaultToolChain();
if (TC.getTriple().isOSBinFormatMachO())
BuildUniversalActions(C, TC, Inputs);
else
BuildActions(C, C.getArgs(), Inputs, C.getActions());
BuildJobs(C);
// If there were errors building the compilation, quit now.
if (Trap.hasErrorOccurred()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
// Generate preprocessed output.
SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
C.ExecuteJobs(C.getJobs(), FailingCommands);
// If any of the preprocessing commands failed, clean up and exit.
if (!FailingCommands.empty()) {
if (!isSaveTempsEnabled())
C.CleanupFileList(C.getTempFiles(), true);
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
const ArgStringList &TempFiles = C.getTempFiles();
if (TempFiles.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "\n********************\n\n"
"PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
"Preprocessed source(s) and associated run script(s) are located at:";
SmallString<128> VFS;
for (const char *TempFile : TempFiles) {
Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
if (StringRef(TempFile).endswith(".cache")) {
// In some cases (modules) we'll dump extra data to help with reproducing
// the crash into a directory next to the output.
VFS = llvm::sys::path::filename(TempFile);
llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
}
}
// Assume associated files are based off of the first temporary file.
CrashReportInfo CrashInfo(TempFiles[0], VFS);
std::string Script = CrashInfo.Filename.rsplit('.').first.str() + ".sh";
std::error_code EC;
llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::F_Excl);
if (EC) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating run script: " + Script + " " + EC.message();
} else {
ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
<< "# Driver args: ";
printArgList(ScriptOS, C.getInputArgs());
ScriptOS << "# Original command: ";
Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
}
for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
options::OPT_frewrite_map_file_EQ))
Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "\n\n********************";
}
void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
// Since commandLineFitsWithinSystemLimits() may underestimate system's capacity
// if the tool does not support response files, there is a chance/ that things
// will just work without a response file, so we silently just skip it.
if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None ||
llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments()))
return;
std::string TmpName = GetTemporaryPath("response", "txt");
Cmd.setResponseFile(
C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str())));
}
int Driver::ExecuteCompilation(
Compilation &C,
SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
// Just print if -### was present.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
C.getJobs().Print(llvm::errs(), "\n", true);
return 0;
}
// If there were errors building the compilation, quit now.
if (Diags.hasErrorOccurred())
return 1;
// Set up response file names for each command, if necessary
for (auto &Job : C.getJobs())
setUpResponseFiles(C, Job);
C.ExecuteJobs(C.getJobs(), FailingCommands);
// Remove temp files.
C.CleanupFileList(C.getTempFiles());
// If the command succeeded, we are done.
if (FailingCommands.empty())
return 0;
// Otherwise, remove result files and print extra information about abnormal
// failures.
for (const auto &CmdPair : FailingCommands) {
int Res = CmdPair.first;
const Command *FailingCommand = CmdPair.second;
// Remove result files if we're not saving temps.
if (!isSaveTempsEnabled()) {
const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
C.CleanupFileMap(C.getResultFiles(), JA, true);
// Failure result files are valid unless we crashed.
if (Res < 0)
C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
}
// Print extra information about abnormal failures, if possible.
//
// This is ad-hoc, but we don't want to be excessively noisy. If the result
// status was 1, assume the command failed normally. In particular, if it
// was the compiler then assume it gave a reasonable error code. Failures
// in other tools are less common, and they generally have worse
// diagnostics, so always print the diagnostic there.
const Tool &FailingTool = FailingCommand->getCreator();
if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) {
// FIXME: See FIXME above regarding result code interpretation.
if (Res < 0)
Diag(clang::diag::err_drv_command_signalled)
<< FailingTool.getShortName();
else
Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName()
<< Res;
}
}
return 0;
}
void Driver::PrintHelp(bool ShowHidden) const {
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks();
ExcludedFlagsBitmask |= options::NoDriverOption;
if (!ShowHidden)
ExcludedFlagsBitmask |= HelpHidden;
getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(),
IncludedFlagsBitmask, ExcludedFlagsBitmask);
}
void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
OS << getClangFullVersion() << '\n';
const ToolChain &TC = C.getDefaultToolChain();
OS << "Target: " << TC.getTripleString() << '\n';
// Print the threading model.
if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
// Don't print if the ToolChain would have barfed on it already
if (TC.isThreadModelSupported(A->getValue()))
OS << "Thread model: " << A->getValue();
} else
OS << "Thread model: " << TC.getThreadModel();
OS << '\n';
// Print out the install directory.
OS << "InstalledDir: " << InstalledDir << '\n';
}
/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
/// option.
static void PrintDiagnosticCategories(raw_ostream &OS) {
// Skip the empty category.
for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
++i)
OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
}
bool Driver::HandleImmediateArgs(const Compilation &C) {
// The order these options are handled in gcc is all over the place, but we
// don't expect inconsistencies w.r.t. that to matter in practice.
if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
return false;
}
if (C.getArgs().hasArg(options::OPT_dumpversion)) {
// Since -dumpversion is only implemented for pedantic GCC compatibility, we
// return an answer which matches our definition of __VERSION__.
//
// If we want to return a more correct answer some day, then we should
// introduce a non-pedantically GCC compatible mode to Clang in which we
// provide sensible definitions for -dumpversion, __VERSION__, etc.
llvm::outs() << "4.2.1\n";
return false;
}
if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
PrintDiagnosticCategories(llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_help) ||
C.getArgs().hasArg(options::OPT__help_hidden)) {
PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
return false;
}
if (C.getArgs().hasArg(options::OPT__version)) {
// Follow gcc behavior and use stdout for --version and stderr for -v.
PrintVersion(C, llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_v) ||
C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
PrintVersion(C, llvm::errs());
SuppressMissingInputWarning = true;
}
const ToolChain &TC = C.getDefaultToolChain();
if (C.getArgs().hasArg(options::OPT_v))
TC.printVerboseInfo(llvm::errs());
if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
llvm::outs() << "programs: =";
bool separator = false;
for (const std::string &Path : TC.getProgramPaths()) {
if (separator)
llvm::outs() << ':';
llvm::outs() << Path;
separator = true;
}
llvm::outs() << "\n";
llvm::outs() << "libraries: =" << ResourceDir;
StringRef sysroot = C.getSysRoot();
for (const std::string &Path : TC.getFilePaths()) {
// Always print a separator. ResourceDir was the first item shown.
llvm::outs() << ':';
// Interpretation of leading '=' is needed only for NetBSD.
if (Path[0] == '=')
llvm::outs() << sysroot << Path.substr(1);
else
llvm::outs() << Path;
}
llvm::outs() << "\n";
return false;
}
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
return false;
}
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
llvm::outs() << GetProgramPath(A->getValue(), TC) << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
for (const Multilib &Multilib : TC.getMultilibs())
llvm::outs() << Multilib << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
for (const Multilib &Multilib : TC.getMultilibs()) {
if (Multilib.gccSuffix().empty())
llvm::outs() << ".\n";
else {
StringRef Suffix(Multilib.gccSuffix());
assert(Suffix.front() == '/');
llvm::outs() << Suffix.substr(1) << "\n";
}
}
return false;
}
return true;
}
// Display an action graph human-readably. Action A is the "sink" node
// and latest-occuring action. Traversal is in pre-order, visiting the
// inputs to each action before printing the action itself.
static unsigned PrintActions1(const Compilation &C, Action *A,
std::map<Action *, unsigned> &Ids) {
if (Ids.count(A)) // A was already visited.
return Ids[A];
std::string str;
llvm::raw_string_ostream os(str);
os << Action::getClassName(A->getKind()) << ", ";
if (InputAction *IA = dyn_cast<InputAction>(A)) {
os << "\"" << IA->getInputArg().getValue() << "\"";
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
os << '"' << BIA->getArchName() << '"' << ", {"
<< PrintActions1(C, *BIA->input_begin(), Ids) << "}";
} else if (CudaDeviceAction *CDA = dyn_cast<CudaDeviceAction>(A)) {
os << '"'
<< (CDA->getGpuArchName() ? CDA->getGpuArchName() : "(multiple archs)")
<< '"' << ", {" << PrintActions1(C, *CDA->input_begin(), Ids) << "}";
} else {
const ActionList *AL;
if (CudaHostAction *CHA = dyn_cast<CudaHostAction>(A)) {
os << "{" << PrintActions1(C, *CHA->input_begin(), Ids) << "}"
<< ", gpu binaries ";
AL = &CHA->getDeviceActions();
} else
AL = &A->getInputs();
if (AL->size()) {
const char *Prefix = "{";
for (Action *PreRequisite : *AL) {
os << Prefix << PrintActions1(C, PreRequisite, Ids);
Prefix = ", ";
}
os << "}";
} else
os << "{}";
}
unsigned Id = Ids.size();
Ids[A] = Id;
llvm::errs() << Id << ": " << os.str() << ", "
<< types::getTypeName(A->getType()) << "\n";
return Id;
}
// Print the action graphs in a compilation C.
// For example "clang -c file1.c file2.c" is composed of two subgraphs.
void Driver::PrintActions(const Compilation &C) const {
std::map<Action *, unsigned> Ids;
for (Action *A : C.getActions())
PrintActions1(C, A, Ids);
}
/// \brief Check whether the given input tree contains any compilation or
/// assembly actions.
static bool ContainsCompileOrAssembleAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
isa<AssembleJobAction>(A))
return true;
for (const Action *Input : A->inputs())
if (ContainsCompileOrAssembleAction(Input))
return true;
return false;
}
void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
const InputList &BAInputs) const {
DerivedArgList &Args = C.getArgs();
ActionList &Actions = C.getActions();
llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
// Collect the list of architectures. Duplicates are allowed, but should only
// be handled once (in the order seen).
llvm::StringSet<> ArchNames;
SmallVector<const char *, 4> Archs;
for (Arg *A : Args) {
if (A->getOption().matches(options::OPT_arch)) {
// Validate the option here; we don't save the type here because its
// particular spelling may participate in other driver choices.
llvm::Triple::ArchType Arch =
tools::darwin::getArchTypeForMachOArchName(A->getValue());
if (Arch == llvm::Triple::UnknownArch) {
Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
continue;
}
A->claim();
if (ArchNames.insert(A->getValue()).second)
Archs.push_back(A->getValue());
}
}
// When there is no explicit arch for this platform, make sure we still bind
// the architecture (to the default) so that -Xarch_ is handled correctly.
if (!Archs.size())
Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
ActionList SingleActions;
BuildActions(C, Args, BAInputs, SingleActions);
// Add in arch bindings for every top level action, as well as lipo and
// dsymutil steps if needed.
for (Action* Act : SingleActions) {
// Make sure we can lipo this kind of output. If not (and it is an actual
// output) then we disallow, since we can't create an output file with the
// right name without overwriting it. We could remove this oddity by just
// changing the output names to include the arch, which would also fix
// -save-temps. Compatibility wins for now.
if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
<< types::getTypeName(Act->getType());
ActionList Inputs;
for (unsigned i = 0, e = Archs.size(); i != e; ++i)
Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
// Lipo if necessary, we do it this way because we need to set the arch flag
// so that -Xarch_ gets overwritten.
if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
Actions.append(Inputs.begin(), Inputs.end());
else
Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
// Handle debug info queries.
Arg *A = Args.getLastArg(options::OPT_g_Group);
if (A && !A->getOption().matches(options::OPT_g0) &&
!A->getOption().matches(options::OPT_gstabs) &&
ContainsCompileOrAssembleAction(Actions.back())) {
// Add a 'dsymutil' step if necessary, when debug info is enabled and we
// have a compile input. We need to run 'dsymutil' ourselves in such cases
// because the debug info will refer to a temporary object file which
// will be removed at the end of the compilation process.
if (Act->getType() == types::TY_Image) {
ActionList Inputs;
Inputs.push_back(Actions.back());
Actions.pop_back();
Actions.push_back(
C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
}
// Verify the debug info output.
if (Args.hasArg(options::OPT_verify_debug_info)) {
Action* LastAction = Actions.back();
Actions.pop_back();
Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
LastAction, types::TY_Nothing));
}
}
}
}
/// \brief Check that the file referenced by Value exists. If it doesn't,
/// issue a diagnostic and return false.
static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
StringRef Value, types::ID Ty) {
if (!D.getCheckInputsExist())
return true;
// stdin always exists.
if (Value == "-")
return true;
SmallString<64> Path(Value);
if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
if (!llvm::sys::path::is_absolute(Path)) {
SmallString<64> Directory(WorkDir->getValue());
llvm::sys::path::append(Directory, Value);
Path.assign(Directory);
}
}
if (llvm::sys::fs::exists(Twine(Path)))
return true;
if (D.IsCLMode()) {
if (!llvm::sys::path::is_absolute(Twine(Path)) &&
llvm::sys::Process::FindInEnvPath("LIB", Value))
return true;
if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
// Arguments to the /link flag might cause the linker to search for object
// and library files in paths we don't know about. Don't error in such
// cases.
return true;
}
}
D.Diag(clang::diag::err_drv_no_such_file) << Path;
return false;
}
// Construct a the list of inputs and their types.
void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
InputList &Inputs) const {
// Track the current user specified (-x) input. We also explicitly track the
// argument used to set the type; we only want to claim the type when we
// actually use it, so we warn about unused -x arguments.
types::ID InputType = types::TY_Nothing;
Arg *InputTypeArg = nullptr;
// The last /TC or /TP option sets the input type to C or C++ globally.
if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
options::OPT__SLASH_TP)) {
InputTypeArg = TCTP;
InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
? types::TY_C
: types::TY_CXX;
arg_iterator it =
Args.filtered_begin(options::OPT__SLASH_TC, options::OPT__SLASH_TP);
const arg_iterator ie = Args.filtered_end();
Arg *Previous = *it++;
bool ShowNote = false;
while (it != ie) {
Diag(clang::diag::warn_drv_overriding_flag_option)
<< Previous->getSpelling() << (*it)->getSpelling();
Previous = *it++;
ShowNote = true;
}
if (ShowNote)
Diag(clang::diag::note_drv_t_option_is_global);
// No driver mode exposes -x and /TC or /TP; we don't support mixing them.
assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
}
for (Arg *A : Args) {
if (A->getOption().getKind() == Option::InputClass) {
const char *Value = A->getValue();
types::ID Ty = types::TY_INVALID;
// Infer the input type if necessary.
if (InputType == types::TY_Nothing) {
// If there was an explicit arg for this, claim it.
if (InputTypeArg)
InputTypeArg->claim();
// stdin must be handled specially.
if (memcmp(Value, "-", 2) == 0) {
// If running with -E, treat as a C input (this changes the builtin
// macros, for example). This may be overridden by -ObjC below.
//
// Otherwise emit an error but still use a valid type to avoid
// spurious errors (e.g., no inputs).
if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
: clang::diag::err_drv_unknown_stdin_type);
Ty = types::TY_C;
} else {
// Otherwise lookup by extension.
// Fallback is C if invoked as C preprocessor or Object otherwise.
// We use a host hook here because Darwin at least has its own
// idea of what .s is.
if (const char *Ext = strrchr(Value, '.'))
Ty = TC.LookupTypeForExtension(Ext + 1);
if (Ty == types::TY_INVALID) {
if (CCCIsCPP())
Ty = types::TY_C;
else
Ty = types::TY_Object;
}
// If the driver is invoked as C++ compiler (like clang++ or c++) it
// should autodetect some input files as C++ for g++ compatibility.
if (CCCIsCXX()) {
types::ID OldTy = Ty;
Ty = types::lookupCXXTypeForCType(Ty);
if (Ty != OldTy)
Diag(clang::diag::warn_drv_treating_input_as_cxx)
<< getTypeName(OldTy) << getTypeName(Ty);
}
}
// -ObjC and -ObjC++ override the default language, but only for "source
// files". We just treat everything that isn't a linker input as a
// source file.
//
// FIXME: Clean this up if we move the phase sequence into the type.
if (Ty != types::TY_Object) {
if (Args.hasArg(options::OPT_ObjC))
Ty = types::TY_ObjC;
else if (Args.hasArg(options::OPT_ObjCXX))
Ty = types::TY_ObjCXX;
}
} else {
assert(InputTypeArg && "InputType set w/o InputTypeArg");
if (!InputTypeArg->getOption().matches(options::OPT_x)) {
// If emulating cl.exe, make sure that /TC and /TP don't affect input
// object files.
const char *Ext = strrchr(Value, '.');
if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
Ty = types::TY_Object;
}
if (Ty == types::TY_INVALID) {
Ty = InputType;
InputTypeArg->claim();
}
}
if (DiagnoseInputExistence(*this, Args, Value, Ty))
Inputs.push_back(std::make_pair(Ty, A));
} else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
StringRef Value = A->getValue();
if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) {
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
Inputs.push_back(std::make_pair(types::TY_C, InputArg));
}
A->claim();
} else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
StringRef Value = A->getValue();
if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) {
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
}
A->claim();
} else if (A->getOption().hasFlag(options::LinkerInput)) {
// Just treat as object type, we could make a special type for this if
// necessary.
Inputs.push_back(std::make_pair(types::TY_Object, A));
} else if (A->getOption().matches(options::OPT_x)) {
InputTypeArg = A;
InputType = types::lookupTypeForTypeSpecifier(A->getValue());
A->claim();
// Follow gcc behavior and treat as linker input for invalid -x
// options. Its not clear why we shouldn't just revert to unknown; but
// this isn't very important, we might as well be bug compatible.
if (!InputType) {
Diag(clang::diag::err_drv_unknown_language) << A->getValue();
InputType = types::TY_Object;
}
}
}
if (CCCIsCPP() && Inputs.empty()) {
// If called as standalone preprocessor, stdin is processed
// if no other input is present.
Arg *A = MakeInputArg(Args, Opts, "-");
Inputs.push_back(std::make_pair(types::TY_C, A));
}
}
// For each unique --cuda-gpu-arch= argument creates a TY_CUDA_DEVICE
// input action and then wraps each in CudaDeviceAction paired with
// appropriate GPU arch name. In case of partial (i.e preprocessing
// only) or device-only compilation, each device action is added to /p
// Actions and /p Current is released. Otherwise the function creates
// and returns a new CudaHostAction which wraps /p Current and device
// side actions.
static Action *buildCudaActions(Compilation &C, DerivedArgList &Args,
const Arg *InputArg, Action *HostAction,
ActionList &Actions) {
Arg *PartialCompilationArg = Args.getLastArg(
options::OPT_cuda_host_only, options::OPT_cuda_device_only,
options::OPT_cuda_compile_host_device);
bool CompileHostOnly =
PartialCompilationArg &&
PartialCompilationArg->getOption().matches(options::OPT_cuda_host_only);
bool CompileDeviceOnly =
PartialCompilationArg &&
PartialCompilationArg->getOption().matches(options::OPT_cuda_device_only);
if (CompileHostOnly)
return C.MakeAction<CudaHostAction>(HostAction, ActionList());
// Collect all cuda_gpu_arch parameters, removing duplicates.
SmallVector<const char *, 4> GpuArchList;
llvm::StringSet<> GpuArchNames;
for (Arg *A : Args) {
if (!A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
continue;
A->claim();
const auto& Arch = A->getValue();
if (!CudaDeviceAction::IsValidGpuArchName(Arch))
C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << Arch;
else if (GpuArchNames.insert(Arch).second)
GpuArchList.push_back(Arch);
}
// Default to sm_20 which is the lowest common denominator for supported GPUs.
// sm_20 code should work correctly, if suboptimally, on all newer GPUs.
if (GpuArchList.empty())
GpuArchList.push_back("sm_20");
// Replicate inputs for each GPU architecture.
Driver::InputList CudaDeviceInputs;
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
CudaDeviceInputs.push_back(std::make_pair(types::TY_CUDA_DEVICE, InputArg));
// Build actions for all device inputs.
assert(C.getSingleOffloadToolChain<Action::OFK_Cuda>() &&
"Missing toolchain for device-side compilation.");
ActionList CudaDeviceActions;
C.getDriver().BuildActions(C, Args, CudaDeviceInputs, CudaDeviceActions);
assert(GpuArchList.size() == CudaDeviceActions.size() &&
"Failed to create actions for all devices");
// Check whether any of device actions stopped before they could generate PTX.
bool PartialCompilation =
llvm::any_of(CudaDeviceActions, [](const Action *a) {
return a->getKind() != Action::AssembleJobClass;
});
// Figure out what to do with device actions -- pass them as inputs to the
// host action or run each of them independently.
if (PartialCompilation || CompileDeviceOnly) {
// In case of partial or device-only compilation results of device actions
// are not consumed by the host action device actions have to be added to
// top-level actions list with AtTopLevel=true and run independently.
// -o is ambiguous if we have more than one top-level action.
if (Args.hasArg(options::OPT_o) &&
(!CompileDeviceOnly || GpuArchList.size() > 1)) {
C.getDriver().Diag(
clang::diag::err_drv_output_argument_with_multiple_files);
return nullptr;
}
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
Actions.push_back(C.MakeAction<CudaDeviceAction>(CudaDeviceActions[I],
GpuArchList[I],
/* AtTopLevel */ true));
// Kill host action in case of device-only compilation.
if (CompileDeviceOnly)
return nullptr;
return HostAction;
}
// If we're not a partial or device-only compilation, we compile each arch to
// ptx and assemble to cubin, then feed the cubin *and* the ptx into a device
// "link" action, which uses fatbinary to combine these cubins into one
// fatbin. The fatbin is then an input to the host compilation.
ActionList DeviceActions;
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
Action* AssembleAction = CudaDeviceActions[I];
assert(AssembleAction->getType() == types::TY_Object);
assert(AssembleAction->getInputs().size() == 1);
Action* BackendAction = AssembleAction->getInputs()[0];
assert(BackendAction->getType() == types::TY_PP_Asm);
for (const auto& A : {AssembleAction, BackendAction}) {
DeviceActions.push_back(C.MakeAction<CudaDeviceAction>(
A, GpuArchList[I], /* AtTopLevel */ false));
}
}
auto FatbinAction = C.MakeAction<CudaDeviceAction>(
C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN),
/* GpuArchName = */ nullptr,
/* AtTopLevel = */ false);
// Return a new host action that incorporates original host action and all
// device actions.
return C.MakeAction<CudaHostAction>(std::move(HostAction),
ActionList({FatbinAction}));
}
void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
const InputList &Inputs, ActionList &Actions) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
if (!SuppressMissingInputWarning && Inputs.empty()) {
Diag(clang::diag::err_drv_no_input_files);
return;
}
Arg *FinalPhaseArg;
phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
if (FinalPhase == phases::Link && Args.hasArg(options::OPT_emit_llvm)) {
Diag(clang::diag::err_drv_emit_llvm_link);
}
// Reject -Z* at the top level, these options should never have been exposed
// by gcc.
if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
// Diagnose misuse of /Fo.
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
StringRef V = A->getValue();
if (Inputs.size() > 1 && !V.empty() &&
!llvm::sys::path::is_separator(V.back())) {
// Check whether /Fo tries to name an output file for multiple inputs.
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
<< A->getSpelling() << V;
Args.eraseArg(options::OPT__SLASH_Fo);
}
}
// Diagnose misuse of /Fa.
if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
StringRef V = A->getValue();
if (Inputs.size() > 1 && !V.empty() &&
!llvm::sys::path::is_separator(V.back())) {
// Check whether /Fa tries to name an asm file for multiple inputs.
Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
<< A->getSpelling() << V;
Args.eraseArg(options::OPT__SLASH_Fa);
}
}
// Diagnose misuse of /o.
if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
if (A->getValue()[0] == '\0') {
// It has to have a value.
Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
Args.eraseArg(options::OPT__SLASH_o);
}
}
// Diagnose unsupported forms of /Yc /Yu. Ignore /Yc/Yu for now if:
// * no filename after it
// * both /Yc and /Yu passed but with different filenames
// * corresponding file not also passed as /FI
Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
if (YcArg && YcArg->getValue()[0] == '\0') {
Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YcArg->getSpelling();
Args.eraseArg(options::OPT__SLASH_Yc);
YcArg = nullptr;
}
if (YuArg && YuArg->getValue()[0] == '\0') {
Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YuArg->getSpelling();
Args.eraseArg(options::OPT__SLASH_Yu);
YuArg = nullptr;
}
if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
Args.eraseArg(options::OPT__SLASH_Yc);
Args.eraseArg(options::OPT__SLASH_Yu);
YcArg = YuArg = nullptr;
}
if (YcArg || YuArg) {
StringRef Val = YcArg ? YcArg->getValue() : YuArg->getValue();
bool FoundMatchingInclude = false;
for (const Arg *Inc : Args.filtered(options::OPT_include)) {
// FIXME: Do case-insensitive matching and consider / and \ as equal.
if (Inc->getValue() == Val)
FoundMatchingInclude = true;
}
if (!FoundMatchingInclude) {
Diag(clang::diag::warn_drv_ycyu_no_fi_arg_clang_cl)
<< (YcArg ? YcArg : YuArg)->getSpelling();
Args.eraseArg(options::OPT__SLASH_Yc);
Args.eraseArg(options::OPT__SLASH_Yu);
YcArg = YuArg = nullptr;
}
}
if (YcArg && Inputs.size() > 1) {
Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
Args.eraseArg(options::OPT__SLASH_Yc);
YcArg = nullptr;
}
if (Args.hasArg(options::OPT__SLASH_Y_)) {
// /Y- disables all pch handling. Rather than check for it everywhere,
// just remove clang-cl pch-related flags here.
Args.eraseArg(options::OPT__SLASH_Fp);
Args.eraseArg(options::OPT__SLASH_Yc);
Args.eraseArg(options::OPT__SLASH_Yu);
YcArg = YuArg = nullptr;
}
// Construct the actions to perform.
ActionList LinkerInputs;
llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL;
for (auto &I : Inputs) {
types::ID InputType = I.first;
const Arg *InputArg = I.second;
PL.clear();
types::getCompilationPhases(InputType, PL);
// If the first step comes after the final phase we are doing as part of
// this compilation, warn the user about it.
phases::ID InitialPhase = PL[0];
if (InitialPhase > FinalPhase) {
// Claim here to avoid the more general unused warning.
InputArg->claim();
// Suppress all unused style warnings with -Qunused-arguments
if (Args.hasArg(options::OPT_Qunused_arguments))
continue;
// Special case when final phase determined by binary name, rather than
// by a command-line argument with a corresponding Arg.
if (CCCIsCPP())
Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase);
// Special case '-E' warning on a previously preprocessed file to make
// more sense.
else if (InitialPhase == phases::Compile &&
FinalPhase == phases::Preprocess &&
getPreprocessedType(InputType) == types::TY_INVALID)
Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
<< InputArg->getAsString(Args) << !!FinalPhaseArg
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
else
Diag(clang::diag::warn_drv_input_file_unused)
<< InputArg->getAsString(Args) << getPhaseName(InitialPhase)
<< !!FinalPhaseArg
<< (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
continue;
}
if (YcArg) {
// Add a separate precompile phase for the compile phase.
if (FinalPhase >= phases::Compile) {
llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL;
types::getCompilationPhases(types::TY_CXXHeader, PCHPL);
Arg *PchInputArg = MakeInputArg(Args, Opts, YcArg->getValue());
// Build the pipeline for the pch file.
Action *ClangClPch = C.MakeAction<InputAction>(*PchInputArg, InputType);
for (phases::ID Phase : PCHPL)
ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
assert(ClangClPch);
Actions.push_back(ClangClPch);
// The driver currently exits after the first failed command. This
// relies on that behavior, to make sure if the pch generation fails,
// the main compilation won't run.
}
}
phases::ID CudaInjectionPhase =
(phases::Compile < FinalPhase &&
llvm::find(PL, phases::Compile) != PL.end())
? phases::Compile
: FinalPhase;
// Build the pipeline for this file.
Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
i != e; ++i) {
phases::ID Phase = *i;
// We are done if this step is past what the user requested.
if (Phase > FinalPhase)
break;
// Queue linker inputs.
if (Phase == phases::Link) {
assert((i + 1) == e && "linking must be final compilation step.");
LinkerInputs.push_back(Current);
Current = nullptr;
break;
}
// Some types skip the assembler phase (e.g., llvm-bc), but we can't
// encode this in the steps because the intermediate type depends on
// arguments. Just special case here.
if (Phase == phases::Assemble && Current->getType() != types::TY_PP_Asm)
continue;
// Otherwise construct the appropriate action.
Current = ConstructPhaseAction(C, Args, Phase, Current);
if (InputType == types::TY_CUDA && Phase == CudaInjectionPhase) {
Current = buildCudaActions(C, Args, InputArg, Current, Actions);
if (!Current)
break;
}
if (Current->getType() == types::TY_Nothing)
break;
}
// If we ended with something, add to the output list.
if (Current)
Actions.push_back(Current);
}
// Add a link action if necessary.
if (!LinkerInputs.empty())
Actions.push_back(
C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image));
// If we are linking, claim any options which are obviously only used for
// compilation.
if (FinalPhase == phases::Link && PL.size() == 1) {
Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
Args.ClaimAllArgs(options::OPT_cl_compile_Group);
}
// Claim ignored clang-cl options.
Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
// Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
// to non-CUDA compilations and should not trigger warnings there.
Args.ClaimAllArgs(options::OPT_cuda_host_only);
Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
}
Action *Driver::ConstructPhaseAction(Compilation &C, const ArgList &Args,
phases::ID Phase, Action *Input) const {
llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
// Build the appropriate action.
switch (Phase) {
case phases::Link:
llvm_unreachable("link action invalid here.");
case phases::Preprocess: {
types::ID OutputTy;
// -{M, MM} alter the output type.
if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
OutputTy = types::TY_Dependencies;
} else {
OutputTy = Input->getType();
if (!Args.hasFlag(options::OPT_frewrite_includes,
options::OPT_fno_rewrite_includes, false) &&
!CCGenDiagnostics)
OutputTy = types::getPreprocessedType(OutputTy);
assert(OutputTy != types::TY_INVALID &&
"Cannot preprocess this input type!");
}
return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
}
case phases::Precompile: {
types::ID OutputTy = types::TY_PCH;
if (Args.hasArg(options::OPT_fsyntax_only)) {
// Syntax checks should not emit a PCH file
OutputTy = types::TY_Nothing;
}
return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
}
case phases::Compile: {
if (Args.hasArg(options::OPT_fsyntax_only))
return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
if (Args.hasArg(options::OPT_rewrite_objc))
return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
if (Args.hasArg(options::OPT_rewrite_legacy_objc))
return C.MakeAction<CompileJobAction>(Input,
types::TY_RewrittenLegacyObjC);
if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
if (Args.hasArg(options::OPT__migrate))
return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
if (Args.hasArg(options::OPT_emit_ast))
return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
if (Args.hasArg(options::OPT_module_file_info))
return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
if (Args.hasArg(options::OPT_verify_pch))
return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
}
case phases::Backend: {
if (isUsingLTO()) {
types::ID Output =
Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
return C.MakeAction<BackendJobAction>(Input, Output);
}
if (Args.hasArg(options::OPT_emit_llvm)) {
types::ID Output =
Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
return C.MakeAction<BackendJobAction>(Input, Output);
}
return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
}
case phases::Assemble:
return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
}
llvm_unreachable("invalid phase in ConstructPhaseAction");
}
void Driver::BuildJobs(Compilation &C) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
// It is an error to provide a -o option if we are making multiple output
// files.
if (FinalOutput) {
unsigned NumOutputs = 0;
for (const Action *A : C.getActions())
if (A->getType() != types::TY_Nothing)
++NumOutputs;
if (NumOutputs > 1) {
Diag(clang::diag::err_drv_output_argument_with_multiple_files);
FinalOutput = nullptr;
}
}
// Collect the list of architectures.
llvm::StringSet<> ArchNames;
if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
for (const Arg *A : C.getArgs())
if (A->getOption().matches(options::OPT_arch))
ArchNames.insert(A->getValue());
// Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
for (Action *A : C.getActions()) {
// If we are linking an image for multiple archs then the linker wants
// -arch_multiple and -final_output <final image name>. Unfortunately, this
// doesn't fit in cleanly because we have to pass this information down.
//
// FIXME: This is a hack; find a cleaner way to integrate this into the
// process.
const char *LinkingOutput = nullptr;
if (isa<LipoJobAction>(A)) {
if (FinalOutput)
LinkingOutput = FinalOutput->getValue();
else
LinkingOutput = getDefaultImageName();
}
BuildJobsForAction(C, A, &C.getDefaultToolChain(),
/*BoundArch*/ nullptr,
/*AtTopLevel*/ true,
/*MultipleArchs*/ ArchNames.size() > 1,
/*LinkingOutput*/ LinkingOutput, CachedResults);
}
// If the user passed -Qunused-arguments or there were errors, don't warn
// about any unused arguments.
if (Diags.hasErrorOccurred() ||
C.getArgs().hasArg(options::OPT_Qunused_arguments))
return;
// Claim -### here.
(void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
// Claim --driver-mode, --rsp-quoting, it was handled earlier.
(void)C.getArgs().hasArg(options::OPT_driver_mode);
(void)C.getArgs().hasArg(options::OPT_rsp_quoting);
for (Arg *A : C.getArgs()) {
// FIXME: It would be nice to be able to send the argument to the
// DiagnosticsEngine, so that extra values, position, and so on could be
// printed.
if (!A->isClaimed()) {
if (A->getOption().hasFlag(options::NoArgumentUnused))
continue;
// Suppress the warning automatically if this is just a flag, and it is an
// instance of an argument we already claimed.
const Option &Opt = A->getOption();
if (Opt.getKind() == Option::FlagClass) {
bool DuplicateClaimed = false;
for (const Arg *AA : C.getArgs().filtered(&Opt)) {
if (AA->isClaimed()) {
DuplicateClaimed = true;
break;
}
}
if (DuplicateClaimed)
continue;
}
// In clang-cl, don't mention unknown arguments here since they have
// already been warned about.
if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
Diag(clang::diag::warn_drv_unused_argument)
<< A->getAsString(C.getArgs());
}
}
}
// Returns a Tool for a given JobAction. In case the action and its
// predecessors can be combined, updates Inputs with the inputs of the
// first combined action. If one of the collapsed actions is a
// CudaHostAction, updates CollapsedCHA with the pointer to it so the
// caller can deal with extra handling such action requires.
static const Tool *selectToolForJob(Compilation &C, bool SaveTemps,
bool EmbedBitcode, const ToolChain *TC,
const JobAction *JA,
const ActionList *&Inputs,
const CudaHostAction *&CollapsedCHA) {
const Tool *ToolForJob = nullptr;
CollapsedCHA = nullptr;
// See if we should look for a compiler with an integrated assembler. We match
// bottom up, so what we are actually looking for is an assembler job with a
// compiler input.
if (TC->useIntegratedAs() && !SaveTemps &&
!C.getArgs().hasArg(options::OPT_via_file_asm) &&
!C.getArgs().hasArg(options::OPT__SLASH_FA) &&
!C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
isa<AssembleJobAction>(JA) && Inputs->size() == 1 &&
isa<BackendJobAction>(*Inputs->begin())) {
// A BackendJob is always preceded by a CompileJob, and without -save-temps
// or -fembed-bitcode, they will always get combined together, so instead of
// checking the backend tool, check if the tool for the CompileJob has an
// integrated assembler. For -fembed-bitcode, CompileJob is still used to
// look up tools for BackendJob, but they need to match before we can split
// them.
const ActionList *BackendInputs = &(*Inputs)[0]->getInputs();
// Compile job may be wrapped in CudaHostAction, extract it if
// that's the case and update CollapsedCHA if we combine phases.
CudaHostAction *CHA = dyn_cast<CudaHostAction>(*BackendInputs->begin());
JobAction *CompileJA = cast<CompileJobAction>(
CHA ? *CHA->input_begin() : *BackendInputs->begin());
assert(CompileJA && "Backend job is not preceeded by compile job.");
const Tool *Compiler = TC->SelectTool(*CompileJA);
if (!Compiler)
return nullptr;
// When using -fembed-bitcode, it is required to have the same tool (clang)
// for both CompilerJA and BackendJA. Otherwise, combine two stages.
if (EmbedBitcode) {
JobAction *InputJA = cast<JobAction>(*Inputs->begin());
const Tool *BackendTool = TC->SelectTool(*InputJA);
if (BackendTool == Compiler)
CompileJA = InputJA;
}
if (Compiler->hasIntegratedAssembler()) {
Inputs = &CompileJA->getInputs();
ToolForJob = Compiler;
CollapsedCHA = CHA;
}
}
// A backend job should always be combined with the preceding compile job
// unless OPT_save_temps or OPT_fembed_bitcode is enabled and the compiler is
// capable of emitting LLVM IR as an intermediate output.
if (isa<BackendJobAction>(JA)) {
// Check if the compiler supports emitting LLVM IR.
assert(Inputs->size() == 1);
// Compile job may be wrapped in CudaHostAction, extract it if
// that's the case and update CollapsedCHA if we combine phases.
CudaHostAction *CHA = dyn_cast<CudaHostAction>(*Inputs->begin());
JobAction *CompileJA =
cast<CompileJobAction>(CHA ? *CHA->input_begin() : *Inputs->begin());
assert(CompileJA && "Backend job is not preceeded by compile job.");
const Tool *Compiler = TC->SelectTool(*CompileJA);
if (!Compiler)
return nullptr;
if (!Compiler->canEmitIR() ||
(!SaveTemps && !EmbedBitcode)) {
Inputs = &CompileJA->getInputs();
ToolForJob = Compiler;
CollapsedCHA = CHA;
}
}
// Otherwise use the tool for the current job.
if (!ToolForJob)
ToolForJob = TC->SelectTool(*JA);
// See if we should use an integrated preprocessor. We do so when we have
// exactly one input, since this is the only use case we care about
// (irrelevant since we don't support combine yet).
if (Inputs->size() == 1 && isa<PreprocessJobAction>(*Inputs->begin()) &&
!C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
!C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
!C.getArgs().hasArg(options::OPT_rewrite_objc) &&
ToolForJob->hasIntegratedCPP())
Inputs = &(*Inputs)[0]->getInputs();
return ToolForJob;
}
InputInfo Driver::BuildJobsForAction(
Compilation &C, const Action *A, const ToolChain *TC, const char *BoundArch,
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults)
const {
// The bound arch is not necessarily represented in the toolchain's triple --
// for example, armv7 and armv7s both map to the same triple -- so we need
// both in our map.
std::string TriplePlusArch = TC->getTriple().normalize();
if (BoundArch) {
TriplePlusArch += "-";
TriplePlusArch += BoundArch;
}
std::pair<const Action *, std::string> ActionTC = {A, TriplePlusArch};
auto CachedResult = CachedResults.find(ActionTC);
if (CachedResult != CachedResults.end()) {
return CachedResult->second;
}
InputInfo Result =
BuildJobsForActionNoCache(C, A, TC, BoundArch, AtTopLevel, MultipleArchs,
LinkingOutput, CachedResults);
CachedResults[ActionTC] = Result;
return Result;
}
InputInfo Driver::BuildJobsForActionNoCache(
Compilation &C, const Action *A, const ToolChain *TC, const char *BoundArch,
bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults)
const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
InputInfoList CudaDeviceInputInfos;
if (const CudaHostAction *CHA = dyn_cast<CudaHostAction>(A)) {
// Append outputs of device jobs to the input list.
for (const Action *DA : CHA->getDeviceActions()) {
CudaDeviceInputInfos.push_back(BuildJobsForAction(
C, DA, TC, nullptr, AtTopLevel,
/*MultipleArchs*/ false, LinkingOutput, CachedResults));
}
// Override current action with a real host compile action and continue
// processing it.
A = *CHA->input_begin();
}
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
// FIXME: It would be nice to not claim this here; maybe the old scheme of
// just using Args was better?
const Arg &Input = IA->getInputArg();
Input.claim();
if (Input.getOption().matches(options::OPT_INPUT)) {
const char *Name = Input.getValue();
return InputInfo(A, Name, /* BaseInput = */ Name);
}
return InputInfo(A, &Input, /* BaseInput = */ "");
}
if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
const ToolChain *TC;
const char *ArchName = BAA->getArchName();
if (ArchName)
TC = &getToolChain(C.getArgs(),
computeTargetTriple(*this, DefaultTargetTriple,
C.getArgs(), ArchName));
else
TC = &C.getDefaultToolChain();
return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
MultipleArchs, LinkingOutput, CachedResults);
}
if (const CudaDeviceAction *CDA = dyn_cast<CudaDeviceAction>(A)) {
// Initial processing of CudaDeviceAction carries host params.
// Call BuildJobsForAction() again, now with correct device parameters.
InputInfo II = BuildJobsForAction(
C, *CDA->input_begin(), C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
CDA->getGpuArchName(), CDA->isAtTopLevel(), /*MultipleArchs=*/true,
LinkingOutput, CachedResults);
// Currently II's Action is *CDA->input_begin(). Set it to CDA instead, so
// that one can retrieve II's GPU arch.
II.setAction(A);
return II;
}
const ActionList *Inputs = &A->getInputs();
const JobAction *JA = cast<JobAction>(A);
const CudaHostAction *CollapsedCHA = nullptr;
const Tool *T =
selectToolForJob(C, isSaveTempsEnabled(), embedBitcodeEnabled(), TC, JA,
Inputs, CollapsedCHA);
if (!T)
return InputInfo();
// If we've collapsed action list that contained CudaHostAction we
// need to build jobs for device-side inputs it may have held.
if (CollapsedCHA) {
for (const Action *DA : CollapsedCHA->getDeviceActions()) {
CudaDeviceInputInfos.push_back(BuildJobsForAction(
C, DA, TC, "", AtTopLevel,
/*MultipleArchs*/ false, LinkingOutput, CachedResults));
}
}
// Only use pipes when there is exactly one input.
InputInfoList InputInfos;
for (const Action *Input : *Inputs) {
// Treat dsymutil and verify sub-jobs as being at the top-level too, they
// shouldn't get temporary output names.
// FIXME: Clean this up.
bool SubJobAtTopLevel =
AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
InputInfos.push_back(BuildJobsForAction(C, Input, TC, BoundArch,
SubJobAtTopLevel, MultipleArchs,
LinkingOutput, CachedResults));
}
// Always use the first input as the base input.
const char *BaseInput = InputInfos[0].getBaseInput();
// ... except dsymutil actions, which use their actual input as the base
// input.
if (JA->getType() == types::TY_dSYM)
BaseInput = InputInfos[0].getFilename();
// Append outputs of cuda device jobs to the input list
if (CudaDeviceInputInfos.size())
InputInfos.append(CudaDeviceInputInfos.begin(), CudaDeviceInputInfos.end());
// Determine the place to write output to, if any.
InputInfo Result;
if (JA->getType() == types::TY_Nothing)
Result = InputInfo(A, BaseInput);
else
Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
AtTopLevel, MultipleArchs),
BaseInput);
if (CCCPrintBindings && !CCGenDiagnostics) {
llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
<< " - \"" << T->getName() << "\", inputs: [";
for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
llvm::errs() << InputInfos[i].getAsString();
if (i + 1 != e)
llvm::errs() << ", ";
}
llvm::errs() << "], output: " << Result.getAsString() << "\n";
} else {
T->ConstructJob(C, *JA, Result, InputInfos,
C.getArgsForToolChain(TC, BoundArch), LinkingOutput);
}
return Result;
}
const char *Driver::getDefaultImageName() const {
llvm::Triple Target(llvm::Triple::normalize(DefaultTargetTriple));
return Target.isOSWindows() ? "a.exe" : "a.out";
}
/// \brief Create output filename based on ArgValue, which could either be a
/// full filename, filename without extension, or a directory. If ArgValue
/// does not provide a filename, then use BaseName, and use the extension
/// suitable for FileType.
static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
StringRef BaseName,
types::ID FileType) {
SmallString<128> Filename = ArgValue;
if (ArgValue.empty()) {
// If the argument is empty, output to BaseName in the current dir.
Filename = BaseName;
} else if (llvm::sys::path::is_separator(Filename.back())) {
// If the argument is a directory, output to BaseName in that dir.
llvm::sys::path::append(Filename, BaseName);
}
if (!llvm::sys::path::has_extension(ArgValue)) {
// If the argument didn't provide an extension, then set it.
const char *Extension = types::getTypeTempSuffix(FileType, true);
if (FileType == types::TY_Image &&
Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
// The output file is a dll.
Extension = "dll";
}
llvm::sys::path::replace_extension(Filename, Extension);
}
return Args.MakeArgString(Filename.c_str());
}
const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
const char *BaseInput,
const char *BoundArch, bool AtTopLevel,
bool MultipleArchs) const {
llvm::PrettyStackTraceString CrashInfo("Computing output path");
// Output to a user requested destination?
if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
return C.addResultFile(FinalOutput->getValue(), &JA);
}
// For /P, preprocess to file named after BaseInput.
if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
assert(AtTopLevel && isa<PreprocessJobAction>(JA));
StringRef BaseName = llvm::sys::path::filename(BaseInput);
StringRef NameArg;
if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
NameArg = A->getValue();
return C.addResultFile(
MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
&JA);
}
// Default to writing to stdout?
if (AtTopLevel && !CCGenDiagnostics &&
(isa<PreprocessJobAction>(JA) || JA.getType() == types::TY_ModuleFile))
return "-";
// Is this the assembly listing for /FA?
if (JA.getType() == types::TY_PP_Asm &&
(C.getArgs().hasArg(options::OPT__SLASH_FA) ||
C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
// Use /Fa and the input filename to determine the asm file name.
StringRef BaseName = llvm::sys::path::filename(BaseInput);
StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
return C.addResultFile(
MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
&JA);
}
// Output to a temporary file?
if ((!AtTopLevel && !isSaveTempsEnabled() &&
!C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
CCGenDiagnostics) {
StringRef Name = llvm::sys::path::filename(BaseInput);
std::pair<StringRef, StringRef> Split = Name.split('.');
std::string TmpName = GetTemporaryPath(
Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str()));
}
SmallString<128> BasePath(BaseInput);
StringRef BaseName;
// Dsymutil actions should use the full path.
if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
BaseName = BasePath;
else
BaseName = llvm::sys::path::filename(BasePath);
// Determine what the derived output name should be.
const char *NamedOutput;
if (JA.getType() == types::TY_Object &&
C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
// The /Fo or /o flag decides the object filename.
StringRef Val =
C.getArgs()
.getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
->getValue();
NamedOutput =
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
} else if (JA.getType() == types::TY_Image &&
C.getArgs().hasArg(options::OPT__SLASH_Fe,
options::OPT__SLASH_o)) {
// The /Fe or /o flag names the linked file.
StringRef Val =
C.getArgs()
.getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
->getValue();
NamedOutput =
MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
} else if (JA.getType() == types::TY_Image) {
if (IsCLMode()) {
// clang-cl uses BaseName for the executable name.
NamedOutput =
MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
} else if (MultipleArchs && BoundArch) {
SmallString<128> Output(getDefaultImageName());
Output += "-";
Output.append(BoundArch);
NamedOutput = C.getArgs().MakeArgString(Output.c_str());
} else {
NamedOutput = getDefaultImageName();
}
} else if (JA.getType() == types::TY_PCH && IsCLMode()) {
NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName).c_str());
} else {
const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
assert(Suffix && "All types used for output should have a suffix.");
std::string::size_type End = std::string::npos;
if (!types::appendSuffixForType(JA.getType()))
End = BaseName.rfind('.');
SmallString<128> Suffixed(BaseName.substr(0, End));
if (MultipleArchs && BoundArch) {
Suffixed += "-";
Suffixed.append(BoundArch);
}
// When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
// the unoptimized bitcode so that it does not get overwritten by the ".bc"
// optimized bitcode output.
if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
JA.getType() == types::TY_LLVM_BC)
Suffixed += ".tmp";
Suffixed += '.';
Suffixed += Suffix;
NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
}
// Prepend object file path if -save-temps=obj
if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
JA.getType() != types::TY_PCH) {
Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
SmallString<128> TempPath(FinalOutput->getValue());
llvm::sys::path::remove_filename(TempPath);
StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
llvm::sys::path::append(TempPath, OutputFileName);
NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
}
// If we're saving temps and the temp file conflicts with the input file,
// then avoid overwriting input file.
if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
bool SameFile = false;
SmallString<256> Result;
llvm::sys::fs::current_path(Result);
llvm::sys::path::append(Result, BaseName);
llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
// Must share the same path to conflict.
if (SameFile) {
StringRef Name = llvm::sys::path::filename(BaseInput);
std::pair<StringRef, StringRef> Split = Name.split('.');
std::string TmpName = GetTemporaryPath(
Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
return C.addTempFile(C.getArgs().MakeArgString(TmpName.c_str()));
}
}
// As an annoying special case, PCH generation doesn't strip the pathname.
if (JA.getType() == types::TY_PCH && !IsCLMode()) {
llvm::sys::path::remove_filename(BasePath);
if (BasePath.empty())
BasePath = NamedOutput;
else
llvm::sys::path::append(BasePath, NamedOutput);
return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
} else {
return C.addResultFile(NamedOutput, &JA);
}
}
std::string Driver::GetFilePath(const char *Name, const ToolChain &TC) const {
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when looking for file paths.
for (const std::string &Dir : PrefixDirs) {
if (Dir.empty())
continue;
SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
llvm::sys::path::append(P, Name);
if (llvm::sys::fs::exists(Twine(P)))
return P.str();
}
SmallString<128> P(ResourceDir);
llvm::sys::path::append(P, Name);
if (llvm::sys::fs::exists(Twine(P)))
return P.str();
for (const std::string &Dir : TC.getFilePaths()) {
if (Dir.empty())
continue;
SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
llvm::sys::path::append(P, Name);
if (llvm::sys::fs::exists(Twine(P)))
return P.str();
}
return Name;
}
void Driver::generatePrefixedToolNames(
const char *Tool, const ToolChain &TC,
SmallVectorImpl<std::string> &Names) const {
// FIXME: Needs a better variable than DefaultTargetTriple
Names.emplace_back(DefaultTargetTriple + "-" + Tool);
Names.emplace_back(Tool);
// Allow the discovery of tools prefixed with LLVM's default target triple.
std::string LLVMDefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
if (LLVMDefaultTargetTriple != DefaultTargetTriple)
Names.emplace_back(LLVMDefaultTargetTriple + "-" + Tool);
}
static bool ScanDirForExecutable(SmallString<128> &Dir,
ArrayRef<std::string> Names) {
for (const auto &Name : Names) {
llvm::sys::path::append(Dir, Name);
if (llvm::sys::fs::can_execute(Twine(Dir)))
return true;
llvm::sys::path::remove_filename(Dir);
}
return false;
}
std::string Driver::GetProgramPath(const char *Name,
const ToolChain &TC) const {
SmallVector<std::string, 2> TargetSpecificExecutables;
generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
// Respect a limited subset of the '-Bprefix' functionality in GCC by
// attempting to use this prefix when looking for program paths.
for (const auto &PrefixDir : PrefixDirs) {
if (llvm::sys::fs::is_directory(PrefixDir)) {
SmallString<128> P(PrefixDir);
if (ScanDirForExecutable(P, TargetSpecificExecutables))
return P.str();
} else {
SmallString<128> P(PrefixDir + Name);
if (llvm::sys::fs::can_execute(Twine(P)))
return P.str();
}
}
const ToolChain::path_list &List = TC.getProgramPaths();
for (const auto &Path : List) {
SmallString<128> P(Path);
if (ScanDirForExecutable(P, TargetSpecificExecutables))
return P.str();
}
// If all else failed, search the path.
for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
if (llvm::ErrorOr<std::string> P =
llvm::sys::findProgramByName(TargetSpecificExecutable))
return *P;
return Name;
}
std::string Driver::GetTemporaryPath(StringRef Prefix,
const char *Suffix) const {
SmallString<128> Path;
std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
if (EC) {
Diag(clang::diag::err_unable_to_make_temp) << EC.message();
return "";
}
return Path.str();
}
std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
SmallString<128> Output;
if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
// FIXME: If anybody needs it, implement this obscure rule:
// "If you specify a directory without a file name, the default file name
// is VCx0.pch., where x is the major version of Visual C++ in use."
Output = FpArg->getValue();
// "If you do not specify an extension as part of the path name, an
// extension of .pch is assumed. "
if (!llvm::sys::path::has_extension(Output))
Output += ".pch";
} else {
Output = BaseName;
llvm::sys::path::replace_extension(Output, ".pch");
}
return Output.str();
}
const ToolChain &Driver::getToolChain(const ArgList &Args,
const llvm::Triple &Target) const {
ToolChain *&TC = ToolChains[Target.str()];
if (!TC) {
switch (Target.getOS()) {
case llvm::Triple::Haiku:
TC = new toolchains::Haiku(*this, Target, Args);
break;
case llvm::Triple::CloudABI:
TC = new toolchains::CloudABI(*this, Target, Args);
break;
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS:
case llvm::Triple::TvOS:
case llvm::Triple::WatchOS:
TC = new toolchains::DarwinClang(*this, Target, Args);
break;
case llvm::Triple::DragonFly:
TC = new toolchains::DragonFly(*this, Target, Args);
break;
case llvm::Triple::OpenBSD:
TC = new toolchains::OpenBSD(*this, Target, Args);
break;
case llvm::Triple::Bitrig:
TC = new toolchains::Bitrig(*this, Target, Args);
break;
case llvm::Triple::NetBSD:
TC = new toolchains::NetBSD(*this, Target, Args);
break;
case llvm::Triple::FreeBSD:
TC = new toolchains::FreeBSD(*this, Target, Args);
break;
case llvm::Triple::Minix:
TC = new toolchains::Minix(*this, Target, Args);
break;
case llvm::Triple::Linux:
case llvm::Triple::ELFIAMCU:
if (Target.getArch() == llvm::Triple::hexagon)
TC = new toolchains::HexagonToolChain(*this, Target, Args);
else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
!Target.hasEnvironment())
TC = new toolchains::MipsLLVMToolChain(*this, Target, Args);
else
TC = new toolchains::Linux(*this, Target, Args);
break;
case llvm::Triple::NaCl:
TC = new toolchains::NaClToolChain(*this, Target, Args);
break;
case llvm::Triple::Solaris:
TC = new toolchains::Solaris(*this, Target, Args);
break;
case llvm::Triple::AMDHSA:
TC = new toolchains::AMDGPUToolChain(*this, Target, Args);
break;
case llvm::Triple::Win32:
switch (Target.getEnvironment()) {
default:
if (Target.isOSBinFormatELF())
TC = new toolchains::Generic_ELF(*this, Target, Args);
else if (Target.isOSBinFormatMachO())
TC = new toolchains::MachO(*this, Target, Args);
else
TC = new toolchains::Generic_GCC(*this, Target, Args);
break;
case llvm::Triple::GNU:
TC = new toolchains::MinGW(*this, Target, Args);
break;
case llvm::Triple::Itanium:
TC = new toolchains::CrossWindowsToolChain(*this, Target, Args);
break;
case llvm::Triple::MSVC:
case llvm::Triple::UnknownEnvironment:
TC = new toolchains::MSVCToolChain(*this, Target, Args);
break;
}
break;
case llvm::Triple::CUDA:
TC = new toolchains::CudaToolChain(*this, Target, Args);
break;
case llvm::Triple::PS4:
TC = new toolchains::PS4CPU(*this, Target, Args);
break;
default:
// Of these targets, Hexagon is the only one that might have
// an OS of Linux, in which case it got handled above already.
switch (Target.getArch()) {
case llvm::Triple::tce:
TC = new toolchains::TCEToolChain(*this, Target, Args);
break;
case llvm::Triple::hexagon:
TC = new toolchains::HexagonToolChain(*this, Target, Args);
break;
case llvm::Triple::lanai:
TC = new toolchains::LanaiToolChain(*this, Target, Args);
break;
case llvm::Triple::xcore:
TC = new toolchains::XCoreToolChain(*this, Target, Args);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
TC = new toolchains::WebAssembly(*this, Target, Args);
break;
default:
if (Target.getVendor() == llvm::Triple::Myriad)
TC = new toolchains::MyriadToolChain(*this, Target, Args);
else if (Target.isOSBinFormatELF())
TC = new toolchains::Generic_ELF(*this, Target, Args);
else if (Target.isOSBinFormatMachO())
TC = new toolchains::MachO(*this, Target, Args);
else
TC = new toolchains::Generic_GCC(*this, Target, Args);
}
}
}
return *TC;
}
bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
// Say "no" if there is not exactly one input of a type clang understands.
if (JA.size() != 1 ||
!types::isAcceptedByClang((*JA.input_begin())->getType()))
return false;
// And say "no" if this is not a kind of action clang understands.
if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
!isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
return false;
return true;
}
/// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
/// grouped values as integers. Numbers which are not provided are set to 0.
///
/// \return True if the entire string was parsed (9.2), or all groups were
/// parsed (10.3.5extrastuff).
bool Driver::GetReleaseVersion(const char *Str, unsigned &Major,
unsigned &Minor, unsigned &Micro,
bool &HadExtra) {
HadExtra = false;
Major = Minor = Micro = 0;
if (*Str == '\0')
return false;
char *End;
Major = (unsigned)strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (*End != '.')
return false;
Str = End + 1;
Minor = (unsigned)strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (*End != '.')
return false;
Str = End + 1;
Micro = (unsigned)strtol(Str, &End, 10);
if (*Str != '\0' && *End == '\0')
return true;
if (Str == End)
return false;
HadExtra = true;
return true;
}
/// Parse digits from a string \p Str and fulfill \p Digits with
/// the parsed numbers. This method assumes that the max number of
/// digits to look for is equal to Digits.size().
///
/// \return True if the entire string was parsed and there are
/// no extra characters remaining at the end.
bool Driver::GetReleaseVersion(const char *Str,
MutableArrayRef<unsigned> Digits) {
if (*Str == '\0')
return false;
char *End;
unsigned CurDigit = 0;
while (CurDigit < Digits.size()) {
unsigned Digit = (unsigned)strtol(Str, &End, 10);
Digits[CurDigit] = Digit;
if (*Str != '\0' && *End == '\0')
return true;
if (*End != '.' || Str == End)
return false;
Str = End + 1;
CurDigit++;
}
// More digits than requested, bail out...
return false;
}
std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks() const {
unsigned IncludedFlagsBitmask = 0;
unsigned ExcludedFlagsBitmask = options::NoDriverOption;
if (Mode == CLMode) {
// Include CL and Core options.
IncludedFlagsBitmask |= options::CLOption;
IncludedFlagsBitmask |= options::CoreOption;
} else {
ExcludedFlagsBitmask |= options::CLOption;
}
return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
}
bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
}