llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp

1225 lines
43 KiB
C++

//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "tti"
static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
cl::Hidden,
cl::desc("Recognize reduction patterns."));
namespace {
/// \brief No-op implementation of the TTI interface using the utility base
/// classes.
///
/// This is used when no target specific information is available.
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
explicit NoTTIImpl(const DataLayout &DL)
: TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
};
}
TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
: TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
TargetTransformInfo::~TargetTransformInfo() {}
TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
: TTIImpl(std::move(Arg.TTIImpl)) {}
TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
TTIImpl = std::move(RHS.TTIImpl);
return *this;
}
int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
Type *OpTy) const {
int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const {
int Cost = TTIImpl->getCallCost(FTy, NumArgs);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallCost(const Function *F,
ArrayRef<const Value *> Arguments) const {
int Cost = TTIImpl->getCallCost(F, Arguments);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
return TTIImpl->getInliningThresholdMultiplier();
}
int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands) const {
return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
}
int TargetTransformInfo::getExtCost(const Instruction *I,
const Value *Src) const {
return TTIImpl->getExtCost(I, Src);
}
int TargetTransformInfo::getIntrinsicCost(
Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned
TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JTSize) const {
return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
}
int TargetTransformInfo::getUserCost(const User *U,
ArrayRef<const Value *> Operands) const {
int Cost = TTIImpl->getUserCost(U, Operands);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::hasBranchDivergence() const {
return TTIImpl->hasBranchDivergence();
}
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
return TTIImpl->isSourceOfDivergence(V);
}
bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
return TTIImpl->isAlwaysUniform(V);
}
unsigned TargetTransformInfo::getFlatAddressSpace() const {
return TTIImpl->getFlatAddressSpace();
}
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
return TTIImpl->isLoweredToCall(F);
}
void TargetTransformInfo::getUnrollingPreferences(
Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
return TTIImpl->getUnrollingPreferences(L, SE, UP);
}
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
return TTIImpl->isLegalAddImmediate(Imm);
}
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return TTIImpl->isLegalICmpImmediate(Imm);
}
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace,
Instruction *I) const {
return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace, I);
}
bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
return TTIImpl->isLSRCostLess(C1, C2);
}
bool TargetTransformInfo::canMacroFuseCmp() const {
return TTIImpl->canMacroFuseCmp();
}
bool TargetTransformInfo::shouldFavorPostInc() const {
return TTIImpl->shouldFavorPostInc();
}
bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
return TTIImpl->isLegalMaskedStore(DataType);
}
bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
return TTIImpl->isLegalMaskedLoad(DataType);
}
bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
return TTIImpl->isLegalMaskedGather(DataType);
}
bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
return TTIImpl->isLegalMaskedScatter(DataType);
}
bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
return TTIImpl->hasDivRemOp(DataType, IsSigned);
}
bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
unsigned AddrSpace) const {
return TTIImpl->hasVolatileVariant(I, AddrSpace);
}
bool TargetTransformInfo::prefersVectorizedAddressing() const {
return TTIImpl->prefersVectorizedAddressing();
}
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace) const {
int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::LSRWithInstrQueries() const {
return TTIImpl->LSRWithInstrQueries();
}
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TTIImpl->isTruncateFree(Ty1, Ty2);
}
bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
return TTIImpl->isProfitableToHoist(I);
}
bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
return TTIImpl->isTypeLegal(Ty);
}
unsigned TargetTransformInfo::getJumpBufAlignment() const {
return TTIImpl->getJumpBufAlignment();
}
unsigned TargetTransformInfo::getJumpBufSize() const {
return TTIImpl->getJumpBufSize();
}
bool TargetTransformInfo::shouldBuildLookupTables() const {
return TTIImpl->shouldBuildLookupTables();
}
bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
return TTIImpl->shouldBuildLookupTablesForConstant(C);
}
bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
return TTIImpl->useColdCCForColdCall(F);
}
unsigned TargetTransformInfo::
getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
}
unsigned TargetTransformInfo::
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
unsigned VF) const {
return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
}
bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
return TTIImpl->supportsEfficientVectorElementLoadStore();
}
bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
}
const TargetTransformInfo::MemCmpExpansionOptions *
TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const {
return TTIImpl->enableMemCmpExpansion(IsZeroCmp);
}
bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
return TTIImpl->enableInterleavedAccessVectorization();
}
bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
return TTIImpl->isFPVectorizationPotentiallyUnsafe();
}
bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
unsigned BitWidth,
unsigned AddressSpace,
unsigned Alignment,
bool *Fast) const {
return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
Alignment, Fast);
}
TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
return TTIImpl->getPopcntSupport(IntTyWidthInBit);
}
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
return TTIImpl->haveFastSqrt(Ty);
}
bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
}
int TargetTransformInfo::getFPOpCost(Type *Ty) const {
int Cost = TTIImpl->getFPOpCost(Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
const APInt &Imm,
Type *Ty) const {
int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
int Cost = TTIImpl->getIntImmCost(Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty) const {
int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty) const {
int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
return TTIImpl->getNumberOfRegisters(Vector);
}
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
return TTIImpl->getRegisterBitWidth(Vector);
}
unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
return TTIImpl->getMinVectorRegisterBitWidth();
}
bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
}
bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
return TTIImpl->shouldConsiderAddressTypePromotion(
I, AllowPromotionWithoutCommonHeader);
}
unsigned TargetTransformInfo::getCacheLineSize() const {
return TTIImpl->getCacheLineSize();
}
llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
const {
return TTIImpl->getCacheSize(Level);
}
llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
CacheLevel Level) const {
return TTIImpl->getCacheAssociativity(Level);
}
unsigned TargetTransformInfo::getPrefetchDistance() const {
return TTIImpl->getPrefetchDistance();
}
unsigned TargetTransformInfo::getMinPrefetchStride() const {
return TTIImpl->getMinPrefetchStride();
}
unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
return TTIImpl->getMaxPrefetchIterationsAhead();
}
unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
return TTIImpl->getMaxInterleaveFactor(VF);
}
int TargetTransformInfo::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
OperandValueProperties Opd2PropInfo,
ArrayRef<const Value *> Args) const {
int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
Type *SubTp) const {
int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src, const Instruction *I) const {
assert ((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) const {
int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
int Cost = TTIImpl->getCFInstrCost(Opcode);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy, const Instruction *I) const {
assert ((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace,
const Instruction *I) const {
assert ((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
int Cost =
TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
Value *Ptr, bool VariableMask,
unsigned Alignment) const {
int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
unsigned Alignment, unsigned AddressSpace) const {
int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type *> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed) const {
int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
ScalarizationCostPassed);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys) const {
int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
return TTIImpl->getNumberOfParts(Tp);
}
int TargetTransformInfo::getAddressComputationCost(Type *Tp,
ScalarEvolution *SE,
const SCEV *Ptr) const {
int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
bool IsPairwiseForm) const {
int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
bool IsPairwiseForm,
bool IsUnsigned) const {
int Cost =
TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
}
bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
}
unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
}
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
IntrinsicInst *Inst, Type *ExpectedType) const {
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
}
Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
Value *Length,
unsigned SrcAlign,
unsigned DestAlign) const {
return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
DestAlign);
}
void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
SrcAlign, DestAlign);
}
bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
return TTIImpl->areInlineCompatible(Caller, Callee);
}
bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
Type *Ty) const {
return TTIImpl->isIndexedLoadLegal(Mode, Ty);
}
bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
Type *Ty) const {
return TTIImpl->isIndexedStoreLegal(Mode, Ty);
}
unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
return TTIImpl->getLoadStoreVecRegBitWidth(AS);
}
bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
return TTIImpl->isLegalToVectorizeLoad(LI);
}
bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
return TTIImpl->isLegalToVectorizeStore(SI);
}
bool TargetTransformInfo::isLegalToVectorizeLoadChain(
unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool TargetTransformInfo::isLegalToVectorizeStoreChain(
unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
}
unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
}
bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
Type *Ty, ReductionFlags Flags) const {
return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
}
bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
return TTIImpl->shouldExpandReduction(II);
}
int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
return TTIImpl->getInstructionLatency(I);
}
static bool isReverseVectorMask(ArrayRef<int> Mask) {
for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i))
return false;
return true;
}
static bool isSingleSourceVectorMask(ArrayRef<int> Mask) {
bool Vec0 = false;
bool Vec1 = false;
for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) {
if (Mask[i] >= 0) {
if ((unsigned)Mask[i] >= NumVecElts)
Vec1 = true;
else
Vec0 = true;
}
}
return !(Vec0 && Vec1);
}
static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) {
for (unsigned i = 0; i < Mask.size(); ++i)
if (Mask[i] > 0)
return false;
return true;
}
static bool isAlternateVectorMask(ArrayRef<int> Mask) {
bool isAlternate = true;
unsigned MaskSize = Mask.size();
// Example: shufflevector A, B, <0,5,2,7>
for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
if (Mask[i] < 0)
continue;
isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
}
if (isAlternate)
return true;
isAlternate = true;
// Example: shufflevector A, B, <4,1,6,3>
for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
if (Mask[i] < 0)
continue;
isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
}
return isAlternate;
}
static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
TargetTransformInfo::OperandValueKind OpInfo =
TargetTransformInfo::OK_AnyValue;
// Check for a splat of a constant or for a non uniform vector of constants.
if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
if (cast<Constant>(V)->getSplatValue() != nullptr)
OpInfo = TargetTransformInfo::OK_UniformConstantValue;
}
// Check for a splat of a uniform value. This is not loop aware, so return
// true only for the obviously uniform cases (argument, globalvalue)
const Value *Splat = getSplatValue(V);
if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
OpInfo = TargetTransformInfo::OK_UniformValue;
return OpInfo;
}
static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
unsigned Level) {
// We don't need a shuffle if we just want to have element 0 in position 0 of
// the vector.
if (!SI && Level == 0 && IsLeft)
return true;
else if (!SI)
return false;
SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
// we look at the left or right side.
for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
Mask[i] = val;
SmallVector<int, 16> ActualMask = SI->getShuffleMask();
return Mask == ActualMask;
}
namespace {
/// Kind of the reduction data.
enum ReductionKind {
RK_None, /// Not a reduction.
RK_Arithmetic, /// Binary reduction data.
RK_MinMax, /// Min/max reduction data.
RK_UnsignedMinMax, /// Unsigned min/max reduction data.
};
/// Contains opcode + LHS/RHS parts of the reduction operations.
struct ReductionData {
ReductionData() = delete;
ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
: Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
assert(Kind != RK_None && "expected binary or min/max reduction only.");
}
unsigned Opcode = 0;
Value *LHS = nullptr;
Value *RHS = nullptr;
ReductionKind Kind = RK_None;
bool hasSameData(ReductionData &RD) const {
return Kind == RD.Kind && Opcode == RD.Opcode;
}
};
} // namespace
static Optional<ReductionData> getReductionData(Instruction *I) {
Value *L, *R;
if (m_BinOp(m_Value(L), m_Value(R)).match(I))
return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
if (auto *SI = dyn_cast<SelectInst>(I)) {
if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
m_SMax(m_Value(L), m_Value(R)).match(SI) ||
m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
auto *CI = cast<CmpInst>(SI->getCondition());
return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
}
if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
m_UMax(m_Value(L), m_Value(R)).match(SI)) {
auto *CI = cast<CmpInst>(SI->getCondition());
return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
}
}
return llvm::None;
}
static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
unsigned Level,
unsigned NumLevels) {
// Match one level of pairwise operations.
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
if (!I)
return RK_None;
assert(I->getType()->isVectorTy() && "Expecting a vector type");
Optional<ReductionData> RD = getReductionData(I);
if (!RD)
return RK_None;
ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
if (!LS && Level)
return RK_None;
ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
if (!RS && Level)
return RK_None;
// On level 0 we can omit one shufflevector instruction.
if (!Level && !RS && !LS)
return RK_None;
// Shuffle inputs must match.
Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
Value *NextLevelOp = nullptr;
if (NextLevelOpR && NextLevelOpL) {
// If we have two shuffles their operands must match.
if (NextLevelOpL != NextLevelOpR)
return RK_None;
NextLevelOp = NextLevelOpL;
} else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
// On the first level we can omit the shufflevector <0, undef,...>. So the
// input to the other shufflevector <1, undef> must match with one of the
// inputs to the current binary operation.
// Example:
// %NextLevelOpL = shufflevector %R, <1, undef ...>
// %BinOp = fadd %NextLevelOpL, %R
if (NextLevelOpL && NextLevelOpL != RD->RHS)
return RK_None;
else if (NextLevelOpR && NextLevelOpR != RD->LHS)
return RK_None;
NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
} else
return RK_None;
// Check that the next levels binary operation exists and matches with the
// current one.
if (Level + 1 != NumLevels) {
Optional<ReductionData> NextLevelRD =
getReductionData(cast<Instruction>(NextLevelOp));
if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
return RK_None;
}
// Shuffle mask for pairwise operation must match.
if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
return RK_None;
} else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
return RK_None;
} else {
return RK_None;
}
if (++Level == NumLevels)
return RD->Kind;
// Match next level.
return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
NumLevels);
}
static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
unsigned &Opcode, Type *&Ty) {
if (!EnableReduxCost)
return RK_None;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return RK_None;
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
if (!RdxStart)
return RK_None;
Optional<ReductionData> RD = getReductionData(RdxStart);
if (!RD)
return RK_None;
Type *VecTy = RdxStart->getType();
unsigned NumVecElems = VecTy->getVectorNumElements();
if (!isPowerOf2_32(NumVecElems))
return RK_None;
// We look for a sequence of shuffle,shuffle,add triples like the following
// that builds a pairwise reduction tree.
//
// (X0, X1, X2, X3)
// (X0 + X1, X2 + X3, undef, undef)
// ((X0 + X1) + (X2 + X3), undef, undef, undef)
//
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
// %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
// %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
// %r = extractelement <4 x float> %bin.rdx8, i32 0
if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
RK_None)
return RK_None;
Opcode = RD->Opcode;
Ty = VecTy;
return RD->Kind;
}
static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(Value *L, Value *R) {
ShuffleVectorInst *S = nullptr;
if ((S = dyn_cast<ShuffleVectorInst>(L)))
return std::make_pair(R, S);
S = dyn_cast<ShuffleVectorInst>(R);
return std::make_pair(L, S);
}
static ReductionKind
matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
unsigned &Opcode, Type *&Ty) {
if (!EnableReduxCost)
return RK_None;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return RK_None;
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
if (!RdxStart)
return RK_None;
Optional<ReductionData> RD = getReductionData(RdxStart);
if (!RD)
return RK_None;
Type *VecTy = ReduxRoot->getOperand(0)->getType();
unsigned NumVecElems = VecTy->getVectorNumElements();
if (!isPowerOf2_32(NumVecElems))
return RK_None;
// We look for a sequence of shuffles and adds like the following matching one
// fadd, shuffle vector pair at a time.
//
// %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
// %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
// %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
// %r = extractelement <4 x float> %bin.rdx8, i32 0
unsigned MaskStart = 1;
Instruction *RdxOp = RdxStart;
SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
unsigned NumVecElemsRemain = NumVecElems;
while (NumVecElemsRemain - 1) {
// Check for the right reduction operation.
if (!RdxOp)
return RK_None;
Optional<ReductionData> RDLevel = getReductionData(RdxOp);
if (!RDLevel || !RDLevel->hasSameData(*RD))
return RK_None;
Value *NextRdxOp;
ShuffleVectorInst *Shuffle;
std::tie(NextRdxOp, Shuffle) =
getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
// Check the current reduction operation and the shuffle use the same value.
if (Shuffle == nullptr)
return RK_None;
if (Shuffle->getOperand(0) != NextRdxOp)
return RK_None;
// Check that shuffle masks matches.
for (unsigned j = 0; j != MaskStart; ++j)
ShuffleMask[j] = MaskStart + j;
// Fill the rest of the mask with -1 for undef.
std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
if (ShuffleMask != Mask)
return RK_None;
RdxOp = dyn_cast<Instruction>(NextRdxOp);
NumVecElemsRemain /= 2;
MaskStart *= 2;
}
Opcode = RD->Opcode;
Ty = VecTy;
return RD->Kind;
}
int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
return getUserCost(I);
case Instruction::Ret:
case Instruction::PHI:
case Instruction::Br: {
return getCFInstrCost(I->getOpcode());
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
TargetTransformInfo::OperandValueKind Op1VK =
getOperandInfo(I->getOperand(0));
TargetTransformInfo::OperandValueKind Op2VK =
getOperandInfo(I->getOperand(1));
SmallVector<const Value*, 2> Operands(I->operand_values());
return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
Op2VK, TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None,
Operands);
}
case Instruction::Select: {
const SelectInst *SI = cast<SelectInst>(I);
Type *CondTy = SI->getCondition()->getType();
return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
}
case Instruction::Store: {
const StoreInst *SI = cast<StoreInst>(I);
Type *ValTy = SI->getValueOperand()->getType();
return getMemoryOpCost(I->getOpcode(), ValTy,
SI->getAlignment(),
SI->getPointerAddressSpace(), I);
}
case Instruction::Load: {
const LoadInst *LI = cast<LoadInst>(I);
return getMemoryOpCost(I->getOpcode(), I->getType(),
LI->getAlignment(),
LI->getPointerAddressSpace(), I);
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::AddrSpaceCast: {
Type *SrcTy = I->getOperand(0)->getType();
return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
}
case Instruction::ExtractElement: {
const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();
// Try to match a reduction sequence (series of shufflevector and vector
// adds followed by a extractelement).
unsigned ReduxOpCode;
Type *ReduxType;
switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
case RK_Arithmetic:
return getArithmeticReductionCost(ReduxOpCode, ReduxType,
/*IsPairwiseForm=*/false);
case RK_MinMax:
return getMinMaxReductionCost(
ReduxType, CmpInst::makeCmpResultType(ReduxType),
/*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
case RK_UnsignedMinMax:
return getMinMaxReductionCost(
ReduxType, CmpInst::makeCmpResultType(ReduxType),
/*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
case RK_None:
break;
}
switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
case RK_Arithmetic:
return getArithmeticReductionCost(ReduxOpCode, ReduxType,
/*IsPairwiseForm=*/true);
case RK_MinMax:
return getMinMaxReductionCost(
ReduxType, CmpInst::makeCmpResultType(ReduxType),
/*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
case RK_UnsignedMinMax:
return getMinMaxReductionCost(
ReduxType, CmpInst::makeCmpResultType(ReduxType),
/*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
case RK_None:
break;
}
return getVectorInstrCost(I->getOpcode(),
EEI->getOperand(0)->getType(), Idx);
}
case Instruction::InsertElement: {
const InsertElementInst * IE = cast<InsertElementInst>(I);
ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();
return getVectorInstrCost(I->getOpcode(),
IE->getType(), Idx);
}
case Instruction::ShuffleVector: {
const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
unsigned NumVecElems = VecTypOp0->getVectorNumElements();
SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
if (NumVecElems == Mask.size()) {
if (isReverseVectorMask(Mask))
return getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
0, nullptr);
if (isAlternateVectorMask(Mask))
return getShuffleCost(TargetTransformInfo::SK_Alternate,
VecTypOp0, 0, nullptr);
if (isZeroEltBroadcastVectorMask(Mask))
return getShuffleCost(TargetTransformInfo::SK_Broadcast,
VecTypOp0, 0, nullptr);
if (isSingleSourceVectorMask(Mask))
return getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
VecTypOp0, 0, nullptr);
return getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
VecTypOp0, 0, nullptr);
}
return -1;
}
case Instruction::Call:
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
SmallVector<Value *, 4> Args(II->arg_operands());
FastMathFlags FMF;
if (auto *FPMO = dyn_cast<FPMathOperator>(II))
FMF = FPMO->getFastMathFlags();
return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
Args, FMF);
}
return -1;
default:
// We don't have any information on this instruction.
return -1;
}
}
TargetTransformInfo::Concept::~Concept() {}
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
TargetIRAnalysis::TargetIRAnalysis(
std::function<Result(const Function &)> TTICallback)
: TTICallback(std::move(TTICallback)) {}
TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
FunctionAnalysisManager &) {
return TTICallback(F);
}
AnalysisKey TargetIRAnalysis::Key;
TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
return Result(F.getParent()->getDataLayout());
}
// Register the basic pass.
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
"Target Transform Information", false, true)
char TargetTransformInfoWrapperPass::ID = 0;
void TargetTransformInfoWrapperPass::anchor() {}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
: ImmutablePass(ID) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
TargetIRAnalysis TIRA)
: ImmutablePass(ID), TIRA(std::move(TIRA)) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
FunctionAnalysisManager DummyFAM;
TTI = TIRA.run(F, DummyFAM);
return *TTI;
}
ImmutablePass *
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
return new TargetTransformInfoWrapperPass(std::move(TIRA));
}